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Building applications on top of sensor data streams is challenging because 
sensor data is noisy. A model-based view can reduce noise by transforming 
raw sensor streams into streams of probabilistic state estimates, which 
smooth out errors and gaps. The authors propose a novel model-based 
view, the Markovian stream, to represent correlated probabilistic sequences. 
Applications interested in evaluating event queries — extracting sophisticated 
state sequences — can improve robustness by querying a Markovian stream 
view instead of querying raw data directly. The primary challenge is to properly 
handle the Markovian stream’s correlations.

A dvances in sensing technologies 
are making large-scale sensor de-
ployments increasingly common. 

These deployments transform exist-
ing applications, such as supply-chain 
management,1 and enable various new 
ones, such as elder care2 and activity 
recognition.3 Building applications on 
top of sensor data, however, remains 
challenging for three reasons. First, 
sensor data is often inaccurate due to 
noise, miscalibration, or malfunction. 
Second, in real-world deployments, sen-
sors are often unevenly distributed and 
don’t cover all areas of interest to ap-
plications. Third, sensors often produce 
data that’s dif!cult to use directly.3,4 
For example, in an activity-recognition 
context, sensor readings measuring lo-

cation, acceleration, and so on aren’t 
useful until they’re transformed into 
higher-level state information (that the 
person wearing the sensor is currently 
on the bus, for instance).

For these reasons, building appli-
cations directly on raw sensor data is 
untenable in all but the simplest set-
tings. A common alternative uses a 
model of the monitored environment 
to transform raw data into probabilistic 
state estimates.5,6 A location-tracking 
model, for example, might take as in-
put sightings of a person’s RFID badge 
and produce as output a sequence of 
location distributions describing the 
person’s trajectory: she walked down 
the hallway and then entered either her 
of!ce or an adjacent lab. These models 
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are speci!ed by trained administrators familiar 
with the sensor deployment rather than by ap-
plications, which instead interact only with the 
model’s output (that is, the model-based view). 
Sensor noise and the inference of high-level 
information are thus hidden from applications, 
making them more robust and simpler to write.

The model-based approach to dealing with 
sensor data has a long history in the arti!cial 
intelligence community; however, only recently 
has the database community adopted this ap-
proach.6–8 Here, we introduce a speci!c, mate-
rialized model-based view called a Markovian 
stream, used to represent correlated sequences. 
We discuss our approach to processing event 
queries on such streams and identify related, 
open research challenges. We look !rst at two 
motivating applications.

Motivating Applications
We highlight the utility of Markovian streams 
in the context of two applications, both of which 
are dif!cult or impossible to write by accessing 
raw data directly.

Fine-Grained RFID-Based Location Tracking
Commercial1 and user-centered (http://r!d.cs. 
washington.edu.) applications increasingly use 
RFID technology to track the locations of people 
and objects. Typical deployments attach RFID 
tags to people or objects of interest. RFID read-
ers placed throughout an environment then de-
tect and log the presence of nearby tags. RFID 
applications traditionally query tables of raw tag 
sightings, which are imprecise because readers 
frequently fail to detect tags and generally don’t 

provide full coverage over all areas of interest.
A model-based view can shield applications 

from this imprecision by inferring a tag’s lo-
cation using a probabilistic model, even when 
antennas fail or aren’t present. Applications in 
this case query a view that exposes a sequence 
of correlated distributions over a tag’s location. 
Figures 1b and 1c illustrate a view in which, at 
time 7, Bob is either in the hallway (probability 
0.95) or in his of!ce (probability 0.05). Bob also 
moves from the hallway to his of!ce at time 8 
with probability 0.125. We’ll return to this !g-
ure in the next section.

Applications such as friend or equipment 
trackers, activity “diaries,” and so on can query 
this view directly—without regard to impreci-
sion in the underlying data—to answer queries 
such as, “Alert me when Bob enters his of!ce 
after getting coffee,” or “When, yesterday, did 
Bob enter the coffee room?” or “Did Bob attend 
a lecture in Room 400 within the past week?”

