
Bridging the Gap Between Binary and Source Analysis

Philip J. Guo Stephen McCamant Michael D. Ernst

MIT Computer Science and Artificial Intelligence Lab
32 Vassar St., Cambridge, MA 02139 USA

{pgbovine,smcc,mernst}@csail.mit.edu

ABSTRACT
Dynamic analyses for software engineering typically operate either
at the source code level or at the binary level (possibly postpro-
cessing results to source code terms for output). We propose a
mixed-level approach that combines the source-level and binary-
level approaches throughout the duration of the analysis. Com-
pared to a one-level approach, the mixed-level approach simplifies
implementation, improves robustness, and enables analyses that are
impossible or impractical to perform purely at the source or binary
level.

We have implemented a dynamic instrumentation toolkit, named
Fjalar, that embodies the mixed-level approach, and we present
two distinct analyses that are built upon the toolkit. The first tool
performs value profiling — outputting a rich set of run-time values
for further analysis. The other tool performs value partitioning —
determining abstract types for concrete values. Compared to sim-
ilar tools that use a source-based approach, the mixed-level tools
built upon Fjalar were both easier to implement and more scalable,
handling C and C++ programs of hundreds of thousands of lines.

1. INTRODUCTION
Program analysis is typically performed either on source code or

on a compiled (binary) representation of a program. These repre-
sentations have complementary advantages: for instance, problems
are often posed in terms of source-level constructs, but binary anal-
yses can be more robust and scalable.

Our goal is to make it easier for a dynamic analysis to obtain
the key benefits of both source and binary analysis. We propose
a mixed-level approach that bridges the gap between source-level
and binary-level analysis, performing binary-level instrumentation
while integrating source code information throughout the analysis.
This approach allows analyses that are posed in terms of source-
level constructs to be performed with the ease-of-development, ease-
of-use, and scalability benefits of binary analyses.

As an example, consider an alias analysis, which reports whether
two pointer variables might simultaneously refer to the same object.
A dynamic alias analysis can detect whether two pointers were ever
aliased during a set of executions. A profile-directed optimization
can use the alias results, transforming the code to check whether
the pointers were different, and if so to use a code path that allo-
cates the pointed-to values in registers [6]. Such an analysis could
be performed naturally in the mixed-level framework we introduce:
a tool could observe at the machine level each instruction operat-
ing on an address, and then record its effect in terms of the cor-
responding language-level pointers. By contrast, other commonly
used approaches would be much more cumbersome.

• A source-to-source translation tool could track each pointer

modification by inserting recording routines for each opera-
tor at the source level, but such a strategy would be unwieldy,
especially in dealing with the syntax and semantics of realis-
tic languages.

• A technique that recorded information in a purely binary
form, and then post-processed it to print using source termi-
nology, would not be workable because the mapping between
machine locations and language-level pointer expressions is
needed to interpret each operation; such an approach would
essentially have to store a complete trace.

This pattern of trade-offs applies to many dynamic analyses: we
want output in terms of source constructs, but a binary analysis
would be more natural to implement. Rather than a purely source-
based analysis, a purely binary-based one, or a binary analysis with
source information added as a postprocessing step, we suggest a
mixed-level approach that performs a mainly binary analysis, sup-
plemented with a mapping to the source level used throughout the
analysis to interpret machine-level data and operations in terms of
the source constructs.

We have built a toolkit, Fjalar, for machine-language dynamic in-
strumentation that supports the mixed-level approach. The toolkit
allows for whole- or partial-program instrumentation of machine
language binaries written in arbitrary languages, but takes advan-
tage of limited source-level debugging information and can report
results at the language level. The toolkit, built upon the Valgrind [19]
binary translation tool for rewriting x86 executables, currently sup-
ports any C or C++ dialect that is compilable with gcc. It is easy
to use, general, robust, and flexible. It has been used as the basis
for a value profiling tool and a value partitioning (dynamic type in-
ference) tool, and extending it to support C++ required just 4 days.

To assess whether the toolkit allows robust tools to be easily de-
veloped, we present two case studies addressing the profiling and
type inference tools, respectively. Each case study compares a tool
built using the Fjalar mixed-level toolkit with a tool built using a
different methodology, discussing both the difficulty of implemen-
tation and the quality of the resulting tool. The Fjalar-based sys-
tems were easier to implement and the resulting tools were more
scalable. These results suggest that the mixed-level approach is ap-
plicable to a range of dynamic analyses for software engineering.

The rest of the paper is organized as follows. Section 2 contrasts
source- and binary-based approaches to dynamic analysis. Sec-
tion 3 presents several approaches that combine source and binary
information, including the mixed-level approach as implemented
by the Fjalar toolkit. Section 4 introduces the problem of value pro-
filing for software engineering and compares two implementations,
one source-based and the other mixed-level. Section 5 describes
another application of a mixed-level analysis, to the problem of
value partitioning. Section 6 presents related work, and Section 7
concludes.

1

2. SOURCE-BASED AND BINARY-BASED
DYNAMIC ANALYSIS

A dynamic program analysis observes a program’s behavior at
runtime. Dynamic analysis can be used for optimization (profiling,
tracing, optimizations), error detection (testing, assertion checking,
type checking, memory safety, leak detection), and program under-
standing (coverage, call graph construction); these categories are
not mutually exclusive.

The two most common instrumentation techniques to obtain in-
formation from a running program are to modify a program’s source
code, or to modify a compiled binary representation of a program.
(Other techniques exist but are less general. Linking a program
with a modified version of a standard library is only applicable to
certain analysis problems. Modifying a language interpreter is only
applicable to certain target languages. Thus, we will not consider
them further.) The following subsections describe the different ad-
vantages of source-based and binary-based analyses.

2.1 Source-based instrumentation
A source-based approach modifies the code of the target pro-

gram (the program being analyzed) by adding extra statements that
collect data or perform analysis. Code instrumentation by source-
code rewriting is the most direct route to constructing a tool that
produces language-level output, and it also makes some aspects of
tool implementation relatively easy.

An analysis that operates by rewriting a target program’s source
code can use a high level of abstraction (that of the programming
language) and can report results using language-level terms such as
functions and variables. A source-based analysis can also inherit
the portability of the underlying program.

A source-based analysis can also be relatively easy to implement.
The developer only needs to consider one level of abstraction, that
of the instrumented language. Standard programming tools suffice
to examine and debug the output of a source-to-source rewriting
tool. Compiler optimizations automatically reduce the overhead of
instrumentation.

2.2 Binary-based instrumentation
A binary-based approach modifies a compiled executable to add

instrumentation code. Some analyses can be most directly expressed
at a binary level, and binary-based tools are usually easier to use
once written.

The most important advantage of a binary-level analysis is that
many analysis problems can be expressed more simply at a lower
level of abstraction. At the syntactic level, a binary is a flat list of in-
structions rather than a nested expression that requires parsing. At
the semantic level, there are fewer conceptually distinct machine
operations than language-level abstractions, and the machine oper-
ations are much simpler. For instance, the language-level descrip-
tion of data has a complex structure in terms of pointers, arrays,
and recursive structures. By contrast, the machine-level represen-
tation of data is as a flat memory with load and store operations. If
the property to be analyzed can be expressed in terms of the sim-
pler machine representation, the language-level complexities can
be ignored.

