

Efficient Incremental Dynamic Invariant Detection

Jeff Perkins and Michael Ernst

MIT CSAIL

27 Oct 2004 20:38Page 1

Jeff PerkinsEfficient Incremental Dynamic Invariant Detection

Dynamic invariant detection

Program analysis that generalizes over observed runtime
values to hypothesize program properties

The result is a set of likely invariants per program point
Entry to function binary_search(int[] list, int val)

list is sorted
list ≠ null
val ∈ list

Exit from function square(int a)

return = a ⋅ a

Class Stack

this.top = this.stack[this.top_stack-1]
this.stack[this.top_stack..] = null

27 Oct 2004 20:38Page 2

Jeff PerkinsEfficient Incremental Dynamic Invariant Detection

Uses of dynamic invariant detection

Verifying safety properties [Vaziri 98] [Nimmer 02]
Automatic theorem proving [Win 02]
Identifying refactoring opportunities [Kataoka 01]
Predicate abstraction [Dodoo 02]
Generating test cases [Xie 03] [Gupta 03]
Selecting and prioritizing test cases [Harder 03]
Explaining test failures [Groce 03]
Predicting incompatibilities in component upgrades [McCamant 03]
Error detection [Raz 02] [Hangal 02] [Pytlik 03] [Mariani 04] [Brun 04]
Error isolation [Xie 02] [Liblit 03]
Choosing modalities [Lin 04]

27 Oct 2004 20:38Page 3

Jeff PerkinsEfficient Incremental Dynamic Invariant Detection

Goals of this research

Handle moderate to large programs

Produce useful and expressive program properties
Rich set of derived variables

array references: a[i], a[i..], a[..i]
pre-state variables: at exit, orig(x) stands for the value at entry

Rich invariant grammar

unary, binary, and ternary invariants
invariants over pointers, integers, floats, strings and arrays

27 Oct 2004 20:38Page 4

Jeff PerkinsEfficient Incremental Dynamic Invariant Detection

Outline

Approaches to invariant detection
Simple incremental algorithm
Simple incremental algorithm scales poorly
Many invariants are redundant
Multiple pass approach
Multi-pass scales poorly to large data sets

Optimized incremental algorithm
Complications
Results

27 Oct 2004 20:38Page 5

Jeff PerkinsEfficient Incremental Dynamic Invariant Detection

Simple incremental algorithm

Hypothesize each invariant in the grammar
Over each set of variables
At each program point

Check observed values for each variable (sample) at each
invariant

Discard invariants that are falsified

The remaining invariants are true over the sample data

Examples
DIDUCE [Hangal 02] - checks 1 invariant over each variable
Carrot [Pytlik 03] - checks 2 unary and 4 binary invariants
Daikon version 1

27 Oct 2004 20:38Page 6

Jeff PerkinsEfficient Incremental Dynamic Invariant Detection

Simple incremental algorithm scales poorly

Ternary derived variables (eg, A[i..j])
V = the number of source program variables (at a program point)
V D = O(V3)

Ternary invariants
I = O(VD

3) = O(V9)

The number of possible invariants in modest test cases
ranged from 460 million to 750 million

27 Oct 2004 20:38Page 7

Jeff PerkinsEfficient Incremental Dynamic Invariant Detection

Many invariants are redundant

Many invariants are implied by other invariants

Examples
(x = y) ∧ odd(x) ⇒ odd(y)
(x = 5) ∧ (y = 6) ⇒ (x < y)
(x < y) ⇒ (x ≥ y)
(x ≥ y) at class Stack ⇒ (x ≥ y) at method Stack.top()

27 Oct 2004 20:38Page 8

Jeff PerkinsEfficient Incremental Dynamic Invariant Detection

Multiple pass approach

Processes the input data multiple times

Early passes check simple invariants

Later passes check more complex invariants only if they are
not redundant

Constants are checked first and removed
Equality is checked next. Only one member of an equal set need be
checked in following passes

The multi-pass approach doesn’t create or check invariants
implied by earlier passes (saving both time and space)

Example: Daikon version 2

27 Oct 2004 20:38Page 9

Jeff PerkinsEfficient Incremental Dynamic Invariant Detection

Multi-pass scales poorly to large data sets

Even modest traces require gigabytes of space

Possible solutions have drawbacks
May be too large to store in memory
File I/O is expensive and disks may be insufficient for larger traces
Running the target program multiple times is often not acceptable

Program has side effects
Program depends on its environment
Program uses expensive resources (such as human attention)
Program doesn’t terminate

