
Case Studies and Tools for Contract Specifications

Todd W. Schiller, Kellen Donohue, Forrest Coward, Michael D. Ernst
University of Washington

Seattle, WA, USA
{tws, kellend, fmc3, mernst}@cs.washington.edu

ABSTRACT
Contracts are a popular tool for specifying the functional behavior
of software. This paper characterizes the contracts that developers
write, the contracts that developers could write, and how a developer
reacts when shown the difference.

This paper makes three research contributions based on an in-
vestigation of open-source projects’ use of Code Contracts. First,
we characterize Code Contract usage in practice. For example, ap-
proximately three-fourths of the Code Contracts are basic checks
for the presence of data. We discuss similarities and differences in
usage across the projects, and we identify annotation burden, tool
support, and training as possible explanations based on developer
interviews. Second, based on contracts automatically inferred for
four of the projects, we find that developers underutilize contracts
for expressing state updates, object state indicators, and conditional
properties. Third, we performed user studies to learn how develop-
ers decide which contracts to enforce. The developers used contract
suggestions to support their existing use cases with more expressive
contracts. However, the suggestions did not lead them to experiment
with other use cases for which contracts are better-suited.

In support of the research contributions, the paper presents two
engineering contributions: (1) Celeriac, a tool for generating traces
of .NET programs compatible with the Daikon invariant detection
tool, and (2) Contract Inserter, a Visual Studio add-in for discovering
and inserting likely invariants as Code Contracts.

Categories and Subject Descriptors: D.2.1 [Software Engineer-
ing]: Requirements/Specifications[languages, inference]
General Terms: Software Engineering
Keywords: Specifications, design by contract, invariant detection

1. INTRODUCTION
Contracts are a popular tool for formally specifying the functional

behavior of software [30]. A method’s contracts describe what must
be true when the method is called (the method’s precondition) and,
given that the method is called correctly, what must be true when
the method returns (the method’s postcondition). Additionally for
object-oriented languages, contracts can describe object invariants,
properties that must hold for an object whenever it is visible.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31 – June 7, 2014, Hyderabad, India
Copyright 14 ACM 978-1-4503-2756-5/14/05 ...$15.00.

Contract-based specifications share many similarities with, and
are complementary to, other development practices such as model-
ing and testing. In particular, the rising popularity of parameterized
testing [46] and mocking frameworks has pushed testing toward
specification; conversely, contracts provide a powerful semantic
basis for test creation [9, 2, 27, 39]. Contracts can additionally
augment or even automate refactoring [25, 11], debugging, program
repair [14, 37, 28], and verification [26, 29].

To maximize benefit to developers, contract frameworks should
enable developers to express semantically interesting properties with
minimal annotation burden. Tools should be able to make use of the
additional semantic information, yet still produce meaningful results
without a full functional specification. A key observation in meeting
these goals is that contract semantics are only partially determined
by syntax — tooling design and assumptions (e.g., defaults) also
contribute to contract semantics.

The aim of this paper is to guide the design of contract lan-
guages and tools by providing information about how developers
use contract-style specifications. While this paper focuses on Mi-
crosoft Code Contracts (hereafter just Code Contracts), the ideas
are also applicable to other contract languages and tools.
Contributions. This paper makes three research contributions
based on an analysis of 90 open-source projects using Code Con-
tracts and an in-depth investigation of four of the projects’ use of
Code Contracts:

• We identify that developers use simple contracts but underuti-
lize expressive contracts for state update constraints, checking
object state, and conditional properties (implications). For ex-
ample, 75% of the projects’ Code Contracts are basic checks
for the presence of data (e.g., non-null checks), and another
3% of contracts (18% of all postconditions) repeat field as-
signments and return expressions from the code.

• We present evidence that annotation burden, tooling, and train-
ing are primary factors affecting the extent to which devel-
opers use contracts as specifications as opposed to argument
validation/assertions.

• We performed two case studies of how developers react when
shown what contracts they could write. The developers used
the contract suggestions to capture more expressive contracts
to support existing use cases. However, the suggestions did
not lead the developers to explore new use cases for which
contracts are well-suited. For example, one developer who
had not previously written object invariants did not accept any
of the suggested object invariants.

Based on the results, we recommend that contract language and
tool designers take three complementary actions: (1) introduce
tooling to reduce annotation burden, (2) make suggestions an in-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the author/owner(s). Publication rights licensed to ACM.

ICSE’14, May 31 – June 7, 2014, Hyderabad, India
ACM 978-1-4503-2756-5/14/05
http://dx.doi.org/10.1145/2568225.2568285

596

Table 1: Subject program summary. The “Static Checking” column indicates whether the project developers actively use cccheck, the static checker
for Code Contracts. The “Dynamic Checking” column indicates whether the developers use Code Contracts for run-time checking in either debug
or release builds. The “Other Tools” column lists the other specification, testing, and code quality tools the developers use for the project.

Project Size
(SLOC) Downloads Team

Size
Code Contracts

Introduced Code Contract Use Static
Checking

Dynamic
Checking Other Tools

Labs Framework 11K > 400 1 Spring 2012 Static checking 3 3 StyleCop1

Mishra Reader 19K > 27K 1-5 Fall 2011 Debugging concurrent code 3 JetBrains R#2

Sando 24K > 500 3-6 Winter 2012 Early runtime error detection 3 NUnit3
Quick Graph 32K > 75K 1 2008 Documentation & testing 3 Pex [45], MSTest

tegral part of tooling, and (3) curate best practices by establishing
design/specification patterns. Reducing annotation burden is espe-
cially important to provide value to developers in the near-term —
tools for static checking, refactoring, and testing with contracts are
still relatively immature.

In support of the research contributions, this paper presents two
engineering contributions: (1) Celeriac, an open-source tool for pro-
ducing Daikon-compatible traces of .NET binary executions [17],
and (2) an open-source Visual Studio add-in for inserting dynami-
cally inferred contracts into C# software as Code Contracts. Infer-
ring Code Contracts for .NET programs required the development
of features not included in previous Daikon trace generators, as well
as modifications to Daikon itself. These include a static analysis
for determining expression comparability, support for multiple links
between expressions (for hoisting inferred preconditions and post-
conditions to object invariants and interface contracts), and more
fine-grained immutability tracking.

This paper proceeds as follows. Section 2 introduces four subject
projects that will be referred to throughout the paper and describes
each project’s use of Microsoft Code Contracts as reported by their
developers. Section 3 analyzes the developer-written Code Con-
tracts in 90 programs, with a focus on the four subject programs.
Section 4 characterizes the contracts that Celeriac and Daikon can
infer for the subject programs, contrasting these to the developer-
written contracts. Section 5 reports on two case studies in which
the project developers added additional Code Contracts to their own
software using a Visual Studio add-in that infers likely contracts
from program traces. Section 6 discusses implications with respect
to the design of contract languages and tools. Section 7 presents
related work. Finally, Section 8 concludes.

2. SUBJECT PROGRAMS
We selected Code Contracts as a subject framework because it

has a sizable user base: the extension has been downloaded over
49K times4. Code Contracts also has a low barrier to entry due to
its integration with the popular C# language.

We automatically analyzed the 90 open-source C# projects listed
on Ohloh5 that use Code Contracts. These projects contain 3.5M
source lines of code (SLOC). For context, Ohloh indexes 12M SLOC
of Eiffel code across 331 projects; it indexes 568M SLOC of C#
code across 44,440 projects.

We performed a more detailed analysis of four of the projects.
We selected these projects because they were all actively developed,
used, and employing contracts in a meaningful way. Additionally,
they are diverse in both application domain and their reason for

1https://stylecop.codeplex.com
2https://www.jetbrains.com/resharper
3http://www.nunit.org
4http://visualstudiogallery.msdn.microsoft.com/1ec7db13-3363-
46c9-851f-1ce455f66970
5https://www.ohloh.net/

adopting Code Contracts. Table 1 overviews each project’s use of
Code Contracts.

The following paragraphs describe each project’s adoption of
Code Contracts as reported by the project’s developers via question-
naire (and the additional Skype interviews performed for Mishra
Reader and Sando as part of developer studies in Section 5). Each
paragraph additionally describes the project’s use of other specifica-
tion, testing, and code quality tools as they relate to the project’s use
of Code Contracts. Of particular significance is cccheck, the static
contract checker packaged with the Microsoft Code Contracts frame-
work. The checker uses a modular abstract-interpretation-based
analysis to report unsatisfied contracts and to suggest additional
contracts. To fully benefit from using cccheck, developers must
add contracts to all the code being checked, as well as add contract
stubs for method calls to external assemblies.

Labs Framework. The Labs Framework6 is a framework for man-
aging “experiments” demonstrating the behavior of an API or library.
The static Code Contracts checker, cccheck, is enabled by default
in the project. The project does not include any formal unit tests,
instead relying on sample applications built with the framework.