There are also three ways in which binary-based analysis tools
can be easier to use. First, a binary tool need not be limited to pro-
grams written in a particular language: Language-level differences
between programs are irrelevant as long as the programs are com-
piled to a common machine representation. Second, a binary tool
need not make any distinction between a main program and the li-
braries it uses: execution in a library is analyzed in just the same
way as other program execution. There is no need to recompile li-

braries or to create hand-written simulations or summaries of their
behavior as is often required for source-based analyses. Third, a
binary-based tool requires fewer extra steps to be taken by a user
(none, if the instrumentation occurs at runtime). A source-based
analysis at least requires that a program be processed and then re-
compiled before running; this can be cumbersome, because com-
piling a large system is often a complicated process.

3. TWO-LEVEL APPROACHES TO DYNAMIC
ANALYSIS

A two-level approach can combine features of source- and binary-
based analyses by collecting information via binary instrumenta-
tion and performing other operations, including output, in language-
level terms. Such an approach has the potential to produce language-
aware output as from a source-based analysis, with the robustness
and scalability of machine-level instrumentation. The mixed-level
approach, presented in Section 3.2, improves upon previous two-
level approaches by tightly integrating both types of information
throughout the duration of the analysis.

3.1 Previous two-level approaches
Many binary-based dynamic analysis tools incorporate at least

a small amount of source-level information as a post-processing
step in order to produce human-readable output. For instance, a
binary-based tool may discover a bug (say, an illegal memory op-
eration) at a particular instruction. After the execution terminates,
the tool translates the address, which would not in itself be help-
ful to a user who is trying to fix the error, to a line number in the
program source code. Most uses of source information by binary
analyses are limited to this sort of incidental postprocessing. How-
ever, for many analyses (such as the alias analysis of Section 1, the
profiling of Section 4, and the type inference of Section 5), only us-
ing source-level information as a postprocessing step causes a loss
of accuracy, because the results depend upon updating information
about source constructs (such as functions and variables) while the
analysis is running.

More benefit can be achieved by linking the source and binary
levels more pervasively, but a tight integration of the two is un-
common, especially in automated analysis tools. A good example
of such a tight integration is an interactive symbolic debugger. At
each step in observing a program’s execution, the user can access
both source and binary-level information. For instance, a user can
step either by source line or by instruction, and read data both as
raw bytes and as variables and data structures. However, symbolic
debuggers are not designed to be used in an automated fashion and
thus do not provide certain services (e.g., maintenance of dynamic
array sizes, memory validity checking) that are useful for building
dynamic analyses. Our goal is to take this flexible approach, pre-
viously implemented in a special-purpose tool for interactive use,
and integrate it with a larger class of automatic binary-level pro-
gram analyses.

3.2 Mixed-level approach
We propose a variety of the two-level approach that utilizes bi-

nary and source-level information simultaneously during the anal-
ysis. This mixed-level approach can provide more accurate results
with an easier and more robust implementation than binary-based,
source-based, or two-level approaches that utilize the two types of
information at different times. In the mixed-level approach, most
of the tracking of a program’s run-time behavior is performed at the
instruction level, obtaining the benefits of binary analysis. When it
is necessary to use source-level abstractions as the analysis is run-
ning, either as one step in the analysis or for output, the low-level

2

binary information can be translated into a language-level represen-
tation. This translation requires a limited form of source informa-
tion (obtained, for instance, from debugging information inserted
by the compiler), but need not consider all of a language’s source-
level complexities.

Not every source-level analysis can be conveniently translated
to operate via binary instrumentation. When such a translation is
possible, though, a mixed-level approach can achieve the same or
better results than source-level instrumentation with a simpler and
more flexible implementation.

The primary advantage of the mixed-level approach over other
two-level approaches is the fact that it can simultaneously utilize
both binary-level and source-level information throughout the du-
ration of the analysis. For example, in Figure 1, no binary-level
information indicates array sizes. Source-level information is re-
quired during the course of the analysis in order to direct it to
only read selected regions of memory. It is possible to perform
the same analysis by collecting coarse-grained snapshots of mem-
ory and only using source-level information about array sizes and
variable locations as a postprocessing step, but that would be much
more difficult to implement and infeasibly inefficient.

3.3 The Fjalar toolkit
We have designed and implemented a toolkit for building dy-

namic analysis tools that embodies the mixed-level approach. The
Fjalar toolkit (named after a dwarf in Norse mythology) incorpo-
rates variants of the Valgrind, Memcheck, and Readelf tools and
provides functionality for integrating them in order to simplify com-
mon dynamic analysis tasks. Its API provides services that are use-
ful for many types of dynamic analyses: binary rewriting, mem-
ory allocation and initialization tracking, mapping between mem-
ory addresses and language-level terms such as variables and func-
tions, and recursive traversals of source-level data structures during
runtime.

We have used the Fjalar toolkit to develop two different dynamic
analyses (described in Sections 4 and 5) based on the mixed-level
approach. Our experience shows that Fjalar can be used to build
tools that are quite scalable and have acceptable performance given
the unavoidable overhead involved in performing a fine-grained
analysis. This section describes the components of Fjalar.

3.3.1 Binary instrumentation
A dynamic analysis requires a method to instrument the target

program so that it can provide and process the desired informa-
tion during runtime. Fjalar uses Valgrind [19], a program super-
vision framework based on dynamic binary rewriting, to insert in-
strumentation operations in the target program execution. Because
it operates at the machine level, Valgrind is naturally language-
independent and makes no distinction between user and library
code. However, it does depend on the calling conventions of the
particular binary format and on the operating system, so the cur-
rent version only works for ELF binaries on x86/Linux systems
(although it is under active development to support additional plat-
forms [24]). Fjalar’s users can insert code in the target program
that accesses machine-level information about registers, memory,
and instructions. For instance, a tool built upon Fjalar can insert
instrumentation code to collect and analyze data gathered at certain
points in the target program’s execution (e.g., function entries and
exits).

3.3.2 Memory safety
Memory safety is crucial for a dynamic analysis, especially of

languages such as C and C++ which allow programmers to directly

manipulate memory, to be robust to crashes and to produce cor-
rect and precise results. For instance, variables and pointers may
be uninitialized; the analysis must suppress or flag junk values, so
as not to corrupt the results. Memory may be deallocated, making
a pointer invalid; dereferences of such a pointer yield either junk
values or a segmentation fault. Memory may be uninitialized, just
like pointers, so an initialization analysis must track all of the heap,
stack, and registers. Values can be freely cast to different types, ne-
cessitating fine-grained tracking — at least at the byte level. Pointer
types are ambiguous; a pointer of type int* may point to a single
integer, or to an array of integers. Array lengths are implicit; even
if an int* pointer is known to be an array, the run-time system pro-
vides no indication of its size. Related to an earlier point, even if
the array’s size is known, it is not known which of its elements have
been initialized. Furthermore, if the target program has memory-
related bugs, it is important that the analysis tool not crash, even
if the target program attempts a truly illegal operation. Programs
may have latent memory-related bugs which do not disrupt normal
execution, but do appear when running under an analysis tool.

