
Static Analysis of Implicit Control Flow:
Resolving Java Reflection and Android Intents

(extended version)

Technical report UW-CSE-15-08-01
Computer Science & Engineering

University of Washington
Seattle, Washington, USA

August 2015

Paulo Barros† René Just∗ Suzanne Millstein∗ Paul Vines∗

Werner Dietl‡ Marcelo d’Amorim† Michael D. Ernst∗
† Federal University of Pernambuco

Recife, PE, Brazil
{pbsf,damorim}@cin.ufpe.br

∗ University of Washington
Seattle, WA, USA

{rjust,smillst,plvines,mernst}@cs.washington.edu

‡ University of Waterloo
Waterloo, ON, Canada
wdietl@uwaterloo.ca

Abstract—Implicit or indirect control flow is a transfer of
control between procedures using some mechanism other than
an explicit procedure call. Implicit control flow is a staple design
pattern that adds flexibility to system design. However, it is
challenging for a static analysis to compute or verify properties
about a system that uses implicit control flow.

This paper presents static analyses for two types of implicit
control flow that frequently appear in Android apps: Java
reflection and Android intents. Our analyses help to resolve where
control flows and what data is passed. This information improves
the precision of downstream analyses, which no longer need to
make conservative assumptions about implicit control flow.

We have implemented our techniques for Java. We enhanced
an existing security analysis with a more precise treatment of
reflection and intents. In a case study involving ten real-world
Android apps that use both intents and reflection, the precision
of the security analysis was increased on average by two orders
of magnitude. The precision of two other downstream analyses
was also improved.

I. INTRODUCTION

Programs are easier to understand and analyze when they
use explicit control flow: that is, each procedure call invokes
just one target procedure. However, explicit control flow is
insufficiently flexible for many important domains, so implicit
control flow is a common programming paradigm. For example,
in object-oriented dispatch a method call invokes one of multiple
implementations at run time. Another common use of implicit
control flow is in design patterns, many of which add a level of
indirection in order to increase expressiveness. This indirection
often makes the target of a procedure call more difficult to
determine statically.

Implicit control flow is a challenge for program analysis.
When a static analysis encounters a procedure call, the analysis
usually approximates the call’s behavior by a summary, which
conservatively generalizes the effects of any target of the call.
If there is only one possible target (as with a normal procedure
call) or a small number that share a common specification (as

with object-oriented dispatch), the summary can be relatively
precise. But if the set of possible targets is large, then a
conservative static analysis must use a very weak specification,
causing it to yield an imprecise result.

The imprecision is caused by a lack of information about
possible call targets and about the types of data passed as
arguments at each call. The goal of this paper is to provide
a sound and sufficiently precise estimate of potential call
targets and of the encapsulated data communicated in implicit
invocations, in order to improve the precision of downstream
program analyses.

Our evaluation focuses on a particular domain — Android
mobile apps — in which implicit invocation significantly
degrades static analysis. In our experience [1], the largest
challenge to analyzing Android apps is their use of reflection
and intents, and this led us to our research on resolving implicit
invocation. We are not aware of a previous solution that handles
reflection and intents soundly and with high precision.

Reflection permits a program to examine and modify its
own data or behavior [2]. Our interest is in use of reflection
to invoke procedures. For example, in Java an object m of
type Method represents a method in the running program; m
can be constructed in a variety of ways, including by name
lookup from arbitrary strings. Then, the Java program can
call m.invoke(...) to invoke the method that m represents.
Other programming languages provide similar functionality,
including C#, Go, Haskell, JavaScript, ML, Objective-C, PHP,
Perl, Python, R, Ruby, and Scala.

Android intents are the standard inter-component communi-
cation mechanism in Android. They are used for communication
within an app (an app may be made up of dozens of
components), between apps, and with the Android system.
An Android component can send or broadcast intents and can
register interest in receiving intents. The Android architecture
shares similarities with blackboard systems and other message-
passing and distributed systems.



By default, a sound program analysis must treat reflection
and intents conservatively — the analysis must assume that
anything could happen at uses of reflection and intents, making
its results imprecise. We have built a simple, conservative, and
quite precise static analysis that models the effects of reflection
and intents on program behavior. The key idea is to resolve
implicit control and data flow first to improve the estimates of
what procedures are being called and what data is being passed;
as a result, those constructs introduce no more imprecision into
a downstream analysis than a regular procedure call does.1

Both control flow and data flow are important. For reflection,
our approach handles control flow by analyzing reflective calls
to methods and constructors to estimate which classes and
methods may be manipulated, and it handles data flow via
an enhanced constant propagation. For intents, our approach
handles control flow by using previous work [3] to obtain
component communication patterns, and it handles data flow
by analyzing the payloads that are carried by intents.

We have implemented our approach for Java. We evaluated
our implementation on open-source apps, in the context of
three existing analyses, most notably an information flow
type system for Android security [1]. Most Android apps use
reflection and/or intents, so accurately handling reflection and
intents is critical in this domain. Unsoundness is unacceptable
because it would lead to security holes, and poor precision
would make the technique unusable due to excessive false-
positive alarms. The reflection and intent analyses increased
the precision of the information flow type system by two orders
of magnitude, and they also improved the precision of the other
two analyses. Furthermore, they are easy to use and fast to run.
Our implementation is freely available in the SPARTA toolset
(http://types.cs.washington.edu/sparta/), including source code
and user manual, and the reflection analysis is also integrated
into the Checker Framework (http://checkerframework.org/).

The rest of this paper is structured as follows. Section II
presents two motivating examples. Sections III and IV present
our analyses that resolve reflection and intents. Section V
formally analyzes the typing rules. Section VI evaluates how
the reflection and intent analyses improve the precision of
downstream analyses. Section VII shows how the type inference
rules reduce programmer effort. Section VIII discusses related
work, and Section IX concludes.

II. MOTIVATING EXAMPLES

Our work improves the precision of a downstream static
analysis, by eliminating false positive warnings in cases of
implicit control flows. Imprecision due to implicit control
flow affects every static analysis. For concreteness, consider
a noninterference type system [4], which guarantees that the
program does not leak sensitive data.

The noninterference type system distinguishes high-security-
level values from low-security-level values; for brevity, High

and Low values. The static property checked is that values in
High variables are not assigned to Low variables, which could
leak sensitive data. Variables and expressions marked High may
hold a Low value at run time; this is also expressed as Low <:
High, where the symbol “<:” denotes subtyping. To use this
type system, a user annotates each type with High or Low, the

1Our approach does not change the program’s operations, either on disk or
in memory in the compiler; see Section III-B.

1 class ArticleViewActivity extends Activity {
2 void onCreate(Bundle savedInstanceState) {
3 if (android.os.Build.VERSION.SDK_INT >= 11) {
4 // Android version 11 and later has Action Bar
5 Method getActionBar =
6 getClass().getMethod("getActionBar");
7 @Low Object actionBar = getActionBar.invoke(this);
8 ...
9 }

10 }
11 }
12
13 // Library annotations:
14 class Method {
15 @High Object invoke(Object obj, Object... args) {...}
16 }
17 class Activity {
18 // Only exists in Android SDK 11 and above.
19 @Low ActionBar getActionBar() {...}
20 }

Fig. 1. A noninterference type-checker produces a false positive warning
on line 7, where the return type of Method.invoke, of type High, is assigned
to variable actionBar which has declared type Low. The call on line 7 always
returns a Low value at run time (even though other calls to invoke may in general
return a High value), so the assignment is safe. When the noninterference type
system is augmented by our reflection analysis, it no longer issues the false
positive warning.

default being Low. The type system is conservative: if it issues
no warnings, then the program has no interference and running
it does not leak any High data to Low contexts.

When run on the Android app Aard Dictionary (http://
aarddict.org/), the noninterference type system issues false
positive warnings due to its conservative handling of implicit
control flows. When our reflection and intent analyses are
integrated into it, the type system remains sound but no
longer issues the false positive warnings. The examples in
this section use a noninterference type system, but other type
systems suffer similar false positives. Our reflection and intent
analyses also help other downstream analyses, as demonstrated
in Section VI-D.