Mishra Reader. Mishra Reader7 is a Google Reader client. The
lead developer introduced Code Contracts to the core library to
help reduce bugs in multithreaded code. The developers add Code
Contracts after the methods are implemented, to aid in debugging
(as opposed to design by contract). At one point, the developer
considered abandoning Code Contracts due to a lack of support for
debugging with contracts in async and await constructs (the byte-
code rewriter did not properly modify the debugging information);
Microsoft has since added debugging support for these constructs.
The team does not use cccheck, citing that it is slow and issues too
many false positive warnings.

Sando. Sando8 is a Lucene-based code search engine that includes
a Visual Studio interface. Code Contracts were introduced to the
project because one of main contributors had seen a webinar on
Code Contracts and wanted to try them. The team primarily uses
contracts in the core functionality. In particular, contracts are used
in the Index component because placing bad data into the index can
result in later errors. Contracts are typically written after a change
is made but before running the unit test suite prior to check-in.

The developer we interviewed was not aware of the static checker
for Code Contracts. The project does not use any other static anal-
ysis tools, in part because the team has limited build engineering
resources. Code Contracts is seen as offering additional quality
assurance without requiring additional build engineering, and likely
makes the team less likely to try other quality assurance tools. The
developer we interviewed feels that Code Contracts has sped the
discovery of bugs and regressions, as well as increasing confidence
in the quality of code containing contracts.

6https://labs.codeplex.com
7https://mishrareader.codeplex.com
8https://sando.codeplex.com

597

Quick Graph. Quick Graph9 is a data structure and algorithm
library. Code Contracts were introduced to the project to serve
as documentation and for use in conjunction with the Microsoft’s
Pex white-box testing tool, which the Quick Graph developer also
develops [45]. While the project has a single developer, a member
of the Code Contracts team contributed to the project by fixing
contracts that were malformed but were erroneously considered
valid by older versions of the toolset; we included Quick Graph as
an example of a well-annotated project. While, as anticipated, Code
Contracts have led to the discovery of some bugs, the developer has
also found that using contracts has forced a cleaner API and has
exposed bugs in the Code Contracts and Pex tools themselves. The
project does not use cccheck since it was not ready for use when
the developer was adding contracts.

3. DEVELOPER-WRITTEN CONTRACTS
This section characterizes the types of specifications that the

developers of the subject projects captured using Code Contracts.
We aim to answer the following two questions:

RESEARCH QUESTION 3.1. What properties do developers use
Code Contracts to enforce (semantics)?

RESEARCH QUESTION 3.2. Are developers able to efficiently ex-
press these properties using Code Contracts (syntax)?

The developers predominately use contracts to perform argument
validation (consistent with Polikarpova et al.’s observations [39]).
Approximately three-fourths of the contracts just check for the
presence of data; an additional 3% of contracts (18% of all post-
conditions) repeat field assignment and return statements from the
code.

3.1 Methodology
We divided contracts into three general categories: common-case,

repetitive, and application-specific. Common-case contracts enforce
expected (common) program properties: that data is present, strings
aren’t blank, collections aren’t empty, indices are in-bounds, and
methods don’t modify unrelated variables. Common-case contracts
often check for exceptional program behavior that produced a degen-
erate value (e.g., returning null) instead of throwing an Exception.
Repetitive contracts repeat exact statements from the code: that
a method returns a field, assigns a variable to a field, or returns
a specific value (i.e., the contract repeats the return expression).
Application-specific contracts enforce richer semantic properties:
valid argument values, how state is modified, the relation between
expressions, indicators of object state, and conditions under which
properties hold (i.e., implications).

Common-case and repetitive contracts are good candidates for
language/tool “optimizations” such as defaults and inference. De-
veloper time is better spent writing expressive application-specific
properties. Similarly, for developers concerned about code bloat,
common-case and repetitive contracts can “crowd out” the semanti-
cally richer application-specific contracts.

We wrote a Roslyn10 program to categorize each contract into the
finer categories of Table 2. We ran the program on 90 C# projects
(3.5M source lines of code) that use Code Contracts. The program
(available on the paper website) categorizes each expression or top-
level conjunct in a Requires, Ensures, and Invariant statement.
We manually refined the categorization rules by spot-checking the
results.
9https://quickgraph.codeplex.com

10http://msdn.microsoft.com/en-us/vstudio/roslyn.aspx

The program looks only at the contract expressions themselves
and errs on the side of categorizing a contract as application-specific.
For example, the program categorizes the contract idx >= 0 as a
“Lower/Upper Bound” contract rather than a “Bounds Check” even if
the variable idx is used as an index in the body of the method. This
has the effect of making our assessment of the application-specific
nature of developer-written contracts overly generous.

3.2 Results
Table 2 shows Code Contract content. The 90 projects had 43,823

top-level contract clauses across 3.5M source lines of code. Of those
clauses, 29,770 (68%) were preconditions, 11,355 were postcondi-
tions (26%), and 2,698 (6%) were object invariants.

Out of all contract clauses, 32,072 (73%) just check for the pres-
ence of data (cf. rows “Nullness”, “Null/Blank”, and “Non-Empty”).
For postconditions, 1,990 of the 11,355 clauses (18%) are “Get-
ter/Setter” or “Return Value” specifications which are repetitive
with the code (cf. the ENS columns).

The following paragraphs describe other characteristics of the
contracts, including the use of special postcondition methods (e.g.,
OldValue) and object-oriented features (object invariant methods
and contract classes). These methods and features gain their se-
mantics from the bytecode rewriting process. Object invariants and
contract classes are particularly interesting because they allow devel-
opers to capture application properties that are true at multiple points
in the program without significantly increasing annotation burden —
the contracts are automatically propagated by the bytecode rewriter.
Labs Framework. The Labs Framework uses indicator properties
more than the other projects. Indicator properties describe type-state
and/or which methods and properties can be called. Contracts using
indicator properties (cf. the “Indicator” row in Table 2) refine the
interface guarantee offered by the type system. For example, the
Labs Framework uses checks for IsEnabled to specify methods
that can only be called when a lab is active. Contracts over indicator
properties convey rich semantic information with minimal annota-
tion burden (syntax). Additionally, indicator properties provide a
client method with a concise way to determine if/when it can call
the object’s methods.

Some contracts are lexically enclosed within #if preprocessor
conditionals, impairing readability. Unlike other projects, the con-
tracts for the project differ based on the target platform: checks for
IsNullOrWhitespace are used when targeting the Windows Phone,
and IsNullOrEmpty are used for other targets. Recent support in
the Code Contracts framework for contract abbreviator methods
would enable the developer to refactor this pattern as a method call.

The project additionally makes use of special postcondition meth-
ods and the object-oriented features of Code Contracts. Of particular
note is the use of OldValue to write frame conditions, contracts stat-
ing that a method does not modify a certain field or argument. These
contracts are necessitated by the use of cccheck — the checker
depends on frame conditions to reason modularly about method
calls.
Mishra Reader. The Mishra Reader project primarily contains
argument validation contracts (cf. the REQ column). The devel-
opers chose to include the exception type to throw (e.g., Argu-
mentNullException) with precondition contracts, making the con-
tracts more informative. No contracts are written for private methods
— since external input has already been validated, the developer feels
that these contracts do not add enough value to justify code bloat
and run-time overhead.

Interface contracts (i.e., contract classes) are provided for 10 inter-
faces, which primarily connect to external services (Google Reader,
Facebook, and Twitter). However, the special quantification and

598

Table 2: Developer-written Code Contracts. The columns REQ(uires), ENS(ures), and INV(ariants) correspond to preconditions, postconditions, and
object invariants, respectively. The contracts counted for each category (row) are mutually exclusive. The vast majority of preconditions written
with Code Contracts simply check the presence of information; the majority of postconditions ensure that information is produced, or specify which
information is produced. Section 4 characterizes the contracts that the developers could have written, as determined by contract inference.

