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Abstract

We develop an approach for the automatic and elastic
management of memory in shared clusters executing data
analytics applications. Our approach, called ElasticMem,
comprises a technique for dynamically changing memory
limits in Java virtual machines, models to predict mem-
ory usage and garbage collection cost, and a scheduling
algorithm that dynamically reallocates memory between
applications. Experiments with our prototype implemen-
tation show that our approach outperforms static memory
allocation leading to fewer query failures when memory is
scarce, up to 80% lower garbage collection overheads, and
up to 30% lower query times when memory is abundant.

1 Introduction

The analysis of large datasets is an important problem
and many big data systems are available to facilitate this
task [2,29,33,36,48,53]. To handle large data sizes, these
systems execute in shared-nothing clusters. Whether pub-
lic or private, clusters are typically shared by many queries
(also called “applications”)1 and even many systems ex-
ecuting in the same cluster at the same time. In such
shared clusters, a resource manager [25,47] is responsible
for the resource allocation between systems and applica-
tions. Modern resource managers rely on containers (e.g.,
YARN [47], Docker [3], or Kubernetes [5] containers),
which isolate applications that share the same machine
and provide hard resource limits. Application resource
requirements are both constrained and protected by the
containers. Figure 1 illustrates the interaction between a
resource manager and containers: the resource manager
launches containers with resource limits and schedules
applications inside those containers.

Many modern data analytics systems, such as Spark

1In this paper, we focus on applications that correspond to analytical
queries and use the terms “application” and “query” interchangeably.

Myria	Query	1	

Spark	
App	1	

Spark	
App	1	

System	X	App	A	

Myria	Query	1	
Myria	
Query	1	

Myria	
Query	2	

Myria	
Query	2	

Machine	1	

Resource	
Manager	

Machine	2	 Machine	3	

Spark	App	1	

Myria	Query	1	

Myria	Query	2	

System	X	App	A		

Figure 1: A resource manager schedules multiple applica-
tions from multiple systems (Spark [53], Myria [48], and
System X) in a shared cluster. An application may have mul-
tiple processes across multiple machines. The resource man-
ager schedules applications by putting them in containers
with resource limits.

[53], Impala [29], GraphLab [33], Giraph [2], and
Myria [22, 48], strive to maximally utilize memory, yet
memory remains an expensive resource. In this paper,
we focus in particular on memory allocation. However,
container-based scheduling has limitations for managing
memory. When an application needs to run, it must es-
timate its resource requirements and communicate them
to the resource manager. The latter then decides whether
or not to schedule the application based on the amount
of available resources. The challenge, however, is that it
is hard to estimate the memory need of a data analytics
application before executing it because it may depend
on multiple runtime factors including the cardinalities
of intermediate results, which are known to be hard to
estimate [27, 31].

Having an inaccurate memory usage estimate can harm
query performance in multiple ways. If the estimate is
too high, cluster resources may be under-utilized. If the
estimate is less than the minimum amount of memory
needed to complete the query, the system must either spill
data to disk, which leads to performance degradation, or
fail with an out-of-memory error, wasting the resources



already consumed by the query. This challenge exists
in systems with manual memory management, such as
those written in C/C++ [29, 33], in Java-based systems
that use byte arrays [8], and in systems that rely on auto-
matic memory management provided by runtimes such
as Java [2, 48, 52, 53] and the .NET Common Language
Runtime (CLR) [36]. The situation is more complicated
when garbage collection (GC) is used for automatic mem-
ory management, since GC activities add another layer
of unpredictability to query performance. Even if the re-
source estimates are sufficient for the query to complete,
garbage collection in some cases can significantly slow
down query execution. As a concrete example, we demon-
strate how changing the maximum heap size of Java-based
systems can significantly impact query time in Section 2.

To address these problems, we develop a new approach,
called ElasticMem, where data analytics applications ex-
ecute in separate containers, but the resource manager
elastically adjusts the memory allocated to these contain-
ers. The optimization goal is to jointly minimize failures
and total execution time of all applications subject to the
physical limit on the total amount of memory in the clus-
ter. We presented the vision behind the approach and a
few preliminary results in a short workshop paper [49]. In
this paper, we develop the approach in full.

Elastic container memory management is a difficult
problem. First, elastic memory allocation is not supported
in most systems. For Java-based systems, the maximum
heap size of a Java virtual machine (JVM) stays constant
during its lifetime. For C/C++-based systems such as
Impala [29], limiting the resource of a process is usually
done through Linux utilities such as cgroups, which
do not expose functionality to change resource limits at
runtime. For systems that run in CLR [36], the problem
is opposite: No control on the heap size can be specified,
so the heap can grow arbitrarily up to the total physical
memory. Second, in order to elastically and dynamically
allocate memory to data analytics applications, we need
to understand how extra memory can prevent failures
and speed up these applications. We need models of GC
benefits and overheads. Finally, we need an algorithm that
uses the models to orchestrate memory allocation across
multiple data analytics applications.

We present our approach to address all three challenges.
We focus on analytical applications, in particular rela-
tional algebra queries on large data, and Java-based sys-
tems. Since memory management in Java containers (e.g.,
YARN [47]) is determined by JVMs internally, we focus
on how and when to change the memory layouts of JVMs.
Specifically, our contributions are the following:

• We show how to modify the JVM to enable dynamic
changes to an application’s heap layout for elastic man-
agement of its memory utilizations (Section 3.1).
• Our key contribution is an algorithm for elastically

managing memory across multiple applications in a big
data analytics system to achieve an overall optimization
goal (Section 3.2). In this paper, we present scenarios
where each query runs in one JVM and multiple queries
run in one machine, but our approach can be extended
to a multi-machine setting.
• In support of elastic memory management, we de-

velop a machine-learning based technique for predicting
the heap state and GC overhead for a relational query and
whether it is expected to run out of memory (Section 3.3)
based on operator statistics. Since the common approach
for implementing relational operators in memory, such
as joins and aggregates, is to use hash tables [19], we
build models that use hash table statistics as input.

