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Abstract. High-speed X-ray diffraction is the state-of-the-art approach
to understanding protein structure and dynamics in living tissues, es-
pecially muscles. Existing analytic approaches, however, require expert
hand-digitization to extract parameters of interest. This produces repeat-
able measurements, but remains subjective and does not offer informa-
tion on the precision of the measured parameters or strict reproducibility
of analyzed data. We developed a processing tool chain, which first seg-
ments the diffraction image into regions of interest using highly conserved
features and then samples the possible parameter values with a Markov
chain Monte Carlo approach. Our approach produces an automated, re-
producible, objective estimate of relevant image parameters.
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1 Motivation

The molecular regulation of force generating protein systems remains a fun-
damental open problem in biology. Muscle uses a highly organized lattice of
interacting elastic and force generating molecules to create controlled macro-
scale movement [9, 8]. The advent of advanced X-ray diffraction imaging lets us
analyze protein motions at spatial and temporal scales never previously realized,
giving novel insight into the molecular basis of motion in living systems.

Exploring the dynamics of protein interactions in muscle requires imaging
that provides information at the nanometer to Angstrom scale. X-ray diffraction
provides that information and is unique in its ability to image live muscle during
movement, where other techniques (e.g. solution biochemistry or cryo electron
microscopy) are only able to resolve properties of isolated individual molecu-
lar motors or anatomic features of static, dried muscle. This ability to image
in vivo makes X-ray diffraction the only direct means of measuring the struc-
tural changes that generate force; all other techniques that permit some level of
molecular motor activity require the removal of those motors from the regulating
structure of the thick/thin filament lattice and are thus less informative about
the processes that actually control activation. This is a key advantage of X-ray
diffraction: changes in muscle microstructure are highly correlated with changes
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Fig. 1. Data collection and interpretation. A) Diffractive imaging of an isolated mus-
cle sample requires a physiological solution bath with top entry for mounting to
force/length controllers (arms) and front and rear cut outs to allow the X-ray beam
to pass through and scatter off the muscle sample. B) Muscle’s contractile lattice is
composed of thick and thin filaments. When viewed down the long axis, these fila-
ments form a hexagonal array. The d10 spacing is the distance between adjacent lines
of thick filaments, and is proportional to the distance molecular motors (gray links)
must diffuse across in order to bind.

in force production and any attempt to separate the two removes significant
aspects of the system’s response to real-world stimuli [3, 1].

Surprisingly, we still use human experts to manually extract structural pa-
rameters from X-ray images with NIH ImageJ via manual selection of peaks
and rock-of-eye parameter fitting. This produces repeatable measurements but
is subjective, fails to provide confidence intervals for the measured values, and
is not reproducible by naive digitizers. Additionally hand digitization is a time-
intensive analytic technique, with a single digitizer able to process only a few
hundreds of images a day. Historically this rate has been sufficient, but new high-
speed imaging systems let us investigate short-timescale components of muscle
contraction and generate data sets with many thousands of images. The need
for an automated and reproducible image analysis tool chain is clear.

We seek to build a service for the automated analysis of muscle structure
X-ray images. Users should specify the analysis they need using a declarative
query interface and the system should automatically process the user’s image
database. In this work, we present the first components of the processing tool
chain at the heart of this service. The toolchain first segments the diffraction
image into regions of interest using conserved features and then samples the
possible parameter values with a Markov chain Monte Carlo approach.

2 Prototype

We focus initially on measuring the d10 parameter, a crucial spacing in muscle
shown in Figures 1 and 2. The d10 spacing determines the distance which muscle’s
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Fig. 2. X-ray diffraction images. A) An X-ray diffraction image exhibits d10, d11, and
d20 peaks; the first and last are proportional to the distance between adjacent rows
of thick filaments. B) In this image, two fibers at slight angles to each other have
generated multiple d10 peaks which must be segregated during the detection process.
Such two-fiber exposures occur rarely in the test corpus used in this work and are
successfully processed by the automated grouping of peaks.

molecular motors must bridge in order to bind and generate force [10]. This
distance changes during contraction and thus regulates the force produced [5].