Subject Program Contract Usage

Contract Property Example Labs Framework Mishra Reader Sando Quick Graph 90 projects
REQ ENS INV REQ ENS INV REQ ENS INV REQ ENS INV Med. Mean

Common-Case 82% 64% 82% 87% 71% 0% 91% 100% - 81% 23% 27% 80% 75%
Nullness arg != null 285 104 58 37 6 52 5 632 34 4 67% 66%
Null/Blank !string.IsNullOrEmpty(arg) 33 11 6 17 4 10 13 1 4% 7%
Non-Empty list.Count() > 0 3 12 1 0% 1%
Bounds Check idx < list.Count() 11 7 0% 1%
Frame Condition this.fld == OldValue(this.fld) 18 0% 0%
Repetitive with Code 0% 7% 0% 0% 0% 0% 0% 0% - 0% 30% 0% 0% 3%
Getter/Setter this.fld == arg 7 16 0% 2%
Return Value Result<T>() == this.fld > 0 8 30 0% 0%
Application-Specific 18% 29% 18% 13% 29% 100% 9% 0% - 19% 47% 73% 18% 22%
Constant this.fld == 3 1 0% 0%
Lower/Upper Bound count >= 0 21 1 1 5 1 2 1 51 4 5 3% 6%
State Update this.fld > OldValue(this.fld) 14 0% 0%
Expr. Comparison !arg1.Equals(arg2) 4 2 25 9 4 3% 5%
Membership list.Contains(elt) 56 11 0% 1%
Indicator this.IsEnabled 44 34 8 3 11 1% 5%
Implication arg == null || arg.Count > 0 1 23 5 3 5 13 11 2 1% 2%
Other Func(arg1) == Func(arg2) 2 1 10 12 1% 3%

postcondition methods provided by Code Contracts are not used, as
highlighted by the fact that no contracts make use of quantification
(e.g., Contract.ForAll). The lack of specifications for collection
elements is consistent with the lack of contracts on private methods
— validation of all the elements inserted into the collection partially
implies the collection specification without incurring run-time over-
head. However, as with private methods, neither runtime checks nor
the static checker can enforce that all elements are indeed validated
before insertion. Additionally, later modifications to the elements
may violate the intended contracts for the collection.

Sando. The Sando developers use contracts as though they were
standard argument validation and assertions (i.e., Debug.Assert).
The project makes no use of contract classes or invariant methods.
As with Mishra Reader, the project’s contracts contain no use of
Code Contracts’s quantification expressions. However, in one loca-
tion the C# FindAll method is used to check that a property does not
hold for any of the elements (as opposed to Contract.ForAll or
Contract.Exists). The lack of object-oriented and Code Contract-
provided methods indicates a lack of familiarity with the contract
framework’s features, as was confirmed by the developer case study
in Section 5.4.

Quick Graph. Compared to the other projects, Quick Graph in-
cludes a higher proportion of application-specific contracts. Many of
these enforce algorithmic properties such as the color of a node dur-
ing edge coloring. To express complex properties, contracts include
helper method calls and lambda expressions (cf. the “Other” row).
In conjunction with logic connectives and the heavy-weight syn-
tax for special postcondition methods, these make many contracts
inscrutable to the untrained eye, e.g.:

Contract.Ensures(
!Contract.Result<bool>() ||
(Contract.ValueAtReturn<IEnumerable<TEdge>>(out rslt) != null

&&
(typeof(TEdge).IsValueType ||
Enumerable.All(

Contract.ValueAtReturn<IEnumerable<TEdge>>(out rslt),
e => e != null))

));

The developer could extract the logic into a separate method to
eliminate the need for multiple special postcondition method calls.

As a data structure and algorithm library, the project relies heavily
on interfaces for graphs, algorithms, and collections. 29 of these in-
terfaces are annotated with contracts. However, the project contains
relatively few object invariants — just 11 objects include invariant
methods. These invariants are for collections classes (heaps) and
the core graph abstractions. They predominately express basic facts
about nullness and that countable properties (e.g., edges) are non-
negative. More precise invariants are provided for the BinaryHeap
and BidirectionalGraph classes, however these are excluded via
preprocessor macro by default (since they are expensive “deep in-
variants”). These excluded invariants are not included in Table 2.

3.3 Discussion
There are material differences in contract usage across the projects.

These relate to the different use cases that contracts were supporting:
detecting one’s own bugs vs. checking for ill-behaved clients, simple
assertions vs. rich behavioral specifications, etc. One explanation
for the differences in contract usage is that the developers using
contracts for more than debugging (e.g., with cccheck or Pex) have
greater incentive (or are forced) to write richer contracts. An alterna-
tive explanation is that the developers inclined to use the other tools
are also inclined to use contracts more extensively. In either case,
a developer who underutilizes the special postcondition methods
and object-oriented features is missing out on exactly the features
that make Code Contracts more powerful and more concise than
standard argument validation/asserts. Conciseness and annotation
burden (in addition to expressivity) is important because it affects
whether or not developers use tools that require relatively complete
specifications, such as cccheck [15].

The large number of nullness contracts relative to the other con-
tract types suggests that nullness contracts may be “crowding out”
application-specific contracts — that is, the developers’ limited
resources (time, lines of code, etc.) are being consumed by writ-
ing nullness contracts. Nullness contracts do provide value since
they guarantee that types are inhabited, and therefore support the
interface guarantees provided by the type system. However, since
non-null is the common case [6], the annotation burden is difficult
to justify.

599

4. CONTRACT INFERENCE
This section reports on what Code Contracts could have been

written in the subject programs. We determined the potential con-
tracts by running Daikon on a trace of the program’s execution [17];
this methodology mimics the practice of a developer inferring the
“contract” for a program by generalizing how they see the program
behave. We use the results to explore two research questions.

RESEARCH QUESTION 4.1. To what extent are the contracts that
developers could have written application-independent (seman-
tics)?

The results indicate that, in addition to writing numerous “common-
case” and “repetitive” contracts, the developers of the subject pro-
grams could have written a higher proportion of application-specific
contracts, particularly constraints on state updates, indicator expres-
sions, and implications.

RESEARCH QUESTION 4.2. What are the differences (qualitative
and quantitative) between developer-written Code Contracts and
the contracts that the developers could have written (syntax and
semantics)?

From the data in Section 3 (and our own experience), we hy-
pothesized that developers disproportionately write basic contracts.
Additionally, Polikarpova et al. note that developers are typically
worse at writing postconditions than preconditions [39]. The results
support these expectations.

4.1 Methodology
As a proxy for determining which contracts could be written for

the subject programs, we used the Daikon invariant detector [17]
to infer invariants. Daikon takes as input one or more execution
traces and employs statistical methods (e.g., minimum support and
confidence heuristics) to infer likely method preconditions, method
postconditions, and object invariants. The contracts that Daikon
infers are sound with respect to the observed executions — i.e., it
does not infer any properties that are falsified by any traces.

For each program, we instrumented an assembly using the Cele-
riac trace generator (Section 4.2), and then ran the programs using
tests or example inputs. For the Labs Framework and Quick Graph,
we used the main assemblies. For Mishra Reader and Sando, we
used the assemblies that are the subjects of the developer case stud-
ies in Section 5. We generated a trace for the Labs Framework by
running the labs for the Rxx project11, Mishra Reader by using the
application normally, Sando by running its integration test suite, and
Quick Graph by running a subset of the unit test-suite (excluding
long-running tests). Celeriac’s sampling feature was used for the
Labs Framework, Sando, and Quick Graph, to reduce run time. Sec-
tion 4.3.3 addresses the shortcomings of Daikon and Celeriac as
they relate to this study.

4.2 Celeriac .NET Trace Generator
To infer likely invariants for .NET programs with Daikon, we

built Celeriac, a tool that dynamically instruments .NET binaries to
produce Daikon-compatible program traces. Celeriac uses the CCI
Metadata IL rewriting library12 to insert callbacks into managed
C# code; the callback walks over data structures (i.e., fields) and
performs pure method calls. Since Celeriac operates directly on a
.NET binary, it can be used to generate traces without build integra-
tion. The following subsections describe three features to support
the unique challenges encountered when tracing .NET programs,
and the improvements we made to Daikon to support these features.

11https://rxx.codeplex.com
12http://ccimetadata.codeplex.com

4.2.1 Interface Inference and Behavioral Subtyping
Code Contracts enable a developer to strengthen the postcondi-

tions on a method implementing an interface or overriding another
method. This is compatible with behavioral subtyping. (It is a lim-
itation of Code Contracts that they do not allow the developer to
modify the precondition, even though that would also be compatible
with behavioral subtyping.)

Prior work has observed that Daikon produces invariants that
violate behavioral subtyping by not incorporating inheritance infor-
mation [12]. To address this problem, Celeriac links arguments and
fields to the corresponding arguments and members of any super-
type/interface. The link information causes Daikon to lift contracts
that hold across all the implementations to the interface/supertype.

We modified Daikon to support multiple links per argument and
field; Daikon previously used single links for encoding object invari-
ant relationships. We added a post-processing step to Daikon that
discards the non-lifted preconditions (the implementation-specific
preconditions) from the implementation methods.

4.2.2 Comparability Analysis
By default, Daikon compares all values of the same primitive type

and all references (including those which violate the language’s typ-
ing rules). For example, in a program with int variables represent-
ing months, days, and years, Daikon will infer contracts comparing
month values to year values. To prevent these spurious contracts
from being inferred, Daikon supports “comparability sets” which
identify groups of variables that can be compared.