Sensor-Based Activity Recognition
An activity-recognition system for elder care 
infers a patient’s activity (making tea or tak-
ing medication, for example) from a suite of 
environmental sensors (accelerometer, tempera-
ture, and so on). Such a system lets caregivers 
monitor patients in real time and query histori-
cal records for behavioral changes that often 
indicate cognitive decline.2 Such an application 
is impossible to write directly on a raw data 
stream. A model-based view is required to in-
fer from low-level sensor data the (probabilistic, 
correlated) sequence of activities a patient per-
forms. Health care applications can then query 
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Figure 1. Uncertain location estimates and an associated Markovian stream. (a) Particle snapshots 
show Bob’s location distribution at two time steps. (b) We can see the corresponding marginal 
distributions over Bob’s location, as well as (c) correlations between Bob’s location at times 7 and 8.
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this view directly to answer questions such as, 
“Did Sally take her medication yesterday?” and, 
“Send an alert if Sally leaves her home without 
!rst taking her medication.”

Markovian Streams
A Markovian stream is a speci!c type of model-
based view derived from the most commonly 
used temporal graphical model, the hidden Mar-
kov model (HMM). HMMs are simple but pow-
erful models that capture the time-dependent 
relationship between a “hidden” state (for ex-
ample, a tag’s location) and a set of sensor read-
ings (such as the sightings of a tag by an RFID 
reader). Given a sensor stream as input, infer-
ence on an HMM produces two related streams:

distributions over the hidden state (one dis-
tribution per time step) and
correlations (matrices giving the hidden 
state transitions at adjacent time steps).

These two elements together de!ne a Markov-
ian stream. In other words, we de!ne a Mar-
kovian stream as the output of inference on an 
HMM. Figures 1b and 1c illustrate an example 
Markovian stream.

Inferring Markovian Streams
Although Markovian stream generation is in-
dependent of any speci!c inference technique 
(there are many), for simplicity, here we describe 
a popular technique called particle !ltering.9 
This approach uses samples (called particles) to 
represent the distribution over a tag’s location. 
At time 7 (Figure 1a, top), antenna A sights Bob, 
so his location distribution is tightly concentrat-
ed. To update Bob’s location for time 8, the parti-
cle !lter !rst predicts each particle’s location at 
the next time step based on its current location 
(but independent from the other particles’ loca-
tions). It then resamples the particles, choosing 
with a higher probability those whose locations 
are more consistent with the sensor readings (for 
example, those within the read range of an an-
tenna that sighted the tag). Because no antennas 
sight Bob at time 8, his location distribution is 
correspondingly diffuse (Figure 1a, bottom). The 
HMM de!nes both the particle motion and the 
notion of sensor-location consistency.

To compute a marginal probability distribu-
tion over a tag’s location at a given time, we 
divide the number of particles in each discrete 

•

•

location by the total number of particles. Fig-
ures 1b (top) and 1b (bottom) show tables rep-
resenting Bob’s location distribution at times 7 
and 8, respectively.

We can apply this !ltering process in real 
time to create a Markovian stream from raw 
sensor readings. However, for applications in-
terested in historical queries, we can apply an 
additional postprocessing step called smoothing5 
to produce a more re!ned Markovian stream. 
Suppose antenna C sights Bob at time step 9. 
Given this sighting, it’s highly unlikely in ret-
rospect that Bob was in O1 at time 8. Smoothing 
revises past distributions (such as Bob’s location 
at time 8) to make them consistent with future 
sensor readings (sighting of Bob at C at time 9 
[not pictured]) — in this case, by decreasing the 
probability that Bob was in O1 at time 8. For 
simplicity, the !ltered and smoothed marginals 
in Figure 1 are identical, but in general, smooth-
ing changes marginal values as described.

