
Building and Using Pluggable Type-Checkers

Werner Dietl Stephanie Dietzel Michael D. Ernst Kıvanç Muşlu Todd W. Schiller
University of Washington

{wmdietl,sdietzel,mernst,kivanc,tws}@cs.washington.edu

ABSTRACT
This paper describes practical experience building and using plug-
gable type-checkers. A pluggable type-checker refines (strengthens)
the built-in type system of a programming language. This permits
programmers to detect and prevent, at compile time, defects that
would otherwise have been manifested as run-time errors. The pre-
vented defects may be generally applicable to all programs, such as
null pointer dereferences. Or, an application-specific pluggable type
system may be designed for a single application.

We built a series of pluggable type checkers using the Checker
Framework, and evaluated them on 2 million lines of code, finding
hundreds of bugs in the process. We also observed 28 first-year
computer science students use a checker to eliminate null pointer
errors in their course projects.

Along with describing the checkers and characterizing the bugs
we found, we report the insights we had throughout the process.
Overall, we found that the type checkers were easy to write, easy
for novices to productively use, and effective in finding real bugs
and verifying program properties, even for widely tested and used
open source projects.

Categories and Subject Descriptors: D3.3 [Programming Lan-
guages]: Language Constructs and Features—data types and struc-
tures; F3.1 [Logics and Meanings of Programs]: Specifying and
Verifying and Reasoning About Programs; D1.5 [Programming
Techniques]: Object-Oriented Programming
General Terms: Languages, Documentation, Verification
Keywords: intern, nonnull, enum, enumeration, fully qualified
name, binary name, field descriptor, Java, annotation, bug finding,
case study, pluggable type, type qualifier, type system

1. INTRODUCTION
A type checker provides a compile-time guarantee that certain

errors cannot occur. For example, Java’s type checker guarantees
that a standard Java program cannot exit with a method-not-found
exception. Unfortunately, standard type systems and checkers can’t
help developers find and prevent all the errors that they care about
in practice. Therefore, developers often reason manually about code
correctness — a daunting task, especially in the face of incomplete
or inconsistent documentation.

Pluggable type-checking is one approach to addressing the limita-
tions of a language’s built-in type-checker. Developers write type
qualifiers, such as @NonNull or @Immutable, that express extra

This research was supported by NSF grant CNS-0855252 and Google. We
thank M. Ali for development and Checker Framework users for feedback.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00.

information about types and serve as machine-checked documenta-
tion. The type-checker — a plug-in to the compiler — verifies their
correctness or indicates potential errors in the program.

Despite their potential advantages, pluggable type systems are
only beginning to be used outside of research. For example, Eiffel
includes non-null and nullable (“attached” and “detached”) types [5],
but offers no way for users to refine the type system. Tools such as
the Checker Framework [4] aid in the construction of these type-
checking plug-ins.

The lack of uptake of pluggable type systems may stem from
developers’ beliefs about the cost-benefit tradeoff:

• Building custom type-checker plugins requires PhD-level under-
standing and extensive implementation effort.

• Learning the pluggable type-checking mind-set requires exten-
sive training in a foreign way of thinking — a high upfront cost
before any benefit can be gained.

• Even after learning, using a pluggable type-checker requires
large amounts of time and many written annotations, cluttering
code and reducing readability.

• Testing finds all important bugs, so (pluggable) type-checking
wouldn’t have a significant benefit even if it were easy to use.

We wished to investigate these beliefs, providing concrete evi-
dence, rather than hearsay, to guide practitioners. Previous plug-
gable type system case studies are limited in scope and often show-
cased specific framework features rather than considering practical-
ity or utility. We set out to fill in the knowledge gap by exploring
pluggable type checkers in three ways: (1) using existing checkers
to find interning and nullness errors, (2) writing new checkers and
using them to find signature and enumeration errors, and (3) ob-
serving novice computer scientists using (and misusing) a nullness
checker.

Like any case studies, ours shed light on one specific set of tools,
tasks, and users. Within this context, it yielded results that contradict
some of the gloomy predictions of skeptics:

• It it easy to build a new pluggable type-checker. For example,
we found 14 errors in the Oracle JDK using a checker that was
written entirely declaratively, with no code or rules of its own.
Later, we added a few lines of code to eliminate many false posi-
tive checker warnings. Our toolset, the Checker Framework [4],
offers a range of expressiveness that allows a designer to find the
“sweet spot” for the task at hand.

• It is easy to learn how to use a pluggable type-checker. In a
case study, inexperienced users started using the basic features
of a checker quickly, obtaining immediate benefits. Although
the novices did not use all the features optimally, their usage
improved with time.

• It is easy to write annotations and few annotations are required —
vastly fewer than required by Java’s generic types, for example.
The type-checker quickly leads a programmer to problems in the
code. Occasionally, however, the annotation process becomes
bogged down when the programmer is trying to understand a
badly designed or undocumented program or fixing a hard bug.

These are inherently difficult processes that we do not expect to
be fast. If the programmer does not want to fix the problem yet,
he or she can suppress the checker warning and return to it later.

• Pluggable type-checking reveals important latent bugs even in
well-tested code that is in active use. Fixing these bugs improves
the program design and prevents future problems.

In addition to reinforcing the above observations, we make several
other contributions. We built new checkers and extended existing
checkers, making them available for public use. Using these check-
ers, we performed the largest study of pluggable type-checking of
which we are aware. Based on the checking process, we improved
real-world open source systems by finding and reporting bugs, im-
proving their documentation and design. Finally, we discuss insights
about pluggable type-checking itself.

This paper is organized as follows. Section 2 describes the
Checker Framework. Section 3 presents a general methodology
for using the framework, which we followed during the case studies.
Sections 4–8 report the results of our studies that use the Compiler
Message Checker, Fake Enumeration Checker, Signature String
Checker, Interning Checker, and Nullness Checker, respectively.
The sequence of checkers roughly progresses from simple yet lim-
ited checkers to more involved and expressive checkers. Section 8
additionally describes the experience of 28 first-year computer sci-
ence students using the nullness checker. Section 9 discusses lessons
learned, Section 10 discusses related work, and Section 11 con-
cludes.

2. THE CHECKER FRAMEWORK
The pluggable type checkers used in our case studies were built

using the Checker Framework [4, 25]. A type system designer
defines new type qualifiers and their semantics in a declarative
and/or procedural manner, and the Checker Framework creates a
type checker in the form of a compiler plug-in. To use the type
checker, a programmer can write type qualifiers throughout a pro-
gram as machine-checked documentation that the plug-in verifies.
The framework is compatible with Java, so it handles pluggable type
systems that refine, not incompatibly change, Java’s built-in type
system.

The Checker Framework is integrated with build tools such as
Ant, Maven, and IDEs. In particular, a Google Summer of Code
project created a plug-in for Eclipse that makes it easy to run one or
more type checkers on (parts of) a project.

The Checker Framework distribution comes with annotations for
the most commonly-used parts of the JDK. The Checker Framework
is integrated with external tools for inferring annotations, such as
Julia, Nit, and JastAdd, via a common file format.

The Checker Framework’s design makes it easy to create a new
checker, declaratively for simple checkers or first drafts, and using
procedural code for more complex logic. The distribution includes a
dozen checkers, of which this paper only mentions five. Many other
checkers have been written by users.

The Checker Framework optionally takes advantage of forthcom-
ing Java syntax for type annotations (known by its Oracle codename
“JSR 308” [9]); however, it is backward-compatible with Java 5 or
later and supports annotations in comments. To ease the transition
from other tools, the Checker Framework recognizes and processes
the annotations of tools such as IntelliJ IDEA, FindBugs, JML,
JSR305, and NetBeans.

