
Automatically Repairing Broken Workflows
for Evolving GUI Applications

Sai Zhang Hao Lü Michael D. Ernst
Department of Computer Science & Engineering

University of Washington, USA

{szhang, hlv, mernst}@cs.washington.edu

ABSTRACT

A workflow is a sequence of UI actions to complete a specific
task. In the course of a GUI application’s evolution, changes ranging
from a simple GUI refactoring to a complete rearchitecture can break
an end-user’s well-established workflow. It can be challenging to
find a replacement workflow. To address this problem, we present
a technique (and its tool implementation, called FlowFixer) that
repairs a broken workflow. FlowFixer uses dynamic profiling, static
analysis, and random testing to suggest a replacement UI action that
fixes a broken workflow.

We evaluated FlowFixer on 16 broken workflows from 5 real-
world GUI applications written in Java. In 13 workflows, the correct
replacement action was FlowFixer’s first suggestion. In 2 workflows,
the correct replacement action was FlowFixer’s second suggestion.
The remaining workflow was un-repairable. Overall, FlowFixer
produced significantly better results than two alternative approaches.

Categories and Subject Descriptors: D.2.5 [Software Engineer-
ing]: Testing and Debugging.
General Terms: Reliability, Experimentation.
Keywords: Dynamic analysis, GUI applications, workflows.

1. INTRODUCTION
Most users interact with a software application through its Graph-

ical User Interface (GUI). The software developers evolve the GUI
over time to improve the user experience. Many popular software
systems, from web-based systems like social media to desktop ap-
plications like office suites, routinely revamp their GUIs. Such GUI
changes can be even more frequent than changes to the core domain
logic.

1.1 The Broken Workflow Problem
Although application evolution is generally beneficial, it can

create usability problems for end-users. Changes ranging from
a simple GUI refactoring to a complete rearchitecture can break
an end-user’s workflow — a sequence of UI actions to complete
a specific task. To recover from a broken workflow due to GUI
evolution, end-users often need to seek information from online
help forums, the software user manual, or experts. This process can
be tedious, laborious, and frustrating.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA ’13, July 15–20, 2013, Lugano, Switzerland
Copyright 13 ACM 978-1-4503-2159-4/13/07 ...$15.00.

rkflow

 Trace tion

(a) Crossword version 0.3.0

(b) Crossword version 0.3.5

Figure 1: Evolution of the Crossword [4] GUI breaks an existing work-
flow: building a new crossword puzzle. In version 0.3, a user clicks
“Tools → Crossword Builder” to create a new puzzle. In version 0.35,
this menu item has been removed and a functionally equivalent one,
“File→ New Crossword” is added. Our technique FlowFixer automat-
ically recommends “click menu item: File → New Crossword” as a
replacement UI action to repair this broken workflow in version 0.35.

As an example of real GUI application evolution, Figure 1 shows
screenshots corresponding to versions 0.3 and 0.35 of the Cross-
word project [4]. The GUI changes break an end-user’s workflow.
In version 0.3, a user clicks the menu item “Tools → Crossword
Builder” to create a new crossword puzzle; but in version 0.35, this
menu item has been removed, and the user must instead click the
menu item “Files→ New Crossword”.

The broken workflow problem is not rare in practice. For exam-
ple, our examination of Microsoft Office user forums [31] indicates
that broken workflows are serious issues. For every release of each

Microsoft Office product in the past 5 years, end-users complained
about their broken workflows due to UI changes and sought infor-
mation to repair them. These users had already tried but failed to
find the new workflow before they wrote the forum posting. Writing
a good forum post is harder than reproducing an existing workflow
(since the post has to clearly describe the existing workflow).

GUI evolution presents problems not just for end-users, but also
for software developers. To automate testing of a GUI application,
test engineers often write test scripts to mimic end-user workflows
by performing actions on GUI elements. Such test scripts are fragile
to UI changes. According to an empirical study [28], as many as
74% of test scripts become unusable between successive releases
of a typical GUI application. An internal evaluation of automated
testing in Accenture showed that even simple modifications to GUIs
resulted in 30% to 70% changes to test scripts [14].