We evaluate our elastic memory management tech-
niques using TPC-H queries [6] on Myria [22, 48], a
shared-nothing data analytics system, against containers
with fixed memory limits. In our experiments, our ap-
proach outperforms static allocation: It reduces the num-
ber of query failures; it reduces query times by up to 30%,
GC times by up to 80%, and overall resource utilization
(Section 4).

2 Performance Impact of Automatic Mem-
ory Management

Many big data analytics systems today, including
Spark [53], Flink [1], Hadoop [52], Giraph [2], and
Myria [48], are written in programming languages
with automatic memory management, specifically Java.
Garbage collection associated with automatic memory
management is known to cause performance variations
that are hard to control: The GC policy, although customiz-
able by the programmer to some extent, is controlled by
the runtime internally. Depending on the policy and heap
state, the time and frequency of GCs may vary signifi-
cantly and, as we later show in this section, may signifi-
cantly impact query performance.

Over the past decade, there have been several JVM
implementations with various GC algorithms. However,
most of the contemporary ones share the concept of gener-
ations [9]. With this design, the heap space is partitioned
into multiple generations for storing objects with different
ages. Figure 2 illustrates the internal state of a JVM heap
with two generations. Initial memory allocation requests
always go to the young generation. When it fills up, a GC
is triggered to clean up dead objects. There are different
types of GCs as shown in Figure 2. In a young collec-
tion, live objects in the young generation are promoted to
the old generation. In a full collection, dead objects are
cleaned from both generations in addition to promotions.
The type of collection to trigger depends on whether a
promotion failure, i.e., insufficient space for promoting
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Figure 2: Internal heap states of a JVM before and af-
ter actions of new object allocation, young generation col-
lection, and full collections, starting from an initial state.
Dark blocks: (L)ive objects, light blocks: (D)ead objects,
blue blocks: (N)ew objects. Dashed lines: generation size
limits that can be changed in real time by our approach.
We describe FGCp and FGCc in Section 3.2.3.

objects from the young generation, is expected to occur
or actually occurs. In this paper, we use OpenJDK as the
reference JVM implementation. We focus on the common
class of GC algorithms that use a young and old gener-
ation, and leave extensions to other languages and GC
algorithms to future work.

We show a concrete example of how GC can impact
query execution by executing a self-join query on a syn-
thetic dataset containing ten million tuples with two int

columns, on three systems: Myria, Spark 1.1 and Spark
2.0, using one process on one machine with default GC
collectors (-XX:+UseParallelGC). Figure 3 shows the
query execution times with different heap-size limits.
Each data point is the average of five trials with error
bars showing the minimum and maximum values. For
both Myria and Spark 2.0, when the heap is large, the
query time converges to approximately 35 seconds, which
is the pure query time with almost no GC. When we shrink
the heap size, however, the run times increase moderately
due to more GC time. For Myria, the run time increases
from 35 seconds to 55 seconds when the heap size goes
from 16 GB to 3 GB, and further increases drastically
to 141 seconds when the heap size shrinks from 3 GB
to 2 GB. Eventually, Myria fails with an out-of-memory
error when the limit is less than 2 GB. Similarly, the query
time for Spark 1.1 has a steep increase from 86 to 466
seconds when the heap size changes from 5 to 4 GB, and
the query fails when the heap size is less than 4 GB. Spark
2.0 follows a similar trend as Myria, but does not fail even
with only 500 MB of memory because it is able to spill
data to disk when memory is insufficient. As a result,
however, its execution time increases to 127 seconds.

3 Elastic Memory Allocation

In this section, we present our approach, called Elas-
ticMem, for elastic memory allocation. ElasticMem com-
prises three key components. First, ElasticMem needs
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Figure 3: Impact of GC on query execution time in Myria,
Spark 1.1, and Spark 2.0. The y-axis uses a log scale.

JVMs that can change memory limits dynamically, and
we describe how we modify OpenJDK to enable this fea-
ture in Section 3.1. Second, the heart of ElasticMem is
a memory manager that dynamically allocates memory
across multiple queries (Section 3.2). Finally, to drive the
manager’s allocation decisions, ElasticMem uses models
that predict the heap state and the GC costs (i.e., impact
on run time) and benefits (i.e., expected freed memory)
at any point during query execution (Section 3.3). The
implementation of our approach is available at our web-
site [4].

3.1 Implementing Dynamic Heap Adjust-
ment in a JVM

OpenJDK manages an application’s memory as follows:
First, the user specifies the maximum heap size of a JVM
process before launching it. The JVM then asks the operat-
ing system to reserve the heap space and divides the space
into generations based on its internal size policy as in Fig-
ure 2. During program execution, if a memory allocation
request cannot be satisfied due to insufficient memory,
the JVM may trigger GCs to release some memory. If not
much memory is released after spending a large amount
of time on GC, the JVM throws an OutOfMemory error.
The maximum heap size stays constant during a JVM’s
lifetime. It cannot be increased even if an OutOfMemory

is thrown while more memory is available on the machine,
or decreased if heap space is underutilized.

This rigid design, however, is unnecessary. For operat-
ing systems that support overcommitting memory, a logi-
cal address space does not physically occupy any memory
until it is used. This property, together with 64-bit address
spaces, allow us to reserve and commit a large address
space when launching a JVM. The actual memory limits
on heap spaces, such as generations, can be modified later
during runtime.

We modify the source code of OpenJDK to implement
this feature. We change the JVM to reserve and commit a
continuous address space of a specified maximum heap
size (-Xmx) when it launches. The initial size limit of
each generation is set according to the JVM’s internal
policy. We make the maximum heap size large enough
such that the per-generation limits are sufficiently large to



become irrelevant. Additionally, we add our new dynamic
size limits to both the young and old generation of a
JVM p, denoted with ylimit(p) and olimit(p) respectively.
Our memory manager changes these limits at runtime.
We set their initial values to reasonably small numbers
(e.g., 1 GB) and prevent each generation from using more
memory than its dynamic limit.

