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Abstract
Reasoning about side effects and aliasing is the heart of verifying
imperative programs. Unrestricted side effects through one refer-
ence can invalidate assumptions about an alias. We present a new
type system approach to reasoning about safe assumptions in the
presence of aliasing and side effects, unifying ideas from reference
immutability type systems and rely-guarantee program logics. Our
approach, rely-guarantee references, treats multiple references to
shared objects similarly to multiple threads in rely-guarantee pro-
gram logics. We propose statically associating rely and guarantee
conditions with individual references to shared objects. Multiple
aliases to a given object may coexist only if the guarantee condition
of each alias implies the rely condition for all other aliases. We
demonstrate that existing reference immutability type systems are
special cases of rely-guarantee references.

In addition to allowing precise control over state modification,
rely-guarantee references allow types to depend on mutable data
while still permitting flexible aliasing. Dependent types whose
denotation is stable over the actions of the rely and guarantee
conditions for a reference and its data will not be invalidated by
any action through any alias. We demonstrate this with refinement
(subset) types that may depend on mutable data. As a special
case, we derive the first reference immutability type system with
dependent types over immutable data.

We show soundness for our approach and describe experience
using rely-guarantee references in a dependently-typed monadic
DSL in COQ.

1. Introduction
A common way to reason about side effects in imperative languages
is to restrict (disable) mutating some state in some code sections.
This is seen most clearly in reference immutability [27, 50, 55, 56],
but also in ownership [17] and region-based type systems [6].
The common approach is to attach permission/ownership/region
information to references, where certain operations (mainly writes to
the heap) through references with certain permissions are prohibited.

The program logic literature includes work ensuring that actions
by one section of code do not interfere destructively with the
assumptions of another section of code. This appears most often in
the form of concurrent program logics, where the goal is to prevent
destructive interference between threads. This reaches at least as
far back as Owicki and Gries’s technique [43], which checks thread
non-interference by ensuring that no action would invalidate any
intermediate assumption of another thread. Jones abstracted cross-
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thread interactions to a rely relation bounding interference by other
threads, and a guarantee relation bounding actions of the current
thread [31]. Each thread’s local proof then requires all local actions
to fall within its guarantee, and that all of its intermediate assertions
are stable with respect to (that is, not invalidated by) any possible
action permitted by the rely. Parallel composition of threads is then
safe if each thread’s guarantee implies each other thread’s rely.

Our central idea is to treat aliases to objects similarly to threads
of control in rely-guarantee program logics. Each reference’s type
carries a rely and a guarantee, bounding actions on an object through
other references (rely) and bounding actions through the reference
itself (guarantee). We call these augmented reference types rely-
guarantee references. The type system maintains the invariant that
the guarantee of any reference implies the rely of any alias. The type
system checks these constraints when a program duplicates an alias.
This raises the issue that some references cannot soundly coexist: no
two references to the same object can each guarantee nothing (the
reference permits arbitrary actions) and rely on restricted behavior
through aliases. This presents us with a logical account of aliasing:
some references may not be aliased without weakening the rely
or guarantee of the source, and a reference with an empty rely
necessarily has no aliases.

Rely-guarantee references generalize reference immutability [27,
50, 55, 56] to finer-grained control over interference through aliases.
The traditional reference immutability qualifiers correspond to
simple rely and guarantee conditions. For ref τ[R,G] as a reference
to data of type τ with rely R and guarantee G:

• readable τ ≡ ref τ[any interference, no writes]
• writable τ ≡ ref τ[any interference, any writes]
• immutable τ ≡ ref τ[no interference, no writes]

Rely-guarantee references let us reason about some refinements
of referents. Let a stable predicate over a reference be one that is
preserved by its rely. Then a stable predicate cannot be invalidated
by actions through an alias, and any new predicate that is stable and
ensured by a guarantee-permitted action (on an object satisfying the
old predicate) is true after the action, providing a form of strong
update on arbitrarily aliased mutable data. (An action allowed by
the guarantee that preserves the current predicate is a special case.)

1.1 Contributions
Refinement Types Over Mutable Data Rely-guarantee references
permit refinement types [25] that depend on mutable data, without
requiring any aliasing restrictions to support strong updates. We
leverage the notion of a stable assertion from rely-guarantee pro-
gram logics, allowing any refinements that are not invalidated by
actions performed through other references. We prove that our type
system is sound.
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Generalizing Reference Immutability We generalize reference
immutability by combining it with rely-guarantee techniques. This
is of independent interest, but also outlines an effort/precision
spectrum from unrestricted references to reference immutability
to rely-guarantee references.

A Prototype Implementation We prototype an implementation
as a shallow monadic embedding in COQ. We have used it to
verify the examples in the paper, including implementing reference
immutability as a special case. We briefly discuss our experience
implementing a language as a COQ DSL and the manual proof
burden for our technique versus purely functional versions. The
implementation is available at
https://github.com/csgordon/rgref/.

We believe rely-guarantee references make a compelling argu-
ment that rely-guarantee reasoning is a promising way to statically
reason about aliasing. Further, any technique traditionally used to
reason about thread interference can be adapted to modularly reason
about effects in the presence of aliasing (we present rely-guarantee
references as a type system, but our ideas could be implemented
in other ways, such as a program logic). Ultimately we believe the
proper way to support unknown aliases in program verification is by
treating aliases as different threads of control.

2. Rely-Guarantee References
A rely-guarantee reference is a reference to a heap structure of a
given type, as in ML’s ref τ, with three additional type components:

• A refinement predicate P over the τ and a heap h that can enforce
local properties and/or data-structure well-formedness.
• A guarantee relation G over pairs of τs and heaps, restricting

the effects to the referent (and state heap-reachable from that
referent) that may be performed through this reference or those
produced by dereferencing it.
• A rely relation R specifying the actions permitted by (the

guarantees of) other aliases to the referent.

We use the form ref{τ | P}[R,G] for a rely-guarantee reference.
Predicates and relations are defined not only over the τ a reference
refers to, but also over heaps, to refine data reachable from the
immediate referent. For a rely-guarantee reference type to be well-
formed, the predicate P must be stable with respect to the rely R:
for all values and heaps for which the predicate holds, if the rely R
allows another value and heap to be produced by actions on another
alias, then the predicate holds for the new value and heap as well:
P v h∧R v v ′ h h ′ =⇒ P v ′ h ′. This ensures that actions through
aliases do not invalidate the refinement, and that all actions that may
invalidate the refinement are local, so reasoning about such changes
allows strong updates to the refinement. These issues are formally
treated in Section 4.

A simple example of rely-guarantee references is a monotoni-
cally increasing counter, which we can represent as a value of type

ref{nat | any}[increasing, increasing]

where any is the trivial (always true) refinement, and increasing
(Section 3.1) is a relation on natural numbers and heaps that requires
the second nat to be greater than or equal to the first. Given a
variable x with the type above, x← !x+1 type-checks (! is ML’s
dereference operator). By contrast, incorrect code that decrements
the counter cannot satisfy the guarantee relation increasing.

A read-only alias to an increasing counter can be expressed as:

ref{nat | any}[increasing,≈]

where ≈ is a relation permitting no change.

We might wish to know more about a counter value, for example
that it is greater than 0 so it is safe as a divisor to compute an average.
Any write to the counter via any reference will increase its value, and
may therefore conclude the result is greater than 0.1 Furthermore,
it is safe to continue assuming the value is greater than 0 because
the reference’s rely ensures no alias can decrease the value. We say
λx : nat.λh : heap.x > 0 is stable with respect to the rely increasing.
When a write establishes a new stable predicate over the data, strong
updates to the reference’s predicate (changing the predicate in the
type) are sound. (Similarly, when a write invalidates a reference’s
predicate, a strong update is required, to a new predicate stable over
the rely.)

Many verification techniques for imperative programs struggle to
verify examples of this kind. Reference immutability and fractional
permissions [7, 33] can only allow or outright prevent mutation, not
control it. Separation logic cannot concisely specify the counter’s in-
tended semantics, only code’s behavior. Rely-guarantee and related
systems can express the semantics among threads [22, 31, 51], but
only coarsely [52] among different program sections. Most program
logics can constrain the actions of a function on an argument, but
the specification must deal with aliasing, either by giving linear
semantics to knowledge of the counter (as in separation logic), or by
explicitly treating aliasing (as in more traditional Hoare logics [28]).

With rely-guarantee references, functions are written without
concern for aliasing among their arguments. A function cannot be
called with unsafe aliasing among arguments: since each alias’s
guarantee must imply each other’s rely, each function explicitly
accounts for its possible actions. If two arguments of the same type
have conflicting rely/guarantee conditions, they cannot be aliased.

2.1 Subtleties of Rely-Guarantee References
While the intuition behind rely-guarantee references is straightfor-
ward, this section overviews some more subtle features of our system
that avoid problems.

Non-duplicable References A reference may be freely duplicated
if its guarantee implies its own rely, as with the monotonically
increasing counter. But consider a reference

y : ref{nat | any}[decreasing, increasing]

Making an alias to y where the the alias has the same type as y
violates soundness, because the guarantee of the duplicate does
not imply the rely of y! Instead, aliasing y requires splitting it into
two aliases with weaker rely/guarantee conditions. We support such
splitting via a novel substructural resource semantics (Section 4).

Reference to References We need a reference’s guarantee to re-
strict all actions performed using that reference, which must include
actions performed via references acquired by dereferencing the first
reference. Otherwise, reading a reference out of the heap and writing
through it could violate the original reference’s guarantee, violating
the “capability to perform effects in the guarantee” intuition, and
potentially invalidating a predicate. So reading from the heap must
somehow transform the type of the referent to restrict resulting ref-
erences. Reference immutability systems can give a simple binary
function on permissions [27], to capture the transitive meaning of
qualifiers. For example, dereferencing a readable reference to a
writable reference returns a readable reference (assuming a deep
interpretation of reference immutability, where permissions apply
transitively). By contrast, our type system combines arbitrary rela-
tions (Section 3.2). Furthermore, if one reference points to another,
how should the rely of the “inner” reference be related to the outer

1 Because the type nat of natural numbers contains no negative numbers.
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one? It is unsound if it permits more interference than the outer rely,
so our type system prevents this.2

Footprint How much of the heap may a rely-guarantee reference’s
predicate or conditions mention? It is not productive or sound to let a
reference constrain unrelated heap data: letting a reference arbitrarily
constrain the heap could lead to allocating a new heap cell whose
rely is not implied by existing references. The type system restricts
the expressiveness of these predicates to ensure sound and tractable
reasoning: predicates and relations may depend only on the heap
reachable from the reference.

Cycles Many useful data structures contain cycles, so we wish to
reason effectively about them. The solution turns out to be simple
(propositions describing cycles require finite proofs, and recursion
based on heap structure is not permitted in predicates), but was not
immediately obvious to us.

3. Examples
We present examples using rely-guarantee references to verify pro-
grams. The examples are small, but highlight distinct capabilities
of rely-guarantee references. Rather than writing examples in our
core language RGREF (Section 4), we present them using a slight
simplification of our shallow embedding in COQ [15]. The embed-
ding is largely in the style of YNOT [12, 40], using axioms for heap
interactions.

Reading COQ Source COQ’s language for defining functions and
types is based strongly on ML, though many keywords are differ-
ent: Definition and Fixpoint for non- and recursive definitions,
Inductive for defining inductive variant datatypes by specifying
constructors. Parameter declares assumptions, external functions,
or abstract elements in a module signature. Functions and parameter-
ized type definitions can put some arguments in braces rather than
parentheses; these arguments are implicit, and inferred when pos-
sible from later arguments. Another notable syntactic change from
ML is that = is an operator for propositional equality, not a boolean
decision procedure for structural equality. Therefore, := is often
used where ML would use = in definitions. The set of types is much
richer than ML, not only due to dependent types but because there
are universes (types of types): Prop is the type of propositional types
(erasable during extraction, such as proof terms with conjunction,
implications, etc.), and Set is the type of normal (computationally
relevant) data types. COQ also includes a notation feature that allows
users to extend the grammar with additional parsing rules, allowing
programs to use syntax closer to mathematical definitions (such as
ref{T | P}[R,G]). Our notation uses ML’s dereference operator (!)
and uses r← e for writing e to the location referenced by r. We
introduce further notations as they arise.

The PROGRAM extension [48] (used via definitions prefixed with
Program) allows the omission of explicit proof terms in programs.
Omitted terms are either solved automatically via a (customizable)
proof search tactic, or set aside for subsequent manual interactive
solving, improving readability.