1.2 Repairing Broken Workflows
Manually repairing every broken workflow is tedious and frustrat-

ing, since a GUI application like Microsoft Word contains hundreds
of GUI screens and thousands of UI actions. It is infeasible for a
software user to explore this space to choose replacement actions.

Another possible approach is to programmatically compare the
GUIs of two versions, identify changed GUI elements, and then lo-
cate UI actions that reference these modified GUI elements [7,14,26].
This is a blackbox impact analysis that does not require analysis of
the GUI application’s source code. Section 4.3.3 empirically demon-
strates that existing GUI-comparison-based approaches only repair
a small number of broken workflows. There are two fundamental
limitations that cause this poor performance. (1) For some UI ac-
tions (e.g., filling a blank textbox), their effects cannot be observed
by merely comparing GUIs statically without actually executing
actions. Existing blackbox GUI-comparison-based approaches fail
to distinguish UI actions that look similar but result in different
consequences. (2) During software evolution, the GUI can change
substantially: a GUI element may be moved from one screen to
another, the label of a GUI element may be modified, and a GUI ele-
ment may even be replaced by another GUI element with a different
type (i.e., replacing a menu item with a toolbar button). Therefore,
it is generally impractical to find a replacement GUI element and
a suitable action on it from the new application version without
knowing the precise “action semantics”. For these reasons, a GUI-
comparison-based approach like [14] only warns about affected
workflow steps (i.e., test script statements) that should be modified,
but does not indicate how to fix the broken workflow.

Our approach: a program-analysis-based solution. This pa-
per uses program analysis to repair broken workflows that are af-
fected by GUI evolution. Our technique, called FlowFixer, recom-
mends replacement UI actions in the updated GUI application to
complete the same workflow.

The key observation behind FlowFixer is that during the evolution
of a GUI application, the underlying system that implements a given
functionality often stays relatively the same between versions, even
when its GUI evolves rapidly. To repair a broken workflow, Flow-
Fixer analyzes how the methods invoked by a workflow in the old
version were changed during application evolution. Specifically, if a
UI action (e.g., click a menu item) is removed from the application,
FlowFixer first identifies methods invoked when performing that UI
action in the old version, then analyzes how these invoked methods
differ in the new version, and finally reasons about which UI actions
in the new version can trigger the updated methods.

FlowFixer works in four steps (illustrated in Figure 2):

1. Dynamic Workflow Profiling. FlowFixer instruments the old
application version, so that executing the instrumented applica-
tion produces an execution trace. FlowFixer asks the user to
demonstrate a workflow on its GUI. This is an easy, fast task
for the user. FlowFixer analyzes the obtained execution trace to
extract all invoked methods.

2. Static Method Matching. For each method invoked by the
workflow in the old version, FlowFixer identifies its correspond-
ing, possibly updated method in the new version.

3. Random Action Execution. FlowFixer instruments the new ap-
plication version. Then, it randomly executes UI actions on the
instrumented version and observes which methods get invoked.
Based on the action execution and method invocation informa-
tion, FlowFixer builds a map from each executed UI action to its
invoked methods. This step can be performed ahead of time, by
the software vendor.

4. Replacement Action Recommendation. For each matched
method (from step #2) in the new version, FlowFixer queries the

built map (from step #3, mapping each executed UI action to its
invoked methods) to find UI actions that can trigger it. FlowFixer
ranks these found UI actions, in terms of adapting the broken
workflow to the new application.