A. Reflection
Some calls to Method.invoke return a High value at run time.

Thus, the signature of Method.invoke (line 15 of Figure 1)
must have a High return type; any other return type in the
summary would be unsound. Some calls to Method.invoke always
return a Low value. The conservative signature of Method.invoke

causes false positive warnings in such cases.
Figure 1 illustrates the problem in Aard Dictionary. The

component ArticleViewActivity uses an ActionBar, which is a
feature that was introduced in version 11 of the Android API.
In order to prevent run-time errors for a user who has an older
version of Android (and also to enable the app to compile when
a developer is using an older version of the Android API), this
app uses reflection to call methods related to the ActionBar. The
noninterference type-checker issues a false positive due to the
use of reflection; our reflection analysis (Section III) eliminates
the false positive warning.

B. Android intents
An Android component might send a High value via an

intent message to another component; therefore, the summary
for methods that retrieve data from an intent (lines 26–27 of
Figure 2) must conservatively assume that the data is a High

http://types.cs.washington.edu/sparta/
http://checkerframework.org/
http://aarddict.org/
http://aarddict.org/


1 class DictionaryMain extends Activity {
2 void translateWord(int source , int target , String word){
3 Intent i = new Intent(this , WordTranslator.class);
4 i.putExtra("source", source);
5 i.putExtra("target", target);
6 i.putExtra("word", word);
7 startActivity(i);
8 }
9 }

10
11 class WordTranslator extends Activity {
12 void onCreate(Bundle savedInstanceState)
13 Intent i = getIntent();
14 @Low int source = i.getIntegerExtra("source");
15 @Low int target = i.getIntegerExtra("target");
16 @Low String word = i.getStringExtra("word");
17 showResult(translate(source , target , word));
18 }
19 String translate(int source , int target , String word)

{...}
20 Intent getIntent() {...}
21 void showResult(String result) {...}
22 }
23
24 // Library annotations:
25 class Intent {
26 @High Integer getIntegerExtra(String key) {...}
27 @High String getStringExtra(String key) {...}
28 }

Fig. 2. A noninterference type-checker produces false positive warnings on
lines 14–16, where the return type of get*Extra, of type High, is assigned to
variables with declared type Low. The calls on lines 14–16 always return a
Low value at run time (even though other calls to get*Extra may in general
return a High value), so the assignments are safe. When the noninterference
type system is augmented by our intent analysis, it no longer issues the false
positive warnings.

value. This conservative summary may cause false positive
warnings when the data is of type Low at run time.

Figure 2 shows another example from Aard Dictionary. The
components DictionaryMain and WordTranslator use Android
intents to communicate. Android intents are messages sent
between Android components, and those messages contain
“extras”, which is a mapping of keys to objects. Component
DictionaryMain creates an intent object i, adds Low-security extra
data to i’s extras mapping, and on line 7 calls the Android
library method startActivity to send the intent. The Android
system then calls WordTranslator.onCreate, which is declared on
line 12. The noninterference type-checker issues a false positive
due to the use of intents; our intent analysis (Section IV)
eliminates the false positive warning.

III. REFLECTION RESOLUTION

Reflection is a metaprogramming mechanism that enhances
the flexibility and expressiveness of a programming language.
Its primary purpose is to enable a program to dynamically
exhibit behavior that is not expressed by static dependencies
in the source code.

Reflection is commonly used for the following four use
cases, among others. (1) Provide backward compatibility by
accessing an API method that may or may not exist at run time.
The reflective code implements a fallback solution so the app
can run even if a certain API method does not exist, e.g., on
older devices. (2) Access private API methods and fields, which
offer functionality beyond what is provided by the public API.
(3) Implement design patterns such as duck typing. (4) Code
obfuscation to make it harder to reverse-engineer the program,
e.g., code that accesses premium features that require a separate

purchase. The Android developer documentation encourages
the use of reflection to provide backward compatibility and for
code obfuscation (cases 1 and 4 above), and 39% of apps in
the F-Droid repository [5] use reflection.

Not all uses of reflection can be statically resolved, but
our experiments show that many of them can. Whenever the
developer runs a code analysis, it is beneficial to the analysis
if as much reflection as possible is resolved, in order to
reduce false positive warnings. Obfuscation is not compromised,
because analysis results, annotations, and other information
that is used in-house by the developer need not be provided to
users of the software.

Approach for reflection resolution: Without further informa-
tion about what method is reflectively called, a static analysis
must assume that a reflective call could invoke any arbitrary
method. Such a conservative assumption increases the likelihood
of false positive warnings.

At each call to Method.invoke, our analysis soundly estimates
which methods might be invoked at runtime. Based on this
estimate, our analysis statically resolves the Method.invoke call —
that is, it provides type information about arguments and return
types for a downstream analysis. The results are soundly deter-
mined solely based on information available at compile time.

The reflection resolution consists of the following parts:

1) Reflection type system: Tracks and infers the possible
names of classes, methods, and constructors used by
reflective calls. (Section III-A)

2) Reflection resolver: Uses the reflection type system to
estimate the signatures of methods or constructors that
can be invoked by a reflective call. (Section III-B)

A. Reflection type system
Our reflection type system refines the Java type system

to provide more information about array, Class, Method, and
Constructor values. In particular, it provides an estimate, for
each expression of those types, of the values they might evaluate
to at run time.

For arrays, the refined type indicates the length of the
array: for example, @ArrayLen({3,4}) indicates that the array
will be of length 3 or 4. For expressions of type Class, there
are two possible type qualifiers, @ClassVal and @ClassBound,
representing either an exact Class value or an upper bound
of the Class value. The list of possible values is expressed
as an array of strings representing fully-qualified types; for
example, @ClassVal("java.util.HashMap") indicates that the Class

object represents the java.util.HashMap class. Alternatively,
@ClassBound("java.util.HashMap") indicates that the Class object
represents java.util.HashMap or a subclass of it.

For expressions of type Method and Constructor, the type
qualifier indicates estimates for the class, method name, and
number of parameters. For example,
@MethodVal(cn="java.util.HashMap",

mn={"containsKey", "containsValue"},
np=1)

indicates that the method represents either HashMap.containsKey

or HashMap.containsValue, with exactly 1 parameter. Likewise,
the MethodVal type may have more than one value for the class
name or number of parameters. The represented methods are the
Cartesian product of all possible class names, method names,



and numbers of parameters. For a constructor, the method
name is “<init>”, so no separate @ConstructorVal type qualifier
is necessary.

The MethodVal type is imprecise in that it indicates the
number of parameters that the method takes, but not their
type. This means that the type system cannot distinguish
methods in the uncommon and discouraged [6] case of method
overloading. This was a conscious design decision that reduces
the verbosity and complexity of the annotations, without any
practical negative consequences. In our experiments with more
than 300,000 lines of Java code, this imprecision in the type
system never prevented a reflective call from being resolved.

Our implementation caps the size of a set of values at 10.
This cap was never reached in our case studies. If a programmer
writes, or the type system infers, a set of values of size larger
than 10, then the type is widened to its respective top type.
A top type indicates that the type system has no estimate for
the expression: the type system’s estimate is that the run-time
value could be any value that conforms to the Java type. The
top type is the default, and it is represented in source code as
the absence of any annotation.

1) Type checking: The reflection type system enforces stan-
dard type system guarantees, e.g. that the right-hand side of an
assignment is a subtype of the left-hand side. These typing rules
follow those of Java, they are standard for an object-oriented
programming language, and they are familiar to programmers.
Therefore, we do not detail them in this paper. The reflection
type system and our implementation are compatible with all
Java features, including generics (type polymorphism).

2) Type inference: Programmers do not need to write type
annotations within method bodies, because our system performs
local type inference. More specifically, for local variables,
casts, and instanceof expressions, the absence of any annotation
indicates that the type system should infer the most precise
possible type from the context. For all other locations — notably
fields, method signatures, and generic type arguments — a
missing annotation is interpreted as the top type qualifier.

The local type inference is flow-sensitive. It takes advantage
of expression typing rules that yield more precise types than
standard Java type-checking would.

a) Estimates for values of expressions: We have de-
signed and implemented a dataflow analysis that infers and
tracks types providing an estimate for the possible values of
each expression. Our implementation goes beyond constant
folding and propagation: it evaluates side-effect-free methods,
it infers and tracks the length of each array, and it computes a
set of values rather than just one. For example, @ArrayLen({3,4})
indicates that at run time the array has length 3 or 4. Figure 3
shows selected inference rules. The reflection type system builds
on top of this dataflow analysis.

b) Inference of @ClassVal and @ClassBound: The re-
flection type system infers the exact class name (@ClassVal) for
a Class literal (C.class), and for a static method call (e.g., Class
.forName(arg), ClassLoader.loadClass(arg), . . . ) if the argument
has a sufficiently precise @StringVal estimate. In contrast, it
infers an upper bound (@ClassBound) for instance method calls
(e.g., obj.getClass()).