3.1 Monotonic Counter
Consider again our running example of a monotonically increasing
counter. Generally, rely and guarantee conditions must be defined
over pre- and post-heaps as well as values, to describe the interfer-
ence they tolerate on reachable substructures. For a simple counter,
there is no other reachable data, so the pre- and post-heaps may be
ignored. Thus the relation for increasing over time is defined as:

2 This is actually a design decision that simplifies checking stability. An
alternative design could check a predicate for stability over any change
permitted by any reference reachable from the predicate’s target referent.

Definition increasing (n n’:nat) (h h’:heap) : Prop :=
n’ ≥ n.

Code to allocate a counter is straightforward:

Program Definition mkCounter (_:unit)
: ref{nat|any}[increasing,increasing] :=
alloc 0.

The allocation function mkCounter generates well-formedness
proof obligations for the resulting type:

• that any is stable with respect to increasing

• that any and increasing are precise: they access only the (empty)
heap segment reachable from the natural number they apply to
• that any is true of 0

In our prototype implementation (Section 5), most of these obliga-
tions are proven automatically by lightly-guided automatic proof
search. Type errors for actions that fall outside the guarantee (or
ill-formed rely/guarantee relations, or predicates that are not precise,
etc.) manifest as unsolvable proof obligations.

Using a monotonic counter is also straightforward:

Program Definition example (_:unit) :=
let x = mkCounter () in x ← !x + 1;

An assignment typechecks only if the change implied by the write
is permitted by the reference’s guarantee relation, for any pre-heap
and pre-value satisfying the reference’s refinement. In this case, the
assignment generates a proof obligation of the form

∀x,h.any (!x) h =⇒ increasing (!x) (!x+1) h h[x 7→ h[x]+1].

which is easily solved, with little effort beyond what is required
to verify a pure-functional increment function (see Section 5.3).
Each read also generates a proof obligation that the guarantee
increasing is “reflexive”: it allows a reference to be used without
modifying the heap (∀n,h. increasing n n h h). By contrast, an empty
guarantee relation would disallow using a reference.

The monotonically increasing counter was proposed by Pilkiewicz
and Pottier [46] as a challenging goal for program verification. Un-
like their solution and another in fictional separation logic [30], we
can state the monotonicity property plainly and require no abstrac-
tion to prevent unchecked interference. On the other hand, their
solutions verify that the increment occurs, while ours ensures that
increment is the only permitted action.

3.2 Monotonic List
We can define a monotonically growing (prepend-only) list, either
using a mutable reference to a pure-functional list, or using mutable
nodes. The former approach is similar to the monotonic counter, so
to show the power of rely-guarantee references for recursive data
structures, Figure 1 shows the latter.3

We first define hpred and hrel, type-level functions that allow
shorter type declarations. We use them throughout this paper. Next
we define a linked list structure, with restricted references to the
tail. list imm constrains the tail to be immutable. For the reader
unfamiliar with COQ, list imm is a GADT [54] constructing a
proposition on different constructions of lists. The first constructor
declares that an empty list must remain empty, regardless of heaps.
The second constructor accepts a nat, a tail, two heaps, and a proof
that list imm holds over the tail of the list in those heaps, returning
a declaration that a cons cell must remain constant. The immutability
requirement is not essential to this example (we could, for example,

3 The most natural design uses mutual inductive types where one indexes
the other, which we assume here. COQ does not support this, so we use an
encoding, discussed further in Section 5 and Appendix A.
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Definition hpred (A:Set) := A -> heap -> Prop.
Definition hrel (A:Set) := A -> A -> heap -> heap -> Prop.
Inductive list : Set :=
| nil : list
| cons : forall (n:nat),

ref{list|any}[list_imm,list_imm] -> list
with (* list tails are immutable (_imm) *)
list_imm : list -> list -> heap -> heap -> Prop :=
| imm_nil : forall h h’, list_imm nil nil h h’
| imm_cons: forall n tl h h’,

list_imm h[tl] h’[tl] h h’ ->
list_imm (cons n tl) (cons n tl) h h’.

(* Convenient allocation functions *)
Program Definition Nil {P:hpred list}
: ref{list|P}[list_imm,list_imm] := alloc nil.

Program Definition Cons {P P’:hpred list}
(n:nat)(tl:ref{list|P}[list_imm,list_imm])

: ref{list|P’∩(λ l h=>l=cons n tl)}[list_imm,list_imm]
:= alloc (cons n tl).

(* A prepend-only list container *)
Record list_container (P:hpred list) :=
mkList { head : ref{list|P}[list_imm,list_imm] }.

Inductive prepend : hrel (list_container P) :=
| prepended : forall c c’ h h’ n,

h’[head c’]=cons n (head c) -> prepend c c’ h h’
| prepend_nop : forall c h h’, prepend c c h h’.

Program Definition newList (P:hpred list)
: ref{list_container|any}[prepend,prepend] :=
let x = Nil in alloc (mkList P x).

Program Definition doPrepend {P:hpred list}(n:nat)
(l:ref{list_container|any}[prepend,prepend]) : unit :=
let x = Cons n (head l) in

l ← mkList P x.

Figure 1. RGREF code for a prepend-only linked list.

permit the numbers to change but require the length to increase),
but is included for completeness. We then define convenient helper
functions for heap-allocating nil or cons cells.

We enforce the prepend-only behavior through reference
to a list container structure, which holds a reference to a
list parameterized by some predicate. The prepend relation on
list containers allows prepending and no-ops (required for read-
ing the reference). Finally we have helper functions to allocate a new
list and to prepend the list with a new cell. prepend is essentially
the specification of what doPrepend is permitted to do with the list.

Note the predicate conjunction (∩) in the return type of Cons.
This, along with the predicate conversion rule, is how flow-sensitive
assumptions can be handled (notice that the equality is stable
with respect to list imm). This is important in doPrepend, where
information from the result of one write (inside Cons) must be
carried into another (the assignment through l), because it is
otherwise unavailable in the expression stored.

Not shown in Figure 1 are implicit obligations such as ∀h.P nil h
in Nil. Other such obligations include:

• ∀tl,h.P tl h =⇒ P′ (cons n tl) h in Cons

• That prepend permits the write in doPrepend (under the trivial
assumption that any holds of the initial list container and heap).
This obligation requires a richer type for the allocation result,
because mkList must know x is a cons cell whose tail is the old
list. This information is not available locally (within the write
statement itself). Other systems propagate hypotheses separately,
but we only need to track variables: the required equality is
present in x’s predicate because of Cons’s return type.
• The stability and precision properties that must hold for various

predicates and list imm.

B immutable = immutable
immutable B = immutable
readable B = readable
writable B q = q

Figure 2. Combining reference immutability permissions, from
[27]. Using a p reference to read a q T field produces a (pBq) T .

• Propagations of these obligations to indirect polymorphic callers,
such as newList and prepend.

Also omitted in Figure 1 are obligations related to folding and
containment. Folding is the restriction of read result types to ensure
that for any reference r with guarantee G, references produced via
reads of r do not allow actions exceeding those permitted by G on
r’s referent. This ensures actions via a reference read from inside a
data structure cannot invalidate predicates over the whole structure.
Containment is a check that the rely R for a reference r captures all
interference allowed by the interference summaries of references
reachable from r. This ensures that any predicate preserved by R is
also preserved by actions on aliases to internal structures.

Both operations require projecting a given relation component-
wise onto a datatype’s members. For our prepend-only list, project-
ing prepend is trivial (it does not constrain the list cells’ values),
and the result of projecting list imm is logically equivalent to
list imm itself.

3.3 Reference Immutability as a Special Case
Reference immutability [27, 50, 55, 56] adds permissions (type
qualifiers) to references to permit or disallow side effects through a
particular reference. Multiple aliases at different permissions may
coexist if compatible: for example, there may be write-permitting
and read-only aliases to an object. We can define the permissions of
reference immutability like this:

Definition havoc {A:Set} : hrel A :=
fun x => fun x’ => fun h => fun h’ => True.

Definition readable (T:Set) := ref{T|any}[havoc,≈].
Definition writable (T:Set) := ref{T|any}[havoc,havoc].
Definition immutable (T:Set) := ref{T|any}[≈,≈].

Our definitions encode the standard semantics for reference im-
mutability qualifiers: only immutable assumes limited interference
via other aliases, and readable and immutable disallow muta-
tion through a reference. Restrictions on aliasing among reference
immutability permissions are reflected in the rely and guarantee
relations: no heap cell may have writable and immutable aliases
simultaneously, as the guarantee of the writable reference (havoc)
is not a subrelation of the immutable rely (≈). The “containment”
requirement (Section 3.2) for rely conditions on nested datatypes is
satisfied by the rely for readable and writable, and for immutable
the rely prevents it from (transitively) referencing mutable data.

Reading through one of these references requires considering
how the rely and guarantee affect the read’s result. In reference
immutability, result types are adapted using a simple binary func-
tion on permissions (Figure 2). Our rely-guarantee reference type
system must combine arbitrary relations (folding), using the type
of the referent. Intuitively, folding is projection of the reference’s
guarantee onto the referent type. Any projection of havoc and≈ cor-
respond with the simplified version in Figure 2. Projecting havoc is
equivalent to reading through a writable reference, which simply
produces the inner type. Projecting ≈ is equivalent to the weak-
ening that occurs when reading through readable or immutable
references.

We can also give a reference immutability system with limited
dependent types by a small extension:

Definition refined (T:Set) (P:hpred T) := ref{T|P}[≈,≈].
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At first glance this is weaker than proposed systems that let mutable
data’s type depend on arbitrary immutable data, because we require
any reference predicate to access only heap state reachable from
its referent. At the cost of some space the referent could maintain
its own extra reference to relevant immutable data. Careful code
extraction work can improve the space overhead in executables.

Another benefit of implementing reference immutability via
rely-guarantee references is interoperability between reference
immutability and richer rely-guarantee references. For example,
a function accepting a readable reference to a natural number
can be passed a read-only monotonically-increasing counter from
Section 3.1. This offers a natural path for gradually adding stronger
verification guarantees to code using reference immutability (which
itself is a gradual refinement of unrestricted references [27]).

3.4 RCC/Java with Reference Immutability
The core of RCC/Java [24] is also implementable as a small
library using our COQ DSL, and we present a translation of an
early version [23]. The key idea in these type systems and related
systems is to parameterize the type of a reference by the identity
of a particular lock. The type system tracks the set of held locks
and permits reads and writes through a reference only when the
reference’s lock parameter is statically known to be held.

A COQ module wraps standard acquire and release primitives
and exposes a new reference type that quantifies over a lock. The
RCC reference type can be abstracted with a module signature, but
can be concretely represented by a RGREF ref type:

(* Signature *)
Parameter rccref : forall (A:Set),

hpred A -> hrel A -> hrel A -> lock -> Set.
...
(* Implementation *)
Definition rccref A P R G (l:lock) := ref A P R G.

The module then exposes its own read and write primitives, and
external ways of proving goals like guarantee satisfaction that do
not expose the internal rccref representation. This mostly consists
of re-exporting existing axioms using new names. Then an explicit
lock witness (since the type system is not specialized to track lock
witnesses) can be abstracted using:

Parameter lockwitness : lock -> Set.
Parameter locked : forall {l:lock}, hpred (lockwitness l).
Parameter unlocked : forall {l:lock}, hpred (lockwitness l).

The acquire and release operations must respectively produce and
consume a witness that a lock is held, that permits release. Using a
binary operator --> on predicates that produces a relation allowing
changes from states where the first predicate holds to states where
the second holds (a limited encoding of protocols), a witness may
have type ref{lockwitness | locked}[empty, locked-->unlocked].
Using an empty rely implies uniqueness, and requiring such a
witness to release the lock prevents splitting the witness, which
would requiring weakening the rely of both resulting references.
The read and write for rccrefs would need to also require some
witness that the lock was held:

Program Definition rcc_read ...{l:lock}
(w:ref{lockwitness l | locked}[empty,locked-->unlocked])
(r:rccref A P R G l)... := (!r,w).(* return the witness *)

This encoding of RCC/Java using dependent types is not novel, but
note the rely, guarantee, and predicate of the underlying reference are
exposed, yielding the first combination of race-free lock acquisition
and reference immutability we are aware of, in addition to exposing
the full power of rely-guarantee references over lock-guarded data.