The smoothing process also extracts a set of 
correlations between distributions at adjacent 
time steps, capturing the likelihood of transi-
tions from one state to another. The smooth-
ing process captures these correlations using 
probabilistic constraints encoded in the HMM. 
The correlations shown in Figure 1c, for exam-
ple, re"ect the fact that Bob can’t walk through 
walls: the bottom entry in the table states that 
the probability of Bob entering O2 at time 8 
given that he was in O1 at time 7 is zero. Simi-
larly, given that Bob is in H2 at time 7, he’s most 
likely to remain there at time 8 because he’s 
unlikely to abruptly switch direction and head 
back to O1. Thus, smoothing’s overall result is a 
Markovian stream that contains nontrivial cor-
relations and re"ects reality more accurately 
than a !ltered stream alone.

Markovian Stream Trajectories
A Markovian stream represents a distribution 
over an exponential number of state sequences, 
each of which must be considered during query 
processing. Consider an event query (“When did 
Bob go from his of!ce, O1, to the hallway, H1?” 
for example) over Bob’s location stream in Fig-
ures 1b and 1c. If his location distributions at 
times 7, 8, and 9 include 3, 4, and 5 locations, 
respectively, then we must evaluate the query 
on each of Bob’s 3 * 4 * 5 = 60 possible paths. 
We must also compute the probability that Bob 
took each of these paths. In Figure 1, the path 
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(H1, H2, O2) has probability 0.8 * 0.25 * x, where 
x is the conditional probability that Bob went 
from H2 to O2 at time 9. Although we can eas-
ily process Bob’s 60 paths, in general, the num-
ber of possible state sequences is exponential in 
the number of time steps in a stream. An hour-
long Markovian stream updated once per sec-
ond contains more than 23,600 individual paths; 
processing an event query by enumerating such 
paths is prohibitively inef!cient.

Event Queries over Markovian Streams
Next, let’s look at our approach to processing 
event queries over Markovian streams. First, 
we’ll outline the class of queries that we address.

Query Space
At the highest level, we can split queries over 
Markovian streams into two classes: unordered 
and ordered. Unordered queries don’t rely on 
any ordering among the stream’s time steps. 
This set includes traditional select/project/join/
aggregate queries. Examples include, “Where 
was Bob at noon yesterday?” and “In what loca-
tion did Bob spend the most time yesterday?”7 
In contrast, we focus on ordered, or event-style 
queries that search for sophisticated event se-
quences within a single Markovian stream. Thus 
the query, “When did Bob enter his lab through 
the north door?” is within our scope, while, 
“When did Bob enter his lab and put down his 
mug?” isn’t because it joins together two Mar-
kovian streams. We identify this class of sin-
gle-stream, ordered queries in our prior work as 
regular queries.8 We revisit non-regular queries 
when we discuss open challenges.

Regular queries are analogous to regular ex-
pressions, or, equivalently, nondeterministic !nite 
automata (NFA). Figure 2a shows the NFA repre-
sentation of the query, “Did Bob enter O2 from 
H2?” Just as a regular expression detects the pat-
tern matches in a string, a regular query detects 
pattern matches in a  temporal state sequence. 
Intuitively, we label the edges of a regular query 
NFA with the states that satisfy the edge tran-
sition. Any time step at which the NFA reaches 
a !nal state is considered a satisfying time step. 
Thus, the regular query processing task is to com-
pute the probability with which each time step in 
the (single) Markovian stream satis!es the query. 
The primary challenge here is the exponential 
number of state sequences that contribute to this 
probability at a single time step.

Processing Regular Event Queries 
Processing event-style queries on determinis-
tic streams is straightforward using the NFA 
machinery just described. One simple but in-
tractable way to adapt this machinery to Mar-
kovian streams is to separately process each of 
the exponentially-many deterministic trajec-
tories contained in a single Markovian stream. 
A more realistic approach is to sample a subset 
of trajectories, but even this approach is inef-
!cient due to the numerous samples required 
to achieve reasonable accuracy. Our analytic 
approach8 not only produces exact results but 
also yields an order of magnitude speedup over 
sampling. Our key observation is that we can 
combine processing for the exponentially many 
trajectories in a Markovian stream by tracking 
a single distribution over sets of NFA states, in-
stead of tracking a separate NFA for each tra-
jectory. Example 1 demonstrates this combined 
computation using Figure 2 as a reference: 

