
D
at

a
St

re
am

 M
an

ag
em

en
t

30 Published by the IEEE Computer Society 1089-7801/08/$25.00 © 2008 IEEE IEEE INTERNET COMPUTING

Challenges for Event Queries
over Markovian Streams

Julie Letchner,
Christopher Ré,
and Magdalena Balazinska
University of Washington

Matthai Philipose
Intel Research

Building applications on top of sensor data streams is challenging because
sensor data is noisy. A model-based view can reduce noise by transforming
raw sensor streams into streams of probabilistic state estimates, which
smooth out errors and gaps. The authors propose a novel model-based
view, the Markovian stream, to represent correlated probabilistic sequences.
Applications interested in evaluating event queries — extracting sophisticated
state sequences — can improve robustness by querying a Markovian stream
view instead of querying raw data directly. The primary challenge is to properly
handle the Markovian stream’s correlations.

A dvances in sensing technologies
are making large-scale sensor de-
ployments increasingly common.

These deployments transform exist-
ing applications, such as supply-chain
management,1 and enable various new
ones, such as elder care2 and activity
recognition.3 Building applications on
top of sensor data, however, remains
challenging for three reasons. First,
sensor data is often inaccurate due to
noise, miscalibration, or malfunction.
Second, in real-world deployments, sen-
sors are often unevenly distributed and
don’t cover all areas of interest to ap-
plications. Third, sensors often produce
data that’s dif!cult to use directly.3,4
For example, in an activity-recognition
context, sensor readings measuring lo-

cation, acceleration, and so on aren’t
useful until they’re transformed into
higher-level state information (that the
person wearing the sensor is currently
on the bus, for instance).

For these reasons, building appli-
cations directly on raw sensor data is
untenable in all but the simplest set-
tings. A common alternative uses a
model of the monitored environment
to transform raw data into probabilistic
state estimates.5,6 A location-tracking
model, for example, might take as in-
put sightings of a person’s RFID badge
and produce as output a sequence of
location distributions describing the
person’s trajectory: she walked down
the hallway and then entered either her
of!ce or an adjacent lab. These models

NOVEMBER/DECEMBER 2008 31

Event Queries over Markovian Streams

are speci!ed by trained administrators familiar
with the sensor deployment rather than by ap-
plications, which instead interact only with the
model’s output (that is, the model-based view).
Sensor noise and the inference of high-level
information are thus hidden from applications,
making them more robust and simpler to write.

The model-based approach to dealing with
sensor data has a long history in the arti!cial
intelligence community; however, only recently
has the database community adopted this ap-
proach.6–8 Here, we introduce a speci!c, mate-
rialized model-based view called a Markovian
stream, used to represent correlated sequences.
We discuss our approach to processing event
queries on such streams and identify related,
open research challenges. We look !rst at two
motivating applications.

Motivating Applications
We highlight the utility of Markovian streams
in the context of two applications, both of which
are dif!cult or impossible to write by accessing
raw data directly.

Fine-Grained RFID-Based Location Tracking
Commercial1 and user-centered (http://r!d.cs.
washington.edu.) applications increasingly use
RFID technology to track the locations of people
and objects. Typical deployments attach RFID
tags to people or objects of interest. RFID read-
ers placed throughout an environment then de-
tect and log the presence of nearby tags. RFID
applications traditionally query tables of raw tag
sightings, which are imprecise because readers
frequently fail to detect tags and generally don’t

provide full coverage over all areas of interest.
A model-based view can shield applications

from this imprecision by inferring a tag’s lo-
cation using a probabilistic model, even when
antennas fail or aren’t present. Applications in
this case query a view that exposes a sequence
of correlated distributions over a tag’s location.
Figures 1b and 1c illustrate a view in which, at
time 7, Bob is either in the hallway (probability
0.95) or in his of!ce (probability 0.05). Bob also
moves from the hallway to his of!ce at time 8
with probability 0.125. We’ll return to this !g-
ure in the next section.