Expressions e ::= x Variable
| e e Application
| !e Dereference
| e[e] Heap Select
| alloc e Allocation
| (λx : τ.e) Pure Function
| (λM (x : τ).e) Procedure
| τ Types
| x← e Store
| swap(x,e) Atomic swap

Types τ ::= = Propositional equality
| Prop Propositions
| ref{τ | e}[e,e] Reference
| Type Type of Prop
| Πx : τ→ τ′ Dep. Product (pure)

| τ
M→ τ′ Impure Function

| heap Heaps
| e Expressions

Figure 3. Syntax, omitting booleans (b : bool), unary natural num-
bers (n : nat), unit, pairs, propositional True and False, and standard
recursors. The expression/type division is presentational; the lan-
guage is a single syntactic category of PTS-style [2] pseudoterms.

4. A Type System for Rely-Guarantee References
Figure 3 gives the syntax for a core language RGREF with rely-
guarantee references. The expressions combine features from the
ML-family (e.g., references) and dependently typed languages (e.g.,
dependent product), specifically from the Calculus of Construc-
tions [2, 16]. We include a few basic datatypes (natural numbers,
booleans, pairs, unit), a type for propositional equality, and their stan-
dard recursors [29]. We also distinguish effectful functions through
the term former λM and the effectful non-dependent function type

former τ
M→ τ′ (M for mutation).

The language supports reasoning about heaps: not only is there a
standard form of dereference, but there is a term for dereferencing
a reference in a particular heap, used to specify predicates and
rely/guarantee relations using the propositions-as-types principle.
The language is designed to use propositions-as-types to specify
predicates and relations, and to use the pure sublanguage as a
computational language amenable to rich reasoning, but to use
external means for discharging obligations like a write satisfying
a guarantee. The presence of current-heap-dereference makes the
pure term language itself unsound as a logic, internally offering
assurances similar to Cayenne [1]. In general, the language for
predicates and relations can be distinct from the term language, and
the term language does not require advanced types; our design is
motivated by our implementation as a COQ DSL (Section 5).

Figure 4 presents the primary typing rules for the core language.
There are two key judgments: Γ ` e : τ for pure terms (useful for
proofs), and Γ ` e : τ⇒ Γ′ for impure and substructural computation.
Those pure rules omitted here (recursors for the assumed inductive
types, typing the primitive types in Prop, etc.) are standard for a
pure type system.

The imperative typing judgment Γ ` e : τ⇒ Γ′ is flow-sensitive
to allow reasoning about when references are duplicated. Crucially,
it allows reasoning about when a reference must not be duplicated
because its guarantee does not imply its own rely. For this reason,
we have two impure variable rules: one consumes the variable (V- /0),
and the other uses an auxiliary relation Γ ` τ≺ τ> τ to split a type
(V->). Primitive types (nat, bool, unit) freely split into two copies
of themselves. We require that any variable captured by a closure
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has a self-splitting type (Π-I and FUN), and thus functions may
be duplicated freely. We require that only values of self-splitting
types are captured by dependent type constructors (Π-F and the not-
shown propositional equality rule), so types are also self-splitting.
Variables read in pure computation must also be self-splitting (V).

References (and structures that may contain them, like pairs)
are the only types with non-trivial splitting. Reference types split
into reference types that may coexist (each guarantee implies the
other rely, both relies are no stronger than the original rely, stable
predicates, etc.), and pairs split into pairs of the component-wise
split results. For example, the problematic reference from Section
2.1 has non-trivial splitting behavior, mediated by REF->:

y : ref{nat | any}[decreasing, increasing]

Splitting this reference requires consuming the original and produc-
ing two “weaker” references: each guarantee may permit at most
what the original guarantee allowed, and each rely must assume at
least as much interference as the original. For example,

ε ` ref{nat | any}[decreasing, increasing]
≺ ref{nat | any}[havoc, increasing]
> ref{nat | any}[havoc, increasing]

The natural use of simply duplicating a reference whose guarantee
implies its own rely (as in the monotonic counter) is a degenerate
case of the very general rule REF->.

The conversion relation Γ ` τ τ is a directed call-by-value β-
conversion (so for example β-reduction is not used with arguments
containing dereferences) plus reducing abstractions whose bound
variable is free in the result, and what amounts to subtyping
by converting predicates and relations to weaker versions: P-⇒
weakens the predicate; R-⊂ assumes more interference may occur;
and G-⊂ sacrifices some permissions; P and R changes may affect
stability.

Mutation The most interesting rules are those for mutation, partic-
ularly for writing to the heap (WRITE). This rule requires (beyond
basic type safety) that the effects fall within the guarantee, assuming
the reference’s predicate holds in the current heap.4 It also allows
the option of a strong update to the reference’s predicate, if the
change establishes some new stable predicate. For example,

x : ref{nat | λx.λh.x = 3}[empty,havoc] `
x← 4 : unit

⇒ x : ref{nat | λx.λh.x = 4}[empty,havoc]

Thus RGREF naturally supports strong updates on unique references
as a degenerate case. The atomic swap operation (which permits
modifying substructural fields) leverages the heap-write rule’s
premises. Allocation simply requires a well-formed type as a
result and establishing the predicate over the value in any heap.
The imperative part of the language also includes non-dependent
function types, application, and the use of pure expressions.

Dereference uses the relation folding function [R,G]� τ (Figure
5) to reason about the rely and guarantee in result types. It has no
effect for non-reference types. For types containing references, the
result type is rewritten by intersecting the projection of the guarantee
onto each component with the stated guarantee for the component
itself. This can cause some precision loss. The effect of folding
on the rely has no impact: because the rely for any well-formed
reference type has to contain / admit the effects allowed by the
rely of any reachable reference type, the intersection on the rely
component would produce a relation semantically equivalent to the
syntactically present rely on the inner reference (the same type of
relation projection is used to check rely containment as is used in

4 The reflexivity goals DEREF generates could also assume the predicate (i.e.,
reflexive on states satisfying the predicate), but we haven’t needed this.

folding the guarantee). In general, relation folding and checking
containment are straightforward for types whose members are al-
ways reflected in a type index (e.g., pairs, references). Folding for
richer types, such as full inductive types [45] is left to future work.
The Deref rule also checks that the source type is self-splitting. This
ensures that the (possibly weaker) guarantee of the result implies
the original location’s rely, and the original value’s guarantee(s) will
imply the (unaltered) rely relations of the result.

The rule for typing reference types themselves (WF-REF) im-
poses several additional requirements on predicates and relations.
First, the predicate P must be stable with respect to R. Second, the
relations and predicates must be precise: all depend only on heap
state reachable from the referent. This prevents code from rendering
the system unsound by allocating a new cell whose rely condition
requires the heap to be invariant: that rely would be undesirable if
enforced as it prevents all mutation and allocation, but unsound if
ignored because all predicates are stable over such a rely. Finally,
the rely must be closed (contained): any changes permitted by relies
of references reachable from the referent are also permitted by the
checked rely. This ensures that checking stable P R is sufficient
to ensure P is not violated (otherwise P could depend on other
references reachable from the referent, whose rely relations might
permit P to be invalidated). Figure 5 defines these notions precisely.
WF-REF also requires as a side condition that P, R, and G are free
of dereference expressions (!e), since implicitly heap-dependent
predicates are not sensible.

We foresee no technical difficulty in building the system directly
atop stronger calculi such as the Calculus of Inductive Construc-
tions [4] (CIC) beyond richer treatment of folding for the full spec-
trum of inductive types (Section 5.2). There are a few essential
qualities required for soundness. First, effectful terms and abstrac-
tions are encapsulated in a separate judgment (which corresponds to
a monadic treatment of effects in translation to a pure system). Any
term in the pure fragment must be reflexively splittable, to avoid
introducing resource semantics into the pure sublanguage. Captured
variables have reflexively splittable types (Γ ` τ≺ τ> τ). In princi-
ple this could be weakened, but we prefer the simplicity of allowing
function terms to be arbitrarily duplicated. We build upon CC for
simpler presentation.

4.1 Soundness Sketch
Soundness follows a preservation-like structure. Evaluation must
preserve a couple invariants beyond standard heap soundness:

• For each reference r : ref{T | P}[R,G] in the stack, heap, or
expression under reduction, there exists a proof of P (h[r]) h for
the current heap h.
• For each pair of references p : ref{T | P}[R,G] and q : ref{T |

P′}[R′,G′] in the stack, heap, or expression under reduction, if
p and q alias (point to the same heap cell) then /0⊂ G′ ⊆ R and
/0⊂ G⊆ R′.

Initially there are no references, so these hold trivially. On allocation,
the predicate for the new object is true in all heaps by inversion on
the allocation typing, so the result is immediate. On any action
through a reference, the type system ensures the action falls within
the guarantee. The action either preserves the predicate or produces a
new (stable) one, and the proof for that reference’s new refinement is
easy to construct from the typing derivation results. For aliases, the
used reference’s guarantee must imply the rely of any alias, and the
alias’s predicate is stable over its rely, and therefore preserved by the
action within the used reference’s guarantee. For other references,
the action will fall within its rely (by containment) and thus a
similar use of a stability proof suffices, or the changed cell is not
reachable from the reference in question, in which case the predicate
is preserved by precision.
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To make this proof easier, the dynamic semantics for RGREF
have a few quirks:

• Variable binding occurs by stack usage in impure code (making
it easier to prove substructural behavior), and by substitution in
pure code (justified by the requirement that any variable used in
pure code is self-splitting).
• Variables captured by either a pure or impure closure are required

to be self-splitting, but it would be unsound to allow those
captured uses to read the stack location if the closure were
executed after impure code split the stack reference with different
permissions. To prevent this, closures are only values when they
have no free variables, and there are reduction rules that perform
the reads for free variables.
• References are represented as “fat pointers” of the underlying

pointer, rely, guarantee, and predicate
• Casts/subsumption and substructural consumption/splitting of

variables are explicit — including explicit mention of result
predicates and relations — so the semantics can appropriately
modify underlying reference values. The translation from the
source language presented here to the more explicit language is
straightforward by induction on the typing derivation.
• We assume the heap behaves according to the axiomatization

used in rely/guarantee conditions and predicates.
• Folding has a runtime representation. Reads produce the heap

value wrapped in a deferred folding construct which lazily
pushes the guarantee restriction through a data structure as
components are evaluated. This is necessary for dependent type
constructors like propositional equality, where types appear in
values of the type.
• The semantics occasionally reduce multiple dereferences of the

same location simultaneously, if they are constrained by types
to be definitionally equal. We have yet to conceive of desirable
computational code that observes this behavior; see Sections C
and F.

5. Implementation
To understand RGREF’s effect on data structure design and the effort
required for verification, we have implemented RGREF as a shallow
embedding in COQ, and used it to implement Section 3’s examples.
This includes implementing reference immutability, meaning our
RGREF implementation can be used to write programs using refer-
ence immutability, and to gradually refine parts of those programs to
use more fine-grained rely and guarantee conditions and predicates.
Overall, we found that RGREF required careful choice of type refine-
ments, but did not affect algorithm design and had reasonable proof
burden (commensurate with the complexity of the code verified).

The implementation is done largely in the style of YNOT [12, 40],
with axioms for heap interaction, and using COQ’s notation facilities
to elaborate source terms to COQ terms with proof holes, which are
then elaborated and semi-automatically solved by Sozeau’s PRO-
GRAM extension [48]. Each structure typically requires its own
slightly customized PROGRAM tactic for effectively solving most
goals, but we find that following the tactic development style Chli-
pala recommends [11] tends to work well, as each module typi-
cally handles its own family of predicates and relations. Proofs
involving heaps are carried out using a small set of axioms reflect-
ing invariants maintained by the semantics. The most useful ax-
iom is heap lookup : ∀h,A,P,R,G.∀r : ref{A | P}[R,G].P (h[r]) h
which means that in any heap, the type system ensures there is a
proof of the refinement for every valid reference. The implementa-
tion also relaxes some restrictions present in the formal language,
such as allowing values to be projected into predicates (as in Section

3.2); predicates, rely and guarantee relations must simply abstain
from dereference.

We made compromises to fit into COQ. Notably, COQ lacks sup-
port for mutual inductive types where one indexes the other (e.g.,
a datatype simultaneously defined with an inductive predicate on
that type). Our implementation adapts a standard encoding [9] of
induction-recursion [21] outlined in Appendix A to support exam-
ples like the list in Section 3.2. Any use of this encoding somewhat
complicates generated proof obligations and data structure designs.
Thus our current implementation is best-suited to “functional-first”
designs that make only light use of references, as is common in
OCaml, Scala, and F# code. We stress that this is a limitation of our
implementation by embedding in COQ, not a fundamental limitation
of rely-guarantee references.