Surprisingly many problems can be reduced to type checking.
Examples include checking the correct initialization of fields, check-
ing the encapsulation of objects, and checking usage protocols for
methods. However, using a type checker, and therefore the Checker
Framework, is not the correct solution for every problem. For a

checker to work well, the types being checked can depend on local
dataflow properties, but should not depend non-trivially on run-time
values. In some situations, refining the underlying type hierarchy
might provide a better solution; in other cases, no type system might
be able to capture the property in a natural way.

3. METHODOLOGY
Suppose that a developer notices a potential problem, or a pattern

of observed problems, and wishes to eliminate all such errors in the
future. The developer could use pluggable type-checking to improve
his or her code, following this general methodology:

1. The developer chooses an existing checker that can verify the ab-
sence of the error. If no such checker exists, the developer creates
a new checker. The developer starts with a simple declarative
checker that is easy to create because it consists solely of the
definitions of the annotations, with no additional logic required.

2. The developer selects part or all of the program to check. The
Checker Framework is effective even when used on a part of a
program, and the developer might choose the part that is most
error-prone, most confusing, most critical, or best fitted to the
checker. Within the checked portion of the code, work should
start with libraries and proceed to clients, because the checker
requires annotations for the signatures of called methods.

3. The developer writes annotations. The developer searches the
code (and any relevant libraries) for phrases related to the type
system. The developer converts such informal documentation
into machine-checkable documentation, by writing an annota-
tion.

4. The developer iteratively runs the checker on the annotated code
until there are no warnings, at which time the developer has
verified the absence of errors. For each warning, there are 3
possibilities:

(a) The developer finds and fixes an error in the code.
(b) The warning is due to a missing annotation, which is caused

by missing documentation. The developer adds the required
annotation, which corrects the documentation error.

(c) The warning is a false positive. The developer suppresses
the warning by writing a @SuppressWarnings annotation.

5. If the developer notices a pattern of false positive warnings,
(s)he extends the checker to automatically handle that case and
removes the related suppressions from the code.

We followed the above methodology for our case studies. Since
the Interning and Nullness Checkers existed before the study, we
started by annotating the programs according to their documentation.
For the other three checkers, we started with simple declarative
checkers and extended them as needed.

When performing our case studies, we wrote whatever anno-
tations were easy and natural to write — we made no effort to
minimize the number of type annotations or @SuppressWarnings
annotations.

Measurements. We quantify the effort to build the checker by its
code size, the effort to use the checker by the number of programmer-
written annotations and warnings suppressed (we did not record time
spent), and the effectiveness of the checker by the number of bugs
found.

Throughout the studies, we report two metrics for code size:
total lines and non-comment non-blank (NCNB) lines. Both are as
computed using the sclc tool1.

The sections that follow present the case studies; Figure 1 shows
summary statistics.
1http://www.cmcrossroads.com/bradapp/clearperl/sclc-cdiff.html

http://www.cmcrossroads.com/bradapp/clearperl/sclc-cdiff.html

Size Size Errors False
Checker Files LOC NCNB Subject program Files kLOC kNCNB ALocs Annos Runtime Other pos.
Compiler messages 3 70 40 Checker Framework 242 31 18 13765 11 8 0 2
Fake enumerations 15 489 299 Swing (OpenJDK b99) 1289 610 293 211415 879 0 2 32

JabRef 2.6 576 117 74 47290 8 0 3 0
GanttProject-2.0 509 69 49 37498 11 0 0 3

Signature strings 9 262 131 OpenJDK b99 (17 packages) 498 231 85 62510 103 11 3 26
ASM 2.2.2 116 33 18 11651 168 5 0 36
Annotation File Utils 3.1 126 17 10 7992 159 8 1 30

Interning 7 960 519 Xerces 2.10.0 824 257 138 68490 218 0 185 4
Lucene 4.0 2587 479 296 99097 167 0 24 80

Nullness 30 4311 2556 Google Collections 378 78 49 50543 936 9 154 362
Daikon 565 222 134 104852 2872 >90 365
Classroom study (mean) 45 9 5 3414 57 – – –

Figure 1: Case study statistics. Sizes are given in files, lines, number of possible annotation locations, and number of annotations written by the programmer.
Runtime errors are runtime-reproducible problems revealed by the checker. The other errors — primarily incorrect documentation — could lead to runtime
problems in the future. We do not count design infelicities or code smells as errors. False positives are caused by a weakness in either the type system or the
checker implementation; the programmer suppresses them by writing a @SuppressWarnings annotation (which is not counted in the “Annos” column). This
paper uses “false positive” and “suppressed warning” synonymously.

4. COMPILER MESSAGE CHECKER
Property files and resource bundles, which both act like maps from

keys to values, should only be accessed with valid keys. An access
without a valid key returns either null or a default value, which
can lead to a NullPointerException or hard-to-trace behavior,
respectively.

We wrote a Compiler Message Checker, which verifies that com-
piler message keys used in the Checker Framework are declared in
a property file. The subject program for this checker is the Checker
Framework itself. The Checker Framework uses property files to
store the human-readable strings for a compiler message key. Using
keys instead of literal strings in the source code is less error-prone
and enables easier testing. In other contexts, property files are used
for localization.

4.1 Ease of Creation
The Compiler Message Checker was very easy to write — it is

only 40 LOC NCNB long, containing no logic, only boilerplate
such as import statements in annotation definitions. It extends the
Property File Checker, which is a framework class that provides
generic checking of property files; it is also used to check for correct
internationalization of applications [4].

4.2 Ease of Use
It was very easy to completely annotate the Checker Framework.

Checker warnings and errors are constructed by methods failure
and warning in class checkers.source.Result, so we added
@CompilerMessageKey annotations to the string parameters that
are used for the message key. Then, a simple search for the uses of
class Result quickly revealed the other 9 parameters that needed to
be annotated.

All annotations are in the framework, not in individual checkers.
Thus, a type system designer who has written a new checker can run
the Compiler Message Checker without any annotation burden.

4.3 Effectiveness
We discovered three message keys that did not have a corre-

sponding localized message: the Checker Framework was miss-
ing messages for keys constructor.invocation.invalid and
cast.redundant; the Linear Checker was missing a message for
key use.unsafe. In five other places in the Checker Framework a
message key contained a typo. In all 8 cases, users would have seen
the message key instead of a comprehensible message.

The two false positives are caused by a checker (used only for

testing) that manually modifies the set of compiler messages and by
a generic construct that is handled in a simplified way, respectively.

5. FAKE ENUMERATION CHECKER
Some Java programs use a set of int or String constants rather

than a proper enumeration created by Java’s enum construct; this
pattern is commonly called fake enumeration. One reason is back-
ward-compatibility. A public API that predates Java’s enum con-
struct may use int constants; the API cannot be changed, because
doing so would break existing clients. For example, Java’s JDK uses
int constants in the AWT and Swing frameworks. Another reason
is performance, especially in environments with limited resources.
For example, the Android mobile phone platform recommends the
use of fake enums when only an integer value is needed, in order to
reduce code size and run time2.

The Fenum (fake enum) Checker gives the same safety guarantees
as a true enumeration type, without the space and run-time overhead.
The values of a fake enum are treated as distinct from all values of
the base type and from all other fake enums.

We annotated the Swing GUI library (from OpenJDK 7 build 99)
and two applications: JabRef version 2.63, a bibliography manage-
ment tool, and GanttProject-2.04, a project management tool.