Fjalar utilizes a modified version of Memcheck [23], another
Valgrind tool, to provide the requisite memory safety guarantees.
Memcheck is typically used to detect memory errors such as mem-
ory leaks, reading/writing unallocated areas of memory, and the use
of uninitialized values. Similar to Purify [14], Memcheck tracks
whether each byte of memory has been allocated (by assigning an
A-bit to every byte which is set only when that byte is allocated) and
whether each bit of memory has been initialized (by analogously
assigning a V-bit to every bit). Memcheck rewrites the target pro-
gram’s binary to copy and maintain A- and V-bits throughout mem-
ory and registers. Fjalar’s API allows tool builders to query the A-
and V-bits in order to ensure that memory accesses do not result in
a segmentation fault or invalid data, respectively.

3.3.3 Integrating source information during analysis
Many dynamic analyses need access to source-level constructs

such as variables and functions during execution. Fjalar maps be-
tween source-level terms and binary-level data using symbolic de-
bugging information generated by compilers. It uses the DWARF2
[12] standard for representing debugging information in a compiled
binary, so it can work with any language for which a compiler can
produce such information (including any language supported by
gcc). This may require the target program to be recompiled, but
because compiling with debugging information is a common de-
velopment practice, usually such recompilation is not difficult. De-
bugging information is only required for the parts of the program
for which results are requested; in particular, unmodified versions
of the standard system libraries can be used. We wrote a parser
for debugging information based on the Readelf tool from GNU
Binutils [11], then customized it slightly for differences between
languages, which was much less work than writing separate source
code parsers for each language.

Given an expression that represents a storage location (i.e., an
lvalue), Fjalar’s API allows a tool to find the address and size of
that object at a particular moment in the target program’s execu-
tion. This source-level information, coupled with the A- and V-
bits, allows tools to not only be able to safely access valid regions
of memory, but more importantly, to associate semantic meanings
with observed memory contents. For example, without source-level
information during the analysis, a tool can only tell that a certain
block of bytes contains some binary value, but with such informa-
tion, it can interpret that binary value as an integer, floating-point
number, string, etc.

3

struct record {
int *a, *b;
int c[10];

}

void foo(struct record rec) {}

int main() {
int localArray[100];
... initialize the 100 ints within localArray ...
struct record r;
r.a = localArray;
r.b = (int*)malloc(sizeof(int));
foo(r);

}

Figure 1: A C program that mixes structs, arrays, and pointers.
For example, rec.a is a pointer to localArray, and it is use-
ful for a tool to recognize that rec.a refers to an array of 100
integers and be able to observe information about these values.
Fjalar’s API provides a mechanism for safe recursive traversal
of structs and arrays.

3.3.4 Recursive data structure traversal
Fjalar gives users the ability to iterate through the contents of

source-level variables, arrays, and data structures at runtime while
maintaining the robustness, coverage, and language-independence
of a binary-level analysis. Most non-trivial programs involve the
use of data structures such as arrays, linked lists, trees, and aggre-
gate types (such as structs and classes). Many kinds of dynamic
analyses can benefit from run-time observation of the contents of
these data structures, even at times when the target program did not
directly manipulate these structures. A tool that only observes data
at times when the program manipulates it is easier to build, but pro-
duces limited information. Fjalar enables the construction of more
powerful tools that can traverse any data structure in scope. For
example, in Figure 1, foo’s argument rec is a structure that con-
tains two pointers and a static array. To observe all of its contents,
a tool must be able to follow valid pointers and recursively traverse
inside of structures and arrays, observing the values of the pointers
rec.a, rec.b, rec.c, and the arrays referred to by those pointers:
rec.a[], rec.b[], rec.c[].

A purely binary-based analysis cannot accomplish such detailed
observation absent some indication of how to interpret raw binary
values as data structures. It is possible but extremely complicated to
accomplish such observation with a source-based analysis, because
it must parse and generate complex source syntax which deal with
data structures and, more significantly, maintain metadata such as
pointer validity, memory initialization, and array sizes.

Fjalar’s API provides recursive data structure traversal function-
ality, allowing tools to observe the contents of arrays, follow point-
ers to observe structures such as linked lists and trees, and recur-
sively traverse struct fields, all while ensuring memory safety so
that the analysis does not crash the target program. For an address
in the global area or stack, the debugging information indicates the
names, types, number of elements, and locations of statically-sized
arrays. For an address in the heap, Fjalar determines the size by
probing in each direction for “redzones” that Memcheck inserts
around dynamically-allocated regions of memory to detect array
bounds overflow errors. This technique is not perfect, but it has
worked well in practice.

4. VALUE PROFILING CASE STUDY
This section presents a case study of two separate C/C++ value

profiling implementations. The first, Dfec, works at the source
level, and the second, Kvasir, uses the mixed-level approach as im-
plemented in the Fjalar toolkit.

Value profiling [6] is a technique that observes the run-time val-
ues of variables, expressions, registers, memory locations, etc. Value
profiling is a general technique that is incorporated in any dynamic
analysis that is concerned with what the program computes. (Purely
control-flow-based dynamic analyses, such as coverage tools, need
not incorporate value profiling.) A form of value profiling is even
implemented in hardware, in order to support speculation, branch
prediction, and other optimizations.

Because of its importance and generality, many different ap-
proaches to value profiling exist. Section 4.1 describes the require-
ments for a general value profiling tool for software engineering
applications that can provide information about variables and ex-
pressions in a C or C++ program. Then, Sections 4.2 and 4.3 con-
trast two implementations that aim to meet these requirements.

4.1 Requirements
A value profiling tool for software engineering applications should

provide accurate and rich information about the run-time values
of arbitrary data structure accesses. The desire for accurate infor-
mation requires fine-grained tracking of pointer and memory use,
to determine when a particular expression’s value is meaningless
(e.g., uninitialized). The desire for rich information means that it
is not enough to merely observe values that the program is directly
manipulating at a moment in time; other values may be of interest,
even if their uses appear before and/or after that moment. Value
profiling for software engineering can be viewed as having the char-
acteristics of three other analyses: traditional value profiling, data
structure traversal, and memory error detection.

A profiler observes program behavior (such as performance, con-
trol flow, or values) but strives not to change that behavior. When
it is acceptable to produce only limited information, one way to
avoid changes in program behavior is to observe only values that
the program directly manipulates. For instance, a value profiler
could record the value of a given expression only at instructions
that read or write that expression. This ensures that the value is
valid, and that the access to it does not cause a segmentation fault
or other behavioral change. Software engineers may be helped in
some tasks by such limited information, but additional information
can be very valuable. A value profiling tool for software engineer-
ing should be able to, without causing the program to crash, ex-
amine the values of arbitrary data structure elements that the target
program did not.