Applications such as friend or equipment
trackers, activity “diaries,” and so on can query
this view directly—without regard to impreci-
sion in the underlying data—to answer queries
such as, “Alert me when Bob enters his of!ce
after getting coffee,” or “When, yesterday, did
Bob enter the coffee room?” or “Did Bob attend
a lecture in Room 400 within the past week?”

Sensor-Based Activity Recognition
An activity-recognition system for elder care
infers a patient’s activity (making tea or tak-
ing medication, for example) from a suite of
environmental sensors (accelerometer, tempera-
ture, and so on). Such a system lets caregivers
monitor patients in real time and query histori-
cal records for behavioral changes that often
indicate cognitive decline.2 Such an application
is impossible to write directly on a raw data
stream. A model-based view is required to in-
fer from low-level sensor data the (probabilistic,
correlated) sequence of activities a patient per-
forms. Health care applications can then query

H1 H2 H3

O1 O2 O3

O5BO4

A

H2H1 H3

O1 O2 O3

O5B

A

O4

Bob 7 O1 0.05

Bob 7 H1 0.80
Bob 7 H2 0.15

p(l)t ltag

Bob 7 8 H1 H1 0.625
Bob 7 8 H1 H2 0.250
Bob 7 8 H1 O1 0.125
Bob 7 8 H1 O2 0.000

Bob 7 8 H2 H1 0.000
Bob 7 8 H2 H2 0.666
Bob 7 8 H2 O1 0.000
Bob 7 8 H2 O2 0.333

Bob 7 8 O1 H1 0.000
Bob 7 8 O1 H2 0.000
Bob 7 8 O1 O1 1.000
Bob 7 8 O1 O2 0.000

t t' l l' p(l '|l)tag

p(l)t ltag

Bob 8 O1 0.15

Bob 8 H1 0.50
Bob 8 H2 0.30

Bob 8 O2 0.05
(a) (b) (c)

C

C

Figure 1. Uncertain location estimates and an associated Markovian stream. (a) Particle snapshots
show Bob’s location distribution at two time steps. (b) We can see the corresponding marginal
distributions over Bob’s location, as well as (c) correlations between Bob’s location at times 7 and 8.

Data Stream Management

32 www.computer.org/internet/ IEEE INTERNET COMPUTING

this view directly to answer questions such as,
“Did Sally take her medication yesterday?” and,
“Send an alert if Sally leaves her home without
!rst taking her medication.”

Markovian Streams
A Markovian stream is a speci!c type of model-
based view derived from the most commonly
used temporal graphical model, the hidden Mar-
kov model (HMM). HMMs are simple but pow-
erful models that capture the time-dependent
relationship between a “hidden” state (for ex-
ample, a tag’s location) and a set of sensor read-
ings (such as the sightings of a tag by an RFID
reader). Given a sensor stream as input, infer-
ence on an HMM produces two related streams:

distributions over the hidden state (one dis-
tribution per time step) and
correlations (matrices giving the hidden
state transitions at adjacent time steps).

These two elements together de!ne a Markov-
ian stream. In other words, we de!ne a Mar-
kovian stream as the output of inference on an
HMM. Figures 1b and 1c illustrate an example
Markovian stream.

Inferring Markovian Streams
Although Markovian stream generation is in-
dependent of any speci!c inference technique
(there are many), for simplicity, here we describe
a popular technique called particle !ltering.9
This approach uses samples (called particles) to
represent the distribution over a tag’s location.
At time 7 (Figure 1a, top), antenna A sights Bob,
so his location distribution is tightly concentrat-
ed. To update Bob’s location for time 8, the parti-
cle !lter !rst predicts each particle’s location at
the next time step based on its current location
(but independent from the other particles’ loca-
tions). It then resamples the particles, choosing
with a higher probability those whose locations
are more consistent with the sensor readings (for
example, those within the read range of an an-
tenna that sighted the tag). Because no antennas
sight Bob at time 8, his location distribution is
correspondingly diffuse (Figure 1a, bottom). The
HMM de!nes both the particle motion and the
notion of sensor-location consistency.