To interact with the JVM, we add a socket-based API
through which the JVM receives instructions such as re-
quests for the current heap state, memory limit adjust-
ments, or GC triggers. We disable the JVM’s internal GC
policies to let our memory manager control when and
which GCs to happen. We modify GC implementations to
always release recycled memory to the OS. If more mem-
ory is needed but unavailable given the current limits, we
let the JVM pause until more memory is available. We
implement our changes on top of OpenJDK 7u85’s de-
fault heap implementation (ParallelScavengeHeap),
which contains approximately 1000 lines of code.

3.2 Dynamic Memory Allocation

The main component of ElasticMem is a memory man-
ager. It monitors concurrently executing queries and alters
their JVMs’ memory utilizations by performing actions
on the JVMs, such as triggering a GC or killing the JVM.
Each action has a value, and the objective is to maximize
the sum of all action values. A value is a combination of
several factors, including whether the action kills a JVM,
causes a JVM to pause, or how efficiently it enables the
JVM to acquire memory: i.e., the ratio of time spent over
space acquired (from the OS or recovered through a GC).

The manager makes decisions according to two pieces
of information: the JVM heap states and the estimated
values of performing actions on the JVMs. Because pre-
dicting these values far into the future carries significant
uncertainty, and because our changes to the JVM enable
us to adjust memory limits without any overhead, we de-
velop a dynamic memory manager. The manager makes
decisions adaptively at each timestep t for some small pe-
riod [t, t +δt ]. At t, the manager gathers runtime statistics
from each JVM and performs actions on it. Queries then
execute for time δt . Their states change and the manager
makes another round of decisions at t +δt . We describe
our allocation algorithms in this section, starting with a
more precise problem statement.

3.2.1 Problem Statement

We start with a single-node and a one-process-per-query
scenario. As introduced in Section 1, each JVM is a con-
tainer that executes a single query (or query partition). We
model query execution as the process of accommodating
the memory growth of the corresponding JVM. For a pe-

riod [t, t +δt ], the memory usage of a JVM may grow by
some amount. We can perform various actions to the JVM
to affect its memory utilization: allocate enough memory
for the expected growth, trigger a GC, which may require
extra memory in the short term but free up memory in
the longer term, kill the JVM to release all its memory, or
do nothing, which may stall a JVM if it cannot grow its
memory utilization as needed.

Consider a single physical machine with a total amount
of memory M. A set of N JVMs {p1, . . . , pN} is running
on it, each has used some space in both the young and
the old generation. At the current timestep t, we need to
allocate M across the N JVMs, such that the total mem-
ory used does not exceed M, while minimizing a global
objective function.

The memory that must be allocated to a JVM is en-
tirely determined by the action that the manager selects.
For example, to perform a young generation GC, the old
generation needs to have enough space to accommodate
the promoted young generation live objects. The manager
must increase the memory limit for the old generation to
accommodate the added space requirement. We denote
with ycap(pi,ai) and ocap(pi,ai), the minimal amount of
memory that must be allocated to the young and old gener-
ation of JVM pi, if the manager chooses action ai. These
values refer to the new required totals and not increments.

Each action has a value that contributes to the global
objective function. We denote the value of action ai on pi
with value(pi,ai). The objective function is thus:

maximize
N
∑

i=1
value(pi,ai),ai ∈ Actions,

subject to
N
∑

i=1
(ycap(pi,ai)+ocap(pi,ai))≤M,

where Actions is the set of possible actions. In our ap-
proach, the value(pi,ai) is a structure with multiple fields.
We describe its internal structure and how to sum and
compare values in Section 3.2.3 below.

The above definition can be extended to a shared-
nothing cluster scenario by letting the manager make
decisions independently for each machine.

3.2.2 Runtime Metrics

Several runtime metrics are needed to compute the value
and the space requirements of actions. Some are reported
by the JVM while others are estimated by the manager:

Metrics reported by the JVM: For a JVM p at
timestep t, ylimit(p, t) and olimit(p, t) are the current mem-
ory limits of the young and old generation. The manager
sets those limits at the previous timestep. However, only
some of the space in each generation is used at t, and the
JVM reports the used sizes as yused(p, t) and oused(p, t).

Metrics estimated by the manager: Besides the
above metrics, we also need to estimate some values



Value Meaning
ylimit(p, t) Size limit of the young gen
olimit(p, t) Size limit of the old gen
yused(p, t) Total used space in the young gen
oused(p, t) Total used space in the old gen
ŷlive(p, t) Total size of live objects in the young gen
ôlive(p, t) Total size of live objects in the old gen
ŷdead(p, t) Total size of dead objects in the young gen
ôdead(p, t) Total size of dead objects in the old gen

ˆgrw(p, t) Estimated heap growth until next timestep
ĝcy(yob j(p, t)) Time to perform a young collection
ĝco(oob j(p, t)) Time to perform an old collection

Table 1: Runtime metrics reported by JVM p or esti-
mated by the manager at timestep t. x̂ indicates that x
is estimated. “gen” is short for generation.

that are not directly available. First, the space used in
the young and old generation of a JVM is further di-
vided into live and dead objects. The manager estimates
the total size of those objects, which we denote with
ŷlive(p, t), ŷdead(p, t), ôlive(p, t) and ôdead(p, t). We use
x̂ to indicate that a value x is estimated by the manager.
Second, the manager needs to estimate p’s heap growth,

ˆgrw(p, t), before the next timestep, where ˆgrw(p, t) =
ŷused(p, t +δt)− yused(p, t). Finally, to model the impact
of a GC, the manager needs to know how much memory
a GC will free, and how much time it will take. Since
the target of a GC is the set of all objects in the gener-
ation(s) undergoing the GC, we use yob j(p, t) to denote
the set of all the objects in the young generation and simi-
larly oob j(p, t) for the old generation.2 ĝcy(yob j(p, t)) and
ĝco(oob j(p, t)) are then the estimated times for a young
and an old GC. We describe how the manager estimates
these metrics in Section 3.3.