27 Oct 2004 20:38Page 10

Jeff PerkinsEfficient Incremental Dynamic Invariant Detection

Outline

Approaches to invariant detection
Optimized incremental algorithm

Optimized incremental algorithm concept
Constants
Equality sets
Program point and variable hierarchy
program point and variable hierarchy
Suppression

Complications
Results

27 Oct 2004 20:38Page 11

Jeff PerkinsEfficient Incremental Dynamic Invariant Detection

Optimized incremental algorithm concept

Same processing model as the simple incremental algorithm

Redundant invariants are not instantiated or checked
Many invariants are implied by others
As long as the antecedents are true, the consequent need be neither
instantiated nor checked

An invariant must be created when its antecedent is falsified
(x = y) ∧ odd(x) ⇒ odd(y)
If a sample is seen where x ≠ y, the odd(y) invariant must be created
The new invariant must be true over all past samples (which are no
longer available)
The new invariant must be checked over future samples

27 Oct 2004 20:38Page 12

Jeff PerkinsEfficient Incremental Dynamic Invariant Detection

Constants

Invariants over (only) constant variables are redundant
(x = 5) ⇒ odd(x)
(x = 5) ∧ (y = 6) ⇒ x < y

All variables are initially constant

Invariants are not instantiated between constants

When (var = constant) is falsified
Invariants are instantiated between it and all remaining constants
Invariants which are not true over the constant values are discarded

27 Oct 2004 20:38Page 13

Jeff PerkinsEfficient Incremental Dynamic Invariant Detection

Equality sets

If two or more variables are equal, any invariant true over
one variable is true over all of them

(x = y) and f(x) ⇒ f(y)

Initially, all variables are placed in a single equality set

One variable (the leader) represents the set

Invariants are instantiated only between leaders

When (var1 = var2) is falsified
The set is split into two or more equality sets
Invariants over each old leader are copied to each new leader

27 Oct 2004 20:38Page 14

Jeff PerkinsEfficient Incremental Dynamic Invariant Detection

Program point and variable hierarchy

Relationship between program points
Class A

A.m1() entry A.m1() exit A.m2() entry A.m2() exit

Samples are only processed at the leaves of the hierarchy

Invariants are created at the parent iff it is true at each child

x = y

Initially each invariant (e.g., x = y) holds
at each leaf

x = yx = yx = yx = yx = y

27 Oct 2004 20:38Page 15

Jeff PerkinsEfficient Incremental Dynamic Invariant Detection

program point and variable hierarchy

Relationship between program points
Class A

A.m1() entry A.m1() exit A.m2() entry A.m2() exit

Samples are only processed at the leaves of the hierarchy

Invariants are created at the parent iff it is true at each child

x = y

After processing the invariant was
falsified at one program point (red)

x = yx = yx = yx = yx = y

27 Oct 2004 20:38Page 16

Jeff PerkinsEfficient Incremental Dynamic Invariant Detection

program point and variable hierarchy

Relationship between program points
Class A

A.m1() entry A.m1() exit A.m2() entry A.m2() exit

Samples are only processed at the leaves of the hierarchy

Invariants are created at the parent iff it is true at each child

x = y

Post processing creates parent
invariants

x = yx = yx = yx = yx = y

x = y x = y x = y

27 Oct 2004 20:38Page 17

Jeff PerkinsEfficient Incremental Dynamic Invariant Detection

program point and variable hierarchy

Relationship between program points
Class A

A.m1() entry A.m1() exit A.m2() entry A.m2() exit

Samples are only processed at the leaves of the hierarchy

Invariants are created at the parent iff it is true at each child

x = y

Post processing creates parent
invariants

x = yx = yx = yx = yx = y

x = y x = y x = y

x = y

27 Oct 2004 20:38Page 18

Jeff PerkinsEfficient Incremental Dynamic Invariant Detection

Suppression

An invariant can be suppressed if it is logically implied by
some set of other invariants. For example:

(x = y) ∧ (z = 1) ⇒ x = y ⋅ z
(x = z) ∧ (y = 1) ⇒ x = y ⋅ z

Other optimizations are special cases of suppression

Goals
Instantiate/check only non-redundant invariants
Use no storage for a non-instantiated invariants

When an antecedent is falsified
Each invariant that might be suppressed is checked
If a suppression held before the antecedent was falsified, but no
suppression holds after, the invariant is instantiated

27 Oct 2004 20:38Page 19

Jeff PerkinsEfficient Incremental Dynamic Invariant Detection

Outline

Approaches to invariant detection
Optimized incremental algorithm
Complications

Missing variables
Optimizations interact

Results

27 Oct 2004 20:38Page 20

Jeff PerkinsEfficient Incremental Dynamic Invariant Detection

Missing variables

Suppose a is null. What do we do with the invariant a.b > x?