An exact class name is necessary to precisely resolve
reflectively-invoked constructors since a constructor in a
subclass does not override a constructor in its superclass.

e : String val is the statically computable value of e
e : @StringVal(val)

e : int val is the statically computable value of e
e : @IntVal(val)

e : @IntVal(π)

new C[e] : @ArrayLen(π)

new C[]{e1,...,en} : @ArrayLen(n)

Fig. 3. Inference rules for @StringVal, @IntVal, and @ArrayLen.

fqn is the fully-qualified class name of C

C.class : @ClassVal(fqn)

s : @StringVal(ν)

Class.forName(s) : @ClassVal(ν)

fqn is the fully-qualified class name of the static type of e
e.getClass() : @ClassBound(fqn)

(e : @ClassBound(ν) ∨ e : @ClassVal(ν))
s : @StringVal(µ) p : @ArrayLen(π)

e.getMethod(s,p) : @MethodVal(cn=ν,mn=µ,np=π)

e : @ClassVal(ν) p : @ArrayLen(π)

e.getConstructor(p) : @MethodVal(cn=ν,mn="<init>",np=π)

Fig. 4. Selected inference rules for the @ClassVal, @ClassBound, and @MethodVal
annotations. Additional rules exist for expressions with similar semantics but
that call methods with different names or signatures, and for fields/returns.

Either an exact class name or a bound is adequate to resolve
reflectively-invoked methods because of the subtyping rules for
overridden methods.

c) Inference of @MethodVal: The reflection type system
infers MethodVal types for methods and constructors that have
been created via Java’s Reflection API. A nonexhaustive
list of examples includes calls to Class.getMethod(String name,

Class<?>... paramTypes) and Class.getConstructor(Class<?>...

paramTypes). For example, the type inferred for variable
getActionBar on line 5 of Figure 1 is
@MethodVal(cn="ArticleViewActivity", mn="getActionBar", np=0).
Although Figure 1 uses raw (non-parameterized) types, our
inference supplies the missing type argument information.

d) Inference of field types: For private fields, our type
inference collects the types of all assignments to the field, and
sets the field type to their least upper bound (lub). If the lub
is not a subtype of the declared type, this step is skipped and
a type-checking error will be issued at some assignment. The
same mechanism works for non-private fields, but the entire
program has to be scanned for assignments. At the end of
type-checking, the type-checker outputs a suggestion about the
field types. The user may accept these suggestions and re-run
type-checking to obtain more precise results; we did so in our
experiments. Field type inference works for every type system,
not just those related to reflection.

e) Method signature inference: Similarly to field type
inference, private method parameters are set to the lub of
the types of the corresponding arguments, and private method
return types are set to the lub of the types of all returned



expressions, when those are consistent with the declared types.
For non-private methods, the entire program is scanned for
calls/overriding and the type-checker outputs suggestions.

Figure 4 shows selected inference rules for the reflection
type system.

B. Reflection resolver
Prior work (see Section VIII) commonly re-writes the source

code or changes the AST within the program analysis tool,
changing a call to Method.invoke into a call to the method
that is reflectively invoked before analyzing the program. This
approach interferes with the toolchain, preventing the code from
being compiled or run in certain environments. This approach is
also at odds with the very purpose of reflection: the program no
longer adapts to its run-time environment and loses properties
of obfuscation. A final problem is that an analysis may discover
facts that cannot be expressed in source code form.

Our reflection resolver operates differently: it leaves the
program unmodified but narrows the procedure summary —
the specification of parameter and return types used during
modular analysis — for that particular call site only. When
the downstream analysis requests the summary at a call
to Method.invoke, it receives the more precise information
rather than the conservative summary that is written in the
library source code. This transparent integration means that the
downstream analysis does not need to be changed at all to be
integrated with the reflection analysis.

C. Example
Recall the example of Figure 1. When the noninterference

type system analyzes getActionBar.invoke(this) on line 7, it
uses a method summary (like a declaration) to indicate the
requirements and effects of the call. Ordinarily, it would use
the following conservative declaration for Method.invoke:

@High Object invoke(Object recv, Object ... args)

However, the reflection type system inferred that the type
of variable getActionBar is @MethodVal(cn="ArticleViewActivity",

mn="getActionBar", np=0). In other words, at run time, the
invoked method will be the following one from class
ArticleViewActivity:

@Low ActionBar getActionBar ()

Thus, the noninterference type system has a precise type, Low,
for the result of the invoke call. The reflection resolver provides
the following precise procedure summary to the downstream
analysis, for this call site only:

@Low Object invoke(Object recv, Object ... args)

As a result, the type system does not issue a false positive
warning about the assignment to variable actionBar on line 7.

The summary contains not just refined procedure return
types as shown above, but also refined parameter types, enabling
a downstream analysis to warn about clients that pass arguments
that are not legal for the reflectively-invoked method. It would
be possible to refine the Java types as well as the type qualifiers
(for instance, to warn about possible run-time type cast errors
or to optimize method dispatch), but our implementation does
not do so.

If the reflectively-called method or constructor cannot be
resolved uniquely, the reflection resolver determines the least
upper bound of all return values and the greatest lower bound
of all parameter and receiver types.

IV. ANDROID INTENT ANALYSIS

An Android app is organized as a collection of components
that roughly correspond to different screens of an application
and to background services.2 Some apps consist of dozens of
components. Intents are used for inter-component communi-
cation, both within an app and among different apps. Intents
are similar to messages, communicated asynchronously across
components. Sending an Android intent implicitly invokes a
method on the receiving component, just as making a reflective
procedure call implicitly invokes a method. The use of intents is
prevalent in Android apps: all top 50 popular paid apps and top
50 popular free apps from the Google Play store use intents [7],
the top 838 most popular apps contain a total of 58,989 inter-
component communication locations [3], and intents are a
potential target for attackers to introduce malware [7].

Intents present two challenges to static analyses: (i) control
flow analysis, or determining which components communicate
with one another, and (ii) data flow analysis, or determining
what data is communicated. Both parts are important. An
existing analysis, Epicc [3], partially solves the control flow
challenge. Section IV-A describes how our implementation uses
Epicc to compute component communication. Our key research
contribution is to address the data flow challenge, which has
resisted previous researchers. Section IV-B presents a novel
static analysis that estimates the data passed in an Android
intent.

The structure of Android intents: In addition to attributes
that specify which components may receive the intent, an intent
contains a map from strings to arbitrary data, called “extras”.
The extras map is used to pass additional information that is
needed to perform an action. For example, an intent used to
play a song contains the song’s title and artist as extras. An
invocation of the putExtra method adds a key–value entry to the
intent map, which can be looked up via the getExtra method
call. Without loss of generality, we will consider that every
intent attribute is an entry in the map of extras. The use of
extras is prevalent in Android: of the 1,052 apps in the F-Droid
repository [5], 69% use intents with extra data. Figure 2 shows
the common use case of an Android app sending and receiving
an intent containing extras.

A. Component communication patterns
To precisely analyze the types of data sent through intents,

our analysis requires sendIntent calls to be matched to the decla-
rations of onReceive methods they implicitly invoke. We express
this matching as a component communication pattern (CCP): a
set of pairs of the form 〈sendIntent(a, i), onReceive(b, j)〉. Each
pair in the CCP indicates that components a and b, possibly
from different apps, may communicate through intents i and
j, which intuitively denote the actual arguments and formal
parameters of the implicit invocation.

To precompute an approximated CCP, our current
implementation uses APKParser [8], Dare [9], and Epicc [3].
Our implementation inherits Epicc’s limitations. Note, however,
that Epicc’s limitations are not inherent to our intent analysis,
and they would disappear if we used a better analysis to
compute CCP. As better CCP techniques become available,

2Activity, Service, BroadcastReceiver, and ContentProvider are the four kinds
of Android components. See http://developer.android.com/guide/components/
fundamentals.html#Components.

http://developer.android.com/guide/components/fundamentals.html#Components
http://developer.android.com/guide/components/fundamentals.html#Components


they can be plugged into our implementation. IC3 [10] is
Epicc’s successor, created by the same research group. We
attempted to use IC3, but we discovered a soundness bug:
dynamically-registered Broadcast Receivers were not being
analyzed. The IC3 authors have confirmed but not fixed the
bug3, so we used Epicc instead. We now discuss sources of
imprecision and unsoundness due to Epicc.