Table 1 summarizes the notation. Since t is the only
used timestep, we omit t and only use p as the argument
in the rest of the paper when the context is clear.

3.2.3 Space of Possible Actions

There are four types of actions that the manager can
choose for each JVM: allowing the JVM to grow by ask-
ing the operating system for more memory, reducing the
memory assigned to the JVM by performing a garbage col-
lection and recycling space,3 pausing the JVM if it cannot
either grow or recycle enough memory, or as a last resort,
killing a JVM to release its entire memory. The manager
performs an action for every JVM at each timestep. An
action a on a JVM p has value, value(p,a), with a min-
imum amount of memory needed for p’s young and old
generations, (ycap(p,a) and ocap(p,a)). We denote the
time to perform a on p with time(p,a), and the size of the

2yob j(p, t) is the union of all the live and dead objects in the young
generation of p at t, similarly to oob j(p, t).

3The recycled memory is always reclaimed by the OS.

newly available space made by a with space(p,a). The
cost of an action is the amount of time needed to acquire
a given amount of space, or time(p,a)

space(p,a) . The manager uses
this ratio to compare and choose actions.

The detailed set of Actions is as follows:

• GROW: Let the JVM grow to continue query execu-
tion. In order to reserve space for the growth, the man-
ager must allocate ycap(p,GROW) = yused(p) + ˆgrw(p)
to the young generation and ocap(p,GROW) = ŷlive(p)+
oused(p) to the old generation. We reserve extra space
in the old generation for prospective promotions to pre-
serve the possibilities of having all types of GCs in the
future. The cost is the time it takes to request and ac-
cess the new space, which depends on the size of the
space change given by: ycap(p,GROW)+ocap(p,GROW)−
ylimit(p)− olimit(p). Under normal circumstances, this
will be the commonly selected action until space be-
comes tight and JVMs must start garbage collection or
must pause before being able to grow again.
• YGC: Trigger a young generation GC. The JVM

needs at least the current used space, yused(p), for the
young generation, and ŷlive(p) + oused(p) for the old
generation to avoid a promotion failure. The cost is the
GC time ĝcy(yob j(p)), and we expect memory of size
ŷdead(p) to be recycled.
• FGCp: Trigger a full GC by first performing a young

generation collection to promote live objects to the old
generation then performing a GC on the old generation.
Similar to YGC, we need at least yused(p) and ŷlive(p)+
oused(p) for the young and old generations respectively.
The cost is the GC time ĝcy(yob j(p))+ ĝco(oob j(p)) and
the space to be recycled is ŷdead(p)+ ôdead(p).
• FGCc: Trigger a full GC by first performing a GC on

the whole heap, then trying to promote young generation
live objects if possible, without changing the total heap
size. Free space from the young generation after the first
GC gets shifted to the old generation to make space for
copying. Different from FGCp, we only need yused(p)
and oused(p) for the young and old generation since the
promotion is not mandatory. However, more GC time
is needed since the full collection is now performed on
both generations instead of only the old generation. We
assume that the time grows proportionally to the size
of live objects and use ĝcy(yob j(p)) + ĝco(oob j(p)) ∗
(ŷlive(p) + ôlive(p))/ôlive(p) as the GC time estimate.
The memory to be recycled is also ŷdead(p)+ ôdead(p).
• NOOP: Do nothing to the JVM, keep the current

limits ylimit(p) and olimit(p). As a consequence, the JVM
is expected to pause since it cannot either grow or recycle
enough memory by doing garbage collection.
• KILL: Kill the JVM immediately. As a consequence,

the query running in this JVM will fail.

FGCp, which promotes first, is the default behavior in



OpenJDK. However, the promotion may fail if the old
generation does not have enough free space to absorb
young generation live objects, and when it happens, JVM
spends much time on copying the live objects back, so
that the young generation remains the same as it was
before the promotion. In other words, triggering FGCp
while expecting a promotion failure is not cost effective.
However, when memory is scarce, the manager may not
be able to allocate extra space to avoid the promotion
failure. In this case, we need a GC which can still recycle
space without increasing the limits. We solve this problem
by implementing another full GC procedure, FGCc: We
first collect both generations, then shift young generation
free space to the old generation to keep the total heap
limit unchanged. A young GC is then performed if there
is enough space for promoting.

Table 2 summarizes the properties of all actions. os(m)
denotes the time to access new memory of size m. We ob-
tain its value by running a calibration program since this
value changes for different systems and settings. Figure 2
illustrates the effect of all the actions except for NOOP and
KILL, which have the obvious effects.

We define the value of an action with three attributes,
where only one of them is set to a non-zero value. For
NOOP and KILL, we set the corresponding attributes to
1. For other actions, we use their cost, or time/space effi-
ciency, as the value: i.e., how much time the action needs
per unit of space that it makes available. Then for an
action a on a VM p, its value value(p,a) is defined as:

value(p,a).cost =
time(p,a)

space(p,a)
,

for GROW,YGC,
FGCp,FGCc,

value(p,a).NOOP= 1, for NOOP,
value(p,a).KILL= 1, for KILL,

With the above definition, our manager can favor actions
by comparing these three attributes in a certain order, as
we describe in Section 3.2.4.

3.2.4 Memory Allocation Algorithm

Next, we discuss the allocation algorithm, which allocates
memory to the JVMs by performing actions on them at
each timestep. We model the problem as a 0-1 knapsack
problem. The capacity of the knapsack is the total amount
of memory, and the items are actions performed on JVMs.
Each action has a value and a minimum space requirement
as described in Table 2. The goal is to maximize the total
item value in the knapsack without exceeding its capacity.

The 0-1 knapsack problem is known to be NP-complete
with a pseudo-polynomial dynamic programming solu-
tion [14]. Let optN,M denote the value of the best scheme
for allocating memory of size M to the first N JVMs,
p1 · · · pN . If a JVM pi is undergoing a GC, the manager
skips it to wait for the GC to complete. Otherwise, it

derives opti, j by enumerating possible actions on pi and
picking the one that leads to the largest value for opti, j.
We define the sum of two values as the sum of their three
attributes, then the state transition function is defined as:

opti, j =
{

opti, j if opti, j > opti−1, j−m + v,
opti−1, j−m + v otherwise,

where v = value(pi,a),a ∈ Actions, i ∈ [1,N], j ∈ [0,M].