Images generated during experiments share several key features, which serve
as challenges or fiduciary marks during analysis. As seen in Figure 2, the bright-
est part of the image background is occluded by a circular stop. This physical
block prevents damage to the detector from the high photon flux at the center
of the X-ray beam. Surrounding the blocked region, the remainder of the image
displays an exponentially decaying background. We must locate and model the
symmetric pairs of diffraction peaks interrupting the exponential background.
Our core data analysis pipeline includes two steps: image segmentation and im-
age modeling with MCMC processes.

2.1 Image segmentation

The system first identifies the dark central circular blocked region to act as
a relative landmark for subsequent operations. Consistent with experimental
design, we assume it contains the center of the diffraction pattern. The edge
of the background surrounding the block is the brightest region, so the system
first splits the image between areas with values less than and greater than two
standard deviations above the mean. This partitioning yields a binary image
where the center blocked region is surrounded by a halo of the upper end of the
pattern background and occasional dots where diffraction peaks rise more than
two standard deviations above background. We convert this binary image to a
hierarchical contour set with OpenCV, an open source library of standard image
processing techniques [2]. We then take the blocked region to be the inner-most
contour and model it as the smallest enclosing circle, shown as light green in
Figure 3B.

With the central blocked region located, we identify local maxima in three
by three groups after Gaussian smoothing with kernel having a three pixel stan-
dard deviation. We reject resulting maxima in regions unlikely to provide peaks
of interest before attempting to match peak pairs. Masked rejection-regions con-
sist of: 1) a circular zone around the central blocked region where the blocking



4

Fig. 3. Analysis workflow. A) An X-ray diffraction image is read in. B) The blocked
center region (in green) is detected and used as a landmark. Low signal regions, the
central blocked region, and image edges are masked off, leaving only the foreground
outlined in white. C) The image is smoothed and peaks are detected, paired, and
classified. To remove the exponentially decaying background from the peaks we mask
off the area around the diffraction lines, shown in gray. The remaining background
is then collapsed into a radial profile centered at the mean peak position. A double
exponential fit to this profile is computed and subtracted from the regions of interest
surrounding the d10 peaks, leaving just the peak signal shown in D). E) We use an
MCMC sampler to calculate the parameters generating the distributions these peaks
are sampled from. F) We marginalize across peak parameters other than those of
interest, extracting peak positions and the error in those position estimations.

generates non-peak local maxima, 2) areas below the 80th percentile where de-
tector noise dominates, 3) areas near the image edge where peaks are partially
cropped. The resulting unmasked area from which we keep maxima is bounded
by a white border in Figure 3B.

Next, we cluster maxima into peak pairs based on their distance and angle
from the center of the blocked region. Starting with those maxima nearest the
blocked region, a corresponding maximum is sought an equal distance away from
the blocked region and located so that the angle formed by the two maxima and
the center of the blocked region is 180◦. In cases where the matching maxima
is clipped by the image frame or fails to be distinguished from background the
initial maximum is discarded. For a maxima to be considered a match its distance
and angle must match those of the initial maxima within 10%. With peak pairs
now identified (shown as color matched dots in Figure 3C), the diffraction center
is identified by taking the mean location between peak pairs and the background
is removed.

We subtract the background by first masking arcs encompassing peak pairs
and then fitting a double exponential to a radial profile of the remaining image.
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An arc swept 12◦ out on either side of each peak pair masks the effect of the
diffraction peaks on the background (shown as a light gray arc under the peak
pairs in Figure 3C). We calculate a radial profile of the image around the pattern
center, omitting diffraction line regions. We fit a double exponential function of
the form background = a + be−xc + de−xe to the radial profile. From these
parameters we generate an estimated background image and subtract it from
the real image, allowing us to extract the d10 peaks as regions of interest (ROIs)
unhindered by an overlaid diffraction background.

2.2 Image modeling with MCMC processes

With the background subtracted and the d10 peaks identified and isolated from
the rest of the image as ROIs, we apply Markov chain Monte Carlo (MCMC)
sampling to determine the probability distributions from which the peak param-
eters could be drawn. We treat the peaks as being drawn from an underlying
Pearson VII distribution, commonly used to fit X-ray diffraction peaks [7]. This
process allows us to generate possible peak matches using five parameters: peak
center x-location, peak center y-location, peak height, peak spread, and peak
decay rate. We perform an initial peak fitting by residual minimization between
a generated peak and the extracted ROI. This gives a set of starting parameters
that we use, with random variation, to initialize the positions of the MCMC
agents that will explore the model space.