Existing Daikon comparability analyses for Java and C/C++ pro-
grams are dynamic, recording variable interactions at run time [17]).
For Celeriac, we opted to implement a conservative static compa-
rability analysis using the CCI Code Model and AST API13. The
analysis works in three steps:

1. For each method, calculate a comparability summary (com-
parability sets) of which expressions (fields, parameters, and
return value) are used together in a binary operation or assign-
ment statement.

2. Until a fixpoint is reached, for each call site, update the caller’s
comparability summary using the comparability summary of
the method being called (the callee).

3. For each type, calculate the comparability summary by merg-
ing the comparability summaries of its methods.

For calls to external assemblies (i.e., methods that don’t have
a comparability summary), the analysis conservatively assumes
that all method arguments with compatible types are in the same
comparability set; two types are considered to be compatible if
either either type is assignable to the other.

4.2.3 Read-only Variables
The .NET languages include a readonly keyword that speci-

fies that a variable must be assigned in the constructor, or given a
constant value; the equivalent in Java is the final keyword. For
read-only variables, Daikon produces redundant postconditions stat-
ing that the variable has not been modified (e.g., for a variable x,
x == orig(x)). We introduced an expression flag to Daikon to
filter out these cases from the Daikon output.

The readonly keyword is shallow. For reference types, the key-
word prevents the reference from being reassigned, but does not
prevent the object from being modified through the reference. There-
fore, when considering a composite expression (e.g., this.foo.bar),
Celeriac cannot naively use the readonly attribute of the last field.

13https://cciast.codeplex.com

600

Table 3: Code Contracts inferred by Daikon from program traces produced with Celeriac (plus a summary of developer-written contracts for
comparison). The header indicates the assembly used for each project and the size of the assembly in source lines of code (SLOC). The Mishra
Reader View Models component and Sando Indexer component are the subjects of the developer case study in Section 5. The rows and columns
are the same as in Table 2 with the addition of the Inf(erred) columns and Dev(eloper) columns that show the percentages of inferred and developer
contracts for the project. Frame conditions, which are useful for static analysis but rarely written by developers in practice, make the proportion
of common-case contracts appear comparable. However, when these contracts are excluded, it becomes more clear that developers write a higher
proportion of common case contracts than what is inferred. Developers miss opportunities to write state update, indicator, and implication contracts.

Contracts Inferred from Dynamic Traces

Contract Property Labs Framework Mishra Reader Sando Quick Graph 90 projects
Labs.dll (7.4K) ViewModels.dll (4.4K) Indexer.dll (2.3K) QuickGraph.dll (21K) Written

REQ ENS INV INF. DEV. REQ ENS INV INF. DEV. REQ ENS INV INF. DEV. REQ ENS INV INF. DEV. Med. Mean

Common-Case 68% 81% 73% 78% 77% 59% 73% 70% 70% 82% 48% 60% 50% 58% 92% 73% 80% 80% 79% 71% 80% 75%
Nullness 1031 1126 180 33% 65% 673 947 132 28% 55% 247 801 217 22% 66% 1280 1405 371 29% 69% 67% 66%
Null/Blank 132 159 28 5% 7% 4 12 5 0% 27% 20 33 13 1% 12% 0% 1% 4% 7%
Non-Empty 67 60 3 2% 0% 38 90 5 2% 0% 107 259 26 7% 14% 127 239 16 4% 0% 0% 1%
Bounds Check 0% 2% 1 0% 0% 4 7 11 0% 0% 15 16 3 0% 1% 0% 1%
Frame Condition 2669 38% 3% 2430 39% 0% 1586 27% 0% 4817 46% 0% 0% 0%
Repetitive with Code 0% 1% 0% 1% 2% 0% 4% 0% 3% 0% 0% 1% 0% 0% 0% 0% 2% 0% 1% 5% 0% 3%
Getter/Setter 45 1% 1% 132 2% 0% 12 0% 0% 82 1% 2% 0% 2%
Return Value 28 0% 1% 36 1% 0% 12 0% 0% 48 0% 3% 0% 0%
Application-Specific 32% 17% 27% 21% 21% 41% 24% 30% 27% 18% 52% 39% 50% 42% 8% 27% 18% 20% 20% 24% 18% 22%
Constant 224 324 24 8% 0% 299 555 25 14% 0% 210 541 100 15% 0% 316 617 37 9% 0% 0% 0%
Lower/Upper Bound 1 0% 3% 9 9 4 0% 10% 7 20 8 1% 1% 86 109 32 2% 6% 3% 6%
State Update 25 0% 0% 8 0% 0% 161 3% 0% 247 2% 1% 0% 0%
Expr. Comparison 1 7 0% 1% 12 31 1% 0% 1 0% 0% 11 22 0% 4% 3% 5%
Membership 0% 0% 0% 0% 1 2 0% 0% 0% 7% 0% 1%
Indicator 288 351 40 10% 12% 23 63 20 2% 4% 115 413 101 11% 0% 90 155 10 2% 1% 1% 5%
Implication 93 1% 4% 269 4% 4% 502 9% 6% 273 3% 3% 1% 2%
Other 52 56 16 2% 0% 151 215 11 6% 0% 76 115 56 4% 1% 27 59 16 1% 2% 1% 3%

To compute whether an expression should be flagged as is_readonly,
Celeriac starts at the root (e.g., this, in the the case of this.foo.bar)
of the composite expression and propagates reference immutability
and value immutability information [48]. Reference immutability is
propagated via the readonly fields (this is reference-immutable).
Value immutability is propagated / introduced for readonly fields
that have an immutable type. Celeriac considers a type to be im-
mutable if, and only if, it is composed of readonly fields with
immutable types.

4.3 Results
Table 3 shows the inferred contracts across the projects using the

categories from Section 3.1. Table 3 differs from Table 2 in two
ways. First, the results are for a single assembly within the subject
project, as indicated in the table. Second, implications that “guard” a
possibly null expression (e.g. x != null implies x.f != null)
are categorized using the type of property that is guarded, as op-
posed to being categorized as an implication. This adjustment
has the effect of categorizing some contracts as “common-case”
or “repetitive” that would be categorized as an implication (and
therefore “application-specific”) in Table 2. Therefore, the cate-
gorization would tend to make the inferred contracts appear less
application-specific than the developer-written contracts.

4.3.1 Application-Independence
Nullness and frame conditions dominate the inferred contracts,

accounting for 49% – 75% of the contracts for each project (cf. the
“Nullness” and “Frame Condition” rows). This is expected as pro-
grams operate on data, and methods generally only modify a portion
of the program state. As reported in Section 3, developers rarely
write frame conditions. When frame conditions (cf. the “Frame
Condition” row) are excluded from the inferred contracts, the re-
sults reveal a higher proportion of application-specific contracts than
what developers write (34% – 57% of the contracts for each project).

While frame conditions are important to specify what a method
does not not do in the presence of mutable data types, the number of
reported conditions could be reduced by making two changes to the
toolset: (1) Daikon could report method purity concisely, rather than
listing every side effect that a method does not have. This would be
similar to Daikon’s treatment of the modifies clause when it creates
JML output. (2) Celeriac could perform static analysis to infer which
properties return the same value when called twice (Date.Now is an
example that does not). This would allow Celeriac and Daikon to
treat more expressions as read-only (see Section 4.2.3).

The “Constant” row shows that many contracts specify a constant
value. These contracts (and some in the “Other” category that
specify the set of values an expression can have) are a product of the
sample executions/tests not achieving value coverage for methods.
For example, we used only a single username and password when
running Mishra Reader.

Every inferred implication was a postcondition for a method
call that returns a Boolean value. In order to infer other implica-
tions, Daikon requires a user-supplied list of predicate expressions.
Celeriac lacks this feature, and consequently, no implications were
inferred for preconditions (cf. the REQ columns) or object invariants
(cf. the INV columns).

4.3.2 Relationship to Developer-Written Contracts
There are two notable differences between the contracts that

developers have written, and the contracts that the developers could
have written: (1) developers write relatively fewer postconditions,
and (2) developers write relatively less-expressive contracts.

Postconditions. Based on previous research [39] and our own
experience, we expected that, relatively speaking, developers would
write fewer postconditions (ensures contracts) than they could have
as indicated by Daikon. The results confirmed our expectation: for
every project and nearly every contract type, Daikon infers more
postconditions than preconditions (cf. the REQ and ENS columns).