5.1 Ease of Creation
The Fenum Checker consists of 3 checker classes and 4 annotation

classes. We created 8 custom Fenum types for Swing (see Figure 2).
Some constants are members of multiple Fenum types; for example,
CENTER is in @SwingCompassDirection, @SwingHorizontalOri-
entation, and @SwingVerticalOrientation. Fenum @Swing-
BoxOrientation is a supertype of @SwingHorizontalOrienta-
tion and @SwingVerticalOrientation; there are no additional
@SwingBoxOrientation constant definitions and all constants of
the two subtypes can be used.

The checker also supports a generic, parameterized Fenum type,
which allows the simple introduction of a new Fenum type with-
out adding annotation classes. For example, @Fenum("A") and
@Fenum("B") are two separate Fenum types. Handling this extensi-
bility took about a third of the checker source code.

To declare a Fenum constant, a (type-incompatible) assignment
of an unqualified type to the Fenum type is used and the resulting
2http://developer.android.com/guide/practices/design/performance.
html#avoid_enums
3http://jabref.sourceforge.net/
4http://www.ganttproject.biz/, Mercurial snapshot from August 2, 2010.

http://developer.android.com/guide/practices/design/performance.html#avoid_enums
http://developer.android.com/guide/practices/design/performance.html#avoid_enums
http://jabref.sourceforge.net/
http://www.ganttproject.biz/

Gantt-
Swing JabRef Project

Annotation Defs Uses Uses Uses
@AwtCursorType 28 13 0 0
@SwingBoxOrientation 0 100 0 2
@SwingCompassDirection 10 80 2 0
@SwingElementOrientation 9 432 0 5
@SwingHorizontalOrientation 6 76 1 4
@SwingSplitPaneOrientation 2 27 5 0
@SwingTextOrientation 4 1 0 0
@SwingVerticalOrientation 4 39 0 0
@FenumTop 0 16 0 0
@SuppressWarnings 24 8 0 3

Figure 2: Usage statistics for fake enum annotations. Column Defs gives the
number of constant definitions and Uses gives the number of uses.

warning is suppressed. For example:
@SuppressWarnings("fenum")
class Sizes {

public static final @Fenum("Size") int SMALL = 1;
public static final @Fenum("Size") int BIG = 2; }

A special feature for the definition of a Fenum constant could elimi-
nate these warnings, but would make the type system more complex.

5.2 Ease of Use
Figure 2 presents the number of Fenum annotations used in our

case study. For example, @AwtCursorType was used 28 times for
the constants in java.awt.Cursor and the deprecated constants in
java.awt.Frame. Only 13 method signatures and fields had to be
annotated with AwtCursorType. JabRef and GanttProject did not
manipulate cursors.

The @FenumTop annotation at the root of the subtyping hierarchy
is used for code that mixes unqualified and qualified elements. As
an example, the defaults field in class BasicLookAndFeel is an
array where the even indices contain String keys, and the odd
indices may contain Fenum constants.

In Swing, 24 @SuppressWarnings annotations are used for the
definition of constants. Note that in class SwingConstants we used
a single @SuppressWarnings to suppress all warnings from this
class; therefore, the number of definitions and @SuppressWarnings
are not equal. The other 8 suppressed warnings were all related to
code that converted integer values (typically from configuration
files) to constants or for configuration arrays that mix values of
different enumerations in an unsafe way.

We needed three @SuppressWarnings in GanttProject: one for a
string that is converted to a constant and two for situations where
the local type inference gave too coarse a result.

5.3 Effectiveness

5.3.1 JabRef
The Fenum Checker revealed three bugs in JabRef. The JabRef

developers acknowledged and fixed all three bugs5. None of the
errors affects JabRef’s run-time behavior.

The constructor for class EntryTypeDialog calls JComponent
.setAlignmentX with SwingConstants.LEFT (= 2). The correct
argument for the call is Component.RIGHT_ALIGNMENT (= 1.0f).
Fortuitously, the implementation of setAlignmentX treats all val-
ues larger than 1.0f as 1.0f.

Method FileListEditor.autoSetLinks instantiates a progress
bar:
5https://sourceforge.net/tracker/?func=detail&aid=3083499&group_id=
92314&atid=600308

new JProgressBar(JProgressBar.HORIZONTAL, types.length-1);

However, the JProgressBar constructor expects minimum and
maximum values as the arguments. The value of constant HORIZON-
TAL is zero, which is probably the intended minimum value.

The constructor of class FieldNameLabel calls method JLa-
bel.setVerticalAlignment using NORTH as argument. How-
ever, the correct argument to the call is TOP. Both constants have
the value one, but this is not guaranteed. The Javadoc for set-
VerticalAlignment only lists TOP, CENTER, and BOTTOM as valid
values, which we captured using the @SwingVerticalOrienta-
tion Fenum annotation.

5.3.2 Swing
We identified two inconsistencies in the implementation of Swing.
Class MetalRootPaneUI uses the literal zero where the Cursor

.DEFAULT_CURSOR constant should have been used.
Method ParsedSynthStyle.paintTabbedPaneTabBackground

has a formal parameter with the misleading name direction. We
added a directional annotation, and the checker issued a warning.
In the superclass, this parameter is called tabIndex and takes a
non-enum integer. The Fenum Checker revealed that the parameter
should be renamed.

In addition to the errors, we discovered these code smells:
In 107 places, −1 was used to signify that a field, which should

hold a Fenum constant, was not initialized. We introduced a new con-
stant NOTSET in interface SwingConstants with value −1, which
belongs to all other enumeration types. We replaced the uses of
−1 by references to the NOTSET constant, making the code easier to
follow and removing fenum type errors in these locations.

Class java.awt.Adjustable and java.awt.Scrollbar have
duplicate definitions of some constants. We annotated them as
@SwingElementOrientation, making the intended interactions
explicit.

6. SIGNATURE STRING CHECKER
Java defines three main formats for the string representation of a

type within source and class files. Programmers must use different
representations when writing source code, when using reflection,
and when manipulating class files. Using the wrong string format
leads to a run-time exception or an incorrect result.

A fully qualified name [16, §6.7][20, §2.7.5], such as package
.Outer.Inner, is used in Java code and in messages to the user. A
binary name [16, §13.1], such as package.Outer$Inner, is the rep-
resentation of a type in its class file. A field descriptor [20, §4.3.2],
such as Lpackage/Outer$Inner;, is used in a class file’s constant
pool, for example to refer to other types; it abbreviates primitives
and arrays, and uses internal form [20, §4.2] for class names.

There are types for which all 3 string formats differ, and there
are strings that are legal in all 3 formats, but no string represents
the same type in all 3 formats. Fully qualified and binary names are
nearly the same — they differ only for nested classes and arrays.
This makes them particularly easy to misuse, and makes bugs easy
to overlook during testing.

The Signature String Checker verifies that string representations
of types are used correctly.

We annotated the following subject programs.

1. OpenJDK 7,6 build 99: the standard implementation of the Java
platform. We annotated packages java.io, java.lang, and
java.util, and their subpackages. These packages represent
32% of the occurrences of the phrases “fully qualified name”,
“binary name”, and “field descriptor” in the JDK.

6https://jdk7.dev.java.net/

https://sourceforge.net/tracker/?func=detail&aid=3083499&group_id=92314&atid=600308
https://sourceforge.net/tracker/?func=detail&aid=3083499&group_id=92314&atid=600308
https://jdk7.dev.java.net/

@TypeQualifier @SubtypeOf({Unqualified.class})
public @interface BinaryName {}

@TypeQualifier @SubtypeOf({Unqualified.class})
public @interface FullyQualifiedName {}

@TypeQualifier @SubtypeOf({Unqualified.class})
public @interface FieldDescriptor {}

@TypeQualifier @SubtypeOf({BinaryName.class,
FieldDescriptor.class, FullyQualifiedName.class})

@ImplicitFor(trees={Tree.Kind.NULL_LITERAL})
public @interface SignatureBottom {}

@TypeQualifiers({Unqualified.class, BinaryName.class,
FullyQualifiedName.class, FieldDescriptor.class,
SignatureBottom.class})

public final class SignatureChecker
extends BaseTypeChecker {}

Figure 3: Complete source code for a simple version of the Signature
String Checker (except for package and import statements). The four
annotation declarations define the type qualifiers and their subtyping hierar-
chy. The class declares the checker itself and lists all supported qualifiers.
Unqualified, BaseTypeChecker, and the meta-annotations are provided
by the framework.