1.3 Evaluation
FlowFixer works in an automatic manner and scales to realis-

tic programs. We evaluated FlowFixer on 16 broken workflows
from 5 non-trivial Swing [19] GUI applications, described in Fig-
ure 5. FlowFixer successfully repaired 15 broken workflows. In
13 workflows, the correct replacement action was FlowFixer’s first
suggestion. In 2 workflows, the correct replacement action was
FlowFixer’s second suggestion. The remaining workflow was un-
repairable (the functionality had been removed from the application),
but FlowFixer did not identify that fact and produced a list of possi-
ble replacement actions. FlowFixer is fast enough for practical use,
taking less than 4 minutes to repair one broken workflow, on average.
FlowFixer’s accuracy and speed make it a promising technique.

We compared FlowFixer to an existing technique [14], which
uses GUI comparison to recommend replacement UI actions. The
existing technique can only repair 6 out of 16 broken workflows.

We also compared FlowFixer to an alternative technique, which
uses static analysis to recommend replacement UI actions for a
broken workflow. FlowFixer produced significantly better results
for all workflows.

1.4 Contributions
This paper makes the following contributions:

• Technique. We present a technique to repair broken workflows.
Our technique uses dynamic profiling, static analysis, and ran-
dom testing to suggest fixes to a broken workflow (Section 2).
• Implementation. We implemented our technique in a tool,

called FlowFixer, for Java GUI software (Section 3). Our imple-
mentation is publicly available at
http://workflow-repairer.googlecode.com.
• Evaluation. We applied FlowFixer to 16 broken workflows from

5 real-world GUI applications, comprising 244580 LOC. The
results show the accuracy and efficiency of FlowFixer (Section 4).

2. TECHNIQUE
This section explains FlowFixer’s 4 steps, as introduced in Sec-

tion 1.2 and illustrated in Figure 2.
FlowFixer takes as input an old workflow (that are valid on the

old version but broken on the new version), the source code of two
versions of a GUI application, and the version history between these
two versions.

2.1 Profiling a Broken Workflow
FlowFixer first instruments the old version of the tested applica-

tion offline by inserting code to monitor each method’s execution
at run time. Then, FlowFixer asks the end-user to demonstrate
a workflow on the instrumented version up to the broken action.
Demonstration is one of the simplest ways for an end-user to de-
scribe a workflow; it is easier than writing specifications or scripts
of any form.

During instrumentation, FlowFixer distinguishes event handlers
(i.e., event-handling methods) from other methods, and records both
of them in the execution trace. An event handler is a special method
in a GUI application that is called back by the GUI framework. In
a Java application, each feasible UI action is handled by an event
handler (possibly shared with other UI actions). The event handler
further calls other methods to realize the desired functionality.

An old workflow:

Creating a new puzzle

 ;click ͞Crossǁord Builder͟Ϳ

Invoked methods:

actionPerformed(ActionEvent)

showCrosswordBuilder()

...

1. Profiling

 (on the old version)

2. Method Matching

3. Random Action Execution

(on the new version)

UI Action 1:

Click ͞“olǀing Neǁ Word ͟

UI Action 2:
Click ͞Neǁ Crossǁord͟

UI Action 3:
Click ͞“aǀe Crossǁord͟

Invoked methods:
actionPerformed(ActionEvent)

showCrosswordBuilder()

...

Invoked methods: Invoked methods:

actionPerformed(ActionEvent)

CrosswordSolverPanel<init>()

...

actionPerformed(ActionEvent)

saveCrossword()

...

…

4. Replacement Action Recommendation

Replacement Action:

1. Click ͞Neǁ Crossǁord͟

…

Figure 2: Illustration of FlowFixer’s 4 steps in repairing a broken workflow using the Crossword example from Figure 1.
1. The “Profiling” step (Section 2.1) determines which methods are invoked by an old workflow on the old version of the application.
2. The “Method Matching” step (Section 2.2) finds correspondences between methods in the old and new versions, as shown by dotted lines.
3. The “Random Action Execution” step (Section 2.3) generates and executes random UI actions on the new version, in order to determine which

methods each UI action invokes. Step 3 is independent of steps 1 and 2 and can be performed as a preprocessing step.
4. The “Replacement Action Recommender” step (Section 2.4) takes the method matching and random UI execution information to output a

ranked list of replacement UI actions to repair the old workflow.
For the Crossword example, FlowFixer’s top recommendation to repair the broken workflow is the UI action: click “New Crossword”.