601

This suggests that the strong developer bias toward preconditions
(68% of written contracts are preconditions) cannot be attributed
to an absence of potential postconditions. In particular, there are
opportunities to capture how a method updates program state. This
can be done by relating pre-state and post-state values (cf. the “State
Update” row in Table 3) or by setting indicator properties (cf. the
“Indicator” row). For example, the Sando developers could add
postconditions to specify which methods increment counts, e.g.:

this.Reader.GetRefCount() >=
Contract.OldValue(this.Reader.GetRefCount())

Additionally, there are opportunities to use implication (the “Im-
plication” row) to capture richer method return and state update
behavior.
Expressivity. Daikon includes templates for a wide variety of con-
tracts, many of which are non-trivial to express efficiently using
Code Contracts (e.g., that all elements in a collection are distinct).
Therefore, it was not surprising that inference discovered more
expressive contracts than the developers wrote for the Labs Frame-
work, Mishra Reader, and Sando. For Quick Graph, Daikon was
able to infer interesting application-specific contracts, but they were,
in many cases, less expressive than what the developers wrote. One
reason is that Daikon does not infer contracts that contain calls to
helper methods that take arguments.

The inferred implications generally describe type-state. For ex-
ample, for Sando, Daikon infers that an Indexer is either “usable”
or “disposed”:

(this._disposed == true) == (this.IsUsable == false)

Daikon additionally infers the properties associated with each object
state, e.g.:

(this.IsUsable == false) ==
(this.Reader.TermPositions == null)

In cases where an indicator property/variable is not present, a non-
null value for a field serves as a proxy for type-state (particularly
for simple initialization).

There are downsides to a developer writing the more expres-
sive/complex of these properties in the Code Contracts framework.
First, they are verbose, especially when involving pre-state or return
values. For commonly-used contracts, though, helper methods and
contract abbreviator methods can be introduced to mitigate the ver-
bosity problem. Second, they cannot be checked statically, resulting
in a warning that the contract is unproven. While static checking can
be disabled for a contract via annotation, disabling static checking
would require the developer to additionally write simpler invariants
(implied by the more complex invariant) or otherwise write assump-
tions at the client sites. This developer doesn’t receive additional
compile-time benefits for writing the semantically expressive con-
tract, and instead incurs extra annotation burden and the burden
of figuring out why the static checker cannot prove the contract.
Third, they cannot be controlled readily via the Code Contracts
configuration. For example, run-time checks for the built-in Code
Contract quantification methods (e.g., ForAll) can be toggled via
the configuration, but checks utilizing the more expressive LINQ
methods cannot.

For example, consider writing contracts for a method that adds
an entry to a dictionary/map. Daikon generates postconditions that
the size of the dictionary has increased by one and that the keys and
values are supersets of the pre-state versions. The static checker
does not reason about individual collection elements, so the contract
that the original elements are retained would have to be left as an
expensive dynamic check.

4.3.3 Threats to Validity
The key threat to external validity is that we give detailed informa-

tion about a single assembly from each of four C# projects. Though
we chose them to be diverse, the results might not generalize.

The key threat to internal validity is that if Daikon does not do
a good job inferring contracts, then comparing developer-written
contracts to Daikon’s output may not be informative.

Nimmer and Ernst [32] reported that contracts inferred from even
small test suites were relatively precise, with less than 10% on aver-
age being incorrect (from a verification perspective). Polikarpova et
al. [38] later reported that one third of contracts inferred by Daikon
were incorrect or irrelevant. However, most of the uninteresting
contracts that they report are caused by limitations in their Citadel
tool, which does not output comparability, inheritance, or constant
information.

Use of a different contract inference tool (e.g., DySy [13]) could
produce different results; however, this would not diminish the
primary result that developers omit many interesting application-
specific contacts. Improvements to Daikon’s recall (say, by adding
new contract templates or by improving Celeriac’s method purity
or comparability analysis) would demonstrate an even larger gap
between what contracts developers write and the contracts they
could write.

5. DEVELOPER CASE STUDY
Sections 3 and 4 characterized the difference between the con-

tracts that developers write and the contracts that developers could
write. This section presents two case studies of how developers react
when shown the difference.

RESEARCH QUESTION 5.1. How do developers decide which prop-
erties to record and enforce (semantics)?

A developer from the Mishra Reader project and a developer
from the Sando project inserted inferred contracts into their project.
They used the Contract Inserter (Section 5.1), a Visual Studio inter-
face for viewing, inserting, and documenting contracts discovered
with Celeriac and Daikon. We interviewed each developer about
their experience and decision-making process. When suggesting
improvements to the Contract Inserter, both developers stressed IDE
integration.

When the tool identified new/different properties that the devel-
oper could capture using contracts, the developers wrote these in
similar locations, and used them for similar purposes as they had
used contracts in the past. The tool suggestions did not lead the
two developers to adopt new use cases, even when those use cases
were more powerful or a better match for Code Contracts and the
developers’ needs. For example, the tool suggestions did not lead
the Mishra Reader developer to expand from annotating only public
methods (to catch misbehaving clients), to annotating private ones
as well (to find bugs in the developers’ own code). Nor did the tool
suggestions lead the two developers to expand from using Code
Contracts as assertions and argument validation, to more compre-
hensive behavioral specifications. And the two developers did not
transition from annotating methods one at a time to annotating data
structures with object invariants.

5.1 Contract Inserter Add-in
To support C# developers in specifying their programs with Code

Contracts, we developed the Contract Inserter, a Visual Studio add-in
that inserts inferred contracts as Code Contracts or as documentation.
This section describes the design of the interface (Figure 1).

602

Figure 1: The Contract Inserter Add-In (Section 5.1). Left pane: the
class and method tree. Top right pane: source code with preview of
inserted contracts and documentation. Bottom right pane: inferred
contracts, grouped by variable. The developer can insert or ignore each
contract by clicking an icon. The developer can introduce filters by
right-clicking on a contract and selecting a filter from the context menu
(e.g., filter all contracts that compare two variables).

Contract Actions. For each method and object, the user interface
lists likely contracts grouped by variable. The developer can toggle
between viewing the contracts as a Code Contract or in Daikon’s
concise English-like output format. For each contract, the developer
can take one of four actions:

• Insert as Code Contract
• Insert as documentation
• Ignore, because the contract is not true
• Ignore, because the property is an implementation detail

The developer performs the action by clicking on the associated
icon next to the contract in the display.

Inserting a contract as documentation adds an XML-documentation
clause in the same format as that generated by the ccdoc tool pack-
aged with Code Contracts. The contract is written using Daikon’s
concise English-like output.

A developer can hide ignored contracts, so that the Contract
Inserter displays contracts that are inserted and work-to-be-done.
Because the Daikon output can be noisy, developers can also hide
contracts by contract type or the variables involved.

To aid readability and to support Daikon’s more complex con-
tracts (e.g., greatest common denominator), the tool is packaged
with a C# library for expressing inferred contracts concisely. For
example, the OneOf extension method obviates the need for chained
or-expressions, e.g., x.OneOf(1,2,3) instead of x == 1 || x ==
2 || x == 3.

5.2 Case Study Methodology
For each project, we selected an assembly (sub-project) for the

developer to annotate with Code Contracts. To shorten the devel-
opers’ time commitment, we generated a trace prior to the study
(as described in Section 4.1). We provided each developer with the
Contract Inserter installer, the program trace, and written instruc-
tions. We instructed each developer to use the Contract Inserter for
approximately one hour to add Code Contracts to their project. Im-
mediately following each developer’s use of the tool, we performed
a semi-structured interview with the developer via Skype. The study
materials are available on the paper website.

5.3 Mishra Reader Case Study
The Mishra Reader developer annotated the View Model assem-

bly, the model subcomponent of the application’s Model-View-
Control architecture. Initially, the assembly contained just 10 pre-
conditions and a single object invariant across 80 classes and 300
methods.

Determining Which Properties are Valid. The developer cited
his intuition and knowledge of the project to decide when a contract
reported by the tool was valid. However, for contracts involving
instance variables, he stated that a lack of context about the instance
fields of the object was a barrier to determining the validity of a
contract. In these cases, he used the standard Visual Studio interface
to review the source for the entire class.

The developer made two tool suggestions. First, the developer
suggested that the add-in be more tightly integrated into the Visual
Studio editor, possibly as an add-in to the popular ReSharper tool14.
Second, the developer suggested that the tool should provide in-
formation (e.g., values) explaining why the tool reported a Code
Contract. The Contract Inserter could provide concrete example
values from the trace.

Determining Which Properties to Enforce. During the session,
the developer inserted 13 contracts and marked 28 contracts as false.
Of the contracts the developer inserted, 11 were nullness checks,
1 stated that a return value was non-negative, and 1 stated that a
method set the class is_loaded flag. Of the contracts the devel-
oper marked as false, 10 were nullness checks, 10 were contracts
for the run-time type of an expression, and 8 were checks that an
expression was constant-valued. The Contract Inserter now hides
contracts for the run-time type of an expression by default because
they are implementation details (C#’s type system enforces static
type correctness; behavioral subtyping implies that run-time type
does not affect program behavior). These contracts are not included
in the results for Section 4, either.