2. ASM,7 version 2.2.2: a Java bytecode manipulation and analysis
framework.

3. The Annotation File Utilities (AFU),8 version 3.1: programs
that read annotations from, and write annotations to, .java and
.class files. AFU contains a modified copy of ASM, which
we omit from our counts to avoid double-counting, because
Section 6.3.2 discusses ASM independently.

6.1 Ease of Creation
The Signature String Checker was very easy to write. Initially, it

was written fully declaratively and consisted of just 10 classes, all of
which had empty bodies (84 LOC; 56 LOC NCNB). Figure 3 shows
its essence. The Signature String Checker also verifies the string
representation of method signatures, but we omit this for brevity.
Later, to reduce the number of false positive warnings, we added a
factory class defining regular expressions that determine the type
of a string literal. This addition reduced the number of suppressed
warnings by 48%, 33%, and 54% for projects JDK, ASM, and AFU
respectively.

6.2 Ease of Use
Overall, we wrote fewer than 1 annotation per 500 lines of code.

Most false positives (66 out of 92) were due to string operations
such as concatenation, substring, parsing, etc. The Signature String
Checker does not reason about these operations.

6.3 Effectiveness
The Signature String Checker revealed 28 errors.

6.3.1 JDK
We found 14 documentation errors in JDK 7. All of these errors

are also present in JDK 6, the current release. For 11 of the errors,
we wrote a small program that obeys the documentation and that
results in a crash (a thrown exception) or other incorrect behavior.
For the remaining 3 errors, the documentation is inconsistent, but no
incorrect behavior ensues from following the documentation. The
errors are in four classes: Class, ResourceBundle, LockInfo, and
MonitorInfo.
Class contains 2 errors. Two overloaded versions of forName

are documented in Javadoc as taking a fully qualified name, but
7http://asm.ow2.org/
8http://code.google.com/p/annotation-tools/

they actually require a binary name9. If a developer obeys the
documentation and passes a fully qualified name that is not also a
binary name, then forName throws an exception.
ResourceBundle contains 9 errors. Six overloaded versions of

getBundle are documented as taking a fully qualified name, but in
fact they require a binary name and otherwise throw an exception.
In addition, there are errors in newBundle and needsReload that
cause the functions to erroneously return (respectively) false and
null. Finally, toBundleName returns an incorrect string.
LockInfo contains 2 errors, but these do not cause incorrect

behavior. The constructor takes a parameter that is incorrectly docu-
mented as a fully qualified name, and getClassName is incorrectly
documented as returning a fully qualified name. We are not sure of
the right fix, because this documentation is inconsistent both with
how LockInfo is invoked elsewhere in the JDK and with how the
values are used within LockInfo. When invoked in the JDK, the
actual value is always a binary name. Within LockInfo, the string
can be arbitrary. Thus, the LockInfo documentation’s mentions of
fully qualified names should be changed either to binary names, or
to no constraint.
MonitorInfo is a subclass of LockInfo. Its constructor contains

the same error.
In addition to finding errors, we found 38 places in which the

JDK documentation was deficient, such as missing a description of
the format of a string. Of these places, 12 had public or protected
visibility, and 26 were private or package-private. The pluggable
type-checker made it easy to add the missing documentation and
ensure that the documentation remains correct in the future.

6.3.2 ASM
We found 5 documentation errors, which cause run-time anoma-

lies when used as documented, in ASM. The ASM developers
acknowledged and fixed the bugs.
ClassReader’s constructor is documented to take a fully quali-

fied name, but requires a binary name. The constructor converts the
argument to a file system path, which follows the naming conven-
tions of a binary name.

The return type of Type.getClassName is documented as a fully
qualified name, but it is actually a binary name. The return value
is obtained by converting a (properly documented) field descriptor
into a binary name.

Three externally-visible programs, that users may invoke from the
command line, have incorrect documentation. The input to Check-
ClassAdapter.main, TraceClassVisitor.main, and ASMifier-
ClassVisitor.main are all documented as a “fully qualified class
name or class file name”. In fact, the input must be a binary name
or a class file name.

6.3.3 Annotation File Utilities
We found 4 execution errors and 5 documentation errors in the

Annotation File Utilities (AFU). All of them have since been fixed.
The errors fall into 3 categories:

• Execution failures that occur only when an annotation is defined
as an inner class

• Execution failures that occur only when an annotation has an
element that is itself an annotation

• Documentation errors

Annotations defined as inner classes. It is legal to define an
annotation inside another class, as in
class Outer { @interface Anno {} }

9A field descriptor, for arrays; the binary name format is not defined for arrays.

http://asm.ow2.org/
http://code.google.com/p/annotation-tools/

Such annotations are rare, and AFU had no such tests. The Signature
String Checker found 2 bugs in AFU’s handling of such annotations.

In AnnotationDef.fromClass, a call to Class.getCanoni-
calName should be Class.getName, which returns a binary name.
When supplied with an annotation that is an inner class, AFU cre-
ates a class file with a malformed field descriptor. When process-
ing the class file, JDK’s AnnotationParser.parseAnnotations
indicates that the annotation is not present, and JDK’s Annotation-
Parser.parseMemberValue throws an exception.

A similar error is in IndexFileParser.parseAnnotationDef.
A fully qualified name is parsed and passed to AnnotationDef’s
constructor, whereas a binary name is needed.

Annotations with elements that are annotations. An annota-
tion’s element may itself be an annotation, as in [16, §9.6]:
@Author(@Name(first = "Joe", last = "Hacker"))

This type of declaration is infrequent, so use and testing failed to
find the following two bugs.

Class ClassAnnotationSceneWriter calls ASM’s CheckMeth-
odAdapter.checkDesc and passes AnnotationDef.name, which
is a binary name, but the method requires a field descriptor. We eas-
ily fixed this bug, since the converter method (classNameToDesc)
was already annotated to take a binary name and return a field
descriptor and therefore was our first choice.

The constructor of NestedAnnotationSceneReader takes two
string arguments: name, a simple name, and desc, a field descriptor.
The constructor incorrectly passes name to its superclass constructor,
but it should pass desc. This causes an exception when an anno-
tation has a parameter that is another annotation. Our pluggable
type-checker differentiates the two varieties of strings and prevents
this type of error.

Documentation Errors. Four documentation errors cause in-
correct behavior if the client relies on the documentation. Field
AnnotationDef.name is incorrectly documented as a fully quali-
fied name. In fact, it is a binary name. Methods IndexFileSpec-
ification.parseClass and ClassFileWriter.insert, and the
constructor for class InClassCriterion, are all documented to
take a fully qualified name, but each one actually requires a binary
name.

Another documentation error does not cause incorrect behavior,
only confusion to developers, as it is in a code comment rather than
public Javadoc. Field ReceiverCriterion.methodName contains
the comment “no return type”. However, the field name is mis-
leading, and the comment is wrong. The field contains a signature
(not a name), and that signature does have a return type. In fact,
methodName contains a method descriptor string.