4.1.1 Value profiling application
Value profiling is a broadly applicable technique that can sup-

ply information to a human or a subsequent tool. For concreteness,
we consider a specific application, dynamic invariant detection [9,
21], for which the two tools we compare (Dfec and Kvasir) were
constructed. The Daikon dynamic invariant detection tool (http:
//pag.csail.mit.edu/daikon/) reports likely program invari-
ants by performing machine learning over the values of variables
(and other expressions) during a program execution. The result of
the analysis is a set of properties, similar to those found in formal
specifications or assert statements, that held during the observed
executions. Daikon itself is language-independent; its input is a
trace of variable names and values. Daikon must be coupled with
a language-specific front end (a value profiler) that instruments a
target program to produce the trace during execution. Daikon front
ends exist for C/C++, Java, Perl, and other languages and data for-
mats. The two programs of this case study, Dfec and Kvasir, are

4

Original:

bool g; // global variable
int foo(int x) {

...
return g ? x++ : -x;

}

Instrumented by Dfec:

int foo(int x) {
trace_output("foo():::ENTER");
trace_output_int("x", x);
trace_output_bool("g", g);
...
int return_val = g ? x++ : -x;
trace_output("foo():::EXIT");
trace_output_int("x", x);
trace_output_int("return", return_val);
trace_output_bool("g", g);
return return_val;

}

Figure 2: Source code before/after instrumentation by Dfec.

both Daikon front ends for C/C++.
At each program point for which likely invariants are desired

(by convention, procedure entries and exits), the trace indicates the
value of each variable that is in scope. At function entries, these are
global variables and formal parameters, and at function exits, they
are global variables, formal parameters, and return values. We call
these variables, as well as those that result from traversing inside of
data structures held by these variables, the relevant variables, and
they permit Daikon to infer procedure preconditions and postcondi-
tions. C++ member functions are treated like normal functions with
an extra this parameter, and generalization over preconditions and
postconditions yields object (class) invariants.

4.2 Source-based approach: Dfec
Dfec (Daikon Front End for C) [17] is a source-based front end

for the Daikon invariant detector. Dfec works by rewriting the
source code of the target program to insert code that outputs the
values of relevant variables (see Figure 2).

A user runs Dfec to instrument the target program’s source code,
compiles the instrumented source, then runs the resulting executable.
As the program executes, it outputs the names and values of rele-
vant variables at each execution of a program point. Although de-
signed to support both C and C++, Dfec is usable in practice only
for small C programs.

Dfec uses the EDG C/C++ front end [8] to parse, instrument,
and unparse source code. This source code rewriting works well
for outputting values, but information about initialized and valid
variables and memory must be maintained dynamically. Dfec in-
cludes a sophisticated and complex run-time system that associates
metadata with each pointer and chunk of memory. It inserts code
that checks and updates the metadata at allocations, assignments,
uses, and deallocations of memory. Syntactic changes to the source
program are reduced by defining ‘smart pointer’ C++ classes, in-
stances of which check and update the metadata when the program
performs pointer operations.

4.2.1 Advantages of Dfec
Dfec exemplifies some benefits of a source-based approach. It

collects and outputs information according to a single structure,
that of the C language, so no complex translation is required. It
is architecture independent: it was relatively easily ported to sev-

eral operating systems and architectures. The compiler optimizes
the instrumentation along with the rewritten program, yielding rel-
atively small run-time overheads (see Section 4.4.2 for measure-
ments). However, some other benefits of a source-based approach
are not fully realized in Dfec: some remaining dependencies on
nonstandard library and compiler features limit its portability, and
debugging its source-code output is difficult.

4.2.2 Limitations of Dfec
Though some of Dfec’s shortcomings could be attributed to de-

sign choices we would make differently in retrospect, it also suffers
from limitations that are virtually unavoidable in a source-based
analysis.

Because of the complexity of tracking memory use at the source
level, Dfec does not correctly handle the full diversity of input lan-
guage constructs. The particular problems we found are results of
Dfec’s design, but other source-rewriting strategies would likely
have similar complexities. For instance, we encountered problems
triggered by typedefed void * pointers, and by ternary ?: oper-
ators in which one argument is a string literal. No one such problem
is insurmountable, and in theory, the supply of such problems is fi-
nite, but the complexities of source processing make it hard to solve
all of them.

Language-level complexity was also a major obstacle in the ef-
forts to extend Dfec to support C++ input programs. Even dis-
counting the difficulties of parsing, C++ is a much more complex
language than C at the source level. Though C++ support was orig-
inally a goal for Dfec, and the last months of Dfec’s development
focused on that goal, it was very challenging to make it work ro-
bustly. For instance, one source of problems was interactions be-
tween the templates used to represent smart pointers, and other uses
of templates in the original program.

Dfec also suffers, somewhat less severely, from three other prob-
lems that tend to affect source-based analyses. First, though Dfec
re-uses an existing C++ parser, the AST interface alone is rather
complex, making maintenance difficult. Second, because Dfec is
unable to rewrite the system libraries to track their memory usage,
Dfec contains special interface stubs for standard functions such
as strcat that properly update the pointer and memory metadata.
For programs that interact with more substantial libraries, the work
of creating such stubs would be prohibitive. Third, because Dfec
works by processing source code that must then be compiled, it is
cumbersome to use, especially for large programs. Particular care
is needed for programs that consist of multiple compilation units,
and the rewritten code must be compiled with a different (C++, not
C) compiler and linked with an additional library.

Dfec does not work “out of the box” on C/C++ programs of rea-
sonable size, and even a complete source-based reimplementation
would not resolve many of its most debilitating limitations. This
experience motivated the development of a new Daikon front end
based on a mixed-level approach.

4.3 Mixed-level approach: Kvasir
Kvasir (named after the Norse god of knowledge and beet juice)

is a C/C++ front end for Daikon based on the mixed-level approach.
Kvasir instruments and executes the target program’s binary in one
step without using the source code. Kvasir works “out of the box”
on programs of significant size (see Section 4.4.1), and its scalabil-
ity and performance surpass those of the invariant detector itself.

4.3.1 Implementation of Kvasir
Kvasir is built on the Fjalar mixed-level toolkit. It uses Fjalar’s

binary rewriting API to instrument the target program’s executable,

5

inserting value tracing hooks to execute its own code. It utilizes the
recursive data structure traversal functionality provided by Fjalar
(Section 3.3.4) to read and output the values of all relevant variables
and expressions. It uses Fjalar’s memory safety API to avoid crash-
ing or returning nonsense during a memory read, and unlike Dfec,
does not need to maintain any pointer metadata because Fjalar can
determine array sizes and pointer validity at runtime.

4.3.2 Advantages of Kvasir
Kvasir’s use of binary analysis has three interrelated advantages.

First, it is precise to the bit level; for instance, Kvasir can print the
initialized bits but not the uninitialized ones in a bit vector. Sec-
ond, the precision is not diminished when libraries are used, since
code is treated uniformly regardless of its origins. Third, and most
importantly, the binary memory tracking is conceptually simple,
allowing a simple and robust implementation.

Kvasir avoids complexity by not depending on details of the tar-
get program’s source language. Kvasir’s memory tracking is de-
signed with respect to a simple machine model, rather than a com-
plex language semantics. While the sophisticated structure of de-
bugging information accounts for much of Kvasir’s complexity, it is
still much simpler than the original source from which it is derived
(many source-level aspects are abstracted away by the compiler)
and is well-encapsulated within the Fjalar toolkit.