Epicc’s sources of imprecision. Epicc’s lack of support for
URIs leads to imprecision since intents with the same action
and category but different URIs are conservatively considered
equal. As expected of a static analysis, Epicc also cannot
handle cases where dynamic inputs determine the identity of
receiver components. Epicc also handles this conservatively: all
components are considered possible receivers. Furthermore, the
points-to and string analyses used by Epicc are also sources of
imprecision. Even with these limitations, all mentioned in [3],
Epicc reports 91% precision in a case study with 348 apps.

Epicc’s sources of unsoundness. Epicc unsoundly assumes
that Android apps use no reflection. We used the type system of
Section III to circumvent this limitation; see Section VI. Epicc
also unsoundly assumes that Android apps use no native calls,
a standard limitation of static analysis that is shared by IC3.
We do not circumvent this limitation. Another unsoundness
is the closed-world assumption; that is, Epicc assumes that
it knows all the apps installed on a device. Our work shares
this assumption. Compatibility with Epicc’s ananlysis could be
checked whenever an app is installed.

Recall that while finding CCP is necessary, it is not
sufficient. Since acceptable solutions exist for finding CCP,
the focus of our intent analysis is the unsolved problem of
estimating the payloads of intents, which is discussed below.

B. Intent type system
This section presents a type system for Android intents.

The type system verifies that the type of data stored within an
intent conforms to the declared type of the intent, even in the
presence of implicit invocation via intents.

For simplicity, this paper abstracts all methods that send
intents as the method sendIntent, and all methods that receive
an intent as the method onReceive. For example, in Figure 2,
startActivity(), called on line 7, is an example of a sendIntent

method, and the method getIntent(), declared on line 20, is an
example of an onReceive method.

The type system verifies that for any sendIntent method call
and any onReceive method declaration that can be invoked by
the call site, the intent type of the argument in the sendIntent

call is compatible with the intent type of the parameter declared
in the onReceive method signature.

1) Intent types: We introduce intent types, which hold key–
type pairs that limit the values that can be mapped by a key.

Syntax of intent types. This paper uses the following syntax
for an intent map type:

@Intent("K1" → t1, ..., "Kn" → tn) Intent i = ...;

where {"K1",. . . ,"Kn"} is a set of literal strings and {t1,. . . ,tn}
is a set of types. The type of variable i above consists of a
type qualifier @Intent(...) and a Java type Intent. The regular

3https://github.com/siis/ic3/issues/1

Subtyping

(ST)
∀ k ∈ keys(τ2). k ∈ keys(τ1) ∧ τ1[k] = τ2[k]

τ1 <: τ2

(CP)
∀ k ∈ keys(τ2). k ∈ keys(τ1) ∧ τ1[k]<: τ2[k]

τ1 <copyable τ2

Well-formedness

(OR)
No precondition

void onReceive(τ i)

Typing judgments

(SI)

∀ onReceive(b, j). 〈sendIntent(a, i),onReceive(b, j)〉 ∈ CCP
i : τi j : τ j τi <copyable τ j

sendIntent(a, i) : int

(PE1)
e : τ v : τ[k] k ∈ keys(τ) s : @StringVal(k)

e.putExtra(s,v) : τ

(PE2)
e : τ k /∈ keys(τ) e is unaliased s : @StringVal(k)

e.putExtra(s,v) : τ

(GE)
e : τ k ∈ keys(τ) s : @StringVal(k)

e.getExtra(s) : τ[k]

Fig. 5. Type system for Android intents. Standard rules are omitted.

Java type system verifies the Java type, and our intent type
system verifies the type qualifier.

The actual Java syntax used by our implementation is
slightly more verbose than that in this paper:

@Intent(@Entry(key="K1", type="t1"), ...,
@Entry(key="Kn", type="tn")) Intent i = ...;

Semantics of intent types. If variable i is declared to have an
intent type T , then two constraints hold. (C1) The keys of i that
are accessed must be a subset of T ’s keys. It is permitted for
the run-time value of variable i to have more keys than those
listed in T , but they may not be accessed. It is also permitted
for the run-time value of variable i to have fewer keys than
those listed in T ; any access to a missing key will return null.
(C2) For every key k in T , either k is missing from the run-time
key set of i, or the value mapped by k in the run-time value of
i has the type mapped by k in T . This can be more concisely
expressed as ∀k ∈ domain(T ) .i[k] : T [k], where “:” indicates
typing and null is a value of every non-primitive type.

Example. The example below illustrates the declaration and
use of intent types. The symbols @A, @B, and @C denote type
qualifiers, such as @High and @Low of the noninterference type
system. On the left is the type hierarchy of these type qualifiers.
(C1) and (C2) are the two constraints described above.

@Intent("akey" → @C) Intent i = ...
@A @A int e1 = i.getIntExtra("akey"); // legal
/ \ @C int e2 = i.getIntExtra("akey"); // legal

@B @C @B int e3 = i.getIntExtra("akey"); // violates (C2)
i.getIntExtra("otherKey"); // violates (C1)

2) Type system rules: Figure 5 shows the typing rules for
the intent type system. These rules are organized into three

https://github.com/siis/ic3/issues/1


categories, according to their purpose. Subtyping rules define a
subtyping relation for intent types, well-formedness rules define
which constructions are acceptable, and typing judgment rules
define the types associated with different language expressions.

a) Subtyping (ST): Intent type τ1 is a subtype of intent
type τ2 if the key set of τ2 is a subset of the key set of τ1 and,
for each key k in both τ1 and τ2, k is mapped to the same type.

@Intent("akey" → t, "anotherkey" → t) Intent i1 = ...;
@Intent("akey" → t) Intent i2 = ...;
@Intent("anotherkey" → t)) Intent i3 = ...;
i2 = i1; // legal
i1 = i3; // illegal

The mapped types must be exactly the same; use of a
subtyping requirement τ1[k]<: τ2[k] instead of equality τ1[k] =
τ2[k] would lead to unsoundness in the presence of aliasing.
The example below illustrates this problem. (On the left is the
type qualifier hierarchy.)

@C String c;
@A @Intent("akey" → @B) Intent i1;
/ \ @Intent("akey" → @A) Intent i2;

@B @C i2 = i1; // illegal
i2.putExtra("akey", c);

It would be incorrect to allow the assignment i2 = i1 in this
example, even though the assignment is valid according to
standard object-oriented typing. In this case, the call to putExtra

would store, in the object pointed by i1, a value of incorrect
type at key akey. This happens because the references i1 and
i2 are aliased to the same intent object.

b) Copyable (CP): Copyable is a subtyping-like rela-
tionship with the weaker requirement τ1[k]<: τ2[k]. It may be
used only when aliasing is not possible, which occurs when
onReceive is invoked by the Android system, as explained in
the (SI) rule below.

c) Declarations of onReceive (OR): A declaration of
onReceive always type-checks. The standard Java overriding
rules do not apply to declarations of onReceive: the intent type
of the formal parameter of onReceive is not restricted by the type
of the parameter in the overridden declaration. This is allowable
because by convention onReceive is never called directly but
rather is only called by the Android system. The type-checker
prohibits direct calls to onReceive methods; this constraint is
omitted from Figure 5 for brevity.

d) Calls to sendIntent (SI): A sendIntent call can be
viewed as an invocation of one or more onReceive methods. A
sendIntent call type-checks if its intent argument is copyable to
the formal parameter of each corresponding onReceive method.
CCP (see Section IV-A) is used to determine each onReceive

method of a sendIntent call. The type comparison uses the
copyable relation, not subtyping. This is sound because the
Android system passes a copy of the intent argument to
onReceive, so aliasing is not a concern.

e) Calls to putExtra (PE): If the receiver of a putExtra

call might have aliases, then the argument’s type must be a
subtype of the type with the specified key in the map. This
prevents an alias from modifying an intent in such a way that
it violates the type of another alias. For example:

@Intent("akey" → @Low) Intent a = new Intent();
@Intent() Intent b = a;
@High String hs = ...;
b.putExtra("akey", hs); // does not type-check
a.getExtra("akey");

If the receiver has no aliases, then the key is permitted to be
missing from the map type.

e.putExtra(s,v) e : τ v : σ k 6∈ keys(τ)
e is unaliased s : @StringVal(k)

e : τ∪{k→ σ}

e.putExtra(s,v) e : τ∪{k→ _} v : σ

e is unaliased s : @StringVal(k)

e : τ∪{k→ σ}

Fig. 6. Flow-sensitive type inference rules for intent types: the conclusion
shows the type of e after the call to putExtra. Standard rules are omitted.

f) Calls to getExtra (GE): The rule for getExtra is
straightforward.