7. INTERNING CHECKER
Interning is a design pattern in which a single object is used

instead of multiple different, but equal, objects. Interning is also
known as canonicalization or hash-consing, and it is related to the
flyweight design pattern [12, 17, 1]. Interning has two benefits:
it can save memory, and it can speed up testing for equality by
permitting use of reference equality rather than structural equality
(in Java, == vs. equals). Many studies have shown the benefits
of interning in reduced memory footprint and improved speed; for
example, 38% and 47% speedups on two SpecJVM benchmarks [21],
and 10% speedup and 14% memory savings in the Eiffel compiler
[27]. Interning is such an important design pattern that Java builds
it in for strings, and programmers can define it for other datatypes.

Interning has compelling benefits, but code that uses both interned
and non-interned values is prone to correctness errors or to missed
performance opportunities. A correctness error is the use of == on
non-interned values. For example:

Integer x = new Integer(22);
Integer y = new Integer(22);
System.out.println(x == y); // prints false!

A missed performance opportunity is the failure to use interning
where intended. The program uses extra copies of objects, which
causes the program to use more space and to run more slowly. The
Interning Checker prevents both of these types of programming
problems.

We ran the Interning Checker on two open-source Apache projects.
Apache Xerces2 Java version 2.10.0 (henceforth, just “Xerces”) is
an XML parser and related utilities10. Apache Lucene 4.0 is a text
search engine library11.

7.1 Ease of Creation
The Interning Checker already existed at the time of our case

study. An undergraduate with no previous experience (in fact, one
of the subjects described in Section 8.2) was able to extend the
checker to reduce the number of false positive warnings in the
bodies of the equals and compareTo methods.

Based on common code patterns in Lucene, the student created
a new @UsesObjectEquals annotation to indicate a type hierarchy
that does not override Object.equals. In this case, comparison
with == is allowed because it is semantically equivalent to equals.
Use of this annotation in Lucene eliminated the need for 25 out of
105 @SuppressWarnings annotations.

7.2 Ease of Use
The Interning Checker checks every == operation and issues

a warning if either argument is not annotated as @Interned. A
warning suppression is required if == is used in optimizations such
as caching or returning an argument when no side effect is necessary.
Other == comparisons are flagged as potentially erroneous, but are
legal because they are among values that are mutually unique, even
if not globally unique.

Lucene was well-documented and contained few errors, making
it a pleasure to annotate. This confirms our experience that the
annotation process itself is simple; it is understanding the code and
correcting its flaws that takes up most of the effort.

In Xerces, over 2/3 of the @Interned annotations (147 out of 218)
were on static final variables that were initialized to a String
literal; these annotations were trivial to add. The 4 false positives
stemmed from optimizations that guarded possibly-expensive calls
to equals with a short-circuiting == test.

7.3 Effectiveness

7.3.1 Xerces
The checker revealed at least 26 erroneously missing calls to

intern. There are probably more, but the poor quality of the Xerces
code and documentation made it impossible for us to determine the
intended design. As just one example, the QName constructor docu-
mentation states, “To be used correctly, the strings must be identical
references for equal strings.” However, uninterned values were
passed to it in at least 7 places. This is an efficiency concern because
the non-interned copies take up heap space and are more expen-
sive to compare. It can also cause run-time errors. For example,
in XSDHandler, the QName is created with non-interned fields, and
immediately passed into the method getGlobalDecl(...), which
compares the QName.uri using the == operator. The == comparison
is guaranteed to evaluate to false. We counted all these as “other er-
rors” in Figure 1 because we did not understand Xerces well enough
to produce a test case that caused Xerces to crash.

10http://xerces.apache.org/
11http://lucene.apache.org/, SVN snapshot from July 14, 2010.

http://xerces.apache.org/
http://lucene.apache.org/

The checker also revealed 159 unnecessary calls to intern —
the receiver was already interned. These calls clutter the code, are
confusing to readers, and they reduce run-time performance. The
direct run-time cost of the extra calls is negligible, but their presence
may disable compiler optimizations: if they were removed, many
static fields would contain compile-time constant values.

7.3.2 Lucene
We found 5 unnecessary calls to intern. For example, Field-

Infos.read interns a value before passing it as the name argu-
ment to FieldInfos.addInternal, which then re-interns it. As
another example, FieldFlag contains a call to intern with a com-
ment “QUESTION: Need we bother here?”. By using the Interning
Checker, we can authoritatively state that removing the call would
not cause a correctness error.

At least 5 fields that are always interned are not documented as
such. For example, we were able to verify that field Standard-
TermsDictReader.field is always interned, and that Lucene is
not missing any opportunities to reduce the field’s memory usage.
We believe this lack of documentation is unintentional, because
many fields in Lucene are documented as interned, and often uses
of == are justified by an explicit comment about interning.

In another 14 cases, an argument to a constructor of Term or
Field was unnecessarily re-interned. However, each class has a
special constructor that does not re-intern its argument, and these
special constructors are used a total of 4 times. We speculate that
programmers are afraid to use the special constructor more often,
even when it would be legal, because they are afraid that their rea-
soning is incorrect or that a later code change will invalidate the
program properties upon which they depended. Machine-checked
documentation of interning properties, such as offered by the In-
terning Checker, could give programmers confidence to use these
interfaces, which would lead to better code design and lower over-
head.

8. NULLNESS CHECKER
The Nullness Checker verifies the absence of null pointer excep-

tions (NPEs) in a program by checking that (1) expressions with
nullable type are never dereferenced and (2) variables with non-null
type are never assigned a null value.

We performed two types of case studies: one in which first-year
computer science students used the Nullness Checker on their class
assignments (Section 8.2), and one in which we applied the Nullness
Checker to open-source software (Section 8.3).

8.1 Ease of Creation
A reader might expect that the nullness type system is so simple

that it was trivial to create and is trivial to use. In fact, the Nullness
Checker is the largest checker by far that has been built with the
Checker Framework. Its core is small, and most of the rest is special
cases to reduce the number of false positives. This is necessary
because programs use null as a special case in many different
contexts, and program logic is often dependent on whether a variable
is null. These facts also make using the nullness type system —
determining and expressing nullness properties — harder than using
any other type system, among the ones that we present.

The simple core of the Nullness Checker was easy to create, and
has been incrementally enhanced since then. Overall, the effort
of creating it was commensurate with its functionality. Recent
extensions include the following. It recognizes when a value is a key
for a map, in which case Map.get does not return null because of a
failed lookup, but only because of null values in the map. It infers
when an object is initialized, even before the end of its constructor. It
supports lazy initialization, method annotations indicating absolute

or conditional pre- and post-conditions, and a @Pure annotation
that indicates a deterministic, side-effect free method that does
not invalidate dataflow facts. It optionally warns about redundant
nullness tests.

Of the 30 files in the Nullness Checker, 19 contain no code (e.g.,
qualifier annotations), 4 are for two distinct checkers (for rawness
and map keys) that are packaged with the Nullness Checker, 4 handle
flow-sensitivity and heuristics, and 3 are the core of the checker.

8.2 Classroom Assessment
To evaluate the Nullness Checker’s ease of use for total novices,

we observed 28 first-year computer science students enrolled in CSE
33112 at the University of Washington. Prior to the course, many of
the students had not been exposed to the object-oriented features of
Java.

Over the course of 7 weekly problem sets, the students each
developed a route-finding program over real road data. For each
problem set, students submitted their solutions, received feedback,
and then re-submitted their solutions. Then, as an additional problem
set, the students ran the Nullness Checker to eliminate the possibility
of null pointer exceptions in their code.

Students received a one-hour demo, a one-hour class lecture on
pluggable type systems, the Checker Framework manual, a problem
set write-up, a build file, and two small documented example files.
Students had to annotate both code they had written and some staff-
provided code, but no testing code; additionally, calls to the Swing
library and a staff-provided library were unchecked.