The best example of this reduced dependence on source com-
plexities was our experience in adding support for C++ to Fjalar
and Kvasir (at first, the implementation only supported C). This
primarily required additional debugging information parsing code
to handle object-oriented features such as member functions and
static member variables, and in all required only 4 days of work.
It would likely be just as easy to support other gcc-compiled lan-
guages such as Ada, Fortran, Objective-C, and Java.

A final advantage of Kvasir is that it is easy to use. Running a
program under Kvasir’s supervision is a single step that involves
just prepending a command to the normal program invocation. For
a program that is normally run as

./program -option input.file

a user would instead use the command
kvasir-dtrace ./program -option input.file

It is rarely necessary to modify a program in order to use it with
Kvasir, even for large programs that use many language and system
features (see Section 4.4.1).

4.3.3 Limitations of Kvasir
Like the Fjalar toolkit upon which it is built, Kvasir currently

supports only x86/Linux systems (see Section 3.3.1).
Another limitation is that a program producing trace data with

Kvasir can take 1000 or more times longer to run than the pro-
gram without instrumentation. This slowdown is a combination of
two factors: First, even when not producing any trace output, there
is a significant overhead (of 50–100 times) which includes Val-
grind’s dynamic translation (designed for extensibility rather than
efficiency), the memory usage tracking performed by Memcheck,
and other bookkeeping related to tracing, such as deciding whether
to trace a function at all. Second, because the tracing performed by
Kvasir is very detailed, an even larger amount of time is required
to print the trace; much of this expense simply reflects I/O. The
expense of tracing is of course proportional to the amount of out-
put desired; in the experiments of Section 4.4.2, it represented an
additional slowdown factor of 20–80 times. While this slowdown
seems large compared to less detailed kinds of dynamic analysis,
it is largely unavoidable for producing so much data. Since Kvasir

Program Lang. LOC D
fe

c

K
va

si
r

L
ac

kw
it

D
yn

C
om

p

md5 C 312 Y Y Y Y
rijndael C 1,208 Y* Y Y Y
bzip2 1.0.2 C 5,123 Y* Y Y Y
flex 2.5.4 C 11,977 Y** Y Y Y
make 3.80 C 20,074 N Y I† Y
xtide 2.6.4 C++ 23,768 - Y - Y
groff 1.18 C++ 25,712 - Y - Y
civserver 1.13.0 C 49,657 - Y Y Y
povray 3.5.0c C++ 81,667 - Y - Y
perl 5.8.6 C 110,809 - Y I†§ Y
xemacs 21.4.17 C 204,808 - Y* N†§ Y*
gcc 3.4.3 C 301,846 - Y* I† Y*

Y runs to completion - did not attempt
I incomplete run † fatal error
N failed to run § parse failure (≥1 file)
* requires minor modifications reasonable for users to make
** requires major modifications that would deter most users

Table 1: Scalability tests for open-source Linux C and C++ pro-
grams (Lackwit does not support C++). LOC is non-comment
non-blank lines of code.

usually produces data faster than Daikon can process it, improv-
ing Kvasir’s performance would not markedly improve the perfor-
mance of the Kvasir–Daikon invariant detection system; thus, doing
so has not been a priority.

4.4 Experimental results
This section compares Dfec and Kvasir in terms of scalability and

performance. Scalability was measured by the sizes of programs
that Dfec and Kvasir could successfully process and the amount of
human effort, if any, required to do so. Performance was measured
by the slowdown factors relative to the runtime of the uninstru-
mented programs.

4.4.1 Scalability
Table 1 shows a dozen open-source C and C++ Linux programs

on which Kvasir ran successfully, producing valid trace output for
Daikon to analyze. Dfec only ran on the four smallest programs.

Dfec usually works without target program modifications on small
programs such as md5 which use few language or library features.
Programs of greater size and complexity require source code modi-
fications either so that Dfec will accept them or, more often, so that
Dfec’s output is a legal program. For all of the programs except
md5, we needed to add casts to satisfy the stricter C++ type rules.
For bzip2, Dfec’s special treatment of the void* type failed to
be triggered by a type BZFILE* when BZFILE was a typedef for
void. We resolved this by directly replacing BZFILE with void.
For flex, we replaced string literals in ternary ?: operators by
variables initialized to those literals in order to resolve an ambigu-
ity related to operator overloading in Dfec’s output. For make, we
spent several hours trying to bypass Dfec’s usual pointer transfor-
mations to match the memory layout required by Unix environment
variables, without success.

In contrast, Kvasir runs on both C and C++ programs of up to
300 KLOC (non-comment non-blank) with rare occasional modifi-
cations required by unusual constructs. For xemacs, we renamed

6

Val- Mem- Kvasir
Program Time Dfec Kvasir Daikon Comp grind check main()

md5 0.14 310 240 500 260 2.3 15 18
rijndael 0.19 690 5000 2200 3000 7.6 38 86

bzip2 0.18 1100 3500 12000 28000 5.2 28 46
flex 0.41 780 1800 2400 750 14 49 99

Average 720 2600 4300 8000 7.3 33 62

Table 2: Slowdown for programs that were successfully pro-
cessed by Dfec, Kvasir, and DynComp. The “Comp” column is
for the DynComp tool (Section 5). All numbers are slowdown
ratios, except that the base runtimes are given in seconds. All
tests were run on a 3GHz Pentium-4 with 2GB of RAM.

one of two sets of functions generated by two compilations of a
single C source file to avoid having two otherwise indistinguishable
functions. For gcc, we supplied an extra --with-gc=simple con-
figuration parameter to specify a garbage collector that works with
the standard malloc function.

The majority of the scalability problems of Dfec come from lim-
itations of a source-based approach. In general, larger programs are
more likely to contain complex source code constructs and interac-
tions with libraries and system interfaces, which are more difficult
to properly handle at the source level than at the binary level.

4.4.2 Performance
Both Dfec and Kvasir ran on the order of 1000 times slower than

the uninstrumented target program (see Table 2), but most of the
overhead was due to writing trace data to files at every program
point. The trace files ranged from several hundred megabytes to
several gigabytes. For the larger programs of Table 2, bzip2 and
flex, we configured both Kvasir and Dfec to skip global variables
and to print only the first 100 elements of large arrays.

Dfec was somewhat faster than Kvasir because Dfec produces in-
strumented source code that can be compiled with optimizations to
machine code, while Kvasir performs run-time binary instrumenta-
tion with Valgrind, which both consumes run time and also yields
less-optimized code (see Section 4.3.3 for details).

The three rightmost columns of Table 2 show the components
of Kvasir’s slowdown caused by its implementation as a Valgrind
tool built on top of Memcheck. The “Valgrind” column shows the
∼10× slowdown of Valgrind running on the target program with-
out any custom instrumentation. The “Memcheck” column shows
the ∼30× slowdown of the Memcheck tool. The “Kvasir main()”
column shows the ∼60× slowdown of Kvasir when running on
the target program but only outputting the trace data for one func-
tion, main(). This measures the overhead of bookkeeping related
to tracing, including the overhead of Fjalar, without the data out-
put slowdown. The rest of Kvasir’s slowdown above this factor is
caused by the output of trace data for Daikon and is approximately
linear in the size of the trace file. Both Dfec and Kvasir share this
unavoidable output slowdown.