To choose between two values, we first check which
one has a lower value for attribute KILL, then fewer
NOOPs to reduce pausing time, then a smaller time/space
ratio. The one with fewer KILL, then fewer NOOP, then
smaller time/space ratio, has a higher value. To be precise,
given two values a and b, we define a > b as:

bool operator>(const Value& a,
const Value& b) {

if a.KILL < b.KILL return true
if a.NOOP < b.NOOP return true
if a.cost < b.cost return true
return false

}

The complexity of the dynamic programming is O(N ∗
M), where N is the number of JVMs and M is the total
amount of memory. On modern servers, M can be large
if the memory-size units are fine-grained, which would
prevent the manager from making fast decisions. At the
same time, allocating memory at fine granularity is un-
necessary. To enable fast memory-allocation decisions,
we define U as the unit of memory allocation, and any
allocation is represented as a multiple of U . We discuss
two ways of setting U : as a constant or as a dynamically
computed variable based on the current heap state, and
evaluate their impact on performance in Section 4.

Algorithm 1 and Algorithm 2 show the detailed alloca-
tion algorithms. Function ALLOCATE allocates memory of
size M across the list of JVMs, P, at the current timestep,
and it returns the best allocation scheme, actbest , which is
a vector of actions for each p∈ P. The algorithm works as
follows: First, we find all the JVMs that are not undergo-
ing a GC as P−PINGC to compute their actions. Because
the algorithm allocates memory as increments of U , but
ylimit(p) and olimit(p) of a JVM p at the current timestep
may not be increments of U when U is a dynamic vari-
able, we do not include NOOP in Algorithm 2. Instead, we
consider all the combinations of P−PINGC as potential
PNOOP (line 4) and use P′ = P− (PINGC∪PNOOP) to denote
the remaining JVMs. The remaining memory to be allo-
cated is of size M′ (line 7). We then apply Algorithm 2 on
P′ and memory of size M′ (= K units of size U). Function
KNAPSACK returns the best solution with its value. The
generation size limits and value of an action on a JVM
are computed as in Table 2. The size limits are aligned
to increments of U by function align(size,U) defined as:



Action a ycap(p,a) ocap(p,a) space(p,a) time(p,a)

GROW yused(p)+ ˆgrw(p) ŷlive(p)+oused(p)
ycap(p,a)+ocap(p,a)
−ylimit(p)−olimit(p)

os(space(p,a))

YGC yused(p) ŷlive(p)+oused(p) ŷdead(p) ĝcy(yob j(p))
FGCp yused(p) ŷlive(p)+oused(p) ŷdead(p)+ ôdead(p) ĝcy(yob j(p))+ ĝco(oob j(p))

FGCc yused(p) oused(p) ŷdead(p)+ ôdead(p)
ĝcy(yob j(p))+ ĝco(oob j(p))∗ r,
r = (ŷlive(p)+ ôlive(p))/ôlive(p)

NOOP ylimit(p) olimit(p)
KILL 0 0

Table 2: Per-generation size limit requirements, sizes of created space, and time taken for each action a in Actions on JVM
p at the current timestep. os(m) is the time to access memory of size m. Other symbols are defined in Table 1.

Algorithm 1 The scheduling algorithm: allocates memory of
size M across the list of JVMs P, returns the allocation scheme.

1: function ALLOCATE(P,M)
2: valuebest = actbest = None
3: PINGC = {p ∈ P, p is undergoing a GC}
4: for PNOOP ∈ power set of P−PINGC do
5: actp = NOOP, p ∈ PNOOP
6: P′ = P− (PINGC∪PNOOP)
7: M′ = M−∑p∈PINGC∪PNOOP(ylimit(p)+olimit(p))
8: Compute U , let K = M′/U
9: act ′,value′ = Knapsack(P′,K,U)

10: actp = act ′p, p ∈ P′

11: value.cost = value′.cost, value.KILL= value′.KILL
12: value.NOOP= size of PNOOP
13: if value > valuebest then
14: valuebest = value, actbest = act
15: if actbest contains only NOOP then
16: Pick Pkill ⊆ P, let actbest

p = KILL, p ∈ Pkill

17: return actbest

align(size,U) = ceiling(size/U). For GC actions, we de-
fined a constant mingcsave to avoid GCs that only recycle
a negligible amount of space. We derive act from the
transition actions trans and return them together with the
value. They are then merged with PNOOP and PINGC to get
the final allocation. We maintain the best allocation and
its value across all the powersets. In the end, if the best al-
location only contains NOOP actions, we pick some JVMs
to kill to make progress. In this work, we pick the query
that occupies the largest amount of memory and kill all
its JVMs, and we leave other strategies as future work.

3.3 Estimating Runtime Values
The last piece of ElasticMem is the models that estimate
JVM values that are necessary for memory allocation
decisions yet not directly available as indicated in Table 1.

3.3.1 Heap Growth

To allocate memory to a JVM for the next timestep, the
memory manager needs to estimate its memory growth.
Different approaches are possible. In this paper, we adopt

Algorithm 2 The knapsack problem: given the list of JVMs P
and K memory units of size U , returns the best allocation and
its value.