Our implementation focuses on self-splitting types; not all
primitives for handling substructural data monadically have been
implemented (or necessary) yet.

To use COQ’s rich support for inductive types, we require trusted
user-provided definitions of relation folding, immediate reachability
(without heap access) of references from a pure datatype, and
relation containment. These are provided as typeclass instances.
The definitions are fairly mechanical, and can be synthesized
automatically for simple types if we extend COQ’s support for
inductive datatypes.

We also move some proof obligations such as stability, precision,
and containment from type formation to allocation. This allows the
definition of functions over ill-formed types, but such functions are
unusable: only well-formed types may actually be constructed. This
avoids some redundant proof obligations.

Our implementation is publicly available at
https://github.com/csgordon/rgref/.

5.1 Proving Obligations with Dependent Types
RGREF contains as a sublanguage the full Calculus of Constructions
(CC). Specifically, it contains a full Pure Type System (PTS)
with sorts S = {Prop,Type}, axioms A = {Prop : Type}, and
product formation rules R = {(s1,s2) | s1,s2 ∈ S} as formulated
by Barendregt [2]. This sublanguage is part of the pure (Γ ` e : τ)
subset of RGREF. Thus the language is amenable to embedding
directly into CC with a few extensions (natural numbers, etc.) and
RGREF-specific axioms.

Theorem 1 (CC Embedding). There are mutually recursive trans-
formation functions P J−K and I J−K from a version of RGREF types,
terms, and contexts with explicit splitting, conversion, and full type
annotations to CC types, terms and contexts such that

• If Γ `RGREF e : τ then P JΓK `CC P JeK : P JτK, and
• If Γ `RGREF e : τ⇒ Γ′ then I JΓK `CC I JeKΓ : I JτKΓ

The key difference between the two cases is the resulting types:
translations of the impure judgments generally produce monadic
types.

Proof. By simultaneous induction on the RGREF derivations. See
Appendix B.

This provides us with an approach to proving predicate and guar-
antee obligations in a way well-integrated with the source language,
justifying the use of proof terms in RGREF’s implementation. This
also allows straightforward translation of proof goals from our typ-
ing derivations into COQ, where we can use tactic-based theorem
proving to solve proof obligations.

The only subtleties arise from the fact that our embedding treats
dereference as an uninterpreted function, allowing two potential
inconsistencies. First, we permit recursion through the store, so
applying a function read (via dereference) from the heap could
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result in an infinite loop; by treating dereference as an uninterpreted
function in the embedding, this potential recursion is lost. The
prototype may accept proofs about non-terminating terms. Second,
there is a potential to equate dereference expressions that will be
evaluated in different heaps (e.g., when a returned pure closure
dereferences some reference). Our implementation only uses full
equational reasoning for cases where all dereferences occur in the
same heap, and otherwise abstracts terms with only their type.

5.2 Data Structure Design
We were able to use natural data structures for the examples in
Section 3, but the types require careful consideration for propagating
information through data flow. For example, the return type of Cons
in Figure 1 must carry the additional refinement that the reference
points to a cons cell whose tail is the tl argument, or the obligation
to prove that the write prepends a cell in doPrepend is unprovable.

From Simple Types to Inductive Types For the types whose split-
ting, folding, and containment we have examined formally (first-
order data types, pairs, and references), the structure of the types is
simple enough to provide a straightforward structural projection for
each type. Much imperative code (e.g. in C, Java, etc.) heap-allocates
similarly-simple structures. We have not worked out the theory for
full inductive types. For types whose constructor arguments are not
reflected as type indices, splitting and the like depend on the values
passed to constructors, complicating the definitions for splitting
because they then depend not only on type indices, but the actual
value being potentially-split. This is an issue even though we expect
to only require support for small inductive types. For self-referential
datatypes, such as the list, we have only used guarantees for which
folding is idempotent. In general, folding a restricted guarantee
when dereferencing an datatype defined with concrete relations on
“recursive” references is not expressible in the current system; if
the guarantee on the recursive member changes, the result may
not match a constructor of the type! Supporting this would require
some sort of datatype-generic support, or a hybrid dereference-and-
pattern-match to avoid directly representing not-quite-typed read
results. We leave full support for inductive types to future work.

5.3 Proof Burden
RGREF imposes proof obligations for precision, folding, contain-
ment, and guarantee satisfaction. For verifying the examples in
Sections 3.1, 3.2, and 3.3, the proof burden is not substantially dif-
ferent from verifying the analogous pure-functional version. This
section will call out which parts were particularly straightforward,
as well as the few challenging aspects.

Precision obligations are typically easy to prove when they are
true, as are the reflexive relation goals generated when references
are used for reading: most are discharged by a simple induction, use
of constructors for the relevant relation, and/or first order reasoning
(e.g., COQ’s firstorder tactic). When the goals are not true (e.g.,
a relation or predicate is not precise), the goal is simply not provable,
and it is up to the developer to recognize this. In this respect, RGREF
is similar to verifying a functional program in COQ: a developer can
waste time on unsolvable (false) proof goals.

In cases where relation folding is a no-op (e.g., [R,G]� τ = τ

as in the monotonic counter) folding goals are a simple matter of
reduction and basic equality. In cases where relation folding is not a
no-op (e.g., for references to references where the outer reference’s
guarantee bounds effects on other reachable objects), the folding
obligations’ complexity depends on the relations involved.

The most difficult proof obligations generated are those checking
that heap writes satisfy the guarantee.5 This is partly because these

5 Not all are difficult; Section 3.1’s guarantee obligation is discharged by
automatic proof search with arithmetic hints: auto with arith.

goals sometimes require reasoning about reads from an updated
heap, in particular proving non-aliasing between references to dif-
ferent base types. Some goals are also complicated by non-identity
folding results in types. In the formal system, we abstract away
the mechanism for checking guarantee satisfaction through a de-
notational semantics for writes. Our implementation uses COQ’s
notation facilities for a sort of “punning,” to duplicate expressions
into two contexts with different semantics for dereference.

The normal program’s use of the dereference expression chooses
the appropriate relation folding type class instance, while the
duplicated version used to check guarantee satisfaction is placed
inside a context where a no-op fold instance overrides all others.
This way the guarantee and predicates, which are specified as
predicates over a type A, can be applied directly to !x at type A
in the proofs instead of at a weakened type. The disadvantage of
this approach is that the expression duplication also duplicates proof
goals. Many of the smaller goals are automatically discharged when
using COQ’s PROGRAM extension, but because the generated goals
are formed in slightly different contexts, the solved lemmas’ proof
terms have different arities, and are therefore not interchangeable
in equalities. We encountered this twice, and solved it by using the
proof irrelevance axiom on applications of the equivalent lemmas.

Because stability, reflexivity, and satisfaction results tend to be
reused within a module and by clients, it should be considered
proper practice for modules exporting a given API to also export
most goals proven internally about properties of rely and guarantee
relations, and predicates, as lemmas registered in a module-specific
hint database. This is best practice for verifying purely functional
programs in COQ as well; in general most of the useful habits in
verifying functional programs can be reused in our implementation.

6. Future Work: Extensions and Adaptations
The type system we present in this paper has a few technical
limitations beyond the implementation limits described in Section
5.

The system we present here is modeled on the deep interpretation
of reference immutability (the standard interpretation), where the
permission of one reference constrains the permissions on read
results through that reference (this can be seen best in the rely-
guarantee folding in the dereference type rule). This is contrasted
against the shallow interpretation of reference immutability, where
a permission affects only the actions on a particular heap cell
(so a writable reference could be obtained by reading through
an immutable cell). Our formalism does admit uses of shallow
relations and predicates: these propositions simply ignore the heaps,
so containment and folding are trivial.

Our type system could be converted to a fully shallow model by:

• removing the rely-guarantee folding,
• removing the restrictions that a rely condition must account for

the rely conditions of any reference reachable from it, and
• adding tighter footprint restrictions on rely-guarantee conditions

and refinement predicates.

For the last point, we mean specifically that the rely, guarantee,
and predicate should be insensitive to heap contents outside the
heap cell they apply to. The simplest way to accomplish this is to
remove the heap arguments from these predicates, making them
closed over only the value itself. Note that any rely/guarantee and
predicate matching these restrictions is already valid in our system,
and folding and containment are semantically no-ops because
component-wise projection of these more restricted relations do
not impose any new restrictions.

One weakness of our current system is that every individual
effectful action must fall within a reference’s guarantee. Some oper-
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ations (for example, splay tree rotation) are difficult or impossible to
write this way while satisfying guarantees that preserve interesting
refinements on aliases (such as set membership), limiting the proper-
ties the system can verify. Other systems based on various forms of
object invariant have a notion of focusing or opening an object for a
series of operations that together preserve an invariant, but where
intermediate states violate the invariant [3, 5, 47]. Type systems with
focus often make the typing judgment modal, with one “unfocused”
mode and one where a particular object is focused. We could add
such support to our system. This would grant us additional flexibil-
ity, and also allow us to subsume much of the expressive power of
Militão et al.’s recently proposed rely-guarantee inspired typestate
system (see Section 7).

Another limitation is that effectful function types do not summa-
rize strong updates to predicates of references provided as arguments.
Such summaries could be useful, and should not be too difficult to
add (particularly as the CC translation already uses a monad that
preserves more information than the current source language types).

A promising direction for future work is to further explore the
resource-like semantics of splitting references by rely and guarantee,
and allowing recovery [27] of “stronger” references from the results
of splitting, either based on combining provably equal references
or by controlling scope. This would help control the gradual loss
of precision in the current system when non-duplicable (non-self-
splitting) references are repeatedly split to less precise relations.

7. Related Work
The most closely related work falls into three categories: restricting
mutation on a per-reference basis, techniques for reasoning about
interference among threads (which can be adapted to interference
among aliases), and dependent types for imperative languages.

Alias-based Mutation Control Many techniques exist to control
side effects by restricting actions through particular references. No-
table examples include reference immutability [27, 50, 55, 56],
and the owner-as-modifier interpretation of ownership and uni-
verse types [17]. Rely-guarantee references generalize reference
immutability permissions (Section 3.3), allowing precise control
over what modification is permitted through a given alias, not simply
a choice between arbitrary mutation and local immutability. The fact
that reference immutability is a special case of rely-guarantee refer-
ences suggests a natural transition path from reference immutability
to stronger verification guarantees. Developers could employ a “pay-
as-you-go” model for verification, where a code base first transitions
to using reference immutability (which need not be onerous [27]),
and then gradually enrich the types for some parts of the system
where more assurance is desired.

Typestate approaches typically use reference immutability like
access permissions to control sharing of objects in a certain type-
state, which is a weak form of refinement [5, 34, 37, 41]. Nistor
and Aldrich describe a program-logic style type system [41] using
abstract predicates [44] and connectives inspired by separation logic
to specify object propositions, essentially an enriched typestate
much closer to a full predicate logic; we believe object propositions
and RGREF have similar expressivity in terms of what predicates
they can verify. They pair access permissions with refinements
to let aliases share coinciding views of an object’s properties,
and handle non-atomic updates. However, propositions on aliased
objects cannot change over time and all aliases must have identical
capabilities (simply preserving the proposition if the object is
aliased), while RGREF allows asymmetric permissions and some
strong updates to refinements even with aliasing.

Militão and Aldrich present a system that splits objects into
substates that each carry their own typestate, and ways to merge par-
ticular substates into a typestate of the parent object [34]. Aliases to

an object may exist and allow modification provided each reference
is to a different substate, rather than to the full substate.