We believe that we could reduce the value profiling overhead.
However, we have not spent any significant effort on optimizing
Dfec or Kvasir, because they usually produce trace output faster
than Daikon can process it, so neither is the performance bottleneck
in the entire invariant detection system. (Daikon’s performance is
also roughly linear in the size of the trace, but has additional super-
linear factors including the number of variables per function [21].)
Given its other advantages, Kvasir’s performance overhead is com-
pletely acceptable.

5. VALUE PARTITIONING CASE STUDY
This section presents a second analysis built using the mixed-

level approach and Fjalar toolkit. The analysis determines when
two variables hold values that are of the same abstract type; that is,
it partitions values according to their abstract types.

5.1 Requirements
C programmers often use a single concrete representation (such

as int) to hold data of multiple distinct abstract types. For instance,
consider the following simple example code:

int main() {
int year = 2005;
int winterDays = 58;
int summerDays = 307;
compute(year, winterDays, summerDays);

}

int compute(int yr, int d1, int d2) {
if (yr % 4)

return d1 + d2;
else

return d1 + d2 + 1;
}

The three variables in main all have the same C representation
type, int, but two of them hold related quantities (numbers of
days), as can be determined by the fact that they interact when the
program adds them, whereas the other contains a conceptually dis-
tinct quantity (a year). The abstract types ‘day’ and ‘year’ are both
represented as int. A richer type system would permit the pro-
grammer to give these variables distinct types, which would make
the code’s intention clearer, prevent errors, and ease understanding.
Value partitioning automatically infers a richer set of abstract types
from the few representation types that programmers often utilize.

Applications of this analysis include assisting in finding abstract
data types, detecting abstraction violations, locating sites of possi-
ble references to a value, and aiding other program analysis tools
[20]. For example, we have applied the technique as a pre-processing
step [10] before dynamic invariant detection (Section 4.1.1), im-
proving both the speed and the precision of the subsequent analysis
by indicating variables that need not be compared to one another.

5.2 Source-based static analysis: Lackwit
The Lackwit tool [20] performs a static source code analysis to

determine when two variables hold values of the same abstract type.
It applies a non-standard type system to the C program, then per-
forms an ML-style polymorphic type inference over that type sys-
tem; essentially, any two variables whose values may interact via
a program operation such as + or = are given the same type. The
analysis output does not reflect the underlying polymorphic type
system.

Though a static type inference technique is scalable in terms of
performance (general type inference has poor worst case behavior,
but performs well on programs with limited use of higher-order
functions), the Lackwit tool is impractical to use on realistically-
sized systems. Library source code is often unavailable or uses
difficult-to-analyze constructs such as the definition of malloc, in-
line assembly, system calls, etc. Thus, hand-written summaries are
needed for library functions; while these exist for a subset of the
standard library, it would be prohibitive to write them for other li-
braries. (Lackwit can run without library summaries, as in the case
study below, but its results are then incomplete.) Though Lackwit is
sound with respect to a large subset of C, this subset does not cover
all the features used in real programs: it may miss interactions that

7

result from some kinds of pointer arithmetic, and it does not track
control flow through function pointers. On the other hand, Lack-
wit’s conservatism has the danger of producing imprecise results
with fewer abstract types than would be correct.

Lackwit also has a number of flaws, related to its implementation
as a source-based tool, that limit its usefulness. It does not support
all of the language features used in the current Linux standard li-
braries, does not support queries for function return values, fails to
parse certain constructs, and on large programs often fails with a
segmentation fault or assertion failure (see Section 5.4).

5.3 Dynamic analysis
We propose a dynamic approach for computing whether two

variables hold values of the same abstract type at particular pro-
gram points, such as procedure entries and exits. We call such
variables comparable at that program point. (This analysis could
work on a wide spectrum of granularity, ranging from measuring
abstract types on a program-wide basis to a single-line basis, but
we have chosen program-point granularity because interesting vari-
ables such as function parameters have program-point scope.) The
analysis conceptually computes abstract types for values, then con-
verts the information into sets of comparable variables at each pro-
gram point (called comparability sets). Two values have the same
abstract type if they interact by being arguments to the same pro-
gram operation such as + or =. This is a transitive notion; in the
code a+b; b+c, the values of a and c have the same abstract type.
Whether two variables hold values of the same abstract type can
change from moment to moment in the program as assignments
and other operations are performed. Two variables are comparable
at a program point if they held values of the same abstract type dur-
ing any execution of the program point. This notion need not be
transitive.

In addition to solving the scalability problems of Lackwit’s static
approach, a dynamic approach has the potential to produce more
precise results, for two reasons. First, it need not apply approxima-
tions of run-time behavior but can observe actual behavior. Second,
like typestate analyses [27], it permits the same variable to hold
values of different types at different points in the program. For
instance, in this code:

int apples, oranges = 10, tmp;
apples = oranges;
/* A */
apples = 5;
tmp = apples;
tmp = oranges;
/* B */

variables apples and oranges are comparable (have values with
the same abstract type) at A, but are not comparable at B. This
precision is important in real code that re-uses temporary variables
or registers, and is also a way of achieving context-sensitivity.

As described above, the dynamic type inference consists of per-
forming a value partitioning, then translating that information to
variable comparability sets before being communicated to a human
or another analysis. We describe a value partitioning analysis at a
high level, then discuss three implementation approaches.

The dynamic value analysis maintains, for each value, a tag rep-
resenting its abstract type. It associates a fresh abstract type with
each new value. For a primitive representation type such as int,
new values are instances of literals, values read from a file, etc. Use
of a fresh abstract type for each instance of a literal, and propaga-
tion of abstract types along with values through procedure calls,
provides perfect context-sensitivity. Only values of primitive types
get tags; structs and arrays are treated as collections of primitive

types. Each program operation on two values unifies their abstract
types, using an efficient union-find data structure, and gives the re-
sult the same abstract type.

5.3.1 Implementation approaches
This section discusses binary, source, and mixed-level approaches

to the variable comparability problem.
It would be impractical to first perform a purely binary-based

analysis to record value flow and interaction during execution and
then run a source-based postprocessing step. It is not adequate
to perform the value analysis and then map the final results (the
last abstract values seen) to source information, because previous
variable–value associations are lost by that time. In the above ex-
ample, a binary-based analysis would need to record that the mem-
ory location corresponding to apples has been overridden with
two distinct values so that the source-based postprocessing step can
produce the correct results. This is not scalable to larger programs
because of the excessive space required to store all values which
each variable ever referred to during an execution.

It would also be impractical to utilize a source-based analysis
due to the complexities of recording value flow on the source level.
Metadata would need to be kept along with each variable and up-
dated at each operation. Tracking the flow and interaction of values
in memory and registers is more easily accomplished on the binary
level, but it is necessary to update comparability sets of variables
throughout the course of the analysis.