Example 1. Consider the query NFA and Markovian 
stream shown in Figures 2a and 2b. After processing 
the marginal distribution representing the stream’s 
!rst time step (ts7), a 0.15 probability exists that 
Bob was in H2 (shaded row of the input marginal). 
All other probability mass remains in the start state. 
This is re"ected in the matrix ts7, which shows a 
0.15 probability that the NFA is in state s1 only, with 
the last-seen symbol being H2. Correlations between 
ts7 and ts8 de!ne a 0.333 probability that, given that 
Bob was in H2 at ts7, he moved to O2 in ts8 (shaded 
row). Thus, the query is satis!ed at ts8 with proba-
bility 0.15 * 0.333 = 0.05. The probability mass of 0.3 
in state s1 at ts8 comes from the summation of the 
probabilities of the two trajectories that end in H2 at 
ts8 — namely, (H1, H2) with probability 0.8 * 0.25 = 
0.2, and (H2, H2) with probability 0.15 * 0.666 = 0.1.

Experimental validation of our approach 
on real and synthetic RFID data8 demonstrates 
that it can perform simultaneous, real-time 
event detection on thousands of Markovian 
streams, each updating once per second, on a 
single desktop machine. In contrast, a naive 
sampling approach can handle only several 
hundred tags. The time our analytic approach 
requires to process a single update depends on 
two factors. First, the update time scales ex-
ponentially with the query size (the number of 
states in the query NFA), as is true for standard 
relational queries. Our reported timing results 
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are on two-state queries. Second, the update 
time scales linearly with the size of the time 
steps’ marginal distributions; distributions in 
our test set of location-based streams contained 
roughly 10 to 20 entries.

In terms of accuracy, queries on the Markov-
ian streams in our experiments show a roughly 
20 percent improvement in precision/recall over 
queries run on a deterministic stream repre-
senting the same data (such as the single most 
likely trajectory in the Markovian stream). This 
improvement is due largely to the Markovian 
stream’s ability to represent multiple, con"icting 
trajectories. A deterministic stream, on the other 
hand, can represent only one possible trajectory, 
which in uncertain situations is often incorrect. 

Challenges
Thus far, we’ve described a basic algorithm for 
processing regular event queries on Markovian 
streams; however, we have identi!ed several re-
search challenges that must be addressed before 
a complete data management system for Mar-
kovian streams is feasible.

Accuracy/Latency Trade-Offs
Recall that smoothing can improve Markovian 
streams’ quality. Unfortunately, real-time ap-
plications, such as RFID-based theft detection, 
can’t leverage this technique. Such applications 
consume time-step data immediately, while a 
processing system can’t apply smoothing until 
the entire raw input stream is available. Thus, 
applications requiring low latency can’t afford 
smoothing, whereas applications requiring high 

accuracy can’t afford to run in live settings. In 
between these extremes lie partial smoothing 
techniques10 that apply smoothing to only small, 
recent stream intervals (as a sliding window, for 
instance). This lets the newest data receive some 
smoothing bene!ts while still becoming available 
for querying with only a short delay — increased 
delays allow for increased smoothing quality. 
Open problems include identi!cation of the ideal 
trade-off (different for each application) between 
accuracy and latency, as well as development of 
algorithms to achieve these trade-offs.

Disk Layout
Historical applications (such as behavioral anal-
ysis on personal-activity archives) must read 
Markovian streams from disk before processing 
them. In such situations, the organization of the 
on-disk data can signi!cantly affect query ef-
!ciency. Because it’s processed sequentially, the 
data comprising a single Markovian stream is 
most naturally stored in chronological order. 
However, a stream’s marginal and correlation 
data might be stored interleaved (as in Figure 
3) or separately (all marginal information !rst, 
followed by all correlation information). Pre-
liminary experiments using our prototype im-
plementation show that the separated layout can 
outperform the interleaved layout by roughly 
a factor of two on location-based Markovian 
stream queries.11 This performance is workload-
dependent, however, and thus quantitatively 
evaluating the workloads for which each layout 
is optimal would be a valuable step toward gen-
eralized Markovian stream management.
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Figure 2. Processing regular event queries. (a) NFA query encoding “Entered O2 from H2.” (b) Two time steps of an 
input Markovian stream.  The query processor initializes the NFA with a marginal distribution (here for time 7) and 
updates it thereafter with conditional distributions. (c) The query-processing state after each input in (b). The state is a 
joint probability distribution over sets of NFA states (rows) and the latest input symbol (columns).
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Indexing
As previously mentioned, NFA-based query 
processors must read an archived stream’s en-
tire history from disk. This is costly and even 
unnecessary if the processor can use indices 
to identify the (presumably small) subsets of a 
stream that are relevant to a particular query. 
Unlike relational indexing, Markovian stream 
indexing must properly handle sequential, 
probabilistic data.