1: function KNAPSACK(P,K,U)
2: N = size of P
3: opt0, j = 0, j ∈ [0,K]
4: for i← 1,N do
5: for j← 0,K do
6: for a ∈ [GROW,YGC,FGCc,FGCp,KILL] do
7: if a ∈ [YGC,FGCc,FGCp] and
8: space(pi,a)< mingcsave then continue
9: yunit = align(ycap(pi,a),U)

10: ounit = align(ocap(pi,a),U)
11: if opti−1, j−yunit−ounit is valid then
12: v = opti−1, j−yunit−ounit + value(pi,a)
13: if v > opti, j then
14: opti, j = v, transi, j = (a,yunit +ounit)

15: Derive actp of each p ∈ P from optN,K and transN,K
16: return act,optN,K

a simple approach. To estimate the heap growth of JVM
p at timestep t, ˆgrw(p, t), the manager maintains the max-
imum change in the young generation’s usage during the
past b timesteps. To be precise, we define: ˆgrw(p, t) =
max |yused(p, t ′)− yused(p, t ′ − δt)|, t ′ ∈ [t − b ∗ δt , t]. In
our experiments, we set b = 3 empirically. We show
in Section 4 that this value yields good performance.

3.3.2 GC Time and Space Saving

The GC time and space saving depend primarily on the
number and total size of the live and dead objects in
the collected region. Unfortunately, getting such detailed
statistics is expensive, as we need to traverse the object
reference graph similarly as in a GC. Paying such a cost
for each JVM at every prediction defeats the purpose of
reducing GC costs in the first place.

We observe, however, that a query operator’s data struc-
tures and their update patterns determine the state of live
and dead objects, which determines GC times and the
amount of reclaimable memory. Our approach is thus to
monitor the state of major data structures in query opera-
tors, collect statistics from them as features, and use these



Feature Meaning
nt Total # of processed tuples

ntd Delta # of processed tuples since the last GC
nk Total # of distinct keys in the hash table

nkd Delta # of distinct keys since the last GC
numlong # of long columns
numstr # of String columns
sumstr Avg. sum of lengths of all String columns

Table 3: Features collected from a hash table.

features to build models. While there are many operators
in a big data system, most keep their state in a small set
of data structures, for example, hash tables. So instead
of changing the operators, we wrap data structures with
the functionality to report statistics, and instrument them
during query execution to get per-data structure statistics.
There are many large data structures, but in data analytics
systems, the most commonly used ones by operators with
large in-memory state, such as join and aggregate, are
hash tables. In this paper, we focus on the hash table data
structure. To get predictions for the whole query, we first
build models for one hash table, then compute the sum of
per-hash-table predictions as the prediction for the whole
query. Our approach, however, can easily be extended to
other data structures and operators.

Table 3 lists the statistics that we collect for a hash
table. A hash table stores tuples consist of columns. A
tuple has a key defined by some columns and a value
formed by the remaining columns. We collect the number
of tuples and keys in a hash table in both generations
(both the total and the delta since the previous GC), since
new objects are put in the young generation only until a
GC. These features are nt, ntd, nk and nkd. The schema
also affects memory consumption. In particular, primitive
types, such as long, are stored internally using primi-
tive arrays (e.g. long[]) in many systems that optimize
memory consumption. However, data structures with Java
object types, such as String, cannot be handled in the
same way, as their representations have large overhead.
So we treat them separately by introducing features for
primitive types (numlong) and String types (numstr and
sumstr). The overhead of getting these values from hash
tables is negligible. We then build machine learning mod-
els to predict the GC times and the total size of live and
dead objects as specified in Table 1.

To build models, our first approach to collect training
examples is to randomly trigger GCs during execution to
collect statistics. The models built from them, however,
yielded poor predictions for test points that happen to fall
in regions with insufficient training data. As a second ap-
proach, we collected training data using a coarse-grained
multidimensional grid with one dimension per feature.
The examples were uniformly distributed throughout the
feature space but they all had the same small set of dis-

tinct feature values, the values from the grid. As a result,
predictions were excellent for values on the grid but poor
otherwise. Using a fine-grained grid, however, is too ex-
pensive since the feature space has eight dimensions. For
example, if we divide each dimension in four, the total
number of grid points is (4+ 1)7 = 78,125. Assuming
that collecting one data point requires 30 seconds, we
need 78,125/2/60 ≈ 651 machine hours. Our final ap-
proach is thus to combine the previous two: We first col-
lect data using a coarse-grained grid to ensure uniform
coverage of the entire feature space, then for each grid
cell, we introduce some diversity by collecting two ran-
domly selected data points inside of it. The union of the
grid and the random points is the training set. To collect
a data point for a hash table, we run a query with only
that hash table and a synthetically generated dataset as
the input. This approach enables us to precisely control
the feature values when we trigger a GC. We then can use
any off-the-shelf approach to build a regression model. In
our implementation, we use the M5P model [40, 50] from
Weka [20] since it gives us the most accurate predictions
overall. We evaluate our models in Section 4.2.

4 Evaluation

We evaluate the performance of our memory manager and
the accuracy of our models. We perform all experiments
on Amazon EC2 using r3.4xlarge instances. We do not
set swap space to avoid performance degradation due to
virtual memory swapping. We execute TPC-H queries [6]
on Myria [48], a shared-nothing data management and
analytics system written in Java. The TPC-H queries are
written in MyriaL, which is Myria’s declarative query lan-
guage, and they are publicly available at [7]. We modify
or omit several queries because MyriaL does not sup-
port some language features, such as nulls and ORDER

BY. The final set consists of 17 TPC-H queries: Q1-Q6,
Q8-Q12, and Q14-19. To experiment with a broad range
of query memory consumption, we execute each query
on two databases with scale factors one and two.

4.1 Scheduling
We first compare our elastic manager (Elastic) against the
original JVM with fixed maximum heap size (Original).
For Original, we assume that each running JVM gets
an equal share of the total memory. We pick 4 memory-
intensive TPC-H queries, Q4, Q9, Q18, and Q19, and
execute each on two databases, which leads to a total of 8
queries. In all experiments, we execute these 8 queries on
one EC2 instance together with our memory manager. All
data points are averages of five trials, and we report the
minimal and maximal values as floating error bars. Each
run of the allocation algorithm takes about 0.15 seconds.
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Figure 4: Average elapsed times and # of completed
queries (labeled on top of each bar).