To compute a marginal probability distribu-
tion over a tag’s location at a given time, we
divide the number of particles in each discrete

•

•

location by the total number of particles. Fig-
ures 1b (top) and 1b (bottom) show tables rep-
resenting Bob’s location distribution at times 7
and 8, respectively.

We can apply this !ltering process in real
time to create a Markovian stream from raw
sensor readings. However, for applications in-
terested in historical queries, we can apply an
additional postprocessing step called smoothing5
to produce a more re!ned Markovian stream.
Suppose antenna C sights Bob at time step 9.
Given this sighting, it’s highly unlikely in ret-
rospect that Bob was in O1 at time 8. Smoothing
revises past distributions (such as Bob’s location
at time 8) to make them consistent with future
sensor readings (sighting of Bob at C at time 9
[not pictured]) — in this case, by decreasing the
probability that Bob was in O1 at time 8. For
simplicity, the !ltered and smoothed marginals
in Figure 1 are identical, but in general, smooth-
ing changes marginal values as described.

The smoothing process also extracts a set of
correlations between distributions at adjacent
time steps, capturing the likelihood of transi-
tions from one state to another. The smooth-
ing process captures these correlations using
probabilistic constraints encoded in the HMM.
The correlations shown in Figure 1c, for exam-
ple, re"ect the fact that Bob can’t walk through
walls: the bottom entry in the table states that
the probability of Bob entering O2 at time 8
given that he was in O1 at time 7 is zero. Simi-
larly, given that Bob is in H2 at time 7, he’s most
likely to remain there at time 8 because he’s
unlikely to abruptly switch direction and head
back to O1. Thus, smoothing’s overall result is a
Markovian stream that contains nontrivial cor-
relations and re"ects reality more accurately
than a !ltered stream alone.

Markovian Stream Trajectories
A Markovian stream represents a distribution
over an exponential number of state sequences,
each of which must be considered during query
processing. Consider an event query (“When did
Bob go from his of!ce, O1, to the hallway, H1?”
for example) over Bob’s location stream in Fig-
ures 1b and 1c. If his location distributions at
times 7, 8, and 9 include 3, 4, and 5 locations,
respectively, then we must evaluate the query
on each of Bob’s 3 * 4 * 5 = 60 possible paths.
We must also compute the probability that Bob
took each of these paths. In Figure 1, the path

NOVEMBER/DECEMBER 2008 33

Event Queries over Markovian Streams

(H1, H2, O2) has probability 0.8 * 0.25 * x, where
x is the conditional probability that Bob went
from H2 to O2 at time 9. Although we can eas-
ily process Bob’s 60 paths, in general, the num-
ber of possible state sequences is exponential in
the number of time steps in a stream. An hour-
long Markovian stream updated once per sec-
ond contains more than 23,600 individual paths;
processing an event query by enumerating such
paths is prohibitively inef!cient.

Event Queries over Markovian Streams
Next, let’s look at our approach to processing
event queries over Markovian streams. First,
we’ll outline the class of queries that we address.

Query Space
At the highest level, we can split queries over
Markovian streams into two classes: unordered
and ordered. Unordered queries don’t rely on
any ordering among the stream’s time steps.
This set includes traditional select/project/join/
aggregate queries. Examples include, “Where
was Bob at noon yesterday?” and “In what loca-
tion did Bob spend the most time yesterday?”7
In contrast, we focus on ordered, or event-style
queries that search for sophisticated event se-
quences within a single Markovian stream. Thus
the query, “When did Bob enter his lab through
the north door?” is within our scope, while,
“When did Bob enter his lab and put down his
mug?” isn’t because it joins together two Mar-
kovian streams. We identify this class of sin-
gle-stream, ordered queries in our prior work as
regular queries.8 We revisit non-regular queries
when we discuss open challenges.