8.2.1 Ease of Use
Students reported spending only a mean 5.4 hours reading, learn-

ing to run the tool, annotating, and bug fixing13. Including all time
spent, students checked and fixed their code at a mean 1743 LOC
per hour (913 LOC NCNB; σ =563 LOC, 321 LOC NCNB).

Students had no significant trouble using the basic @NonNull
and @Nullable type qualifiers, which were the only ones that had
been demoed. Students’ usage improved with time, even over the 5
hours they spent. When annotating the first assignments, students
sometimes wrote redundant type qualifiers that repeated a default
or would have been inferred. Redundant type qualifiers were less
common when annotating the later assignments.

Students under-used the other annotations supported by the Null-
ness Checker. Only 9 of the 28 students (32%) used the @LazyNon-
Null qualifier despite a member variable being lazily initialized in
the staff-provided code for the first assignment. Similarly, students
should have used @KeyFor more frequently to indicate member-
ship in a map’s key set. Finally, only 8 of the 28 students (29%)
used method annotations about purity and pre- and postconditions
— though they were appropriate for both staff-provided code and
staff-specified student-written code. We conclude that the level of
instruction that we gave to these novices was inadequate. It dis-
cussed theory but failed to focus on the pragmatic issues that they
had most trouble with. And, it did not even mention the annotations
for lazy initialization, methods, or maps, though these were covered
in the Checker Framework manual.

8.2.2 Effectiveness
All 28 students found and fixed at least one null pointer error

in their code14. On the original submissions, 5 of the 28 students
12http://www.cs.washington.edu/education/courses/cse331/10sp/
13This data is from the 11 students who categorized time spent. Min: 3 hours; median:
5; max: 12. Students who worked from home had to install the Checker Framework,
but the staff had pre-installed it on the lab workstations.

14Two students incorrectly reported that type checking had revealed no errors, but our
manual examination of their code changes indicated that they had fixed a null pointer
error.

http://www.cs.washington.edu/education/courses/cse331/10sp/

(18%) had NPEs that were detected by the staff’s test suite, which
consisted of system tests and some unit tests, for classes the staff had
specified. After receiving feedback and resubmitting their work for
automated testing, 3 students (11%) still had NPEs. After running
the Nullness Checker, the staff tests detected no NPEs.

The two most common errors that students fixed were: using
a return value from BufferedReader.readline without testing
for null first (it returns null when the end of the stream has been
reached) and using the formal parameter to equals without testing
for null. Students reported that they had not thought of these cases.

On average, each student was unable to write sufficient annota-
tions fewer than 6 times. These occurrences were indicated by
suppressed warnings, improper workarounds, and (possibly in-
advertent) use of a bug in the Nullness Checker. Students used
@SuppressWarnings to suppress false positives warnings a mean
2.6 times. This modest number is encouraging, especially since one
use per student was needed in staff-provided code. Students worked
around the type checker in less than 2 methods on average (and
in no more than 4 methods, except for one outlier student). These
workarounds converted a NPE into a different erroneous behavior,
which does not address the root cause of the problem. Examples are
null-guarding a block of code and performing no action if the guard
failed, or throwing a different runtime exception, such as Illegal-
ArgumentException, when a null pointer was encountered. Most
students made the same few workarounds, e.g., in the method con-
taining calls to BufferedReader.readline. Another error in the
student annotations was that 12 students took advantage of an un-
soundness in the checking of the @KeyFor annotation (which is now
fixed) by declaring variables as keys for a map without establishing
the relationship. The 20 students that used the @KeyFor annotation
each introduced this error in less than 2 methods on average; one
student made the error in 9 methods.

We asked students what would be the best use of time, if they
wished to improve the quality of their code. Less than half (13 out of
28) unequivocally stated that they would use another tactic such as
reasoning about their code, writing assertions, writing tests, or using
a different pluggable type system to prevent representation exposure.
We were surprised by these results. In our view, using a pluggable
type checker from the beginning of a project is well worth the effort,
but other activities are usually more effective than annotating all of
a legacy codebase. The students concurred regarding the relative
effort: the most common comment, mentioned by 9 students (32%),
was that the checker would be more useful if used throughout the
development process, rather than at the end after all of the code has
been written.

8.2.3 Followup
In a subsequent offering of the same course, we again assigned

students to use the Nullness Checker on their code. There were
two differences: the students received half as much training (but
the training was better-focused), and they type-checked their code
starting with the second assignment rather than annotating every-
thing at the end of the term. We cannot offer definitive conclusions
because the course is underway as of this writing. However, the
early indications are very positive: students have had little trouble
using the type-checker this time around.

8.3 Open Source Programs
We used the nullness checker to check the absence of null pointer

exceptions in two codebases: Google Collections, a utility library15,
and Daikon, a dynamic invariant detector [10, 11]16.

15https://code.google.com/p/google-collections/
16http://code.google.com/p/daikon/

8.3.1 Ease of Use
Google Collections is heavily tested: it has 45,000 tests, and 2/3

of the NCNB lines of code consist of tests. FindBugs [19] has been
run on it to verify the absence of null pointer errors, and it contains
275 FindBugs @Nullable annotations. It has been extensively used
in the field.

Despite all of the previous verification effort, the Nullness Checker
found its first error in Google Collections within 5 minutes of start-
ing work. We quickly annotated and checked the entire codebase,
which is a testament to the quality of the documentation and code.

For Daikon, the annotation process was performed as a routine
part of development and maintenance, over the course of several
years. The annotations appear in the public Daikon version con-
trol repository at daikon.googlecode.com. We have no way to
measure the effort involved, but we do know that the effort to write
annotations, verify correct code, and find errors was completely
dwarfed by the effort to fix errors. Annotation and type-checking
effort was not burdensome, but bug-fixing was.

8.3.2 Effectiveness
Google Collections. We found 9 situations in which an excep-

tion is thrown within Google Collections when a client follows the
documentation. We wrote a small test program that triggers each of
these errors.
ToStringFunction.apply is annotated to take a @Nullable

(possibly-null) argument, but uses it without checking against null.
ForMapWithDefault.hashCode throws a null pointer exception
if the map’s default value is null (which is permitted). In BiMap,
put and forcePut are documented as permitting null arguments,
but subclass ImmutableBiMap violates the specification by throw-
ing an exception if null is used. Similar problems occur with
Multimap’s methods put, putAll, and replaceValues (subclass
ImmutableListMultimap violates the specification and throws
an exception), and with StandardListMultimap.put. Finally,
Multiset.add is documented as taking a nullable argument, but
ImmutableMultiset violates the specification and throws an error.
The last 7 errors are a result of improper subclassing. Whereas pro-
grammers may explicitly reason about the calls their code makes, it
is easy to forget to check the specification of the overridden method.
A type-checker assists programmers by checking this requirement.

We found 154 missing @Nullable annotations, which we believe
to be an oversight because the same methods (e.g., equals) were
properly annotated elsewhere in the codebase. (We also found about
800 more missing annotations, but in those cases the code was not
inconsistent, because the annotations were missing throughout. We
do not count them as errors.) The chief developer said “we added
what was necessary to make findbugs [sic] happy ... it’s not worth
our extensive time and thought to think everything over across the
whole library.” He apparently viewed FindBugs as an obstacle to be
worked around rather than as an aid to understanding. By contrast,
we were unfamiliar with the codebase but quickly checked it with
the Checker Framework, and detected errors that FindBugs missed.