For both the PE and GE rules, the call (putExtra or getExtra)
type-checks only if the key is a statically computable expression,
according to the dataflow analysis of Section III-A2. For all
1,052 apps in the F-Droid repository, 93% of all keys could be
statically computed.

3) Type inference: Annotations are rarely required within
method bodies, because the intent type system performs flow-
sensitive local type inference. Consider the following example:
@Intent Intent i = new Intent(); // i has type @Intent()
i.putExtra("akey", h); // i now has type @Intent("akey"→@High)
i.putExtra("akey", l); // i now has type @Intent("akey"→@Low)

Because the receiver expression of these putExtra calls is an
unaliased local variable, its type can be refined by adding
the key–type pair from the putExtra call. We implemented a
modular aliasing analysis that determines whether an expression
is unaliased.

Figure 6 shows two cases for the putExtra type inference
rules for intent types. For both cases, the key argument of
the putExtra call must be a statically computable expression
(Section III-A2) and the receiver expression must be unaliased.
For the first case, if the intent type of the receiver expression
does not have a key–type pair with the same key passed as
an argument, then the intent type is refined with the new key
mapping to the type of the value passed as argument. For the
second case, if the intent type already has a key–type pair with
the same key, then the type in this key–type pair is replaced by
the type of the value passed as an argument. A further standard
condition (omitted from Figure 6 for brevity) is that the new
intent type must be a subtype of the declared type.

C. Example
Recall the example of Figure 2. A noninterference type-

checker would report false-positive warnings on lines 14–16
because the type system is unable to deduce that all extra
data from the corresponding intent is of type Low. A developer
can express this intended design by annotating the method
WordTranslator.getIntent (inherited from class Activity):
@Override
@Intent("source" → @Low, "target" → @Low, "word" → @Low)
Intent getIntent() { return super.getIntent(); }

The startActivity(i) statement on line 7 still type-checks after
this change because the type-checker refines the type of i to
@Intent("source" → @Low, "target" → @Low, "word" → @Low) as
a result of the putExtra calls on lines 4–6.

The copyable typing rule enforces that the intent variable
i in method DictionaryMain.translateWord() has a compatible
type with the return type of WordTranslator.getIntent().



By extending the noninterference type system with our
intent type system and adding the correct annotations to the
return type of WordTranslator.getIntent(), the Aard Dictionary
example type-checks and the developer is assured that the
program does not contain security vulnerabilities that could
leak private data. Note that any developer-written annotations
in the program are checked, not trusted.

V. FORMAL ANALYSIS

Our implementation works on Java code: it does not analyze
native calls. For efficiency, it relies on trusted annotations for
system libraries. These are standard limitations of a static
analysis. Section IV-A notes other limitations regarding the
estimation of component communication patterns.

Modulo these limitations, our analysis is sound. That is, if
a program type-checks, then the type of any expression is a
sound estimate of its possible run-time values.

For reflection, this means that the value for a Class or Method

expression is contained within the set of possible values in its
type, and likewise for array lengths.

For intents, this means that if an expression has a type with
an intent key–type pair, then at run time the expression’s value
is an intent whose extra data maps the key to a value of that
type, or the key does not appear in the map.

Equally importantly, the resolution preserves any soundness
property for a downstream analysis. If the downstream analysis
is sound when using the conservative library annotations, then
it remains sound when using more precise summaries supplied
by the reflection and intent resolvers.

It is possible to state formal type-correctness, progress, and
preservation theorems for our type systems. The theorems are
standard and their proofs would be straightforward.

VI. IMPROVING A DOWNSTREAM ANALYSIS

We evaluated our work in two ways. First, this section
reports how much our reflection and intent analyses improve
the precision of a downstream analysis, which is their entire
purpose. Second, Section VII measures how well our type
inference rules reduce the programmer annotation burden.

The purpose of resolving reflection and intents is to improve
the precision of a downstream analysis. Section VI-B measures
the improvement in precision, and Section VI-C shows the
programmer effort required to achieve the improved precision.

A. Subject programs and downstream analysis
We used open-source apps from the F-Droid repository [5]

to evaluate our approach. F-Droid contains 1,052 apps that
have an average size of 9,237 LOC4 and do not use third-party
libraries.

415 out of 1,052 F-Droid apps (39%) use reflection, and
each app that uses reflection has on average 11 reflective method
or constructor invocations. 726 out of 1,052 F-Droid apps (69%)
use intents with extra data, and each app that uses intents with
extra data has on average 24 calls to putExtra or getExtra. 254
out of 1,052 F-Droid apps (24%) use both reflective calls and
intents with extra data. These numbers support our motivation
to pursue static analysis of reflection and intents.

4Non-comment, non-blank lines of code, as reported by David A. Wheeler’s
SLOCCount. See http://www.dwheeler.com/sloccount/.

App LOC Reflection Intent uses # of annotations
meth cons put get IFC refl int

AbstractArt 4,488 1 0 1 1 317 0 1
arXiv 3,643 14 0 70 17 130 0 13
Bluez IME 4,523 4 2 124 42 285 0 16
ComicsReader 6.612 6 0 1 2 381 1 6
MultiPicture 7,496 1 0 17 12 511 0 17
PrimitiveFTP 4,026 2 0 1 1 321 0 1
RemoteKeyboard 5,723 1 0 3 4 580 0 4
SuperGenPass 2,125 1 0 15 14 181 0 8
VimTouch 8,881 1 0 7 6 2,424 2 7
VLCRemote 5,097 1 0 12 21 453 0 22

Total 52,614 32 2 251 120 5,583 3 95

Fig. 7. Selected subject apps from the F-Droid repository. The number of
reflective invocatons is given for Methods and Constructors, and intent uses
count the number of putExtra and getExtra calls. The last three columns show
the annotation overhead for the technique IFC+INT+RR. The column IFC
shows the number of @Source and @Sink information flow annotations. The
column refl shows the number of @MethodVal and @ClassBound annotations (no
@ClassVal annotations were required). The column int shows the number of
@Intent annotations.

We aimed to select subject apps of typical complexity. We
excluded excessively simple apps: those with less than 2,000
LOC or that did not have at least one call to putExtra, getExtra,
and Method.invoke. We also excluded excessively complex apps:
those with more than 15,000 LOC or that used more than
five Android permissions, which is the average number of
permissions used by an F-Droid app. Overall, 40 apps satisfied
our requirements, and we randomly sampled 10 apps, which
are listed in Figure 7. Each of the 10 apps contains on average
5,261 LOC, 3 reflective method or constructor invocations5,
and 37 calls to putExtra or getExtra.

Our evaluation uses three downstream analyses. Sec-
tions VI-B–VI-C discuss the Information Flow Checker (IFC);
Section VI-D briefly discusses the other two case studies. IFC
is a type system and corresponding type-checker that prevents
unintended leakage of sensitive data from an application [1].
Given a program and an information-flow policy (a high-level
specification of information flow, expressed as source–sink
pairs), IFC guarantees that no other information flows occur in
the program. IFC is sound: it issues a warning if the information
flow type of any variable or expression does not appear in the
information-flow policy. IFC is also conservative: if it issues a
warning, then the program might or might not misbehave at
run time.

We evaluated the effectiveness of our techniques by studying
the following two research questions.

B. How much do our reflection and intent analyses improve
the precision of IFC?

We measured the precision and recall of IFC’s static estimate
of possible information flows. To compute precision and recall,
we manually determined the ground truth: the actual number
of flows that could occur at run time in an app.6 Precision is
the number of ground-truth flows, divided by the total number
of flows reported by the analysis. Recall is the number of real

5This is smaller than the F-Droid average: most uses of reflection in F-Droid
appear in a few huge apps (>500 kLoC) that contain hundreds of reflective calls.

6This enormous manual effort is the reason we did not run the experiments
on all 1,052 F-Droid apps. It would be easy to run our analyses on all the
apps, but doing so would not indicate whether our analyses were useful.

http://www.dwheeler.com/sloccount/


flows reported by the analysis, divided by the total number of
ground-truth flows. We confirmed that IFC has 100% recall
both with and without the reflection and intent analyses, i.e.,
IFC is sound and misses no real flows.

To evaluate this research question, we compared the
precision of the following techniques.