Before MCMC sampling we must define our query’s likelihood and prior.
We choose a flat prior as our initial information about the model is minimal.
To calculate the likelihood we represent each pixel’s photon count as a Poisson
process in the form P (d|m) = e−m

(
md/d!

)
where m is the model value and d

is the experimental data value. These functions are fed into emcee, an efficient
MCMC analysis Python library [4]. After a burn in period of 100 steps, the
sampler histories are erased and a further 1000 steps are run to generate the
posterior probability distributions of our peak parameters.

One of MCMC modeling’s convenient features is that extracting only a sub-
set of parameters marginalizes across those we discard. That is, when we are
interested in only the x- and y-locations of the peak center to precisely calculate
d10 spacing (as in Figure 3F), we automatically integrate our uncertainty about
peak height, spread, and decay.

3 Preliminary Evaluation

We apply our workflow to a test corpus of 1,220 images generated using X-ray
diffraction during insect flight muscle research at the Argonne National Labora-
tory BioCAT Beamline. Sample high-quality and challenging images are shown
in Figures 2A and 2B [6]. We tested the output of our automated system against
the results from a domain expert manually digitizing peak locations. Our ini-
tial image segmentation step, described in Section 2.1, successfully identifies
the center blocked region of each image in greater than 99% of images in our
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Fig. 4. Validation against hand-measurement. A) The majority of residuals (between
the manually and automatically measured d10 peak distances) are within a single pixel
of the manually digitized validation values. In a handful of outliers the automated
method mis-identifies a closer structure as the d10 pair. B) The cumulative distribution
of the residuals shows that half of the automated measurements agree within 0.8 pixels
and over 90% agree within 3 pixels. A quartile box plot above shows the heavily left-
weighted asymmetry of the residual distribution.

test corpus. The overall process allows us to calculate peak-to-peak distances
to sub-pixel accuracy with a confidence interval of 90%, with residuals between
expectation values and manually digitized peak positions shown in Figure 4.
MCMC sampling combined with image segmentation allows us to precisely, ac-
curately, and automatically locate the d10 peak centers and thus calculate the
lattice spacing measured by a diffraction image to within 0.03 nm.

Because the images in our corpus are a standard sample of those produced
by high-speed X-ray diffraction, our positive preliminary results are a strong
indication for the potential of this approach.

4 Challenges and Next Steps

Our initial data processing pipeline produces an automated, reproducible, objec-
tive estimate of relevant image parameters but the following challenges remain:

– Development of a declarative language to describe processing steps will speed
use of this technique and ease reproducibility. The key question is to define
the types of operations that users should be able to specify and how to
specify them. Our goal is to generalize to a broad set of analysis needs for
X-ray images of muscle structure.

– Packaging of this tool chain into a cloud deployable containerized image will
enable trivial scaling to work with larger datasets. Furthermore, the ability
to access to tool chain directly through a web browser with automatic back-
end deployment of the analysis pipeline will facilitate adoption.

– This toolchain works best when applied to sharp and well defined images
produced by isolated fibers. When working with images produced by in vivo
samples, such as those taken through a fly thorax, diffraction from multiple
muscles in different orientations is common. These multiple-muscle images
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produce a more extreme version of the image shown in Figure 2B, where twin
rotated peaks that are twisted and blurred about the center of the diffraction
pattern and may have substantially divergent d10 distances. Twin rotated
peaks must be classified by diffraction line/muscle and treated independently
during analysis.

– Application of these techniques to coming ultra-high temporal-resolution
images with far lower signal:noise will strain autosegmentation and peak-
fitting techniques.

The increasing prevalence of advanced diffractive imaging techniques de-
mands data analytic methods that can handle, objectively and reproducible, sig-
nificant increases in the volume of data generated and analyzed. This toolchain
is a first step in a process that will greatly increase the power and capabilities
of a widely used approach to understanding protein structure in living tissue.
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