We empirically set the constant mingcsave from Al-
gorithm 2 to 30 MB. The value of the function os(m)
is obtained by running a calibration program, which
asks the operating system for memory of size m using
mmap and accesses it using variable assignments. We
take the system time as os(m). For r3.4xlarge, we
get os(m) = 0.35s ∗ m

1 GB . We set the interval between
timesteps, δt , to 0.5 seconds except in Section 4.1.3,
where we compare different values of δt . In order to
avoid query hanging due to frequent GCs that do not
recycle much memory, we kill a query after 8 minutes if
it is still running. Based on our observation, 8 minutes is
long enough for any query to complete with a reasonable
amount of memory.

One extreme of Original is serial execution where
queries are executed one at a time, while the other ex-
treme is to execute all queries simultaneously. The former
approach requires the least amount of memory for all
queries to complete but takes longer time, while the latter
finishes all queries the fastest when memory is sufficient,
however may fail more queries when memory is scarce.
We vary the degree of parallelism (DOP) for Original to
compare these alternatives. To make it fair for Elastic, we
also introduce a variant of Elastic, which allows execu-
tions to be delayed by resubmitting killed queries serially
after all queries either complete or get killed. We call
this variant Elastic-Resubmit. To avoid livelocks, we only
resubmit each killed query once, and each resubmitted
query runs only by itself. We leave resubmitting multiple
queries simultaneously as future work.

Another important parameter is the size of the memory
increment unit U . The value of U can be either fixed
or derived in real time. We test fixed sizes of 100 MB,
500 MB, and 1000 MB, and variable sizes as 1/8, 1/12,
and 1/16 of the total free space at the current timestep.

4.1.1 Scheduling Simultaneous Queries

First, we submit all queries at the same time. Figure 4
shows the elapsed times, together with the numbers of
completed queries while varying the total memory size.
The elapsed times are the times for all queries to complete.
In this figure, we use U=1/12 as the representative of our
elastic manager because it provides the best overall per-
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Figure 5: Relative total query time improvement ratio
(top) and GC time improvement ratio (middle) for Elastic
over Original, DOP=8, and resident set size, RSS (bottom).

formance across all experiments. We further discuss the
performance of different values of U in Figure 5. When
memory is abundant (≥ 20 GB), both Elastic managers
yield more completed queries and also shorter elapsed
times than all the three Original variants. When mem-
ory is scarce (≤ 15 GB) and only suffices to execute one
query at a time, for 15 GB, Elastic-Resubmit is able to
complete all queries with less time than Original, DOP=1.
For 10 GB, it only misses one query with a slightly longer
time comparing to DOP=1. Based on our observation,
the query failed because our manager needs to allocate
memory as increments of U , however U is not sufficiently
fine-grained. The overhead of elapsed time is due to the
elastic method striving to accommodate all queries to-
gether before degrading to serial execution. As a proof
of concept, we calculate the in-memory sizes of domi-
nant large hash tables of the 8 queries and find that the
sum of them is about 14 GB. This experiment shows the
advantage of using the elastic manager: it automatically
adjusts the degree of parallelism, enabling the system
to get high-performance while avoiding out-of-memory
failures when possible.

In Figure 5, we further drill down on the performance of
different variants of our approach. We seek to determine
which variant yields the greatest performance improve-
ment compared with non-elastic memory management.
Because the elapsed times of Original, DOP=1 are signif-
icantly longer than the other two variants, we use Orig-
inal, DOP=8 as the baseline in this experiment, which
also brings fair comparison with our approach. We mea-
sure performance in terms of total query execution time,
which is the sum of the per-query execution times, and
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Figure 6: Average elapsed times and # of completed
queries (labeled on top of each bar) with 30 seconds delay.

total GC time, the sum of the GC times of all queries.
Figure 5 shows the relative improvement percentages in
total query execution time and GC time of Elastic over
Original, DOP=8, for different values of U , and also the
actual physical memory usage (resident set size, RSS).4

Higher bars indicate greater improvements. When mem-
ory is scarce (≤ 15 GB), Elastic with variable values of
U (1/8, 1/12 and 1/16) takes longer to execute each query
because it strives to finish more queries than Original,
DOP=8, as shown previously in Figure 4. When memory
is abundant (≥ 20 GB), for any of the values of U , Elastic
outperforms Original, DOP=8 on both total query time
and GC time. The percentage improvements are between
10% and 30% for query time and 40% to 80% for GC time.
We observe that it is caused by Original, DOP=8 trigger-
ing GCs that do not recycle much space especially in late
stages for large queries but being unable to shift memory
quota from small queries, while Elastic can dynamically
allocate memory across all queries. The improvement ra-
tios of query time decrease after 70 GB because GC time
takes a less portion of query time when memory is abun-
dant. To show the maximum improvement that we can
achieve by reducing GC time to zero, we also show the
ratios of total GC time to query time in the top subfigure
as a reference. Finally, the bottom subfigure shows that
our elastic manager is also able to utilize a larger fraction
of available physical memory to save on GC time and
query time. Importantly, all values of U , especially the
three variable ones, yield similar performance indicating
that careful tuning is not required.

4.1.2 Scheduling Queries with Delays

To better simulate a real cluster, instead of issuing all the
queries at the same time, we submit the above 8 queries
with delays. Each query is submitted 30 seconds later
than the previous one. Figure 6 shows the elapsed times
and the numbers of completed queries. The patterns are
similar to the experiment above with no delay (Figure 4),
but also different as Elastic can finish the same number of
queries with less time when memory is scarce (10 GB),
and always beats all variants of Original in terms of both

4We define the improvement percentage as (x− y)/x, where x is the
value of Original and y is the value of Elastic.

query completion and elapsed time. This is due to the
memory flexibility that ElasticMem has: the number of
simultaneously running queries is lower when delay is
introduced, so Elastic is able to finish more queries faster,
while Original stays the same.

4.1.3 Timestep Interval

Finally, we evaluate the sensitivity of the approach to dif-
ferent values of δt varying from 0.1, 0.5, or 1 second for
U=500MB and U=1/12. We find that when memory is
scarce, 0.5 seconds slightly outperforms others by com-
pleting more queries with less time, although in general
the three δts yield similar performance, which indicates
that the approach is not sensitive to small differences
when using variable sizes of U and thus careful tuning is
not necessary. We omit details due to space constraints.