Executing the instrumented application produces an execution

trace, which consists of a sequence of invoked methods. Take the
Crossword program in Figure 1 as an example: an end-user clicks
the menu item “Tools→ Crossword Builder” to create a new puzzle.
(Here, clicking “Tools→ Crossword Builder” is a single GUI action,
not two actions.) As shown in Figure 2, this old workflow invokes an
event handler called MenuListener.actionPerformed(ActionEvent)

(for short, actionPerformed(ActionEvent)), which further calls show-
CrosswordBuilder and other methods (omitted in Figure 2). Flow-
Fixer records those invoked methods in an execution trace file.

2.2 Matching Methods across Versions
For each invoked event handler and other methods invoked by the

broken workflow in the old version, FlowFixer finds its correspond-
ing, possibly updated method in the new version.

Previous work has described how to match program elements
across program versions [5,9,21,29,33]. We were not able to use an
existing tool since the tool implementation is either unavailable [33]
or does not support the latest Java version [5], or the technique itself
focuses on identifying changes by a small set of refactorings [9, 21]
rather than finding the counterpart of an arbitrary program element.
Thus, we created our own tool to perform method matching. If
other techniques or tools improve, we could integrate them into
FlowFixer.

The key to our approach is our observation that during a GUI
application’s evolution, code implementing the same functionality
across two versions often stays relatively the same. This is par-
ticularly true for event handlers. When developers revamp a GUI,
they often reuse an existing event handler and make it respond to
a different UI event rather than re-writing the same event-handling
logic from scratch. Based on this observation, FlowFixer employs
three simple heuristics for method matching, and uses the first one
that succeeds.
1. Identical Method heuristic. Return a method with the identical

fully-qualified name in the new version.

2. Similar Name heuristic. Return all methods with a fully-qualified
name whose Levenshtein string similarity [34] to the original
method name is within a pre-defined threshold (default: 0.9).
This heuristic handles code evolution such as refactoring (e.g.,
method renaming, and method pull-up).

3. Co-evolving heuristic. If a method is replaced by another method
in the new version, the deleted method and the replacement meth-
ods are often committed in the same revision. This heuristic
leverages this observation and parses the application evolution
history to identify co-changed methods with the deleted one.

In Figure 2, the Identical Method Heuristic works for the Cross-
word program. Section 4 gives examples where the other heuristics
are necessary.

Given a method in the old version, it is possible that this step
will return multiple methods in the new version as the potentially

matched ones. This does not present problems for FlowFixer, since
many of the matched methods identified by heuristics are not in-
voked by any UI actions and thus are automatically ignored. Sec-
tion 2.4 describes the detailed action recommendation algorithm.

2.3 Executing Random UI Actions
After identifying the matched methods in the new application

version, FlowFixer needs to find UI actions that can trigger those
matched methods. The new application’s GUI can be dramatically
different than the old one; thus, we cannot assume the end-users
are familiar with it nor ask an end-user to explore every possible UI
action on it.

To obtain information about the new application version, Flow-
Fixer employs random testing to generate and execute random UI

actions on the new version, and observes the invoked event handlers
and methods in the background.

FlowFixer’s random testing monitors the GUI application’s state
and repeatedly adds newly-available UI actions to the action queue.
When random testing a GUI application, the UI action space to be

Input: a Java GUI application P

Output: a map from UI action to its invoked methods
exploreGuiApplication(P)

1: return exploreUIScreen(getInitialScreen(P))

Input: a screen S

Output: a map from UI action to its invoked methods
exploreUIScreen(S)

1: actionMap← new Map〈Action, Methods〉
2: actionList← getAvailableActions(S)
3: while actionList is not empty do