The developer cited three reasons for not inserting valid contracts:
(1) the developer believed contracts should only be written at module
boundaries, i.e., public methods, (2) the developer did not want
to introduce run-time overhead, and (3) the developer wanted to
avoid code bloat. When asked if he would add private method
contracts and/or potentially expensive contracts if they could be
disabled at run-time (which the Code Contract rewriter supports),
he reconfirmed his decision to exclude the contracts. The developer
did not choose to insert any contracts as documentation, citing that
properties that are important enough to be documented should be
enforced.

Overall, these decisions appear to be inconsistent with the devel-
oper’s stated goal of using contracts as tool for debugging multi-
threaded code. Contracts on private methods help to localize errors
which are caused by the interaction between threads (and therefore
would not be detected by argument validation on public methods).

5.4 Sando Case Study
The Sando developer annotated the Indexer subcomponent of the

application. Initially, the Indexer assembly contained 17 contracts
across 34 classes and 182 methods.

Determining Which Properties to Enforce. During the session,
the developer inserted 35 contracts, did not insert any contracts
as documentation, and did not mark any contracts as false or as
an implementation detail. Of the contracts the developer inserted,
25 were nullness checks, 3 were blank string checks, 2 were for
non-empty collections, 1 was that a return value was not NaN (not-

14https://www.jetbrains.com/resharper/

603

a-number), 2 were indicator property checks, and 1 was that a
line-number property was non-negative. Additionally, the developer
incorrectly inserted, and did not remove, a method precondition
stating that a string expression was constant. While the developer
did insert one object invariant that a field was non-null, he later
removed it. Using the Contract Inserter did not cause the developer
to begin using object invariants in the project (cf. Table 2).

The developer chose to enforce properties he deemed interesting.
For preconditions, this meant asking the question “How could other
people mess up if they’re calling this method?” For postconditions,
the developer asked the question “How could my code or future
versions of my code blow up?” The developer’s approach is a mix of
client-centric and code-centric strategies. For preconditions, his ap-
proach is client-centric. If he were instead following a code-centric
approach, he might try determining the necessary preconditions
for the method [10]. For postconditions, he focuses on the current
and future versions of the method rather than determining which
properties the clients of the method must be able to expect.

The developer added no contracts as documentation, as he dis-
ables contract checking for release builds and therefore the contracts
do not affect speed. The codebase does not contain documentation.

The process of inserting contracts did not reveal any bugs, how-
ever it did reveal places clients of the library could misuse classes.
The process of inserting contracts also revealed a place where a
method name was misleading: the AddField method was adding
a body. Additionally, the developer believed that bugs might be
uncovered by running the other system/project tests with the new
contracts inserted (he did not try this, though).

Based on the above usage, the developer made three suggestions
for improving the tool. First, the developer suggested that the Con-
tract Inserter be better integrated into the Visual Studio editor to
enable navigation and to gain context regarding how methods are
called. Second, the developer suggested to have contracts ranked
by how relevant the contracts likely are. For example, inferred pre-
conditions on fields not used by a method are likely just artifacts of
the test suite. Third, the developer suggested support for a worklist
view of classes, possibly ranked by which classes clients use most.

5.5 Threats to Validity
Our case studies were with two developers and two C# projects

using Code Contracts, so the results might not generalize to other
developers, projects, languages, or implementations of contracts.

While the two developers were not students and they added con-
tracts to their own software, the studies were artificial in other senses.
First, developers typically write contracts during development or
debugging, not as a separate activity. Second, this was the develop-
ers’ first use of the tool. With practice, the developers would likely
become more proficient with the Contract Inserter.

At the time the studies were performed, the Contract Inserter
had limitations that affected the contracts shown to the developers.
The Contract Inserter redundantly displayed inferred object invari-
ants as both object invariants and method invariants. Additionally,
due to a quirk in how Daikon handles pairwise equality, the Con-
tract Inserter did not suggest any implications aside from “guarded”
expressions (e.g., x != null implies x.f >= 0). These limita-
tions may have hindered the participants in finding and inserting
valid, especially application-specific, contracts.

6. RECOMMENDATIONS
This section discusses our results and presents three action items

for contract language and tool designers: (1) employ tooling to
reduce annotation burden, (2) make suggestions an integral part of
tooling, and (3) curate best practices by establishing design patterns.

While there is a risk that the subject projects are not representative,
the information gathered from the project’s developers can provide
context for where the results are applicable. Additionally, since
the subject projects are all open-source, we encourage the reader to
download and explore the projects; all data and tools are available at
http://homes.cs.washington.edu/~tws/code-contracts/.
Annotation Burden. The expected marginal benefit of writing a
contract is low, particularly if the developer only uses Code Con-
tracts for run-time checking. Using tools that make use of contracts
to improve results, such as cccheck or Pex, improves the imme-
diate benefit of contracts. However, as discussed in Section 4.3.2,
some tools model contract semantics incompletely, making it less
attractive to write expressive contracts.

As a wider array of tools take advantage of contracts, it will
become easier for developers to derive immediate benefit from each
additional contract. As a result, annotation burden may no longer
be a deal-breaker. In the near-term, though, contract language and
tool designers should aim to reduce annotation burden both when
writing and when reading contracts. The Microsoft Code Contracts
team has reduced the burden of writing contracts with contract
abbreviator methods and code snippets. However, these features
(especially code snippets) do not alleviate the burden caused by the
large number of common-case contracts (e.g., non-null checks).

Based on our experience with pluggable types [15], we believe
that defaults could reduce the burden of common-case properties.
For example, tools could assume by default that each formal param-
eter is non-null, and this could be overridden by the programmer in
the minority of cases where null is permitted [6, 36]. Eiffel’s type
system supports types that are non-null (“attached”) by default [31].
Contract Suggestions. Contract suggestions, like those provided
by Daikon and the Contract Inserter, serve to both reduce annotation
burden and to educate users. Currently, the only Code Contracts tool
that provides suggestions is cccheck, the static verifier. Since not
all developers want to do static verification (especially when first
using contracts), suggestions should be incorporated into other tools
as well. The cccheck analysis could be retooled to offer suggestions
during activities such as debugging and refactoring.

How to most effectively incorporate suggestions into an IDE is
an open problem — intrusive or invalid suggestions can drive away
users due to annoyance or distrust [24]. One possible solution is to
conservatively exclude potentially-invalid information from the sug-
gestions. For the developers using the Contract Inserter in the case
studies, even simple suggestions such as using Contract.ForAll,
object invariant, and interface contracts would help them to better
achieve their goals in using contracts.
Curating Best Practices. While individual contract suggestions
can be helpful, effective use of contracts is intrinsically tied to pro-
gram design and structure. For example, in order to encode the
type-state pattern [49], a developer introduces properties that in-
dicate object state to clients and adds implications to the object
invariant to describe the states. These steps require a combined
understanding of code refactoring, object invariants, and logic (im-
plication). Therefore, just as there has been extensive work on
object-oriented design patterns, contract language designers should
establish design pattern for development with contracts.

7. RELATED WORK
Specifications. Our goal in this paper was to help guide the de-
sign of contract frameworks. Each contract framework chooses
a different trade-off between expressivity, verbosity, and tooling.
The Java Modeling Language (JML) aims at expressing full behav-
ioral specifications for both runtime checking and static verifica-

604

tion [4, 26]. Statically verifiable specifications make heavy use of
JML’s modeling functionality [21], however support for dynamically
checking these specifications is nascent [8]. JML’s lack of language
integration has translated into a lack of modern tool support [4].
Microsoft’s Code Contracts are expressible in all .NET framework
languages as syntactically-valid statements without changing the
existing languages. The trade-off is that their syntax is often verbose.
A bytecode rewriter [19] enables dynamic checking, even for fea-
tures such as prestate values. Microsoft also provides a static verifier
cccheck [20]. The verifier performs partial verification, opting not
to model properties such as the values of individual array elements.
Eiffel was the first language to have support for contracts built into
both its language and toolset [30, 39], but Eiffel is not a mainstream
language [43]. Eiffel’s contracts are designed for dynamic checking
— the only static checkers are research tools (e.g., [47]). As a result,
like Code Contracts, Eiffel lacks many verification-centric features
such as ghost variables. Indeed, support for modeling in contract
languages such as JML and Spec# [3] were primarily introduced to
provide a basis for formal verification. Recent work by Polikarpova
et al., though, demonstrates how using a model-based pattern for
Eiffel and Code Contracts results in specifications that improve the
efficacy of testing [39].