They extend this to a notion of rely-guarantee [35], where a
rely is a single typestate all other aliases to an object assume an
object to be in, and a guarantee is a typestate a given alias is
expected to produce before other aliases become usable. They ensure
that temporarily-ill-formed objects are not used through aliases by
adopting a focus-unfocus model, where only one object’s fields are
accessible at one time and a focused (unpacked) reference must
be restored to the guarantee view before unfocusing (re-packing).
Focusing on a reference with a rely-guarantee typestate requires
a dynamic check for whether the object is in the rely state, or the
guarantee state, as it is statically unknown whether the last access
was through another reference (leaving the object in the rely) or the
focused reference (leaving the object in the guarantee). This gives a
programming model more similar to using fractional permissions to
make references agree on a sum typestate (which their language has
for reasoning about the typestate at the start of a focus block). It also
severely constrains operations that access multiple objects. They
also include a form of rely-guarantee “narrowing” to allow a more
general rely and weaker guarantee typestate (which correspond to
super-typestates and sub-typestates respectively). They include a
notion of refinement typestate on rely-guarantee typestate, but their
refinement is a typestate that is convertible to the guarantee typestate,
and appears to add the restriction that the refinement must also be
the guarantee of all other aliases (based on examples; the written
description of their refinement is quite vague).

Their system has much of the same flavor as our system (both
apply rely-guarantee concepts to references) but with less involved
specification and correspondingly weaker verification options com-
pared out our approach. Typestate is known for having a fairly
good annotation/expressivity ratio. The syntactic overhead of our
approach is clear. The semantic gain of our approach is primarily
due to our rely and guarantee being arbitrary (computable) binary re-
lations on states (rather than views, which are effectively predicates
over a single state). This allows us to express relationships over infi-
nite state spaces, rather than simply membership within a particular
partition of the state space. This is why classical rely-guarantee, and
derivatives such as RGsep [51] and Local Rely-Guarantee [22] use
binary conditions. A simple example that is inexpressible in Militão
and Aldrich’s system is a condition such as that one reference only
grants the holder permission to increase a counter. Rely-guarantee
views can only express finitely many states, and enforce transitions
between those. One of their examples [36] is a counter where one
reference may not bring the counter to 0. Their views include a
zero view, and a positive view. The closest they could come to
specifying a reference for a monotonically increasing counter is a
rely-guarantee view reference whose guarantee was either the view
corresponding to a particular interval (increasing to further values
would require another reference with a different guarantee typestate)
or a view for exceeding a particular lower bound, at which point
the reference would grant permission to increase or decrease the
counter above the lower bound.

Reasoning About Thread Interference Generally, any technique
that can reason about interference among threads can be adapted
to reason about interference among references. The most closely
related system for reasoning about thread interference is rely-
guarantee reasoning [31] described in Section 1.

The original rely-guarantee approach focused on global rela-
tions and assertions, hampering modularity. Several adaptations
exist to treat interference over disjoint state separately. Vafeiadis
and Parkinson integrated rely-guarantee reasoning with separation
logic [51], allowing separation of state with linear resource seman-
tics from shared state with interference. Feng later generalized this
to add separating conjunction of rely and guarantee conditions [22].
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The conditions split into separate relations over separated pieces of
shared state. Rely-guarantee references are heavily inspired by these
approaches. However, RGREF allows substantial overlap among
heap segments.

Dodds et al. adapted standard (non-separating) rely-guarantee
reasoning to give resource semantics to rely and guarantee relations
as assumptions in a context [20]. This allows the interference on
shared state to change over time as permission to modify disjoint
parts in particular ways is split, rejoined, and split again differently.
This style of strong changes to the rely and guarantee over time could
be adapted in a rely-guarantee reference system to allow the natural
rely-guarantee reference generalization of the recovery technique of
Gordon et al. [27], which allows recovering unique (or immutable)
references from writable (or readable) references in a flow-sensitive
type system given some constraints on the input context to a block
of code.

Wickerson et al. [52] apply a modularized rely-guarantee logic to
treat (non-)interference in the degenerate case of sequential access
to the UNIXv7 memory manager. Related systems [18, 22, 51]
could be applied similarly, but to our knowledge haven’t. Most have
only first-order treatment of interference. Only Concurrent Abstract
Predicates [18] can (with some effort) store capabilities into the heap,
while RGREF naturally supports this since mutation capabilities are
tied to data. Our design closely follows a technique already shown
successful in large-scale uses (reference-immutability [27]).

Dependent Types for Imperative Code Many others have worked
on integrating dependent types into imperative programming lan-
guages. Most take the approach of using refinement types [25, 49]
that restrict modification to mutable data, but the refinements them-
selves may depend only on immutable data. Examples include
DML [53], ATS [10], and X10’s constrained types [42]. The re-
finement language is often also restricted to some theory that can
be effectively decided by an SMT solver, as in Liquid Types [47].
RGREF allows refinements to depend on mutable heap data, and
does not artificially restrict the properties that can be verified (at the
cost of requiring manual guidance for proofs).

A notable approach to dependent types in imperative code
is Hoare Type Theory (HTT) [38, 39] and its implementation
YNOT [12, 40]. HTT uses a monadic Hoare Triple to encode
effectful computation. It allows using effectful code in specifications:
it decides equality of effectful specification terms by using canonical
forms where traditional dependent type systems use β-conversion.
This approach could be adapted for rely-guarantee references as
well. YNOT implements the core ideas of HTT as a domain specific
language embedded in COQ. It supports traditional Hoare logic
specifications and, by embedding, separation logic specifications as
well. A later version [12] builds a family of targeted proof search
tactics that can automatically discharge most separation logic proof
goals generated while typechecking YNOT programs. We modeled
our implementation after YNOT, and are currently building a library
of combinators and transformers in hopes of supporting similarly
robust automatic proof discharge.

HTT (and separation logic in general) support proving functional
correctness rather than the somewhat weaker safety properties veri-
fied by rely-guarantee references (and most other stable-assertion-
based approaches [22, 31, 51]). But this comes at the cost of spec-
ifications explicitly specifying aliasing constraints through choice
of standard or separating conjunction. Separation logic specifies
the behavior of code, not the restrictions on data transformation.
Rely-guarantee reference types specify the possible evolution of
data in the description of data itself. This means that assumptions
and permission to modify state follow data-flow, rather than the
control-flow-centric passing of assertions in most program logics.

7.1 Further Related Work
7.1.1 Fractional Permissions
Boyland’s fractional permissions [8] ensure non-interference among
aliases to a single object, by assigning a real- or rational-valued
access permission to each alias allowing updates only for a full
permission, read access for nonzero permissions, and allowing the
natural splitting and merging of permissions that comes with re-
al/rational arithmetic. This has since been generalized to separation
algebras [19] (arbitrary cancellative partial commutative monoids).
Both have been used for temporary sharing without interference for
state and assertions [7], and are used in metatheory to define the
meanings of qualifiers in typestate [37] and reference immutabil-
ity [27]. However, by design, they ensure complete non-interference,
not cooperation and robustness to interference.

7.1.2 VCC
VCC [13, 14] is a verification effort for concurrent C programs,
using methodology derived directly from Spec# [3]. The main idea
is to use invariants for shared state, which must be preserved by
any action. Objects are packed and unpacked as in Spec#, where
invariants must be restored upon re-packing. They encode a sort of
rely-guarantee-style reasoning using claim objects, whose existence
ensures no other thread can have the shared object open. A claim
is essentially an object whose invariant depends on other objects.
Because multi-object invariants are only permitted when admissible
(any action preserving the invariant of one object must not violate the
invariant of the other, similar to assertion stability in rely-guarantee
logics or rely containment and predicate stability in our system), a
claim serves as a witness that no other part of the program is actively
using the claimed objects.

8. Conclusion
We have introduced rely-guarantee references, an adaptation of rely-
guarantee program logics to reasoning about interference among
aliases to shared objects. The technique generalizes reference
immutability, connecting two previously-separate lines of research
and addressing a fundamental problem in verifying imperative
programs. We have shown the technique’s usefulness by verifying
correctness for several small examples (which are difficult to specify
or verify with other approaches) in a prototype implementation.
Our experience suggests that at least for small examples, the proof
burden is reasonable. Rely-guarantee references demonstrate that
aliasing in program verification can be addressed by adapting ideas
from reasoning about thread interference.
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A. COQ, Positivity, and Inductive Datatypes
As mentioned elsewhere, the most natural way to implement linked
data structures with structure-specific predicates and rely/guarantee
conditions is to use mutual inductive types, with one (the datatype)
indexing the other (the predicate or relation). Unfortunately for our
implementation, COQ does not support this; Agda does, but lacks
the tactic-based proving language we desire for managing proof
burden.

Capretta [9] describes a general encoding of inductive-recursive [21]
definitions (mutual definition of an inductive type and a recursive
function destructing the datatype) in COQ.6 The core idea is to
make constructors that accept recursive members polymorphic over
the type of recursive members (making the data type consider-
ably “large” and therefore requiring COQ’s -impredicative-set),
coupling this with an inductive predicate that forces all recursive
members to be instantiated with the correct type, and representing
the final datatype as a dependent sum.

In RGREF, rather than using a dependent sum, we leverage the
predicate parameter of the reference type. Thus, the monotonically
growing list from Section 3.2 is defined in our implementation as:

Inductive rgrList’ : Set :=
| rgrl_nil’ : rgrList’
| rgrl_cons’ : forall (C:Set) (P:hpred C) (R G:hrel C),

nat -> ref{C|P}[R,G] -> rgrList’.
Inductive list_imm : hrel rgrList’ :=

6 Technically, in the original Calculus of Inductive Constructions with Set
being impredicative.
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| imm_nil : forall h h’, list_imm rgrl_nil’ rgrl_nil’ h h’
| imm_cons : forall h h’ P R G n (tl:ref{rgrList’|P}[R,G]),

list_imm (h[tl]) (h’[tl]) h h’ ->
list_imm (rgrl_cons’ rgrList’ P R G n tl)

(rgrl_cons’ rgrList’ P R G n tl) h h’.
...
Inductive plumb : hpred rgrList’ -> hpred rgrList’ :=
| plumb_nil : forall P h, plumb P rgrl_nil’ h
| plumb_cons : forall P R G h n (r:ref{rgrList’|P}[R,G]),

plumb P (h[r]) h ->
plumb P (rgrl_cons’ rgrList’ P R G n r) h.

...
Definition list P := ref{rgrList’|plumb P}[list_imm,list_imm].

Even if COQ implemented mutual inductive types that could
index each other, there are some cases where this encoding is still
desirable. Specifically, parameterizing a type constructor like the
linked list over an arbitrary rely and guarantee specific to rgrList’
would run afoul of the strict positivity requirement [45] imposed on
logically-sound inductive datatypes. For any type A, hpred A uses A
negatively. So parameterizing a constructor over a rely, guarantee,
or predicate would require adopting a similar encoding. None of our
paper examples use this style of expression, but in general, allowing
such polymorphism in a more principled way would be highly
desirable. Note that types in our COQ DSL can be parameterized
over type-polymorphic relations, such as The reference immutability
permissions in Section 3.3.

Another notable aspect of our shallow embedding in COQ is that
no predicate or relation that accesses heap-linked recursive structure
members may be defined as a fixpoint, because such members
require dereferencing within a specific heap, and COQ’s termination
checker requires recursive arguments to be a syntactic subterm of
the recursion argument. Thus any “recursive” predicate or relation
over a heap-linked structure must actually be defined as an inductive
datatype in the universe Prop. Note that COQ’s Fix combinator
for giving recursive definitions based on a well-founded relation
is essentially using an inductive datatype: the combinator allows
definitions to check by actually performing structural recursion on
the proof term that the recursion relation is well-founded [11].

B. Proof of CC Embedding
To justify our use of dependent types for proving, we give here a
shallow embedding of RGREF’s core language into an extension
of CC. Two important subtleties are that our axiomatization of
heaps omits the potential for non-well-founded recursion through the
heap, and naı̈ve proof terms might equate dereference expressions
evaluated in different heaps; these are discussed in Sections B.1
and F. Note that because dereference is treated as an uninterpreted
function, the CC reduction semantics (which lack a heap) are not
useful on the result of this translation; it is useful only for proving
properties of the source program.

Here we give a proof of Theorem 1, restated here:

There are mutually recursive transformation functions P J−K
and I J−K from a version of RGREF types, terms, and
contexts with explicit splitting, conversion, and full type
annotations to CC types, terms and contexts such that
• If Γ `RGREF e : τ then P JΓK `CC P JeK : P JτK, and

• If Γ `RGREF e : τ⇒ Γ′ then I JΓK `CC I JeKΓ : I JτKΓ

Proof. The proof proceeds by simultaneous induction on the RGREF
derivations. Throughout the proof, we consider semantic judgments
(stability, containment, predicate and guarantee satisfaction, rela-
tional implication) true if and only if they are intuitionistically
(constructively) true, specifically by construction of an appropri-
ately typed proof term in the pure fragment of RGREF subject to

restrictions described in Section F. Figure 6 defines P J·K and I J·K
for RGREF types and environments.