Daikon. Daikon’s version control history indicates over 90 errors
whose discovery can be unambiguously attributed to the Nullness
Checker. Additionally, the Nullness Checker revealed unnecessary
tests, deficient documentation, and design flaws; most of these have
now been fixed. Because of the nature of the annotation process,
we do not have an exact count of the errors. However, we can say
that the errors are important. In one case in December 2009, a user
submitted a bug report regarding a Daikon crash just days after the
issue had been identified by the Nullness Checker and fixed (but
before a new version had been released).

The Daikon case study reinforced the value of a static analysis
tool as a nose for finding bad code smells: if code is too complex for

https://code.google.com/p/google-collections/
http://code.google.com/p/daikon/
daikon.googlecode.com

the type-checker to reason about and too complex for the program-
mer to have confidence in suppressing a false positive, then the code
is probably too complex. For example, Daikon’s code for testing
collinearity of points has optimizations for incremental processing,
sorting, and point removal. We have been unable to manually verify
that no null pointer dereference will occur, nor to find a case where it
does. The code should be rewritten for clarity. As another example,
over time the Invariant class took on two distinct purposes: repre-
senting program properties, and being a factory object. The two uses
must not be mixed — fields that are null in the factory objects are
needed when computing program properties — and should really be
represented as distinct classes.

Most suppressed warnings are due to application invariants: prop-
erties specific to the control flow and logic of this program. An
example is XorVisitor.visit, which takes two arguments, at
least one of which is non-null at all call sites. The type system can-
not express nor check this property. Some other common reasons for
suppressing a checker warning were when nullness of one variable is
dependent on the run-time value of another variable, initialization of
circular data structures, test code that did not fully initialize objects
used as mocks, and re-initialization of variables in new program
phases.

9. LESSONS LEARNED
Declarative syntax. The Checker Framework supports both a

declarative and a procedural syntax. A user should start with a
simple, declaratively-specified checker. When the limitations of the
declarative syntax become too restrictive, the user can incrementally
add the procedural syntax to implement more powerful features.
The type rules can even utilize information beyond the program
source code; as an example, the Compiler Message Checker looks
up message strings in an external file.

This design has made it easy to get started and easy to extend a
checker. While good for initial exploration, declaratively-specified
checkers are inadequately expressive for practical use, in the current
state of the art.

To the best of our knowledge, the Checker Framework is the first
pluggable type checker framework to propose, and support, aug-
menting a fully declarative implementation with procedural code.17

Soundness. Given the complexity of real-world code, it is un-
realistic to expect a tool to issue no false positives. The Checker
Framework is designed for analyses that value soundness over lim-
iting false positives. The user should be willing to suppress some
warnings. The user obtains a correctness guarantee via a combina-
tion of the automated checker and limited manual reasoning. If a
pattern of false positives emerges, a developer can incrementally
add logic to soundly reduce the number of false positives.

The Checker Framework’s clear semantics makes its warnings
more comprehensible. Users who do not understand a warning or
how it is computed are prone to ignore or misuse the warning and
to miss errors. The Google engineers using FindBugs and some
students using the Nullness Checker are examples.

Expressiveness. We believe type checkers represent a sweet spot
in program analysis power. The modular nature of type-checking
makes it fast and its warnings easy to understand. More power-
ful tools like model checkers and symbolic execution can prove
more properties, but they scale poorly and are harder to use. Un-
sound heuristic-based tools capture fewer properties and give fewer
guarantees.

There is a temptation to indefinitely expand a type system to
increase expressiveness and capture more special cases. At some

17Markstrum et al. [22] mistakenly claim otherwise. In fact, JavaCOP obtained a fully
declarative syntax after JavaCOP authors viewed our demo [8] of the feature. Their
paper also mischaracterizes other aspects of the Checker Framework.

point, this makes the type system harder, not easier, to use.
We believe it is best to be conservative in adding features. For ex-

ample, the Interning Checker supported only the single @Interned
annotation for four years. After analyzing the false positives from
the case studies, we added a class annotation that eliminated 24% of
Lucene’s false positives. The Nullness Checker has 17 annotations
that have proved worth adding over the same period.

Instruction. Understanding the theory of type qualifiers is not
necessary to use the Checker Framework because it fits into devel-
opers’ toolchain and is a natural extension to Java’s existing type
system. In fact, novices preferred instruction in the nuts and bolts
of using the tool to an explanation of the theory.

Annotation effort. Well-written code, with a clear design and
documentation, is easy to annotate. Annotating a library is hard
because understanding a foreign library is hard — especially un-
derstanding its undocumented features and its bugs. Writing the
annotations, once the design is understood, takes negligible time.

Nonetheless, developers continue to fear the annotation burden —
at least until they try it. We think that, similar to the lack of initial
enthusiasm for generic types, more and more developers will come
to appreciate the benefits of pluggable types, which are no more
burdensome than generics. For example, the nullness type system is
by far the most verbose of our type systems, with about 1 annotation
per 80 lines (1 per 36–52 LOC NCNB) in Google Collections and
Daikon (Figure 1). But, these projects have 13.9 and 1.9 times as
many type parameters as nullness annotations.

Applicability. We have repeatedly discovered that users underes-
timate how much can be captured by a type system; the examples
in this paper are the tip of the iceberg. Once users get in the habit
of thinking how to utilize a type system and its enforcement of con-
sistent usage among different parts of a program, the opportunities
seem to arise everywhere.

On the other hand, not all code is worth annotating and checking:
like any methodology, pluggable-type checking should be applied
where it is appropriate and most needed. A type system is not
applicable in all circumstances where its guarantees might be desired.
Code that depends on user input, dynamic checks, and reflection is
hard to handle in a static type system. For any type system, some
program invariants are not expressible or provable.

Benefits. Many of the design, documentation, and code errors
revealed by a pluggable type-checker could be found in other ways,
such as testing, reviews, and other tools. Compilation is the right
time to detect them, because of the well-known fact that the earlier
an error is detected, the easier it is to fix. When used throughout
the development process, errors can be corrected early while the
design is fresh in the programmer’s mind and other components have
not begun to rely on it. Because our subject programs are mature,
tested, and fielded, our evidence likely overstates the difficulty and
understates the benefits of pluggable type checking.

10. RELATED WORK
Since our key contribution is case studies, we focus our discussion

of related work on other case studies.
Our work uses the Checker Framework for creating custom type

systems in Java. Several similar frameworks exist, such as Poly-
glot [24], JavaCOP [22, 2], JQual [18], and JastAdd [6]. The latter
two do inference as well as checking. For a comparison of the
frameworks, see [25]. Case studies such as ours are lacking for
the other frameworks. Eckman et al. [7] give timing numbers and
summary statistics for running JastAdd inference for nullness, but
do not evaluate the accuracy or usefulness of the annotations. Mark-
strum et al. [22, 2] give timing numbers for running JavaCOP, but
focus on structural pattern-matching and do not demonstrate that its
type-checking results are correct or useful. Their inability to create

a correct, scalable checker for either Javari or nullness is suggestive
of the opposite. Greenfieldboyce and Foster [18] do evaluate the
quality of JQual’s mutability inference. They examined 50 (out of
approximately 10,000) of the readonly references reported by their
tool. They report that 35 are correct and desirable, and 15 are not:
3 are inferred as readonly but are immutable strings; 5 are marked
as readonly because no analyzed clients use them; 7 are mutable
(due to the authors not marking enough fields as “tracked”, or field-
sensitive). Papi et al. [25] ran 5 type checkers built on the Checker
Framework over a total of 600k LOC, and detected 66 errors; this
paper can be thought of as a logical extension of that one, using new
checkers and enhancements of older ones, and bringing to bear an
additional 3 years of experience.