4.2 GC Models
An important component of ElasticMem is its models
that predict the GC time and the space that will be freed
(Section 3.3). We evaluate its models in this section. We
limit the training space to 12 million tuples and 12 million
keys for a hash table, with the schema varying from 1 to
7 long columns and 0 to 8 String columns with a total
of 0 to 96 characters. This training space is large enough
to fit all hash tables from TPC-H queries. As described
in Section 3.3, we collect approximately 1080 grid points
and 1082 random points together as the training set. We
also collect a test set of 7696 data points by randomly trig-
gering GC for the 17 TPC-H queries on both databases.

We set the JVM to use one thread for GC
(-XX:ParallelGCThreads=1) because we observe
that the JVM is not always able to distribute
work evenly across multiple GC threads. We do
not use thread-local buffers (-XX:-UseTLAB). We
let the JVM always sweep live objects to the be-
ginning of the old generation after each collection
(-XX:MarkSweepAlwaysCompactCount=1) instead of
every few collections to reduce GC cost variance. Among
several models available in Weka [20], we pick the M5P
model with default settings for its overall accuracy. M5P is
a decision tree where leaves are linear regressions [40,50].
We use relative absolute error (RAE) to measure the pre-
diction accuracies.5

Figure 7 shows the results for both doing 10-fold cross
validation on the training set and testing on the random
TPC-H test set. For cross validation, the predictions yield
RAEs below 5% for every value except odead . For testing,
both ydead and odead cannot be predicted well, while all
others have RAEs lower than 25%. This is because that

5The RAE of a list of predictions Pi and corresponding real values
Ri is defined as: ∑

n
i=1 |Pi−Ri|/∑

n
i=1 |R−Ri|.
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the size of dead objects is not strongly correlated with
the objects in data structures. Fortunately, the fact that the
sum of dead and live objects is the total used size gives us
a way to avoid predicting ydead and odead . Instead, we let
ŷdead = yused− ŷlive and ôdead = oused− ôlive, where yused
and oused can be obtained precisely. Overall, the predic-
tion error rates are low and, as we showed in Section 4.1,
suffice to achieve good memory allocation decisions.

5 Related Work

Memory allocation within a single machine: Many ap-
proaches focus on sharing memory across multiple objects
on a single machine. Several techniques have queries as
the objects: Some [12, 16, 38] allocate buffer space across
queries based on page access models to reduce page faults.
Others [11, 39] tune buffer allocation policies to meet per-
formance goals in real-time database systems. A third set
of methods [45] uses application resource sensitivities
to guide allocation. More recently, Narasayya et al. [37]
develop techniques to share a bufferpool across multiple
tenants. Several approaches focus on operators within a
query. Anciaux et al. [10] allocate memory across opera-
tors on memory-constrained devices. Davison et al. [15]
sell resources to competing operators to maximize profit.
Garofalakis et al. [17] schedule operators with multidi-
mensional resource constraints in NUMA systems. Fi-
nally, Storm et al. [44] manage memory across database
system components. Although they share the idea of man-
aging memory for multiple objects with a global objective
function, the problems are restricted to single machines,
and they ignore GC. Salomie et al. [41] move memory
across JVMs dynamically by adding a balloon space to
OpenJDK but have no performance models or scheduling
algorithms. Ginkgo [26] dynamically manages memory
for multiple Java applications by changing layouts using
Java Native Interface. However, it models performance
by profiling specific workloads, while our approach is
applicable to arbitrary relational queries.

Cluster-wide resource scheduling: Some techniques
develop models to understand how resources affect the
runtime characteristics of applications. Li et al. [32] par-
tition queries on heterogeneous machines based on sys-
tem calibrations and optimizer statistics. Herodotou et
al. [23, 24] tune Hadoop application parameters based on

machine learning models built by job profiles. Some other
techniques focus on short-lived requests. Lang et al. [30]
schedule transactional workloads on heterogeneous hard-
ware resources for multiple tenants. Schaffner et al. [42]
minimize tail latency of tenant response times in column
database clusters. BlowFish [28] adaptively adjusts stor-
age for performance of random access and search queries
by switching between array layers with different sampling
rates based on certain thresholds. In contrast, our focus
is relational queries on Java-based systems with no sam-
pling. To provide a unified framework for resource sharing
and application scheduling, several general-purpose re-
source managers have emerged [25,47,51]. However, they
all lack the ability to adjust memory limits dynamically.

Adaptive GC tuning: Cook et al. [13] provide two
GC triggering policies based on real-time statistics, but
do not investigate memory management across applica-
tions. Simo et al. [43] study the performance impact of
JVM heap growth policies by evaluating them on several
benchmarks. Maas et al. [35] observe that GC coordi-
nation is important for distributed applications. They let
users specify coordination policy to make all JVMs trigger
GC at the same time under certain conditions.

Region-based memory management: Another line
of work uses region-based memory management
(RBMM) [46] to avoid GC overhead. Broom [18] cat-
egorizes Naiad [36] objects into three types with a re-
gion assigned to each. Deca [34] manipulates Spark Scala
objects in-memory representations as byte arrays and al-
locates pages for them. While RBMM may reduce GC
overhead, it requires that the programmer declare object-
to-region mappings and adds complexity to compilation,
without eliminating space safety concerns [21].

6 Conclusion and Future Work

In this paper, we presented ElasticMem, an approach for
the automatic and elastic memory management for big
data analytics applications running in shared-nothing clus-
ters. Our approach includes a technique to dynamically
change JVM memory limits, an approach to model mem-
ory usage and garbage collection cost during query exe-
cution, and a memory manager that performs actions on
JVMs to reduce total failures and run times. We evaluated
our approach in Myria and showed that our approach out-
performed static memory allocation both on query failures
and execution times. We leave extensions to other data
structures and experiments with more diverse workloads
and systems as future work.
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