Regular queries are analogous to regular ex-
pressions, or, equivalently, nondeterministic !nite
automata (NFA). Figure 2a shows the NFA repre-
sentation of the query, “Did Bob enter O2 from
H2?” Just as a regular expression detects the pat-
tern matches in a string, a regular query detects
pattern matches in a temporal state sequence.
Intuitively, we label the edges of a regular query
NFA with the states that satisfy the edge tran-
sition. Any time step at which the NFA reaches
a !nal state is considered a satisfying time step.
Thus, the regular query processing task is to com-
pute the probability with which each time step in
the (single) Markovian stream satis!es the query.
The primary challenge here is the exponential
number of state sequences that contribute to this
probability at a single time step.

Processing Regular Event Queries
Processing event-style queries on determinis-
tic streams is straightforward using the NFA
machinery just described. One simple but in-
tractable way to adapt this machinery to Mar-
kovian streams is to separately process each of
the exponentially-many deterministic trajec-
tories contained in a single Markovian stream.
A more realistic approach is to sample a subset
of trajectories, but even this approach is inef-
!cient due to the numerous samples required
to achieve reasonable accuracy. Our analytic
approach8 not only produces exact results but
also yields an order of magnitude speedup over
sampling. Our key observation is that we can
combine processing for the exponentially many
trajectories in a Markovian stream by tracking
a single distribution over sets of NFA states, in-
stead of tracking a separate NFA for each tra-
jectory. Example 1 demonstrates this combined
computation using Figure 2 as a reference:

Example 1. Consider the query NFA and Markovian
stream shown in Figures 2a and 2b. After processing
the marginal distribution representing the stream’s
!rst time step (ts7), a 0.15 probability exists that
Bob was in H2 (shaded row of the input marginal).
All other probability mass remains in the start state.
This is re"ected in the matrix ts7, which shows a
0.15 probability that the NFA is in state s1 only, with
the last-seen symbol being H2. Correlations between
ts7 and ts8 de!ne a 0.333 probability that, given that
Bob was in H2 at ts7, he moved to O2 in ts8 (shaded
row). Thus, the query is satis!ed at ts8 with proba-
bility 0.15 * 0.333 = 0.05. The probability mass of 0.3
in state s1 at ts8 comes from the summation of the
probabilities of the two trajectories that end in H2 at
ts8 — namely, (H1, H2) with probability 0.8 * 0.25 =
0.2, and (H2, H2) with probability 0.15 * 0.666 = 0.1.

Experimental validation of our approach
on real and synthetic RFID data8 demonstrates
that it can perform simultaneous, real-time
event detection on thousands of Markovian
streams, each updating once per second, on a
single desktop machine. In contrast, a naive
sampling approach can handle only several
hundred tags. The time our analytic approach
requires to process a single update depends on
two factors. First, the update time scales ex-
ponentially with the query size (the number of
states in the query NFA), as is true for standard
relational queries. Our reported timing results

Data Stream Management

34 www.computer.org/internet/ IEEE INTERNET COMPUTING

are on two-state queries. Second, the update
time scales linearly with the size of the time
steps’ marginal distributions; distributions in
our test set of location-based streams contained
roughly 10 to 20 entries.

In terms of accuracy, queries on the Markov-
ian streams in our experiments show a roughly
20 percent improvement in precision/recall over
queries run on a deterministic stream repre-
senting the same data (such as the single most
likely trajectory in the Markovian stream). This
improvement is due largely to the Markovian
stream’s ability to represent multiple, con"icting
trajectories. A deterministic stream, on the other
hand, can represent only one possible trajectory,
which in uncertain situations is often incorrect.

Challenges
Thus far, we’ve described a basic algorithm for
processing regular event queries on Markovian
streams; however, we have identi!ed several re-
search challenges that must be addressed before
a complete data management system for Mar-
kovian streams is feasible.