IFC-unsound makes optimistic assumptions about every
reflective and intent-related call. Its recall is only 95% — it
unsoundly misses 5% of the information flows in the apps,
which makes it unacceptable for use in the security domain.
Its precision was 100%, for this set of apps.

IFC treats reflection and intents conservatively. Data in an
intent may be from any source and may flow to any sink. Data
used as an argument to a reflective invocation may flow to
any sink, and data returned from a reflective invocation may
be from any source. In the absence of reflection and intents,
IFC is an effective analysis with high precision, as shown by
IFC-unsound. However, for our subject programs, which use
reflection and intents, IFC’s precision is just 0.24%.

IFC+RR augments IFC with reflection resolution and can
therefore treat data that is used in reflection precisely when the
reflection can be resolved. Data in intents, however, is treated
conservatively. Since all apps send intents, which may trigger
the use of any permissions, reflection resolution alone does not
help; the average precision remains 0.24%. In a (non-Android)
program that does not use intents, IFC+RR would outperform
IFC.

IFC+INT augments IFC with intent analysis. It reports
precise information flows for method calls involving intents.
Differently from intent invocations, reflective calls are only
allowed to use permissions listed in the app’s manifest.
Therefore, data passed to a reflective invocation is treated
as flowing to any sink the app may access. Similarly, data
returned from a reflective invocation is treated as if it could have
come from all sources listed in the manifest. However, since
Epicc generates CCP and unsoundly assumes that reflective
calls do not invoke sendIntent methods, IFC+INT must issue a
warning any time a method is reflectively invoked. For each such
warning, the developer must manually verify that the reflective
method does not invoke sendIntent. The average precision is
53%.

IFC+INT+RR augments IFC with both reflection resolution
and intent analysis. When reflection resolution cannot resolve
a method or when it resolves a method to sendIntent, it still
issues a warning. The precision is 100% for each of the 10
randomly-chosen apps, but might be smaller for other apps.

Figure 8 plots the precision for the sound techniques.7
Being the most basic technique, IFC has the worst precision
among all approaches. At the other extreme, IFC+INT+RR
has the highest precision for all cases. This occurs because
this technique provides custom support for both reflective calls
and intents. Such high precision is obtained at the expense
of adding annotations in the code. Section VI-C discusses the
overhead associated with the annotation process.

IFC+INT has perfect precision for AbstractArt, MultiPicture,
PrimitiveFTP, and RemoteKeyboard, because these apps use reflec-
tion for control flow but not data flow — data returned from

7All sound techniques achieve 100% recall.

P
re

ci
si

o
n

 (
%

)

Abstra
ctArt

arXiv

BluezIM
E

ComicsReader

MultiP
icture

Prim
itiv

eFTP

RemoteKeyboard

SuperGenPass

VimTouch

VLCRemote0

20

40

60

80

100

IFC, IFC+RR IFC+INT IFC+RR+INT

Fig. 8. Comparison of precision among techniques.

reflective calls is not sent to a sensitive sink and no sensitive
information is passed as an argument to a reflective method
call. For the other 6 apps, IFC+INT is more precise than IFC,
but still reports flows that cannot happen at run time. For
these apps, the reflection resolver is needed to reach 100%
precision as reported by IFC+INT+RR. The results confirm
that both techniques, reflection resolution and intent analysis,
are necessary and that they are complementary and synergistic.

The 10 apps in Figure 8 use both reflection and intents
with extras, like 24% of all apps in the F-Droid repository. For
apps that use just one of the features, IFC+RR or IFC+INT
would achieve the same precision as IFC+INT+RR.

All uses of reflection could be resolved except for one in the
RemoteKeyboard app. For that case, the reflection resolver could
determine the name of the invoked method (createShell) and
the number of parameters (0), but the class name is obtained
from preferences that the user can edit at run time. However,
this method is not sendIntent, its returned object is not sent to
any sink, and it takes no parameters; therefore, treating that call
conservatively did not decrease the precision of IFC+INT+RR.

We attempted to compare our approach with IccTA [11].
IccTA crashed when run on 1 of the 10 apps. For the other 9
apps, IccTA outputted some static analysis data, but no data
regarding information flows. We contacted the IccTA authors
about these issues but didn’t hear back from them.

C. What is the annotation overhead for programmers?

Developers must write source code annotations in order to
use our analyses. This is not extra work, since the alternative
would be to spend time reviewing false-positive warnings.

Figure 7 shows the annotations required to type-check
each app. Less than 2% as many annotations are required due
to reflection and intents, compared to annotations related to
information flow (the downstream analysis). If the programmer
omits an annotation, or writes one that is inconsistent with
the source code or with other annotations, then the analyses
issue user-friendly warnings that pinpoint and explain the
type inconsistency. The average time to add each annotation
related to our analyses was roughly one minute, for an
author of this paper.8 Thus, the annotation overhead is small
in absolute and relative terms, especially considering the

8A developer who is familiar with the subject programs might take less
time. The developer would need to learn to use IFC, but we have found that
doing so is straightforward for someone who understands information flow.



significant improvements in precision due to reflection and
intent analysis.

Part of the need for annotations is because the downstream
analysis is a modular analysis — a type-checker that verifies
programmer-written types. If the downstream analysis were a
whole-program analysis such as pointer analysis, type inference,
or abstract interpretation, these would not be necessary. Other
annotations are needed to express facts that no static analysis
can infer; in these cases, human intervention is unavoidable.

D. Precision improvements for other downstream analyses
We demonstrated the generality of our approach by in-

tegrating our reflection and intent analyses with two other
downstream analyses. The Nullness Checker [12] verifies the
absence of null pointer dereferences: if the Nullness Checker
issues no errors for a given program, then that program is
guaranteed to not throw a NullPointerException at runtime. The
Interning Checker [12] verifies equality tests: if the Interning
Checker issues no errors for a given program, then all reference
equality tests (i.e., ==) are over canonicalized data, and thus
are consistent with .equals().

These analyses suffer false positives due to reflection and
intents. Consider the Nullness Checker. Its library annotations
must mark the return type of Method.invoke as @Nullable, for
soundness. The reflection analysis can determine that some
calls to invoke return a non-null value, and thus it eliminates
false positives in the nullness analysis.

Reflection resolution improved the precision of the Nullness
Checker for 3 of the 10 apps. There were no reference equality
tests over values returned by a reflective method invocation,
and therefore reflection resolution did not improve the precision
of the Interning Checker for these 10 apps.

The intent analysis improved the precision of the Interning
Checker for 2 of the 10 apps. The intent analysis does not im-
prove the precision of the Nullness Checker for any app, because
getExtra can return null if a key does not exist in an intent map.
The intent type system does not guarantee the existence of a key
in an intent map — only that if it exists, it has a certain type.

VII. EVALUATION OF TYPE INFERENCE

As shown in Section VI-C, programmers have to write very
few annotations to aid the reflection and intent analysis. This
section explains why, by evaluating our type inference rules.

A. Reflection resolution
In addition to the 10 subject apps of Section VI-A, we

arbitrarily selected 25 apps from F-Droid that use reflection.
Using the entire set of 35 apps, we evaluated the reflection
resolution by answering the following three research questions.

1) How is reflection used in practice?: The 35 apps contain
142 invocations of reflective methods or constructors. 81% are
used to provide backward compatibility, 6% access a non-public
API, and 13% are for other use cases.

2) How often can reflection be resolved at compile time?:
Our reflection resolution resolved 93% of instances of reflective
method or constructor invocations. It failed on the other 7%
because the reflectively invoked method or constructor cannot
be determined statically by any analysis. As an example, the
RemoteKeyboard app uses reflection for extensibility and duck
typing: the user can configure the class name for a shell

implementation, and the app reflectively invokes a factory
method on this class. Moreover, these shell implementations do
not have a common interface that defines the factory method,
rendering static reflection resolution impracticable.

3) How effective is type inference for reflection resolution?:
To enable modular reflection resolution, a developer may have
to write type annotations in a program. We evaluated the effec-
tiveness of our type inference (see Section III-A2) that reduces
the annotation burden. Specifically, we determined how many
instances of reflection can be resolved without any developer-
written annotation and whether the remaining instances require
stronger inference or developer-written annotations.

For 52% of reflective invocations, our intra-procedural type
inference (Section III-A2) enabled fully automated reflection
resolution. This means that our type inference determined the
exact method that is reflectively invoked without requiring a
single annotation.