4: action← removeRandomElement(actionList)
5: if action is not applicable then

6: continue {action is disabled or on a different UI element}
7: end if

8: methods← executeAction(action)
9: actionMap.put(action, methods)

10: if popUpModalDialog(S) then

11: dialog← getModalDialog(action)
12: nextMap← exploreUIScreen(dialog)
13: actionMap← actionMap ∪ nextMap

14: end if

15: newActions← getNewActions(S)
16: actionList.addAll(newActions)
17: end while

18: dispose(S)
19: return actionMap

Figure 3: Algorithm for randomly executing UI actions on a GUI appli-
cation.

explored can be large. For the sake of efficiency, our algorithm
approximates the exploration by executing each UI action (at most)
once. This is because, in most cases, a UI action invokes the same
event handler even when it exhibits different behaviors in different
contexts.

Figure 3 sketches the random execution algorithm. The main pro-
cedure exploreGuiApplication starts processing at the initial screen
of a GUI application. The exploreUIScreen procedure creates a
worklist of all available UI actions (line 2). For each action that is
applicable (i.e., not disabled) to the current application state, the al-
gorithm executes it and records its invoked methods (lines 8–9). For
each applicable action that requires user inputs, the executeAction
procedure randomly chooses values from a pre-defined value pool.
If the executed action creates a modal dialog, the algorithm recur-
sively explores all available actions on the new modal dialog (lines
10–14). After executing each UI action, the algorithm adds newly-
available actions (including actions that were ignored on line 5 if
they become applicable again) to the worklist (lines 15–16), since
executing a UI action may change the program state and enable
other actions. For example, in the Crossword program, executing
the action of creating a new puzzle enables a new action of saving
a puzzle. After executing all applicable actions on a screen, the
algorithm disposes that screen (line 18).

Our implementation of getAvailableActions ignores several kinds
of UI events, such as key pressing, mouse moving, and window dis-
posing. This was not a problem in our experiments (Section 4),
for three reasons. First, some ignored events such as key pressing
often serve as a shortcut for other actions supported by FlowFixer.
Second, some ignored events such as mouse moving are usually not
essential in a workflow, or if essential are not replaceable by other
events. Third, other events such as window disposing are performed
by the GUI framework; an end-user rarely uses them in their own
workflows.

Auxiliary methods:

getBrokenHandler(trace): returns the first event handler recorded in
the execution trace that is broken in the new application

getMatchedMethods(Vold , Vnew, method): returns a list of methods
(including handlers) that match method (Section 2.2)

getActions(actionMap, methods): reverse query on actionMap (pro-
duced by the algorithm in Figure 3); returns actions that invoke any
one of the methods

getInvokedMethods(handler, trace): returns a list of methods that
are invoked by handler in the execution trace; that is, the methods
invoked after handler but before the next handler in the trace

Input: two versions of the GUI application: Vold and Vnew;
the execution trace T of a workflow on Vold ; and actionMap,
the precomputed result of exploreGuiApplication(Vnew)

Output: a ranked list of replacement UI actions in Vnew

recommendReplacementActions(Vold , Vnew, T , actionMap)

1: handler← getBrokenHandler(T)
2: matchedHandlers← getMatchedMethods(Vold,Vnew,handler)
3: handlerActions← getActions(actionMap, matchedHandlers)
4: if |handlerActions| = 0 then

5: return handlerActions

6: end if

7: weightMap← new Map〈Action, Float〉
8: for each action in handlerActions do

9: weightMap[action] = 1
|handlerActions|

10: end for

11: invokedMethods← getInvokedMethods(handler, T)
12: for each method in invokedMethods do

13: matchedMethods← getMatchedMethods(Vold,Vnew,method)
14: actions← getActions(actionMap, matchedMethods)
15: for each action in actions do

16: weightMap[action] = max(weightMap[action], 1
|actions|

)

17: end for

18: end for

19: return weightMap.sortedKeys()

Figure 4: Algorithm for recommending replacement UI actions for a
broken workflow. The exploreGuiApplication procedure is defined in
Figure 3.