One choice is to falsify the invariant
The invariant is thus: (a ≠ null) ∧ (a.b > x)
Problem: interesting invariants are lost

Alternative is to retain the invariant
The invariant is thus: (a ≠ null) ⇒ (a.b > x)
Problem: difficult to implement

Optimizations must take missing into account
Constants must never be missing
Members of an equality set must have identical missing attributes
Suppressions can’t assume transitivity

(x > a.b) ∧ (a.b > y) ≠> (x > y)

((a ≠ null) ⇒ (x > a.b)) ∧ ((a ≠ null) ⇒ (a.b > y))
 ⇒ (a ≠ null) ⇒ (x > y)

27 Oct 2004 20:38Page 21

Jeff PerkinsEfficient Incremental Dynamic Invariant Detection

Optimizations interact

When checking to see if an invariant is no longer suppressed,
uninstantiated invariants must be considered.

Creating parent invariants using the program point hierarchy
Suppression optimizations must be undone
Constant and equality set information must be merged
Different equalities in different children require special processing
Uninstantiated invariants between constants must be considered

27 Oct 2004 20:38Page 22

Jeff PerkinsEfficient Incremental Dynamic Invariant Detection

Outline

Approaches to invariant detection
Optimized incremental algorithm
Complications
Results

Optimizations are effective
Real programs can be processed
Performance comparison on the Daikon utilities
Contributions

27 Oct 2004 20:38Page 23

Jeff PerkinsEfficient Incremental Dynamic Invariant Detection

Optimizations are effective

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 500 1000 1500 2000 2500

in
va

ria
nt

 c
ou

nt

sample count

Candidate invariant count after each sample is processed

without optimizations
with all optimizations

100 times fewer invariants with the optimizations

27 Oct 2004 20:38Page 24

Jeff PerkinsEfficient Incremental Dynamic Invariant Detection

Real programs can be processed

The optimized algorithm can process non-trivial programs in
a reasonable amount of time and space

The multi-pass and simple incremental approaches cannot
process our experiments

Experiments
Flex lexical analyzer

391 program points averaging 275 variables each
232,000 samples (9.2 Gbytes of data)
Processing time of 4 hours
Max memory use of 750 Mbytes

Daikon utilities
1593 program points averaging 60 variables each
26 million samples (11.5 Gbytes of data)
Processing time of 1.5 hours
Max memory use of 150 Mbytes

27 Oct 2004 20:38Page 25

Jeff PerkinsEfficient Incremental Dynamic Invariant Detection

Performance comparison on the Daikon utilities

 0

 200

 400

 600

 800

0M 5M 10M 15M 20M 25M 30M

M
em

or
y

(M
by

te
s) incremental

multi-pass

 0

 50

 100

 150

 200

0M 5M 10M 15M 20M 25M 30M

T
im

e
(m

in
ut

es
)

number of samples processed

incremental
multi-pass

27 Oct 2004 20:38Page 26

Jeff PerkinsEfficient Incremental Dynamic Invariant Detection

Contributions

Effective optimizations in an incremental context
Redundant invariants are neither instantiated or checked
When antecedents are falsified, the optimization is undone and
invariants that are no longer redundant are created

Result is usable in a wide variety of contexts
Handles non-trivial programs
Supports a rich set of derived variables and invariants
Supports on-line operation

27 Oct 2004 20:38Page 27

Jeff PerkinsEfficient Incremental Dynamic Invariant Detection

	
	Dynamic invariant detection
	Uses of dynamic invariant detection
	Goals of this research
	Outline
	Simple incremental algorithm
	Simple incremental algorithm scales poorly
	Many invariants are redundant
	Multiple pass approach
	Multi-pass scales poorly to large data sets
	Outline
	Optimized incremental algorithm concept
	Constants
	Equality sets
	Program point and variable hierarchy
	program point and variable hierarchy
	program point and variable hierarchy
	program point and variable hierarchy
	Suppression
	Outline
	Missing variables
	Optimizations interact
	Outline
	Optimizations are effective
	Real programs can be processed
	Performance comparison on the Daikon utilities
	Contributions