For 41% of reflective invocations, our inter-procedural,
intra-class type inference determined the exact method that
is reflectively invoked. A common example is the initialization
of a private field of type Class or Method. These fields are only
assigned once but are initialized within a method that provides
exception handling. Another example is the use of a helper
method that manipulates Strings and returns an object of type
Method that is used within the class.

We also implemented an inter-class inference, but it did not
improve the results for the selected apps, beyond the intra-class
analysis results.

The other 7% of reflection invocations cannot be resolved
by any static analysis (for an example, see Section VII-A2).
Code inspection and developer intervention are required in
those cases.

Figure 7 gives the number of developer-written annotations
that were required. Recall that all annotations in an app are
checked, not trusted. Thus, use of developer-supplied annota-
tions does not compromise the soundness of our approach.

4) Bug detection: Our reflection resolver revealed a bug in
the arXiv app. The reflection resolver reported an unresolvable
method even though it precisely inferred the class name, method
name, and the number of parameters. The bug was a misspelled
method name, and it prevented a menu from being updated.
The developer confirmed the bug.

B. Intent type inference

Section IV-B3 introduced rules to refine the type of an intent,
which reduce the number of developer-written annotations
required in a program. This section evaluates how effective
they are in practice. We only implemented type refinement
for sent intents. A limitation of our implementation is that
declarations of onReceive methods must have a precise intent
type, so sendIntent calls can be type-checked against these
declarations. Therefore, we evaluated type refinement of sent
intents (68% of all intents). We defer inferring intent types on
declarations of onReceive methods to future work. We considered
only intents with extras (51% of all sent intents), as an empty
intent requires no developer-written annotation.

To measure the effectiveness of the intent type inference
(Section IV-B3), we used a similar approach as when measuring



the reflection resolution type inference: we determined the num-
ber of sent intents with extras that required no annotations and
compared it with the overall number of sent intents with extras.

For 67% of the cases, our intra-procedural inference
determined that the sent intent had no aliases and precisely
inferred the type of the sent intent. For those cases, developer-
written annotations are not necessary.

For 21% of the cases, our inter-procedural inference
correctly infers the type of the sent intent.

For 12% of the cases, the sent intent was stored in a field.
Our alias analysis (Section IV-B3) treated such intents as
possibly-aliased, so the intent type cannot be refined using
the putExtra rule.

The 10 apps require a total of 7 developer-written annota-
tions for sent intents with extras. Without intent type inference,
the apps would have needed an additional 52 developer-written
annotations in order to type-check.9 This result shows that
intent type inference greatly reduces the annotation burden.

VIII. RELATED WORK

A. Reflection
The most common approach for improving precision of a

static analysis in the presence of reflection is profiling from
an observed set of executions, assuming that the observed
program exercises all possible behaviors. Livshits [13] requires
user annotations or dynamic information from casts to estimate
reflection targets as part of static call graph construction.
Tatsubori [14] earlier built a system with similar qualities.
TamiFlex [15] performs unsound dynamic analysis of reflection
and dynamic class loading. It replaces uses of reflection by
standard method calls, and supplies the modified call graphs
to existing static-analysis tools. In other words, an unsound
analysis can be built on top of TamiFlex, just as a sound
analysis can be built on top our our work. An example is that
Averroes [16] can use TamiFlex when building call graphs, to
unsoundly improve precision over its conservative defaults. All
of these approaches that use dynamic information are unsound.
By contrast, our approach is sound: it makes conservative
assumptions about any occurrence of reflection that it cannot
handle.

In some special cases, reflection can be resolved based on
assumptions about the run-time execution context. For example,
Zhang’s GUI error detection tool [17] builds reflection-aware
call graphs for Android applications, enabling it to find more
GUI errors than without. However, it only handles a particular
scenario — it converts reflective calls into explicit constructor
invocations based on the contents of configuration files at
compile time. This approach is sound if the same configuration
files will be installed at run time as at analysis time. This is the
same assumption made by Epicc [3] to handle inter-component
communication, which our system uses.

A few static analyses partially handle reflection. Javari [18]
introduces a new API to invoke reflection that does a single
dynamic check of the method signature rather than of the object.
Programs using that API can be soundly type-checked. Our
approach could eliminate that special API and the run-time
check. Li et al. [19] developed an unsound self-inferencing

988% 6= 52/(7 + 52) because some developer-written annotations solve
multiple cases where intent type inference does not succeed.

reflection resolution to improve the precision of a pointer
analysis for Java programs. They additionally analyzed how
reflection is used in open-source Java applications. In contrast,
our approach is sound and our evaluation focuses on the use
of reflection in Android apps.

B. Android
We evaluated our reflection and intent analyses in the con-

text of detecting and preventing malicious behavior in mobile
apps [7], [20]–[30]. We discuss some closely related work.

SCanDroid [20] applies data flow analysis to check security
properties in Android apps. It analyzes intra-component and
inter-component information flows for vulnerabilities. The
analysis cannot handle interactions between apps and provides
limited support to handle intent extras, making no distinction
between the flows of permissions that result from the entries
of an intent. Several other techniques came after it [7], [23]–
[28], [31], improving precision and recall of reported warnings.
However, to the best of our knowledge, no later technique has
focused on handling the important aspect of data encapsulation
in intents. Our technique is complementary to push-button
static analysis techniques such as SCanDroid: our analysis
requires a small number of annotations from the developer
but requires less examination of false positives and provides
stronger guarantees. It preserves soundness, achieves good
precision, and remains easy to use.

FlowDroid [31] is a technique that performs taint analysis on
Android apps with the goal of finding security vulnerabilities.
FlowDroid does not support Android’s implicit intents nor
reflection. In experiments, the tool achieved 83% precision and
93% recall for apps containing different types of vulnerabilities.

Our implementation currently relies on Epicc [3] to approx-
imate the set of component pairs that actually communicate.
See Section IV-A for a discussion.

Our implementation has been publicly available since
December 12, 2013. In forthcoming work, IccTA [11] adopts
a similar approach that performs static taint analysis in the
presence of inter-component communication. IccTA’s reflection
resolution is much more limited than ours: it only processes
string constants. Although IccTA is applied to taint analysis,
IccTA is neither sound nor complete; by contrast to our work, it
provides no security guarantees to its user and is not applicable
in the context of high-assurance app stores [1]. Even if the
analysis flaws were addressed, IccTA would remain vulnerable
because its taint model uses an insufficient set of sensitive
sources and sinks. Another difference is the evaluation: we
measured the precision and recall of our information-flow
analysis on real Android apps and achieved 100% precision and
recall, but IccTA was evaluated on 22 examples hand-crafted
by its authors, where it achieved 96% precision and recall.

C. Other
Xiao et al. [32] proposed a semi-automatic approach to

analyze TouchDevelop mobile app scripts for privacy. Their
workflow is similar to ours: users annotate APIs and code, and
the analyzer uses a dataflow analysis to check conformance
of inferred flows against a specification of the app. However,
their static analysis does not handle implicit control flows.

Google’s Android NDK [33] allows parts of an app to
be implemented using native-code languages such as C and



C++. Our toolset does no analysis of native code: summaries
for native methods are trusted. The Checker Framework, on
which our implementation is built, treats unannotated methods
conservatively.

Our work has some similarities to call graph construction in
object-oriented programs [34], [35]. Dynamic dispatching can
be viewed as an implicit control flow mechanism, much as Java
reflection and Android intents can. Most call graph construction
algorithms do whole-program pointer analysis. Our approach
is modular but relies on user annotations. A whole-program
type inference or pointer analysis could eliminate the need for
programmers to write annotations.

IX. CONCLUSIONS

We have presented novel analyses for two programming
paradigms — Java reflection and Android intents — that are
useful to programmers but challenging for static analysis. Our
analyses statically resolve reflection targets and intent payloads.
Though sound and conservative, they achieve high precision in
practice, as confirmed by experiments on real-world Android
apps. Our implementations are publicly available as open
source, and they can be integrated with an arbitrary downstream
analysis to improve its precision.

Acknowledgments. This material is based on research sponsored by DARPA
under agreement number FA8750-12-2-0107. The U.S. Government is au-
thorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. This work was partially
supported by FACEPE fellowship IBPG-0751-1.03/13 and by a Microsoft
SEIF’13 award.