Accuracy/Latency Trade-Offs
Recall that smoothing can improve Markovian
streams’ quality. Unfortunately, real-time ap-
plications, such as RFID-based theft detection,
can’t leverage this technique. Such applications
consume time-step data immediately, while a
processing system can’t apply smoothing until
the entire raw input stream is available. Thus,
applications requiring low latency can’t afford
smoothing, whereas applications requiring high

accuracy can’t afford to run in live settings. In
between these extremes lie partial smoothing
techniques10 that apply smoothing to only small,
recent stream intervals (as a sliding window, for
instance). This lets the newest data receive some
smoothing bene!ts while still becoming available
for querying with only a short delay — increased
delays allow for increased smoothing quality.
Open problems include identi!cation of the ideal
trade-off (different for each application) between
accuracy and latency, as well as development of
algorithms to achieve these trade-offs.

Disk Layout
Historical applications (such as behavioral anal-
ysis on personal-activity archives) must read
Markovian streams from disk before processing
them. In such situations, the organization of the
on-disk data can signi!cantly affect query ef-
!ciency. Because it’s processed sequentially, the
data comprising a single Markovian stream is
most naturally stored in chronological order.
However, a stream’s marginal and correlation
data might be stored interleaved (as in Figure
3) or separately (all marginal information !rst,
followed by all correlation information). Pre-
liminary experiments using our prototype im-
plementation show that the separated layout can
outperform the interleaved layout by roughly
a factor of two on location-based Markovian
stream queries.11 This performance is workload-
dependent, however, and thus quantitatively
evaluating the workloads for which each layout
is optimal would be a valuable step toward gen-
eralized Markovian stream management.

Bob 7 O1 0.05

Bob 7 H1 0.80

s2
H2

s1

H2

O2

Bob 7 8 H1 H1 0.625
Bob 7 8 H1 H2 0.250

Bob 7 8 H2 H2 0.666
Bob 7 8 H2 O2 0.333

Bob 7 8 O1 O1 1.000

ts7

0.85{ } 0 0

0 0

0 0 0

0 0 0

{s1}

{s2}

{s1, s2}

<> <H2> <O2>

0.15

ts8

0.65 0 0

0 0.3 0

0 0 0.05

0 0 0

<> <H2> <O2>

{ }

{s1}

{s2}

{s1, s2}

Bob 7 H2 0.15

(a) (c)(b)

p(l)t ltag

t t' l l' p(l '|l)tag

Figure 2. Processing regular event queries. (a) NFA query encoding “Entered O2 from H2.” (b) Two time steps of an
input Markovian stream. The query processor initializes the NFA with a marginal distribution (here for time 7) and
updates it thereafter with conditional distributions. (c) The query-processing state after each input in (b). The state is a
joint probability distribution over sets of NFA states (rows) and the latest input symbol (columns).

NOVEMBER/DECEMBER 2008 35

Event Queries over Markovian Streams

Indexing
As previously mentioned, NFA-based query
processors must read an archived stream’s en-
tire history from disk. This is costly and even
unnecessary if the processor can use indices
to identify the (presumably small) subsets of a
stream that are relevant to a particular query.
Unlike relational indexing, Markovian stream
indexing must properly handle sequential,
probabilistic data.

Consider the query in Figure 2. Only times
at which Bob has a nonzero probability of being
in location O2 or H2 are relevant to this query.
Figure 3 shows one possible index for ef!ciently
identifying this relevant set. This B+ tree sorts
its entries !rst by location and then within each
location, chronologically. One possible evalu-
ation strategy using this index is to intersect
the index entries of each query predicate (in
this case, H2 and O2). Here, the intersection of
the potential query start times (t1, t2 matching
H2) with the single potential query end time
(t1 matching O2) reveals‚ without touching any
stream data‚ that this stream segment can’t pos-
sibly satisfy the query.