Eiffel builds in a nullness type checker [23] that is similar to ours
in that it adds, to the standard features of a nullness type system,
a limited form of flow-sensitive type refinement (called Certified
Attachment Patterns or “CAPs”), warning suppression (called the
“check instruction”), and “stable attributes” that correspond to our
@LazyNonNull, though it lacks some other features of our null-
ness type system. Their justifications for these features are similar
to ours [25]. The Eiffel Software team annotated “thousands of
classes”, and Meyer et al. [23] provide summary statistics for the
number of lines changed (3–11%, which is more than our 1%). De-
tails about the conversion process and results would be interesting.

The work by Chalin et al. [3] presents the nullness checker of the
Eclipse JML JDT tool. They evaluated their checker on 700 kLOC
and state that 75% of all references were intended to be non-null.
Their type system does not seem to support features that we found
necessary, such as generics and qualifier polymorphism. The paper
also presents a detailed overview of programming languages that
support non-null type checks. They did not implement a framework
that could be used for other type systems.

While there have been previous case studies of type systems for
nullness and immutability, we are not aware of any previous type
checker (or case study) for any of the other type systems in our
case studies. We speculate that this is because only the Checker
Framework makes it sufficiently easy to build and use a pluggable
type-checker.

We are not aware of a previous implementation of interning as
a type qualifier. As a result, our system is more flexible, and less
disruptive to use, than previous interning approaches [21, 13, 26] in
that it neither requires all objects of a given type to be interned nor
gives interned objects a different Java type than uninterned ones.

Java 5 added support for enum types. However, we are not aware
of a case study that shows the effectiveness of converting a program
from fake enums to enum types. In our approach fake enums can
be refined using the Fenum Checker, without incurring backwards-
compatibility problems or performance penalties.

CQual [14, 15] is a type qualifier framework for C. It provides
qualifier polymorphism and inference. The framework supports
subtyping between the qualifiers and well-formedness constraints
for types, both specified declaratively using a configuration file.
Adding imperative type checks is not possible without modifying the
framework itself. The framework has been used for const, locking,
and user/kernel-level bug detection.

11. CONCLUSION
We evaluated pluggable type-checking, as embodied in the Check-

er Framework, on over 2 million lines of code and found hundreds
of bugs, including over 40 that cause incorrect user-visible behavior,
in well-tested and widely used open source programs. We conclude
that the type-checkers are easy to build, to learn, and to use; they
scale to realistic applications; and they find real errors that were
overlooked by other verification methodologies such as testing and

manual reasoning.
It is easy to improve the quality of your Java code, and you should

start today! Visit the Checker Framework website at
http://types.cs.washington.edu/checker-framework/.

REFERENCES
[1] J. R. Allen. Anatomy of LISP. McGraw-Hill, New York, 1978.
[2] C. Andreae, J. Noble, S. Markstrum, and T. Millstein. A framework for

implementing pluggable type systems. In OOPSLA, pages 57–74, Oct.
2006.

[3] P. Chalin, P. James, and F. Rioux. Reducing the use of nullable types
through non-null by default and monotonic non-null. IET Software,
2(6):515–531, Dec. 2008.

[4] Checker Framework website.
http://types.cs.washington.edu/checker-framework/.

[5] ECMA Technical Group TG49-TG4 (Eiffel) of ECMA Technical
Committee 49 (Programming Languages), editor. Standard ECMA-367
and ISO/IEC 25436:2006, Eiffel Analysis, Design and Programming
Language. ECMA International and International Standards
Organization, Geneva, June 2006.

[6] T. Ekman and G. Hedin. The JastAdd extensible Java compiler. In
OOPSLA, pages 1–18, Oct. 2007.

[7] T. Ekman and G. Hedin. Pluggable checking and inferencing of
non-null types for Java. J. Object Tech., 6(9):455–475, Oct. 2007.

[8] M. D. Ernst. Building and using pluggable type systems with the
Checker Framework. In ECOOP, July 2008. Tool demo.

[9] M. D. Ernst. Type Annotations specification (JSR 308).
http://types.cs.washington.edu/jsr308/, Sep. 12, 2008.

[10] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically
discovering likely program invariants to support program evolution. In
ICSE, pages 213–224, May 1999.

[11] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao. The Daikon system for dynamic detection of
likely invariants. Sci. Comput. Programming, 69(1–3):35–45, Dec.
2007.

[12] A. P. Ershov. On programming of arithmetic operations. CACM,
1(8):3–6, Aug. 1958.

[13] J.-C. Filliâtre and S. Conchon. Type-safe modular hash-consing. In ML,
pages 12–19, Sep. 2006.

[14] J. S. Foster, M. Fähndrich, and A. Aiken. A theory of type qualifiers. In
PLDI, pages 192–203, June 1999.

[15] J. S. Foster, T. Terauchi, and A. Aiken. Flow-sensitive type qualifiers. In
PLDI, pages 1–12, June 2002.

[16] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language
Specification. Addison Wesley, Boston, MA, third edition, 2005.

[17] E. Goto. Monocopy and associative algorithms in an extended Lisp.
Technical Report 74-03, Information Science Laboratory, University of
Tokyo, Tokyo, Japan, May 1974.

[18] D. Greenfieldboyce and J. S. Foster. Type qualifier inference for Java. In
OOPSLA, pages 321–336, Oct. 2007.

[19] D. Hovemeyer, J. Spacco, and W. Pugh. Evaluating and tuning a static
analysis to find null pointer bugs. In PASTE, pages 13–19, Sep. 2005.

[20] T. Lindholm and F. Yellin. The Java Virtual Machine Specification.
Addison-Wesley, Reading, MA, USA, 2nd edition, 1999.

[21] D. Marinov and R. O’Callahan. Object equality profiling. In OOPSLA,
pages 313–325, Nov. 2003.

[22] S. Markstrum, D. Marino, M. Esquivel, T. Millstein, C. Andreae, and
J. Noble. JavaCOP: Declarative pluggable types for Java. ACM
TOPLAS, 32(2):1–37, Jan. 2010.

[23] B. Meyer, A. Kogtenkov, and E. Stapf. Avoid a void: The eradication of
null dereferencing. In Reflections on the Work of C.A.R. Hoare,
chapter 9, pages 189–211. Springer, London, 2010.

[24] N. Nystrom, M. R. Clarkson, and A. C. Myers. Polyglot: An extensible
compiler framework for Java. In CC, pages 138–152, Apr. 2003.

[25] M. M. Papi, M. Ali, T. L. Correa Jr., J. H. Perkins, and M. D. Ernst.
Practical pluggable types for Java. In ISSTA, pages 201–212, July 2008.

[26] M. Vaziri, F. Tip, S. Fink, and J. Dolby. Declarative object identity
using relation types. In ECOOP, pages 54–78, Aug. 2007.

[27] O. Zendra and D. Colnet. Towards safer aliasing with the Eiffel
language. In IWAOOS, pages 153–154, June 1999.

http://types.cs.washington.edu/checker-framework/
http://types.cs.washington.edu/checker-framework/
http://types.cs.washington.edu/jsr308/

	Introduction
	The Checker Framework
	Methodology
	Compiler Message Checker
	Ease of Creation
	Ease of Use
	Effectiveness

	Fake Enumeration Checker
	Ease of Creation
	Ease of Use
	Effectiveness
	JabRef
	Swing

	Signature String Checker
	Ease of Creation
	Ease of Use
	Effectiveness
	JDK
	ASM
	Annotation File Utilities

	Interning Checker
	Ease of Creation
	Ease of Use
	Effectiveness
	Xerces
	Lucene

	Nullness Checker
	Ease of Creation
	Classroom Assessment
	Ease of Use
	Effectiveness
	Followup

	Open Source Programs
	Ease of Use
	Effectiveness

	Lessons Learned
	Related Work
	Conclusion