REFERENCES
[1] M. D. Ernst, R. Just, S. Millstein, W. Dietl, S. Pernsteiner, F. Roesner,

K. Koscher, P. Barros, R. Bhoraskar, S. Han, P. Vines, and E. X. Wu,
“Collaborative verification of information flow for a high-assurance app
store,” in Proceedings of the 21st ACM Conference on Computer and
Communications Security (CCS), Scottsdale, AZ, USA, November 4–6,
2014, pp. 1092–1104.

[2] B. C. Smith, “Procedural reflection in programming languages,” MIT
Laboratory for Computer Science, Cambridge, MA, Tech. Rep. MIT-
LCS-TR-272, January 1982.

[3] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein, and
Y. Le Traon, “Effective inter-component communication mapping in
Android with Epicc: An essential step towards holistic security analysis,”
in 22nd USENIX Security Symposium, Washington, DC, USA, August 14–
16, 2013, pp. 543–558.

[4] D. M. Volpano and G. Smith, “A type-based approach to program
security,” in TAPSOFT ’97: Theory and Practice of Software Devel-
opment, 7th International Joint Conference CAAP/FASE, Lille, France,
April 14–18, 1997, pp. 607–621.

[5] F-Droid, “Free and open source Android app repository,” http://f-droid.
org, Feb 2014.

[6] J. Bloch, Effective Java Programming Language Guide. Boston, MA:
Addison Wesley, 2001.

[7] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing inter-
application communication in Android,” in Proceedings of the 9th
International Conference on Mobile Systems, Applications, and Services,
Bethesda, MD, USA, June 29–July 1, 2011, pp. 239–252.

[8] “APKParser,” https://code.google.com/p/xml-apk-parser/.
[9] D. Octeau, S. Jha, and P. McDaniel, “Retargeting Android applications

to Java bytecode,” in FSE 2012, Proceedings of the ACM SIGSOFT
20th Symposium on the Foundations of Software Engineering, Cary, NC,
USA, November 13–15, 2012, pp. 6:1–6:11.

[10] D. Octeau, D. Luchaup, M. Dering, S. Jha, and P. McDaniel, “Composite
constant propagation: Application to Android inter-component commu-
nication analysis,” in ICSE’15, Proceedings of the 37th International
Conference on Software Engineering, Florance, Italy, May 20–22, 2015.

[11] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel, “IccTA: Detecting
inter-component privacy leaks in Android apps,” in ICSE’15, Proceedings
of the 37th International Conference on Software Engineering, Florance,
Italy, May 20–22, 2015.

[12] M. M. Papi, M. Ali, T. L. Correa Jr., J. H. Perkins, and M. D. Ernst,
“Practical pluggable types for Java,” in ISSTA 2008, Proceedings of the
2008 International Symposium on Software Testing and Analysis, Seattle,
WA, USA, July 22–24, 2008, pp. 201–212.

[13] B. Livshits, J. Whaley, and M. S. Lam, “Reflection analysis for Java,”
in Third Asian Symposium on Programming Languages and Systems,
Tsukuba, Japan, November 2005, pp. 139–160.

[14] M. Tatsubori, “Living with reflection: Towards coexistence of program
transformation by middleware and reflection in Java applications,” in
6th JSSST Workshop on Programming and Programming Languages
(PPL2004), Gamagohri, Aichi, Japan, March 11–13, 2004.

[15] E. Bodden, A. Sewe, J. Sinschek, H. Oueslati, and M. Mezini, “Taming
reflection: Aiding static analysis in the presence of reflection and
custom class loaders,” in ICSE’11, Proceedings of the 33rd International
Conference on Software Engineering, Waikiki, Hawaii, USA, May 25–27,
2011, pp. 241–250.

[16] K. Ali and O. Lhoták, “Averroes: Whole-program analysis without the
whole program,” in ECOOP 2013 — Object-Oriented Programming,
27th European Conference, Montpellier, France, July 3–5, 2013, pp.
378–400.

[17] S. Zhang, H. Lü, and M. D. Ernst, “Finding errors in multithreaded GUI
applications,” in ISSTA 2012, Proceedings of the 2012 International
Symposium on Software Testing and Analysis, Minneapolis, MN, USA,
July 17–19, 2012, pp. 243–253.

[18] M. S. Tschantz and M. D. Ernst, “Javari: Adding reference immutability
to Java,” in Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA 2005), San Diego, CA, USA, October 18–20,
2005, pp. 211–230.

[19] Y. Li, T. Tan, Y. Sui, and J. Xue, “Self-inferencing reflection resolution
for Java,” in ECOOP 2014 — Object-Oriented Programming, 28th
European Conference, Uppsala, Sweden, July 30–August 1, 2014, pp.
27–53.

[20] A. P. Fuchs, A. Chaudhuri, and J. S. Foster, “SCanDroid: Automated
security certification of Android applications,” University of Maryland,
Tech. Rep. CS-TR-4991, November 2009.

[21] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “TaintDroid: an information-flow tracking system for
realtime privacy monitoring on smartphones,” in USENIX 9th Symposium
on OS Design and Implementation, Vancouver, BC, Canada, October 4–6,
2010.

[22] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall, “These
aren’t the droids you’re looking for: Retrofitting Android to protect
data from imperious applications,” in Proceedings of the 18th ACM
Conference on Computer and Communications Security (CCS), Chicago,
IL, USA, October 18–20, 2011, pp. 639–652.

[23] M. Egele, C. Kruegel, E. Kirdaz, and G. Vigna, “PiOS: Detecting privacy
leaks in iOS applications,” in 18th Annual Symposium on Network and
Distributed System Security, San Diego, CA, USA, February 7–9, 2011.

[24] M. Grace, Y. Zhou, Z. Wang, and X. Jiang, “Systematic detection
of capability leaks in stock Android smartphones,” in 18th Annual
Symposium on Network and Distributed System Security, San Diego,
CA, USA, February 6–8, 2012.

[25] C. Gibler, J. Crussell, J. Erickson, and H. Chen, “AndroidLeaks:
Automatically detecting potential privacy leaks in Android applications
on a large scale,” in Proceedings of the 5th International Conference on
Trust and Trustworthy Computing, Vienna, Austria, June 13–15, 2012,
pp. 291–307.

[26] C. Mann and A. Starostin, “A framework for static detection of privacy
leaks in Android applications,” in Proceedings of the 2012 ACM
Symposium on Applied Computing, Trento, Italy, March 27–30, 2012,
pp. 1457–1462.

[27] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “RiskRanker: Scal-
able and accurate zero-day Android malware detection,” in Proceedings
of the 10th International Conference on Mobile Systems, Applications,
and Services, Low Wood Bay, UK, June 26–28, 2012, pp. 281–294.

http://f-droid.org
http://f-droid.org
https://code.google.com/p/xml-apk-parser/


[28] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get off of my
market: Detecting malicious apps in official and alternative Android
markets,” in 18th Annual Symposium on Network and Distributed System
Security, San Diego, CA, USA, February 6–8, 2012.

[29] L. K. Yan and H. Yin, “DroidScope: Seamlessly reconstructing the OS
and Dalvik semantic views for dynamic Android malware analysis,” in
21st USENIX Security Symposium, Bellevue, WA, USA, August 8–10,
2012.

[30] R. Xu, H. Saïdi, and R. Anderson, “Aurasium: Practical policy enforce-
ment for Android applications,” in 21st USENIX Security Symposium,
Bellevue, WA, USA, August 8–10, 2012.

[31] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau, and P. McDaniel, “FlowDroid: Precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for Android apps,” in
PLDI 2014, Proceedings of the ACM SIGPLAN 2014 Conference on
Programming Language Design and Implementation, Edinburgh, UK,

June 9-11, 2014, pp. 259–269.
[32] X. Xiao, N. Tillmann, M. Fähndrich, J. De Halleux, and M. Moskal,

“User-aware privacy control via extended static-information-flow analysis,”
in ASE 2012: Proceedings of the 27th Annual International Conference
on Automated Software Engineering, Essen, Germany, September 5–7,
2012, pp. 80–89.

[33] “Android NDK,” http://developer.android.com/tools/sdk/ndk/index.html/.
[34] F. Tip and J. Palsberg, “Scalable propagation-based call graph construc-

tion algorithms,” in Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA 2000), Minneapolis, MN, USA, October 15–
19, 2000, pp. 281–293.

[35] A. Le, O. Lhoták, and L. Hendren, “Using inter-procedural side-effect
information in JIT optimizations,” in Compiler Construction: 14th
International Conference, CC 2005, Edinburgh, Scotland, April 2005,
pp. 287–304.

http://developer.android.com/tools/sdk/ndk/index.html/