A preliminary evaluation of this index-
ing approach on location-based Markovian
streams demonstrates a query speedup of two
to !ve orders of magnitude.11 Open challeng-
es include developing more sophisticated in-
dices (over common query subsequences, for
instance) and techniques for ef!ciently and
continuously updating such indexes with real-
time data. We must also develop cost models
and optimizers for query processors that lever-
age these indexes.

Approximation/Compression
Historical queries over weeks’ or years’ worth
of data will inevitably run slowly, even when
leveraging sophisticated indexing techniques.
In such cases, the ability to trade time for ac-
curacy is particularly important. Markovian
streams’ sequential, probabilistic nature iden-
ti!es a huge space of approximation and com-
pression techniques ripe for exploration in this
context. Approximation-based techniques for
truncating or pruning probability distributions
are potentially applicable, as are algorithms for
compressing temporal or otherwise-sequential
data. Algorithms that deliver successive sets of
results with increasing accuracy are also highly
desirable in this context because they let users

explicitly control the desired accuracy/latency
trade-off.

More Powerful Queries
Many applications require support for stream
queries richer than the regular queries we’ve
discussed. Examples include, “When did Bob
and Anna last attend a lecture together?” which
requires a join over two Markovian streams,
or, “How many students attended Wednesday’s
lecture?” which requires aggregation over a
large set of Markovian streams. Identifying the
classes of such queries that can be answered
ef!ciently, languages for specifying these que-
ries, and algorithms for processing them remain
open challenges.

W e believe that the management of massive
archives of uncertain, temporal data is

quickly becoming a primary challenge for the
database community. Model-based views are a
promising approach to dealing with imprecise
sensor data, and Markovian streams in particu-
lar provide an abstraction that captures the se-
quential, correlated nature of sensor and other
noisy temporal data while still providing ef!-
cient support for a large class of event queries.

Root

ts1ts1 ts2 ts3 ts1 ts2

ts2

ts3

Correlations

Correlations

O2 H2 1.0
O2 H1 0.0

H1 H1 1.0
H1 H2 0.0

H2 H1 0.8
H2 H2 0.2

l1 p(l3|l2)l2 l2 l3

O2 0.3

H1 0.2
H2 0.5 H2 0.4

H1 0.6 H1 1.0

l

H2 H1 1.0

H1 H1 1.0

ts1

Index

Archived
Markovian
stream

H1 H2 O2

p(l) p(l)lp(l)l p(l 2|l 1)

Figure 3. Markovian stream and B+ tree index. This time-step-
interleaved layout of a Markovian stream (bottom) is analogous
to that introduced in Figure 1. The correlation information for a
pair of time steps is stored between the marginal distributions for
those time steps. The B-Tree index (top) on (location, time) allows
ef!cient lookup of time steps in which the indexed location has
non-zero probability.

Data Stream Management

36 www.computer.org/internet/ IEEE INTERNET COMPUTING

When we integrate these views into robust que-
ry-processing systems, many important chal-
lenges arise. Our current work focuses on the
development of Markovian stream warehousing
techniques (see http://mstreams.cs.washington.
edu). Many of the challenges in this work are
the same challenges outlined here. By address-
ing these challenges, we hope not only to pro-
duce a practical, robust system for managing
Markovian streams but also to advance state-
of-the-art techniques for uncertain data model-
ing and management.

Acknowledgments
This work is partially supported by the US National Science
Foundation (NSF) grants IIS-0713123, IIS-0454425, and
CRI-0454394. Julie Letchner’s work is also supported by
an NSF graduate research fellowship.