Thus, a mixed-level approach is the most practical implemen-
tation because it can can simultaneously utilize both binary and
source-level information to determine the comparability of vari-
ables such as apples and oranges along with the abstract types
of their values at both points A and B during execution without the
need to maintain extraneous data.

5.3.2 Mixed-level approach: DynComp
We have used the Fjalar mixed-level toolkit to implement a dy-

namic value partitioning tool called DynComp. It integrates a binary-
level analysis to partition values with a language-level analysis to
group variables into comparability sets based on abstract types of
all values ever stored in those variables.

The binary-level value analysis operates on the whole program;
library code is covered transparently. It associates a fresh abstract
type with each new value, identified by a unique tag for each byte
of a value. This analysis is implemented (similar to Memcheck’s
V-bits) by keeping a 32-bit integer tag along with every byte in
memory and every register. It uses Fjalar’s binary rewriting API to
insert operations to create tags when new values are created in the
program, copy tags around in memory and registers when values
are loaded and stored, and unify the sets of tags during relevant
operations between values.

The language-level analysis is performed only on the parts of the
program for which results are requested; these are the only parts of
the executable for which DynComp requires debugging informa-
tion. It would be impractical to implement this as a postprocessing
step because the result depends on the mapping between variables
and values which changes throughout execution. For instance, a
variable may be used to store values of different abstract types.
Thus, the abstract type information that is maintained for values
must be integrated with variable information each time a program
point is executed. In order to accommodate this, the language-level
analysis keeps comparability sets for variables at each program
point and merges the value abstract type information into those sets
at each execution of the respective program point. This analysis
is implemented by using Fjalar’s recursive data structure traversal

8

Program Lackwit DynComp
md5 1.85 1.25

rijndael 2.01 2.27
flex 30.91 15.61

Table 3: The average size of the comparability set for a
randomly-chosen initialized, non-pointer variable, averaged
over all program points executed by DynComp.

API to observe the tags of the values of all relevant variables at
each program point (similar to Kvasir, except that it observes the
tags, not the actual values). During execution, the variable compa-
rability sets are unified based upon the state of the value partitions
(abstract types). At the end of execution, these comparability sets
are reported to the user or another analysis tool.

The Fjalar toolkit enabled us to build a fully functional first ver-
sion of the DynComp tool in a few weeks. Fjalar provided a robust
and scalable framework for DynComp, permitting us to focus on
algorithm design instead of implementation complexities. We are
currently comparing a variety of algorithms for the run-time map-
ping of value partitions to variable comparability.

5.4 Experimental results
As shown in Table 1, DynComp performs just as well as Kvasir

in the scalability tests, mainly due to the fact that they are both
built with the Fjalar toolkit. Once we extended Fjalar to work with
C++ programs, it did not take much work to extend DynComp to
C++. Section 4.4.1 describes the minor changes that were made to
xemacs and gcc to get DynComp to work on it.

The “Comp” column of Table 2 shows the slowdown factor of
programs running DynComp. The performance of Lackwit and
DynComp are not directly comparable, because the former is a
static tool and the latter is dynamic; each is faster in certain circum-
stances. The main overhead of DynComp comes from the mainte-
nance of tags at the binary level and also the algorithm to update
variable comparability sets at each program point.

Table 3 shows that, in general, DynComp generates smaller vari-
able comparability sets because, unlike Lackwit, it does not make
approximations about what might be comparable for any possible
execution; it reports what is comparable for a particular execution.
(The table omits bzip2 and civserver because Lackwit success-
fully generated databases of abstract types but crashed when we
queried the database for the comparability sets of all variables.) In
rijndael, Lackwit generated smaller comparability sets, but upon
manual inspection of the output, we found that its output was erro-
neous. (We have not yet carefully examined its output for the other
programs.) For example, Lackwit reported that two function pa-
rameters were not comparable when in fact they were. Although the
parameters did not directly interact within that function, the values
held by those parameters were copied around to various structs, and
these structs were passed by pointer to two other functions and then
copied to local variables before the values interacted via a compar-
ison operation. There is no theoretical reason why a source-based
static analysis cannot find the correct results in this complex sce-
nario, but implementation complexities of tracking value flow on a
source level through layers of structs and pointer indirection make
this a difficult task. In contrast, DynComp found the correct results,
thanks in part to the relative simplicity of tracking value flow on a
binary level.

6. RELATED WORK
Much of the Fjalar infrastructure is devoted to tracking uses of

memory; as noted in Section 3.3.2, this is a requirement for a rich
dynamic analysis of non-memory-safe programs. We described
both a source- and a binary-based approach to the problem. Most
memory tracking analysis aim to detect memory errors in C pro-
grams.

Representative recent source-based work is by Xu et al. [30],
who rewrite C programs to maintain pointer metadata in data struc-
tures separate from those of the target program. Although their
approach scales up to programs as large as 29 KLOC, it suffers
the problems inherent in all source-based approaches: development
challenges with parsing C source code, difficulty in supporting ad-
ditional languages such as C++, and the inability to handle complex
language constructs such as integer-to-pointer casts, certain types
of struct pointer casts, and the use of custom memory allocation
functions. Earlier work includes Safe-C [3], which uses fat pointers
to store metadata, and CCured [18], which analyzes the C program
to reduce the cost of dynamic checking.

The best-known dynamic memory analysis is Purify [14], which
performs ahead-of-time binary instrumentation so that the program
maintains bits indicating whether each byte of memory is allocated
and initialized, and checking them before uses. Memcheck [23],
which we use, is similar but is accurate to the bit level and employs
a just-in-time compiler. Many similar tools exist with some or all
of the capabilities of these tools; for example, another popular ap-
proach is using special system libraries (e.g., malloc and free).

Binary analysis and editing frameworks include ATOM [25], EEL
[16], Etch [22], DynamoRIO [5], and Valgrind [19]. These are low-
level tools intended for use in binary transformations that improve
performance or security, so they make no accommodation for com-
municating information to a software engineer, much less in terms
of source level constructs. We extended Valgrind to do so.

A debugger designed for interactive use provides some of the
same capabilities as the Fjalar toolkit. The debugger can stop ex-
ecution at arbitrary points in the execution, and print the values of
arbitrary source-level expressions. Invalid pointer accesses cause a
debugger warning, not a segmentation fault. Some software engi-
neering tools have been built on top of the gdb [26] debugger (for
example, [1, 13, 4, 7]). Our own experiments are consonant with
previous experience: gdb is not an automated dynamic analysis, nor
is it designed for extensibility or serious scripting, and it imposes
unacceptably high run-time overheads. Furthermore, it provides no
memory tracking, which is a key requirement for a software engi-
neering tool.

The DynComp value partitioning work can be viewed as a lim-
ited special case of dynamic slicing. Slicing [28] is a technique for
reifying a program’s data- and control-dependences; a backward
slice of a particular statement or expression indicates all the other
statements or expressions whose computation can affect the given
one. Static slicing approximates this relation, and dynamic slic-
ing [2, 15, 29] computes it exactly for a given computation. In the
general case, dynamic slicing amounts to maintaining a full execu-
tion trace of a program, and much dynamic slicing research focuses
on how to collect and maintain this trace information efficiently.