First we consider the translation of the pure fragment of RGREF.

• Primitive rules (typing naturals, booleans, unit, pairs, Prop):
These translate naturally into the corresponding axioms in CC
with the basic extensions.
• Primitive recursors for naturals, booleans, unit, propositional

equality; projection on pairs: These also translate into standard
extensions of CC using the inductive hypothesis.
• V: Translates into the appropriate use of the variable rule (or

START in PTS terms). Note that the reflexive splitting hypothesis
requires no special treatment: our embedding only translates
reflexively splitting values directly into CC, and substructurally
treated values always end up in the pre- or post-environment of
the M monad.
• Π-I: Translates to the analogous use of PRODUCT, using the

inductive hypothesis for satisfying premises.
• Π-E: Translates similarly to APPLICATION.
• DEREF: Translates into the axiom for dereference, providing the

CC-equivalent proof terms for the guarantee’s reflexivity and the
type results of relation folding.
• Π-F: Translates to ABSTRACTION similarly to the Π-I and Π-E

rules.
• CONV: Translates one of two ways, according to the derivation

of Γ ` τ τ′:
If the derivation does not use P-⇒, R-⊂, or G-⊂, it translates
to a natural use of CONVERSION in CC (which is actually
more permissive than that permitted by CONV).
If the derivation does rely on some combination of P-⇒, R-
⊂, or G-⊂, then the term is actually an explicit conversion
term. Translate the term itself into a use the appropriate
conversion axioms on the source term, possibly combined
with use of CONVERSION.

Note that aside from P-⇒, R-⊂, and G-⊂, all of the type
conversion rules correspond to restricted forms of β-equality
on pure terms, which satisfies the conversion hypothesis for
CONVERSION in CC.
• IMPURE: Impure abstractions and impure function types are

typed according to the impure translation; apply the other
inductive hypothesis.

The second half, the embedding of the impure fragment, proceeds
similarly, but by translating terms of type τ in RGREF into monadic
terms of type M p v p′, for pseudovariable v of type V , pre- and
post-environments p and p′, and an indexed monad

M : list (V ∗Prop)→ V → list (V ∗Prop)→ Type

that models substructural variable behavior in the imperative frag-
ment. The lists of variable and proposition (type) pairs are used as
type arguments to an HList-like structure that is a map from vari-
ables to values of the type matched in the list. M is essentially a
state monad, containing a value of its type argument, and a heap-
transformer in the form of a function from heaps to heaps that may
also modify the environment.

The environment structure is intuitively similar to Kiselyov et
al.’s better-known HList (heterogeneous list) structure [32]. In fact,
Kiselyov et al. describe an adaptation of HLists to use as extensible
records, which is roughly the role our environments play: a struc-
tured map from a pseudo-variable for a given (substructural) type to
elements of that type. Inside the monad M , elements of the environ-
ments are accessed only indirectly, through primitives for splitting
or using elements. Substructural arguments to imperative functions
are passed as pseudo-variables that index the pre-environment of
the body’s monadic type.
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Each rule translates into a use of a simple monadic primitive,
in some cases leaving holes for proof terms witnessing proof
obligations such as a write satisfying a guarantee; it is up the the
implementation to choose appropriate proof terms that avoid the
issues discussed in Section F. In some cases the expected type of the
translation has fewer elements in the output context than the natural
typing for the term, in which case the translation described below
should be monadically sequenced with the primitive for dropping
substructural context elements.

• FUN: Inductively translate the function body, which will produce
a derivation of

Γ,x : V `CC I JeKΓ,x:PJτK : I Jτ
′KΓ,x:PJτK

Encoding this as a standard λ expression, binding the argument
x as a pseudo-variable (V ), preceding it with injection of the
captured variables, and sequencing after it a drop of the argument
from the output gives the result a type matching the I J−K
metafunction results.
• RUN: By induction the subexpressions translate to expressions

with monadic types. The metafunction result expression binds
the names for the (substructurally-treated) function and argu-
ment, and the m-app primitive builds a computation that con-
sumes both names, applies the function to the argument variable
inside the monad, and runs the resulting computation.
• WRITE: The heap write primitive is reasonably straightforward,

producing a computation that stores the result of e’s translation
into the heap cell referenced by x. The only subtle part is the
translation of the proof obligation. The implementation uses
runM (for running M monads) in the proof. runM is effectively
the denotational semantics of the expression in the source
language, and properties of its results are proven using axioms
relating the computation to the behavior of a resource-insensitive
heap transformer function. runM has the type

Π Γ Γ′ : list(V ∗Prop)→Πx : V →Πe : E Γ→
M Γ x Γ′→ heap→ heap

• SWAP: Similar to write.
• ALLOC: Allocation uses a similar translation style to writing,

using runM and a few axioms to inspect and reason about
the results of the computation in order to establish the initial
predicate.
• IDEREF: Translates to an imperative dereference primitive.
• SUB: The pure expression translates to a monadic lifting of the

pure value, and the type translates simply to a monadic wrapping
of the value in a substructural context.
• Variable reads, recursors, constructors, etc. translate similarly to

above.

B.1 Recursion Through the Heap
One important aspect the proof above ignores is the potential to
recur through the heap, as this term would:

Program Example heap_recursion :=
(* Allocate a unit->nat on the heap *)
(* Assume predicate any, rely/guarantee havoc *)
fn <- alloc (fun _:unit => 3);
(* Close fn2 over fn *)
fn2<- alloc (fun u:unit => (!fn) u);
(* Point fn2’s function reference to itself! *)
fn <- fn2;
return (!fn2) tt.

We do not consider this fundamentally problematic; it simply
requires our implementation to prevent creating proof terms relying

on such behavior; we restrict equational reasoning when returning
closures from the pure sublanguage to the impure context or when
invoking a pure function pulled from the heap (see Section F). So
proofs that a predicate holds of a new allocation, or that a new
predicate holds and a guarantee is satisfied after a write, are valid
when the allocated/stored expression terminates, and otherwise the
program does not terminate at runtime.

We do not consider this a serious issue for three reasons.
First, non-termination is standard in impure languages. Most rely-
guarantee logics and other program logics are modulo termination,
and this proof-by-nontermination issue arises only when the im-
perative code has explicitly used mutation to introduce indirect
recursion. Second, our implementation can ensure that the only
“invalid” proofs prove properties of non-terminating program terms,
rather than relying on non-termination in the proof itself. Third,
disallowing recursion through the heap is straightforward: an imple-
mentation could for example

• Restrict the heap to first-order (not containing closures) values
(a common restriction in program logics), or
• Stratify the term language further and allow only functions that

do not (transitively) dereference a reference to a function type
(or a structure containing a function) to be stored in the heap, or
• Restrict dereference in the pure fragment to references to first-

order types (which will not contain pure closures) and impure
abstractions (which are opaque and not invocable in the pure
fragment).

C. Soundness
The proof of soundness follows the sketch in Section 4.1. The
dynamic semantics are mostly standard for an ML-like language
with references, with a couple small changes:

• Binding: Variable binding in the imperative core is stack-based,
not substitution-based, to handle the substructural splitting be-
havior in the imperative language. Binding in the pure language
is substitution based (essentially pre-splitting and inlining read
results). 7

• Variable capture: Variables captured by either a pure or impure
closure are required to be self-splitting, but it would be unsound
to allow those captured uses to read the stack location if the
closure were executed after impure code split the stack reference
with different permissions. To prevent this, closures are only
values when they have no free variables, and there are reduction
rules that perform the reads for free variables.
• Locations: Locations are represented by a tuple of not only

the heap “index” (the traditional basic location) but also with
the heap storage type, predicate and rely/guarantee relations
explicitly tagged as part of the value. The tags are not required
for functionality, but their presence simplifies the soundness
argument.
• Subsumption: We actually prove soundness for a slight trans-

lation of the calculus to one with explicit reference conversion
casts placed wherever expressions were typed using the rules
P-⇒, R-⊂, and G-⊂.

7 In an implementation, substitution is fine for both bindings as the relations
attached to arguments serve no operational purpose: they are present here
only for proving that resource semantics are respected. This would also
simplify interaction between the pure and impure languages, allowing self-
splitting variable bindings to be captured between sublanguages. In our
implementation embedded in COQ, variables of self-splitting types may be
captured by either abstraction and used only purely; substructural variables
are encapsulated in a monad.
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• Substructural behavior: Variable splitting and dropping are
explicitly identified in the source, to allow the semantics to
modify the stack appropriately.
• Step Granularity: Small-step reduction semantics are used, but

the pure computation’s semantics include only a single input
heap, and no output, since the pure terms cannot modify the
heap.
• Folding: Folding has a runtime representation. Reads produce

the heap value wrapped in a deferred folding construct which
lazily pushes the guarantee restriction through a data structure
as components are evaluated. This is necessary for dependent
type constructors like propositional equality, where types appear
in values of the type.
• It is sometimes necessary to reduce multiple heap dereferences at

once if they are in some way connected by equality of dependent
types containing that dereference. In a way this is a very unusual
variable binding. This differs from naı̈ve semantics only when
two dereferences of the same location are related by dependent
types, inside different closures, and and one of those closures
is returned to the impure context. We have yet to imagine an
example of desirable computational code that observes this
difference.

While considering the role of predicate and guarantee obligations
from the typing derivations, note that the type judgments themselves
do not require proof terms to prove predicates and guarantee
obligations. Those predicates and relations are specified using
propositions-as-types, but the actual proof method is up to the
implementation. Section F discusses the subtleties of using proofs-
as-programs to actually prove various obligations.

Execution must preserve two critical invariants beyond standard
invariants for well-typed heaps, are:

• For each reference r : ref{T | P}[R,G] in the stack, heap, or
expression under reduction, there exists a proof of P (h[r]) h for
the current heap h.
• For each pair of references p : ref{T | P}[R,G] and q : ref{T |

P′}[R′,G′] in the stack, heap, or expression under reduction, if
p and q alias (point to the same heap cell) then /0⊂ G′ ⊆ R and
/0⊂ G⊆ R′

Soundness proceeds as a type preservation proof, by induction
on the evaluation step taken.

Lemma 1 (Pure Preservation). If H;Σ;Γ ` e : τ and H;e→ e′, then
there exists some τ′ such that H;Σ;Γ ` e′ : τ′ and H;Γ ` τ′ τ.

The pure cases are mostly straightforward (recall that subject
reduction — progress and preservation — hold for CC with β-
conversion [2, 26]), so we focus discussion on the cases for impure
rules. The one notable point in the pure cases is reduction of a
dereference expression — assume !r — which applies relation
folding ([R,G]� τ, Figure 5). In this case note that the folding —
a form of weakening guarantees of read results — ensures that
the guarantees in the result of !r allow no more heap changes
than r’s guarantee. This is required to preserve the compatible
alias guarantee, because some alias of r may have a rely equal
to r’s guarantee, so if a read result allowed too strong a guarantee,
that result might allow actions that would violate the alias’s rely,
potentially invalidating refinements.

Evaluating !r also produces labeled expressions, 〈!r〉a, where
a is the folded result of the heap lookup, and is convertible to !r
itself to aid type preservation. The labeled expression is a witness
of a heap dependency. It is the reduction of these heap reads that
requires the type before and after be related by H;Γ ` τ′ τ, which
gains an additional runtime rule that a dereference-tagged expression

converts to the dereference expression. This is useful in structural
rules like the inductive cases of pure function application, where for
example a reduction of the function term could introduce a tagged
value into the argument type. For the application to continue to
check, appearances of the same (dereferenced) value in the type of
the argument position must be convertible to the argument type.

All heap witnesses are removed (reduced to a) by another reduc-
tion rule (from the surrounding imperative context) before producing
a value that flows back into imperative computation, taking advan-
tage of the fact that replacing 〈!r〉a by a preserves typing, up to
replacing the tagged expression with a in the type. This is done
in two steps by the context rule for embedding pure expressions
within impure contexts, under the meta-function heap indep. The
runtime typing rule for the pure-in-impure embedding requires the
pure expression typecheck without using the untagging conversion
rule, so heap indep rewrites the pure evaluation result to remove
the use of untagging. This involves changing (as few as possible)
instances of !l to 〈!l〉a in types when previously a conversion was
necessary, and at constructors occasionally changing a term-level
dereference as well. Thus, this is the reduction of multiple derefer-
ences at once mentioned earlier. Then a substitution is performed
using the following lemma:

Lemma 2 (Untagging). For all references ` and tagged expressions
〈!`〉a such that H;Σ;ε ` 〈!`〉a : τ′, if H;Σ;Γ ` e : τ without using the
untagging conversion, then H;Σ;Γ ` e[〈!`〉a/a] : τ[〈!`〉a/a].