There are two related empirical studies of contract usage. Chalin
studied 5 proprietary Eiffel projects, 79 open-source Eiffel projects,
and the EiffelStudio libraries and samples [5]. Concurrently with
our work, Estler et al. studied contract usage across revisions (i.e.,
over time) for 21 open-source projects using JML, Eiffel, and Code
Contracts [18]. Unlike our work, these studies did not semantically
categorize the contracts. Estler et al.’s results support our finding
that nullness contracts dominate the contracts that developers write,
however Chalin found that Eiffel programs contained a lower over-
all proportion of nullness contracts (35% for Eiffel vs. 66% for C#
programs). (Earlier work estimated the incidence of non-null values
in Java to be 50% at contract locations [7].) Both report more equi-
table distributions of preconditions and postconditions than what we
report. However these results are not necessarily inconsistent with
ours. Chalin compares lines of contracts as opposed to the number
of clauses. In Estler et al.’s study, 5 of the 7 C# projects favor pre-
conditions. Indeed, for each finding, there are exceptions that can
be attributed to project, development language, and project lifecycle
(e.g., periods of refactoring). These exceptions demonstrate a need
for establishing context in empirical studies of contract usage.

Inference. Our tools and experiments use Daikon [16, 17] to infer
possible contracts. We do not have space to review the a large body
of work for specifying and inferring data, temporal, and other prop-
erties; a partial survey of inference techniques is provided in [40],
though it oddly excludes tools such as Daikon. Tools (“front-ends”)
for generating Daikon compatible traces exist for other programming
languages including Java [17], C/C++ [22, 41], and Eiffel [38]. An
important part of a Daikon front end is a comparability analysis [23]
that determines which variables should be compared (e.g., do not
report age < bank_account_number). We implemented a simple,
scalable, conservative static comparability analysis. Ajax [34] does
a similar task more precisely but less scalably; like our analysis, it is
inspired by static type inference of abstract types [1, 35]. Daikon’s
Java and C/C++ front-end perform comparability analysis dynami-
cally. The Eiffel front-end does not perform comparability analysis.
Unlike the Java and C/C++ front-ends, which require a pure method
whitelist, the Eiffel front-end unsoundly assumes that all nullary
methods are pure; users can supply a blacklist of impure methods.

Polikarpova et al. used the Eiffel front-end to study the differences
between human-written and Daikon-inferred contracts. Their 25
subject classes (7 KLOC) are Eiffel base classes and student assign-

ments, both of which are likely to be more heavily documented than
typical code. They conclude that Daikon infers useful contracts not
written by developers. They also conclude that Daikon misses many
contracts written by developers [38], but this may stem from their
Citadel tool giving low-quality input to Daikon. They measured
the numeric recall and precision of inferred contracts with respect
to what programmers wrote, but not with respect to what is true or
useful. By contrast, we examined more code, qualitatively described
the aggregate distribution of contract behaviors, and interviewed
developers.

Inference Human Factors. Prior work suggests that inferred con-
tracts are an important complement to human-originated contracts.
Nimmer and Ernst found that including that inferred contracts (i.e.,
inferred by Daikon or Houdini) made users significantly more effec-
tive at writing verified specifications [33]. Polikarpova et al. [38]
additionally reported that Daikon inferred meaningful contracts that
humans had missed.

Despite the large body of literature on inferring contracts and
specifications, there has been little direct study of the human factors
affecting their use. Anecdotally, some users writing verified specifi-
cations in our previous work [42] reported that the included inferred
contracts were distracting or even harmful. Directly studying con-
tract comprehension is a difficult problem. Staats et al. suggest that
users face difficulty determining whether or not postconditions in-
ferred by Daikon are true [44]. However, they found no dominating
factors (human or contract characteristics) associated with contract
difficulty. A major threat to the validity of the study is that method
preconditions were elided since preconditions require knowledge of
the intended behavior. As such, it would be difficult for participants
to infer the possible values of parameters and fields when a method
was called, making determining the correctness of postconditions
difficult.

8. CONCLUSION
In 90 open-source C# programs, the lion’s share of contracts that

developers write are basic checks enforcing common cases such
as the presence of data. The tendency toward basic contracts can
be explained by annotation burden, tooling, and training. In 2 case
studies, contract suggestions inferred from run-time behavior aided
developers in capturing more expressive contracts to support exist-
ing use cases. However, the suggestions did not lead the developers
to new use cases for contracts. Therefore, contract language and
tool developers should not only introduce tools to reduce annotation
burden and suggest contracts, but also curate best practices by es-
tablishing design patterns. All data and tools from this paper are
publicly available at http://homes.cs.washington.edu/~tws/
code-contracts/.

9. ACKNOWLEDGMENTS
We thank Mike Barnett, Manuel Fähndrich, and Sai Zhang for

their comments on a draft of this paper. We thank H.-Christian
Estler, Carlo A. Furia, Martin Nordio, Marco Piccioni, and Bertrand
Meyer for sharing a draft of their paper [18] with us. This material
is based upon research sponsored by a National Science Foundation
Graduate Research Fellowship under Grant No. DGE-0718124
and by DARPA under agreement number FA8750-12-2-0107. The
U.S. Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright notation
thereon.

605

10. REFERENCES
[1] H. Baker. Unify and conquer (garbage, updating, aliasing, ...).

In Proc. 1990 ACM Conf. on Lisp and Functional
Programming, pages 218–226, Nice, France, June 27–29,
1990.

[2] M. Barnett, M. Fahndrich, P. de Halleux, F. Logozzo, and
N. Tillmann. Exploiting the synergy between
automated-test-generation and programming-by-contract. In
ICSE’09, Proceedings of the 31st International Conference on
Software Engineering, May 2009.

[3] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec#
programming system: An overview. In Construction and
Analysis of Safe, Secure, and Interoperable Smart Devices,
pages 49–69, Marseille, France, March 10–13, 2004.

[4] L. Burdy, Y. Cheon, D. Cok, M. D. Ernst, J. Kiniry, G. T.
Leavens, K. R. M. Leino, and E. Poll. An overview of JML
tools and applications. Software Tools for Technology
Transfer, 7(3):212–232, June 2005.

[5] P. Chalin. Are practitioners writing contracts? In Rigorous
Development of Complex Fault-Tolerant Systems, pages
100–113. Springer-Verlag, 2006.

[6] P. Chalin and P. R. James. Non-null references by default in
Java: Alleviating the nullity annotation burden. In ECOOP
2007 — Object-Oriented Programming, 21st European
Conference, pages 227–247, Berlin, Germany, August 1–3,
2007.

[7] P. Chalin and F. Rioux. Non-null references by default in the
Java Modeling Language. In SAVCBS 2005: Specification and
Verification of Component-Based Systems, Lisbon, Portugal,
September 5–6, 2005.

[8] P. Chalin and F. Rioux. JML runtime assertion checking:
Improved error reporting and efficiency using strong validity.
In FM 2008: Formal Methods, volume 5014 of Lecture Notes
in Computer Science, pages 246–261. 2008.

[9] Y. Cheon and G. T. Leavens. A simple and practical approach
to unit testing: The JML and JUnit way. In Proceedings of the
16th European Conference on Object-Oriented Programming,
ECOOP’02, pages 231–255, London, UK, UK, 2002.
Springer-Verlag.

[10] P. Cousot, R. Cousot, M. Fähndrich, and F. Logozzo.
Automatic inference of necessary preconditions. In
Verification, Model Checking, and Abstract Interpretation,
pages 128–148. Springer, 2013.

[11] P. M. Cousot, R. Cousot, F. Logozzo, and M. Barnett. An
abstract interpretation framework for refactoring with
application to extract methods with contracts. In OOPSLA’12,
Proceedings of the ACM International Conference on Object
Oriented Programming Systems Languages and Applications,
pages 213–232, New York, NY, USA, 2012.

[12] C. Csallner and Y. Smaragdakis. Dynamically discovering
likely interface invariants. In ICSE’06, Proceedings of the
28th International Conference on Software Engineering,
pages 861–864, Shanghai, China, May 24–26, 2006.
Emerging results track.

[13] C. Csallner, N. Tillmann, and Y. Smaragdakis. DySy:
Dynamic symbolic execution for invariant inference. In
ICSE’08, Proceedings of the 30th International Conference on
Software Engineering, pages 281–290, Leipzig, Germany,
May 14–16, 2008.

[14] B. Demsky, M. D. Ernst, P. J. Guo, S. McCamant, J. H.
Perkins, and M. Rinard. Inference and enforcement of data
structure consistency specifications. In ISSTA 2006,

Proceedings of the 2006 International Symposium on Software
Testing and Analysis, pages 233–243, Portland, ME, USA,
July 18–20, 2006.

[15] W. Dietl, S. Dietzel, M. D. Ernst, K. Muşlu, and T. Schiller.
Building and using pluggable type-checkers. In ICSE’11,
Proceedings of the 33rd International Conference on Software
Engineering, pages 681–690, Waikiki, Hawaii, USA,
May 25–27, 2011.