7. CONCLUSION
A dynamic analysis for software engineering tasks needs to re-

port its results in terms of the original source program, for use by
a human or by another tool. However, a binary analysis has advan-
tages that make it attractive as an implementation technique for a
simple, robust tool, especially for memory-unsafe languages such
as C and C++. Furthermore, it is often useful to simultaneously
have access to both source and binary-level information during an
analysis.

9

Most previous dynamic analysis techniques work at the source
level, work at the binary level, or weakly couple the two levels, for
instance by postprocessing results to convert them from the binary
to the source level. However, certain problems do not fit neatly into
one level or the other, or require information from both levels in
order to compute precise and useful results.

We propose to apply hybrid source–binary analyses, which we
call mixed-level analyses, in order to obtain the important advan-
tages of both binary- and source-based approaches, and to obtain
results that cannot be practically achieved using either alone. We
are not aware of previous research that recognizes the value of in-
tegrating source and binary information throughout the duration of
a dynamic analysis.

The Fjalar binary instrumentation toolkit allows tools to be built
using the mixed-level approach. We evaluated the toolkit in four
ways. First, we demonstrated the toolkit’s flexibility and language-
independence by extending it from C to C++ in few days. Sec-
ond, we used it as the basis for two tools, one for value profiling
and one for value partitioning. These distinct uses indicate that the
toolkit is easy to use, general, and robust. Third, we performed
a case study of two implementations of value profiling for C and
C++. One uses a traditional source-based approach, and one uses
the Fjalar toolkit; the latter was both faster to build (even count-
ing toolkit construction time) and much more scalable and robust.
We discuss and compare experience with the two implementations,
yielding insight into the strengths and weaknesses of the source-
based and mixed-level approaches. Fourth, we performed a case
study of two implementations of value partitioning (dynamic type
inference). Fjalar allowed us to quickly build the DynComp value
partitioning tool, which is more scalable and precise than a tool
built using a source-based static approach. In sum, the mixed-level
approach implemented in Fjalar enables the quick construction of
a wide range of dynamic analysis tools, allowing tool builders to
focus more on high-level design and less on platform or language-
specific implementation details.

Acknowledgments
Jake Cockrell and Ben Morse implemented Dfec. Robert O’Callahan
implemented Lackwit and discussed dynamic value partitioning with
us. This research was supported by DARPA, EDG, NASA, and NSF.

REFERENCES
[1] H. Agrawal. Towards automatic debugging of computer

programs. Technical Report SERC-TR-103-P, Software
Engineering Research Center, Purdue University, Sept. 1991.

[2] H. Agrawal and J. R. Horgan. Dynamic program slicing. In
PLDI, pages 246–256, White Plains, NY, June 20–22, 1990.

[3] T. M. Austin, S. E. Breach, and G. S. Sohi. Efficient
detection of all pointer and array access errors. In PLDI,
pages 290–301, June 1994.

[4] R. Biddle, S. Marshall, J. Miller-Williams, and E. Tempero.
Reuse of debuggers for visualization of reuse. In ACM
SSR’99, pages 92–100, May 1999.

[5] D. Bruening, E. Duesterwald, and S. Amarasinghe. Design
and implementation of a dynamic optimization framework
for Windows. In FDDO, Dec. 2001.

[6] B. Calder, P. Feller, and A. Eustace. Value profiling and
optimization. Journal of Instruction Level Parallelism, 1,
Mar. 1999. http://www.jilp.org/vol1/.

[7] H. Cleve and A. Zeller. Locating causes of program failures.
In ICSE, May 2005.

[8] Edison Design Group. C++ Front End Internal
Documentation, version 2.28 edition, Mar. 1995.

http://www.edg.com.
[9] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.

Dynamically discovering likely program invariants to support
program evolution. IEEE TSE, 27(2):1–25, Feb. 2001.

[10] M. D. Ernst, A. Czeisler, W. G. Griswold, and D. Notkin.
Quickly detecting relevant program invariants. In ICSE,
pages 449–458, June 2000.

[11] Free Software Foundation. GNU binary utilities.
http://www.gnu.org/software/binutils/.

[12] Free Standards Group. The DWARF debugging standard.
http://dwarf.freestandards.org/.

[13] M. Golan and D. R. Hanson. DUEL — a very high-level
debugging language. In Winter 1993 USENIX Conference,
pages 107–117, Jan. 1993.

[14] R. Hastings and B. Joyce. Purify: A tool for detecting
memory leaks and access errors in C and C++ programs. In
Winter 1992 USENIX Conference, pages 125–138, Jan. 1992.

[15] J. R. Larus and S. Chandra. Using tracing and dynamic
slicing to tune compilers. Technical Report 1174, University
of Wisconsin – Madison, Madison, WI, Aug. 26, 1993.

[16] J. R. Larus and E. Schnarr. EEL: Machine-independent
executable editing. In PLDI, pages 291–300, June 1995.

[17] B. Morse. A C/C++ front end for the Daikon dynamic
invariant detection system. Master’s thesis, MIT Dept. of
EECS, Aug. 2002.

[18] G. C. Necula, S. McPeak, and W. Weimer. CCured:
Type-safe retrofitting of legacy code. In POPL, pages
128–139, Jan. 2002.

[19] N. Nethercote and J. Seward. Valgrind: A program
supervision framework. In RV, July 2003.

[20] R. O’Callahan and D. Jackson. Lackwit: A program
understanding tool based on type inference. In ICSE, pages
338–348, May 1997.

[21] J. H. Perkins and M. D. Ernst. Efficient incremental
algorithms for dynamic detection of likely invariants. In
FSE, pages 23–32, Nov. 2004.

[22] T. Romer, G. Voelker, D. Lee, A. Wolman, W. Wong,
H. Levy, B. Bershad, and B. Chen. Instrumentation and
optimization of Win32/Intel executables using Etch. In
USENIX Windows NT Workshop, Aug. 1997.

[23] J. Seward and N. Nethercote. Using Valgrind to detect
undefined value errors with bit-precision. In USENIX 2005
Technical Conference, Anaheim, CA, Apr. 2005.

[24] J. Seward, N. Nethercote, J. Fitzhardinge, et al. Valgrind.
http://valgrind.org/.

[25] A. Srivastava and A. Eustace. ATOM — a system for
building customized program analysis tools. In PLDI, pages
196–205, June 1994.

[26] R. M. Stallman, R. Pesch, and S. Shebs. Debugging with
GDB: The GNU Source-Level Debugger. Free Software
Foundation, 9th edition, 2002.

[27] R. E. Strom and S. Yemini. Typestate: A programming
language concept for enhancing software reliability. IEEE
TSE, SE-12(1):157–171, Jan. 1986.

[28] F. Tip. A survey of program slicing techniques. Journal of
Programming Languages, 3(3):121–189, 1995.

[29] G. A. Venkatesh. Experimental results from dynamic slicing
of C programs. ACM TOPLAS, 17(2):197–216, Mar. 1995.

[30] W. Xu, D. C. DuVarney, and R. Sekar. An efficient and
backwards-compatible transformation to ensure memory
safety of C programs. In FSE, pages 117–126, Nov. 2004.

10