Proof. By inversion on the typing of the tagged value, H;Σ;ε ` a : τ′.
Proof follows by induction on the typing derivation for e. The
CONV case proceeds by induction on the type conversion, where
the untagging case holds vacuously.

Because only closed result types are permitted to flow from pure
subterms back into imperative computation (SUB and IΠ-E), this
extra “unlabelling” step preserves the type, so all values that persist
across pure evaluations are heap-independent.

With these lemmas in hand, impure preservation is reasonably
straightforward.

Lemma 3 (Impure Preservation). If ` S;H;e : Γ;Σ;τ⇒ Γ′, and
S;H;e → S′;H ′;e′, then there exists a Γ′′ and Σ′ such that `
S′;H ′;e′ : Γ′′;Σ′;τ⇒ Γ′.

Proof. Note that the initial state (well-typed expression and the
empty heap and stack) satisfies all invariants.

• CALL: Reduction of the procedure or argument is sound by in-
duction. In the case where the procedure is actually applied, the
only affected parts of the state are the stack (which gains a fresh
variable with the argument as its value, with the obvious type),
and the expression (now the body with the fresh variable sub-
stituted for the source variable). Stack typing follows naturally,
expression typing follows from α-renaming and a lemma that
replacing well-typed subexpressions preserves typing, and heap
typing is unchanged.
• ASSIGN: Stack and expression typing is straightforward. Basic

heap typing is straightforward. Establishing that the predicate
holds in the new heap is straightforward, using inversion on the
heap write type rule (including strong updates to predicates).
This rule may create a new alias of some reference, but pre-
serving non-conflicting relies and guarantees among aliases is
straightforward. The more subtle part of this case is proving
that all other references’ predicates still have proofs in the new
heap. For direct aliases of the write target, by the agreeable R/G
condition, stability of all predicates over their respective relies,
and the guarantee satisfaction (by inversion on the typing rule),
those predicates are preserved. For references from which the
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modified cell is reachable, a similar reasoning applies using
the containment requirements of well-formed reference types.
For references from which the modified cell is not reachable,
preservation is by the precision requirements on predicates.
• SWAP: Similar to the assignment case.
• ALLOCATE: Stack soundness is preserved, expression soundness

is straightforward. Basic heap soundness is straightforward,
leaving the RGREF-specific heap invariants as remaining proof
obligations. By inversion on the typing rule for allocation, there
is a proof of the predicate on the allocated value in all heaps,
therefore one exists for the new heap. The new object is (initially)
unaliased, so all aliases’ rely and guarantee imply each other. For
previously-existing references, the allocation is not reachable
from any existing allocation, so proofs are preserved by the fact
that all existing references’ predicates are precise (insensitive to
changes outside their reachable heap).
• DROP-VAR: Stack and heap typing are straightforward, as is

expression typing. The main invariant that could be violated is
that aliases’ rely and guarantee conditions might conflict; this
invariant is preserved because the operation moves an existing
reference, it does not create an additional alias.
• SPLIT-VAR: Similar to the DROP-VAR case, except the value

is actually split according to the elaborated syntax for splitting
variable reads, which is only well-typed if values of the type
split according to Γ ` τ≺ τ′> τ′′, which preserves compatible
rely and guarantee conditions.
• PURE: Justified by soundness for the pure sublanguage, plus

restrictions on pure/impure interactions (specifically that runtime
typing requires that the pure expression must typecheck without
using the heap as a source of definitional equality — i.e., without
the untagging conversion).

D. Operational Semantics
This section describes the operational semantics of the core language
from Section 4. Figure 8 gives the most interesting rules, while
Figure 9 gives the remaining rules that effectively define contexts
and evaluation order. Recursors (not shown) follow the standard
reduction rules.

The most unusual part of the semantics is the imperative reduc-
tion “evaluation context” rule for reducing pure expressions in an
impure context, mentioned earlier. This rule sometimes reduces mul-
tiple dereferences of the same location in one step, including inside
unevaluated closures.

The semantics reducing multiple dereference expressions is
very unusual, and could hypothetically lead to unexpected results.
Implementations could impose stronger analyses to prevent writing
terms that would observe the change in behavior (thus obviating the
unusual semantics). However, we have been unable to conceive of a
desirable term that observes this atypical reduction; recall that we
use the pure fragment for two different purposes: computation and
specification. Observing the multiple-dereference behavior requires
using dereference expressions in types.

The simplest example we can think of and a few reduction steps
are shown in Figure 7. Assuming ` is a reference to a natural number
(3 in the current heap), the type of this term is unit→ nat. The first
reduction shown substitutes the reference, and the second performs
the first actual dereference. The result of the second reduction (the
last line) only type-checks because of the untagging conversion
rule, which says 〈!`〉3 !`. If the tag were stripped from the term
without further ado and reduction proceeded naı̈vely, the recursor’s
result terms would be a proof that 3 = 3 and a proof that !` =!`.
While this is typeable, it would require introducing additional

dependencies into the type (not strict preservation) and we don’t
know if even that would be possible in general. And while one could
conceivably coerce the new term to type-checking using the heap
for unrestricted definitional equality, this would be unsound: this
problematic term could be reduced inside an impure computation
which subsequently stored 4 to `’s heap cell. For this reason, our
semantics would produce the final term in the figure, deduce that
immediately reducing the inner dereference would ensure the term
is well-typed in any heap, and perform that additional dereference.

Note that to observe the unusual semantics, a term must:

• Dereference a location in a context that introduce the dereference
expression into a type (such as the redex location of a reflexivity
proof), in a part of the term that is reduced before returning to
the impure context
• Return a closure to the surrounding impure context, which

also dereferences the same location in a context that injects
dereference into a type
• Relate (via types) the “outer” and “inner” terms whose types

depend on dereference of the same location.

If a pure embedding’s type is any “flat” type (not containing a
closure), then the multiple-dereference semantics are irrelevant; all
dereference expressions in the pure context will be reduced in the
same heap (or thrown away, for example from an unused branch
of a recursor). The heap indep step also imposes restrictions on
reasoning about pure terms; see Section F.

E. Static Semantics of Dynamic State
Figure 10 gives the typing judgments for dynamic program states.

F. Equational Reasoning with Dereference
The unusual simultaneous-dereference semantics in the pure sub-
language highlight an important subtlety of equational reasoning (a
subtlety that would exist even with alternative restrictions to remove
the unusual semantics). Specifically, it is unsound to equate two
dereference expressions that may be reduced in different heaps!
Further, as mentioned in Section B, the most straightforward axiom-
atization for properties of heaps would allow the implementation
to form proof terms using dereference to accidentally use non-well-
founded recursion. Note that our type rules do not actually say how
stability, precision, relations, or predicates are proven; this is why.

There are a few approaches to handling the issues with equating
dereferences that are evaluated in different heaps (Section B.1
discusses the non-termination issues). The approach we favor is
to only permit full equational reasoning for properties of pure terms
whose return type contains no closures. In this case, all dereferences
of the same location will be reduced with the same heap (before
control returns to the imperative fragment), so equating syntactically
identical dereferences is sound. In cases where a pure subterm
returns a value that may contain unreduced dereference expressions,
either the whole term or (a conservative overapproximation of) the
closures that may be unreduced when the pure term becomes a
value must be abstracted, hiding them from equational reasoning
principles.

This is also the motivation for disallowing references in the
definition of predicates and relations in the core language. Rather
than complicating the type system’s core ideas with richer checks
to prevent dereferences in predicates and the like, we simply
prevent the introduction of references into those subterms. An
alternative would be to introduce more distinct syntactic categories
so dereference expressions in predicates, rely and guarantee relations
simply would not even parse. Our prepend-only list in Section 3.2
does project a location (and another value) from the term language
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into a predicate, but this is sound because it is not used in a heap-
sensitive way (dereference).

Our prototype does not enforce the required restrictions on equa-
tional reasoning, because it is in some sense “too shallow” of an em-
bedded DSL: because we directly leverage COQ’s dependent product
for RGREF’s dependent product, we cannot restrict its application
without an additional preprocessor or adding a compiled OCaml plu-
gin to restrict interaction between native CIC and RGREF-specific
terms. We believe this is a reasonable trade-off. The prototype’s goal
is to evaluate the rely-guarantee reference approach’s proof burden.
The technically required restrictions on equational reasoning should
not be difficult in principle to enforce, and we do not believe they
would noticeably affect how code would be written. A production-
quality implementation of RGREF would of course need to enforce
the richer restrictions. It is worth noting that this weakness from
interaction between COQ’s raw terms and DSL-specific terms is
not unique to us; the YNOT [12, 40] implementation of Hoare Type
Theory [38, 39] has similar risks when COQ primitives are used in
unintended ways with YNOT axioms. This source of unsoundness
could be avoided with a deeper embedding, as has been done for
some separation logic work, or in a system not based on depen-
dent type theory (which would need to construct many reasoning
principles on its own).
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Γ ` τ≺ τ> τ
τ ∈ {nat,bool,unit,Prop,Type,heap, = ,Πx : τ→ τ

′,τ
M→ τ

′}
Γ ` τ≺ τ> τ

Γ ` τ≺ τa > τb Γ ` σ≺ σa >σb

Γ ` (τ,σ)≺ (τa,σa)> (τb,σb)

REF->

Γ ` ref{b | φ′}[R′,G′]
Γ ` ref{b | φ′′}[R′′,G′′] /0⊂ JG′K⊆ JR′′K /0⊂ JG′′K⊆ JRK′ JG′K∪ JG′′K⊆ JGK JRK⊆ JR′K JRK⊆ JR′′K

Γ ` ref{b | φ}[R,G]≺ ref{b | φ′}[R′,G′]> ref{b | φ′′}[R′′,G′′]

Γ ` e : τ Γ ` n : nat Γ ` b : bool Γ ` tt : unit
AXIOM

Γ ` Prop : Type
V

Γ ` τ≺ τ> τ

Γ,x : τ ` x : τ

Π-I
Γ ` τ≺ τ> τ ∀τ ∈ Γ.` τ≺ τ> τ Γ ` (Πx : τ→ τ

′) : σ σ ∈ {Type,Prop} Γ,x : τ ` e : τ
′

Γ ` (λx : τ.e) : Πx : τ→ τ
′

Π-E
Γ ` e1 : Πx : τ→ τ

′
Γ ` e2 : τ

Γ ` e1 e2 : τ
′[x/e2]

ε ` τ ε ` τ
′

x : τ ` e : τ
′⇒ Γ

′

Γ ` (λM x : τ.e) : τ
M→ τ

′

DEREF
Γ ` e : ref{τ | P}[R,G] τ

′ = [R,G]� τ

Γ ` τ≺ τ> τ G reflexive

Γ `!e : τ
′

Π-F
Γ ` τ : γ Γ ` τ≺ τ> τ

Γ,x : τ ` τ
′ : σ γ,σ ∈ {Type,Prop}
Γ `Πx : τ→ τ

′ : σ

CONV
Γ ` e : τ Γ ` τ τ

′

Γ ` e : τ
′

Γ ` τ τ

P-⇒
∀v,h.P v h→ P′ v h stable P′ R

Γ ` ref{τ | P}[R,G] ref{τ | P′}[R,G]

R-⊂
JRK⊆ JR′K stable P R′

Γ ` ref{τ | P}[R,G] ref{τ | P}[R′,G]

G-⊂
JG′K⊆ JGK

Γ ` ref{τ | P}[R,G] ref{τ | P}[R,G′]

Γ ` e : τ⇒ Γ
V- /0

Γ,x : τ ` x : τ⇒ Γ
V->

Γ ` τ≺ τ
′> τ

′′

Γ,x : τ ` x : τ
′⇒ Γ,x : τ

′′
M -I

∀τ ∈ Γ.` τ≺ τ> τ

Γ,x : τ ` e : τ
′⇒ Γ

′

Γ ` (λM (x : τ).e) : τ
M→ τ

′⇒ Γ

M -E

Γ ` e1 : τ
M→ τ

′⇒ Γ1
Γ1 ` e2 : τ⇒ Γ2

Γ ` e1 e2 : τ
′⇒ Γ2

WRITE
Γ ` e : τ⇒ Γ

′,x : ref{τ | P}[R,G] ∀h,h′ : heap.h′ = JeK(h)→ P (!x) h′→ P′ JeK h′[x 7→ JeK]
stable P′ R ∀h,h′ : heap.h′ = JeK(h)→ P (!x) h′→ G (!x) e h′ h′[x 7→ JeK]