References
F. Wang and P. Liu, “Temporal Management of RFID
Data,” Proc. 31st Very Large Database Conf., ACM Press,
2005 pp. 1128–1139.
T.S. Barger, D.E. Brown, and M. Alwan, “Health-Status
Monitoring through Analysis of Behavioral Patterns,”
IEEE Trans. Systems, Man, and Cybernetics, Part A,
vol. 35, no. 1, 2005, pp. 22–27.
T. Choudhury et al., “Towards Activity Databases:
Using Sensors and Statistical Models to Summarize
People’s Lives,” IEEE Data Eng. Bulletin, vol. 29, no. 1,
2006, pp. 49–58.
L. Liao, D. Fox, and H. Kautz, “Location-Based Activity
Recognition Using Relational Markov Networks,” Proc.
19th Int’l Joint Conf. Arti!cial Intelligence (IJCAI 05),
2005.
L.R. Rabiner, “A Tutorial on Hidden Markov Models and
Selected Applications in Speech Recognition,” Proc.
IEEE, vol. 77, 1990, pp. 257–286.
A. Deshpande and S. Madden, “MauveDB: Supporting
Model-Based User Views in Database Systems,” Proc.
2006 ACM SIGMOD Int’l Conf. Management of Data,
ACM Press, 2006, pp. 73–84.
B. Kanagal and A. Deshpande, “Online Filtering,
Smoothing and Probabilistic Modeling of Streaming
Data,” Proc. IEEE 24th Int’l Conf. Data Eng, IEEE Press,
2008, pp. 1160–1169.
C. Re et al., “Event Queries on Correlated Probabilistic
Streams,” Proc. 2008 SIGMOD Int’l Conf. Management
of Data, ACM Press, 2008, pp. 715–728.
A. Doucet, N. De Freitas, and N. Gordon, eds. Sequen-
tial Monte Carlo Methods in Practice. Springer-Verlag,
2001.
T. Clapp and S. Godsill, “Fixed-Lag Smoothing Using

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Sequential Importance Sampling,” In J.M. Bernardo,
J.O. Berger, A.P. Dawid, and A.F.M. Smith, editors,
Bayesian Statistics VI, Oxford University Press, 1999,
pp. 743-752.
J. Letchner et al., Access Methods for Markovian
Streams, tech. report, Univ. of Washington, 2008.

Julie Letchner is a graduate student in the University of
Washington’s computer science and engineering de-
partment. Her current work explores the intersection
of machine learning and large-scale data management
techniques. Letchner has a BS and MS in computer sci-
ence from Stanford University with a focus in arti!cial
intelligence and robotics. She is a US National Science
Foundation (NSF) graduate research fellow and has
received National Defense Science and Engineering
(NDSEG), Achievement Rewards for College Students
(ARCS), and Google Anita Borg graduate fellowships.
Contact her at letchner@cs.washington.edu.

Christopher (Chris) Ré is a graduate student in the Univer-
sity of Washington’s computer science and engineering
department. His thesis work on probabilistic data man-
agement has produced two systems: Mystiq, a system
to manage relational probabilistic data, and Lahar, a
streaming probabilistic database. Ré has BAs in math
and computer science from Cornell University and an
MS in computer science from the University of Wash-
ington. Contact him at chrisre@cs.washington.edu.

Magdalena Balazinska is an assistant professor in the
University of Washington’s computer science and en-
gineering department. Her research interests focus
on data management systems for distributed data
streams, uncertain sensor data, and large-scale scien-
ti!c data. Balazinska has a PhD in computer science
from the Massachusetts Institute of Technology. She is
a Microsoft Research New Faculty Fellow and received
the Rogel Faculty Support Award and a Microsoft Re-
search Graduate Fellowship. Contact her at magda@
cs.washington.edu.

Matthai Philipose leads the Everyday Sensing and Percep-
tion (ESP) project at Intel Research, where he builds
sensor-based systems that allow computers to under-
stand and act on human state. He has a strong inter-
est in applying such systems to the long-term care of
the elderly. To this end, he has collaborated with Intel
product groups, universities, and government organi-
zations to build and !eld-test novel telecare systems in
the Paci!c Northwest. Philipose has a PhD in computer
science from the University of Washington. Contact
him at matthai.philipose@intel.com

11.