Consider the query in Figure 2. Only times 
at which Bob has a nonzero probability of being 
in location O2 or H2 are relevant to this query. 
Figure 3 shows one possible index for ef!ciently 
identifying this relevant set. This B+ tree sorts 
its entries !rst by location and then within each 
location, chronologically. One possible evalu-
ation strategy using this index is to intersect 
the index entries of each query predicate (in 
this case, H2 and O2). Here, the intersection of 
the potential query start times (t1, t2 matching 
H2) with the single potential query end time 
(t1 matching O2) reveals‚ without touching any 
stream data‚ that this stream segment can’t pos-
sibly satisfy the query.

A preliminary evaluation of this index-
ing approach on location-based Markovian 
streams demonstrates a query speedup of two 
to !ve orders of magnitude.11 Open challeng-
es include developing more sophisticated in-
dices (over common query subsequences, for 
instance) and techniques for ef!ciently and 
continuously updating such indexes with real-
time data. We must also develop cost models 
and optimizers for query processors that lever-
age these indexes.

Approximation/Compression
Historical queries over weeks’ or years’ worth 
of data will inevitably run slowly, even when 
leveraging sophisticated indexing techniques. 
In such cases, the ability to trade time for ac-
curacy is particularly important. Markovian 
streams’ sequential, probabilistic nature iden-
ti!es a huge space of approximation and com-
pression techniques ripe for exploration in this 
context. Approximation-based techniques for 
truncating or pruning probability distributions 
are potentially applicable, as are algorithms for 
compressing temporal or otherwise-sequential 
data. Algorithms that deliver successive sets of 
results with increasing accuracy are also highly 
desirable in this context because they let users 

explicitly control the desired accuracy/latency 
trade-off.

More Powerful Queries
Many applications require support for stream 
queries richer than the regular queries we’ve 
discussed. Examples include, “When did Bob 
and Anna last attend a lecture together?” which 
requires a join over two Markovian streams, 
or, “How many students attended Wednesday’s 
lecture?” which requires aggregation over a 
large set of Markovian streams. Identifying the 
classes of such queries that can be answered 
ef!ciently, languages for specifying these que-
ries, and algorithms for processing them remain 
open challenges.

W e believe that the management of massive 
archives of uncertain, temporal data is 

quickly becoming a primary challenge for the 
database community. Model-based views are a 
promising approach to dealing with imprecise 
sensor data, and Markovian streams in particu-
lar provide an abstraction that captures the se-
quential, correlated nature of sensor and other 
noisy temporal data while still providing ef!-
cient support for a large class of event queries. 
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Figure 3. Markovian stream and B+ tree index.  This time-step-
interleaved layout of a Markovian stream (bottom) is analogous 
to that introduced in Figure 1. The correlation information for a 
pair of time steps is stored between the marginal distributions for 
those time steps. The B-Tree index (top) on (location, time) allows 
ef!cient lookup of time steps in which the indexed location has 
non-zero probability.
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When we integrate these views into robust que-
ry-processing systems, many important chal-
lenges arise. Our current work focuses on the 
development of Markovian stream warehousing 
techniques (see http://mstreams.cs.washington.
edu). Many of the challenges in this work are 
the same challenges outlined here. By address-
ing these challenges, we hope not only to pro-
duce a practical, robust system for managing 
Markovian streams but also to advance state-
of-the-art techniques for uncertain data model-
ing and management. 
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