Γ ` x← e : unit⇒ Γ
′,x : ref{τ | P′}[R,G]

IDEREF
Γ ` e : ref{τ | P}[R,G] τ

′ = [R,G]� τ

Γ ` τ≺ τ> τ G reflexive

Γ `!e : τ
′⇒ Γ

′
ALLOC

Γ ` e : τ⇒ Γ
′

/0⊂ G stable P R ∀h : heap.P e h
Γ ` alloc e : ref{τ | P}[R,G]⇒ Γ

′

SWAP
Γ ` x← e : unit⇒ Γ

′,x : ref{τ | P′}[R,G]

Γ ` swap(x,e) : τ⇒ Γ
′,x : ref{τ | P′}[R,G]

PURE
ε ` e : τ ε ` τ : Prop

Γ ` e : τ⇒ Γ

IΠ-E
Γ ` e1 : Πx : τ→ τ

′⇒ Γ
′

Γ
′ ` e2 : τ⇒ Γ

′′ x 6∈ FV(τ′)

Γ ` e1 e2 : τ
′⇒ Γ

′′

Γ ` τ : σ
WF-REF

ε ` R : hrel(τ) ε ` G : hrel(τ) ε ` P : hprop(τ) closed R
precise R precise G precise P stable P R ε ` τ : Prop

Γ ` ref{τ | P}[R,G] : Prop

with metafunctions hrel(τ) def
= τ→ τ→ heap→ heap→ Prop and hprop(τ) def

= τ→ heap→ Prop

Figure 4. Typing. Not shown: standard recursors for naturals, booleans, pairs, identity types [29]. Also not shown: standard well-formed
contexts, most of (pure) expression/type conversion (Γ ` τ τ) (Figure 5).
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Γ ` τ τ cont.
Γ ` τ

Γ ` τ τ

Γ ` τ τ
′

Γ ` τ
′ τ

′′

Γ ` τ τ
′′

Γ ` σ τ Γ,x : τ ` τ
′ σ

′

Γ `Πx : τ→ τ
′ Πx : σ→ σ

′
Γ ` σ τ

Γ ` (λx : τ.e) (λx : σ.e)

τ =βv τ
′

Γ ` τ τ
′ ` Γ

` ε

` Γ x 6∈ Γ Γ ` τ

` Γ,x : τ

Γ ` τ : σ cont.
τ ∈ {nat,bool,unit,True,False}

Γ ` τ : Prop

Γ ` τ : γ Γ ` σ : γ

Γ ` (τ,σ) : γ

Γ ` τ : Prop Γ ` τ
′ : Prop

Γ ` τ
M→ τ

′ : Prop

Γ ` A : σ Γ ` a : A
Γ ` refl(a) : a = a

Γ ` τ≺ τ> τ

Γ `=τ : τ→ τ→ Prop Γ ` truth : True

Γ ` u : unit Γ ` d : C[x/tt] Γ,x : unit `C : σ σ ∈ {Prop,Type}
Γ ` Runit(u,d) : C[x/u]

Γ ` p : (τ∗σ)

Γ ` fst p : τ

Γ ` p : (τ∗σ)

Γ ` snd p : σ

Γ ` h : heap Γ ` e : ref{A | P}[R,G]

Γ ` h[e] : A
Γ ` b : False Γ,x : False `C : σ σ ∈ {Prop,Type}

Γ ` RFalse(b) : C[x/b]

Γ ` n : nat Γ ` c : C[x/0] Γ ` f : Πn : nat→ (C[x/n]→C[x/Sn]) Γ,x : nat `C : σ σ ∈ {Prop,Type}
Γ ` Rnat(n,c, f ) : C[x/n]

Γ ` b : bool Γ ` t : C[x/true] Γ ` f : C[x/false] Γ,x : bool `C : σ σ ∈ {Prop,Type}
Γ ` Rbool(b, t, f ) : C[x/b]

Γ ` b : True Γ ` t : C[x/truth] Γ,x : True `C : σ σ ∈ {Prop,Type}
Γ ` RTrue(b, t) : C[x/b]

Γ ` A : σ Γ ` c : a =A b Γ ` a : A Γ ` b : A Γ ` d : C[x/a,y/a,z/refl(a)] Γ,x : A,y : A,z : x = y `C : Prop

Γ ` R=(c,d) : C[x/a,y/b,z/c]

stableτ (P : hprop(τ)) (R : hrel(τ)) def
= ∀x : τ.∀h,h′ : heap.P x h→ R x h h′→ P x h′

preciseτ (P : hpred(τ)) def
= ∀x,h,h′.(∀l,ReachFromIn l x h→ h[l] = h′[l])→ P x h→ P x h′

preciseτ (R : hrel(τ)) def
= ∀x,x′,h,h′,h,h′.(∀l,ReachFromIn l x h→ h[l] = h′[l])→

(∀l,ReachFromIn l x′ h→ h[l] = h′[l])→
R x x′ h h→ R x x′ h′ h′

closedτ (R : hrel(τ)) def
=

 True if τ ∈ {nat,bool,unit,Πx : τ′→ τ′′,τ
M→ τ′,True,False,heap, = }

closed R.1∧ closed R.2 if τ = (σ∗σ′)
closed R′∧∀l,h,h′.R′ h[l] h′[l] h h′→ R l l h h′ if τ = ref{τ′ | P′}[R′,G′]

[R,G]� τ
def
=


τ if τ ∈ {nat,bool,unit,Πx : τ′→ τ′′,τ

M→ τ′,True,False,heap, = }
([R.1,G.1]� σ∗ [R.2,G.2]� γ) if τ = (σ∗ γ)

ref{σ | P}[R′, (λa,a′,h,h′.G′ a a′ h h′∧
(∀l,h[l] = a→ h′[l] = a′→ G l l h h′)) ] if τ = ref{σ | P}[R′,G′]

where for R : hrel(σ∗σ′):

R.1 def
= λx,x′ : σ.λh,h′ : heap.∀y : σ

′.R (x,y) (x′,y) h h′ and R.2 def
= λy,y′ : σ.λh,h′ : heap.∀x : σ

′.R (x,y) (x,y′) h h′

Figure 5. Selected auxiliary judgments and predicates
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(λr : ref{nat | . . .}[. . . , . . .].(λp f :!r =!r.(λu : unit.(λp f 2 :!r =!r. !r)Rbool(true, p f , refl(!r)))) refl(!r)) `
→ (λp f :!`=!`.(λu : unit.(λp f 2 :!`=!`. !`)Rbool(true, p f , refl(!`)))) refl(!`)
→ (λp f :!`=!`.(λu : unit.(λp f 2 :!`=!`. !`)Rbool(true, p f , refl(!`)))) refl(〈!`〉3)

Figure 7. The simplest term we can imagine that observes the multiple-dereference reduction

e ::= . . . | 〈!`〉e | fold e e e

v ::= true | tt | n | b | Type | Prop |Πx : τ→ τ
′ | λx : τ.e (where no annotated expressions appear in e) | (λM x : τ.e) (where FV(e) = /0)

H : loc ⇀ v Σ : loc ⇀ τ

H;Σ;Γ `M : N (extends Γ `M : N)
H;Σ;Γ `!` : τ

′ H(`) = v ε ` v : τ [R,G]� τ = τ
′ v′ =β (fold R G v)

H;Σ;Γ ` 〈!`τ,P,R,G〉v′ : τ
′

Σ(`) = τ

H;Σ;Γ ` `τ,P,R,G : ref{τ | P}[R,G]

H;Γ `M N (extends Γ `M N)
H(`) = v v′ =β (fold R G v)

H;Γ ` 〈!`τ,P,R,G〉v′ !`τ,P,R,G

H;e→ e′
βλ

H;(λx : τ.e) v→ e[x/v]
H(`) = v

H; !`τ,P,R,G→ 〈!`τ,P,R,G〉(fold R G v)
H; e→ e′

H; 〈!`τ,P,R,G〉e→ 〈!`τ,P,R,G〉e′

v ∈ {nat,bool,unit,(λx.e),(λM x.e),true, refl( )}
H; (fold R G v)→ v H; (fold R G (v1,v2)→ (fold havoc G.1 v1, fold havoc G.2 v2)

H; (fold R G (`τ,P,R′,G′))→ `τ,P,R′,(λa,a′,h,h′.G′ aa′ hh′∧(∀l.h[l]=a→h′[l]=a′→Gl l hh′))

S;H;e→ S′;H ′;e′
H;e→ e′ 〈!`〉a ∈ e′ e′′ = heap indep(e′)

S;H;pure e→ S;H;pure e′′[〈!`〉a/a]
H;e→ e′ ∀`,a.〈!`〉a 6∈ e′

S;H;pure e→ S;H;pure e′ S;H;pure v→ S;H;v

y ∈ FV(e)
S;H;(λM x : τ.e)→ S;H;(λM x : τ.e[y/S(y)]

FV(e) = /0 y fresh
S;H;(λM x : τ.e) v→ S[y 7→ v];H;e[x/y]

S(x) = ` ` ∈ dom(H)

S;H; x← v → S;H[` 7→ v];tt

S(x) = ` H(`) = v′

S;H;swap(x,v)→ S;H[` 7→ v];v′
` 6∈ dom(H)

S;H;alloc v→ S;H[` 7→ v];tt S;H;consume x→ S\ x;H;S(x)

S(x) = v
S;H;split x τ τ

′→ S[x 7→ v as τ];H;v as τ
′ S;H;pureApp (λx : τ.e) v→ S;H;pure ((λx : τ.e) v)

H(`) = v
S;H; !`τ,P,R,G→ S;H;pure 〈!`τ,P,R,G〉(fold R G v)

Figure 8. Values, typing of runtime values, and main operational semantics for RGREF.
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H;e→ e′
H;e1→ e′1

H;e1 e2→ e′1 e2

H;e2→ e′2
H;v e2→ v e′2

H;e1→ e′1
H;(e1,e2)→ (e′1,e2)

H;e2→ e′2
H;(v,e2)→ (v,e′2)

H;e→ e′

H; !e→!e′

H;e→ e′

H; refl e→ refl e′

S;H;e→ S′;H ′;e′
S;H;e1→ S′;H ′;e′1

S;H;e1 e2→ S′;H ′;e′1 e2

S;H;e2→ S′;H ′;e′2
S;H;v e2→ S′;H ′;v e′2

S;H;e→ S′;H ′;e′

S;H;x← e→ S′;H ′;x← e′

S;H;e→ S′;H ′;e′

S;H;swap(x,e)→ S′;H ′;swap(x,e′)
S;H;e→ S′;H ′;e′

S;H;alloc e→ S′;H ′;alloc e′
S;H;e1→ S′;H ′;e′1

S;H;pureApp e1 e2→ S′;H ′;pureApp e′1 e2

S;H;e2→ S′;H ′;e′2
S;H;pureApp v e2→ S′;H ′;pureApp v e′2

Figure 9. Structural / context operational semantics for RGREF.

` S;H;e : Γ;Σ;τ⇒ Γ′

` Σ ` H : Σ ` Γ H;Σ ` S : Γ H;Σ;Γ ` e : τ⇒ Γ
′ ∀τ, `,P,R,G. `τ,P,R,G ∈ S;H;e =⇒ JPK H(`) H

∀τ, `,P,P′,R,R′,G,G′. `τ,P,R,G ∈ S;H;e∧ `τ,P′,R′,G′ ∈ S;H;e∧ the references are in different locations⇒ (G =⇒ R′∧G′ =⇒ R)
` S;H;e : Γ;Σ;τ⇒ Γ

′

H;Σ ` S : Γ
H;Σ ` S : ε

H;Σ ` S/x : Γ H;Σ;ε ` S(x) : τ

H;Σ ` S : Γ,x : τ

` Σ
∀` ∈ dom(Σ). /0; /0;ε ` Σ(`) : Prop

` Σ
` H : Σ

dom(H) = dom(Σ) ∀` ∈ dom(H). /0;Σ;ε ` H(`) : Σ(`)

` H : Σ

Figure 10. Dynamic state typing.
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