[16] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to support
program evolution. IEEE Transactions on Software
Engineering, 27(2):99–123, February 2001. A previous
version appeared in ICSE ’99, Proceedings of the 21st
International Conference on Software Engineering, pages
213–224, Los Angeles, CA, USA, May 19–21, 1999.

[17] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant,
C. Pacheco, M. S. Tschantz, and C. Xiao. The Daikon system
for dynamic detection of likely invariants. Sci. Comput.
Programming, 69(1–3):35–45, December 2007.

[18] H.-C. Estler, C. A. Furia, M. Nordio, M. Piccioni, and
B. Meyer. Contracts in practice. In Proceedings of the 19th
International Symposium on Formal Methods (FM), Lecture
Notes in Computer Science. Springer, May 2014.

[19] M. Fahndrich, M. Barnett, D. Leijen, and F. Logozzo.
Integrating a set of contract checking tools into Visual Studio.
In TOPI’2012, Proceedings of the 2nd Workshop on
Developing Tools as Plug-ins, pages 43–48. IEEE, 2012.

[20] M. Fähndrich and F. Logozzo. Static contract checking with
abstract interpretation. In Proceedings of the 2010
International Conference on Formal Verification of
Object-oriented Software, FoVeOOS’10, pages 10–30, Berlin,
Heidelberg, 2011. Springer-Verlag.

[21] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B.
Saxe, and R. Stata. Extended static checking for Java. In PLDI
2002, Proceedings of the ACM SIGPLAN 2002 Conference on
Programming Language Design and Implementation, pages
234–245, Berlin, Germany, June 17–19, 2002.

[22] P. J. Guo. A scalable mixed-level approach to dynamic
analysis of C and C++ programs. Master’s thesis, MIT
Department of Electrical Engineering and Computer Science,
Cambridge, MA, May 5, 2006.

[23] P. J. Guo, J. H. Perkins, S. McCamant, and M. D. Ernst.
Dynamic inference of abstract types. In ISSTA 2006,
Proceedings of the 2006 International Symposium on Software
Testing and Analysis, pages 255–265, Portland, ME, USA,
July 18–20, 2006.

[24] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge. Why
don’t software developers use static analysis tools to find
bugs? In ICSE’13, Proceedings of the 34th International
Conference on Software Engineering, pages 672–681, San
Francisco, CA, USA, May 22–24, 2013.

[25] Y. Kataoka, M. D. Ernst, W. G. Griswold, and D. Notkin.
Automated support for program refactoring using invariants.
In ICSM 2001, Proceedings of the International Conference
on Software Maintenance, pages 736–743, Florence, Italy,
November 6–10, 2001.

[26] G. T. Leavens, Y. Cheon, C. Clifton, C. Ruby, and D. R. Cok.
How the design of JML accommodates both runtime assertion
checking and formal verification. Science of Computer
Programming, 55(1-3):185–208, March 2005.

[27] A. Leitner, I. Ciupa, M. Oriol, B. Meyer, and A. Fiva.
Contract Driven Development = Test Driven Development −

606

writing test cases. In ESEC/FSE 2007: Proceedings of the
11th European Software Engineering Conference and the 15th
ACM SIGSOFT Symposium on the Foundations of Software
Engineering, pages 425–434, Dubrovnik, Croatia,
September 5–7, 2007.

[28] F. Logozzo and T. Ball. Modular and verified automatic
program repair. In Proceedings of the ACM International
Conference on Object Oriented Programming Systems
Languages and Applications, OOPSLA’12, pages 133–146,
New York, NY, USA, 2012. ACM.

[29] F. Logozzo, M. Barnett, M. A. Fähndrich, P. Cousot, and
R. Cousot. A semantic integrated development environment.
In Proceedings of the 3rd Annual Conference on Systems,
Programming, and Applications: Software for Humanity,
SPLASH ’12, pages 15–16, New York, NY, USA, 2012.
ACM.

[30] B. Meyer. Applying "Design by Contract". Computer,
25(10):40–51, October 1992.

[31] B. Meyer. Attached types and their application to three open
problems of object-oriented programming. In A. P. Black,
editor, ECOOP 2005 Object-Oriented Programming, volume
3586 of Lecture Notes in Computer Science, pages 1–32.
Springer Berlin Heidelberg, 2005.

[32] J. W. Nimmer and M. D. Ernst. Automatic generation of
program specifications. In ISSTA 2002, Proceedings of the
2002 International Symposium on Software Testing and
Analysis, pages 232–242, Rome, Italy, July 22–24, 2002.

[33] J. W. Nimmer and M. D. Ernst. Invariant inference for static
checking: An empirical evaluation. In Proceedings of the
ACM SIGSOFT 10th International Symposium on the
Foundations of Software Engineering (FSE 2002), pages
11–20, Charleston, SC, November 20–22, 2002.

[34] R. O’Callahan. Generalized Aliasing as a Basis for Program
Analysis Tools. PhD thesis, Carnegie-Mellon University,
Pittsburgh, PA, May 2001.

[35] R. O’Callahan and D. Jackson. Lackwit: A program
understanding tool based on type inference. In Proceedings of
the 19th International Conference on Software Engineering,
pages 338–348, Boston, MA, May 1997.

[36] M. M. Papi, M. Ali, T. L. Correa Jr., J. H. Perkins, and M. D.
Ernst. Practical pluggable types for Java. In ISSTA 2008,
Proceedings of the 2008 International Symposium on Software
Testing and Analysis, pages 201–212, Seattle, WA, USA,
July 22–24, 2008.

[37] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach,
M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou,
G. Sullivan, W.-F. Wong, Y. Zibin, M. D. Ernst, and
M. Rinard. Automatically patching errors in deployed
software. In Proceedings of the 22nd ACM Symposium on
Operating Systems Principles, pages 87–102, Big Sky, MT,
USA, October 12–14, 2009.

[38] N. Polikarpova, I. Ciupa, and B. Meyer. A comparative study
of programmer-written and automatically inferred contracts.
In ISSTA 2009, Proceedings of the 2009 International
Symposium on Software Testing and Analysis, pages 93–104,
Chicago, IL, USA, July 21–23, 2009.

[39] N. Polikarpova, C. A. Furia, Y. Pei, Y. Wei, and B. Meyer.
What good are strong specifications? In Proceedings of the
2013 International Conference on Software Engineering,
ICSE’13, pages 262–271, Piscataway, NJ, USA, 2013. IEEE
Press.

[40] M. Robillard, E. Bodden, D. Kawrykow, M. Mezini, and
T. Ratchford. Automated API property inference techniques.
IEEE Transactions on Software Engineering, 39(5):613–637,
Sep 2012.

[41] R. A. Rudd. An improved scalable mixed-level approach to
dynamic analysis of c and c++ programs. Master’s thesis, MIT
Department of Electrical Engineering and Computer Science,
Cambridge, MA, January 2010.

[42] T. W. Schiller and M. D. Ernst. Reducing the barriers to
writing verified specifications. In Object-Oriented
Programming Systems, Languages, and Applications
(OOPSLA 2012), Tucson, AZ, USA, October 23-25, 2012.

[43] T. Software. TIOBE programming community index for
august 2013, September 2013.

[44] M. Staats, S. Hong, M. Kim, and G. Rothermel.
Understanding user understanding: Determining correctness
of generated program invariants. In Proceedings of the 2012
International Symposium on Software Testing and Analysis,
ISSTA’12, pages 188–198, New York, NY, USA, 2012.

[45] N. Tillmann and J. De Halleux. Pex: White box test
generation for .NET. In Proceedings of the 2nd International
Conference on Tests and Proofs, TAP’08, pages 134–153,
Berlin, Heidelberg, 2008. Springer-Verlag.

[46] N. Tillmann and W. Schulte. Parameterized unit tests. In
Proceedings of the 13th ACM SIGSOFT International
Symposium on Foundations of Software Engineering,
ESEC/FSE-13, pages 253–262, New York, NY, USA, 2005.

[47] J. Tschannen, C. Furia, M. Nordio, and B. Meyer. Automatic
verification of advanced object-oriented features: The
autoproof approach. In B. Meyer and M. Nordio, editors,
Tools for Practical Software Verification, volume 7682 of
Lecture Notes in Computer Science, pages 133–155. Springer
Berlin Heidelberg, 2012.

[48] M. S. Tschantz and M. D. Ernst. Javari: Adding reference
immutability to Java. In Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA 2005), pages
211–230, San Diego, CA, USA, October 18–20, 2005.

[49] E. Zoppi, V. Braberman, G. de Caso, D. Garbervetsky, and
S. Uchitel. Contractor.NET: Inferring typestate properties to
enrich code contracts. In TOPI ’11, Proceedings of the 1st
Workshop on Developing Tools as Plug-ins, pages 44–47, New
York, NY, USA, 2011.

607