Our implementation of executeAction, bounds each action ex-
ecution to 5 seconds; thus, our random testing algorithm always
terminates.

Random testing is easy to implement, scalable to large programs,
and remarkably effective in practice, including in our context. How-
ever, it has no coverage guarantee. Executing random UI actions
is not the only way to identify invoked methods for each UI action.
Another possible way is to use static analysis to find all reachable
methods for a UI action. Compared with random testing, static
analysis can be sound but suffers from several limitations. First, it
is hard for a static analysis to distinguish UI actions that share the
same event handler. For example, in the Crossword program [4],
12 menu items share the same event handler MenuListener.action-
Performed. Thus, it is hard for a static analysis to decide which
action has been performed when it gets invoked. Second, static
analysis is conservative: it may include methods that are actually
unreachable in practice and thus introduce noises. Section 4.3.1
measures the coverage achieved by random testing in our evaluation;
and Section 4.3.4 empirically compares FlowFixer with an alterna-
tive approach based on static analysis, and shows that FlowFixer
yields significantly better results.

2.4 Recommending Replacement UI Actions
For a broken UI action in a workflow, FlowFixer recommends a

list of replacement UI actions that may complete the same workflow
in the new version. The basic idea of FlowFixer’s replacement UI
action recommendation algorithm is to check each matched method
in the new version and then infer which UI action is most likely to
invoke it. The algorithm described in this section suggests one fix
action for one broken action in a workflow rather than for a sequence
of actions. If multiple UI actions in a workflow are broken caused
by the GUI evolution, the algorithm can be used iteratively. This
was not necessary in our experiments.

Figure 4 sketches the recommendation algorithm. The algorithm
first analyzes a recorded execution trace to extract the event handler
invoked by the broken UI action in the broken workflow (line 1). In
a Java application, each UI action is handled by an event handler.
Since the input execution trace is produced by the user after demon-
strating the workflow up to the broken action (Section 2.1), the last
recorded event handler is the event handler invoked by the broken
UI action. Then, the algorithm identifies a list of UI actions in the
new version that can trigger the matched event handlers (line 3). If
there is no action in the action list, the algorithm concludes that the
broken workflow cannot be repaired (lines 4–6). Otherwise, at least
one UI action triggers the matched event handler; and the rest of
algorithm deals with this case.

To estimate the likelihood of each UI action being a replacement
action, the algorithm associates each UI action with a weight (line
7). The larger the weight, the more likely the action is the desired
one. The algorithm identifies program elements relevant to the
broken workflow (handlers on line 2, methods on line 11). The
weight of a UI action is inversely proportional to the number of UI
actions that trigger the program element. If a relevant method is
uniquely invoked by one action, that action is more likely to be the
desired action. On the other hand, if a relevant method is invoked
by multiple actions, the likelihood of each action being the desired
action decreases. Finally, the algorithm ranks the UI actions by
their weights in a decreasing order and returns them (line 19). If
two actions have the same weight, the algorithm ranks the action
invoking more methods higher in the output.

For example, in Figure 2, the matched event handler actionPer-
formed is invoked by three UI actions on the new version, so each
action’s weight is 1/3. The matched method showCrosswordBuilder

is uniquely invoked by the UI action “Click New Crossword”, so
its weight is 1. Thus, the algorithm ranks the action “Click New
Crossword” highest.

If a replacement UI action is applicable on a window other than
the current one, FlowFixer’s recommendation also shows the action
that triggers the other window.

Our algorithm focuses on the “uniqueness” of a method being
invoked by UI actions. An alternative is to rank each replacement
action based on coverage: compute the methods covered by the
broken UI action, then rank replacements according to what fraction
of those methods each replacement covers. Section 4.3.1 empirically
compares this approach with FlowFixer’s algorithm, and finds that
FlowFixer’s algorithm yields better results.

2.5 Discussion
We next discuss some design issues in FlowFixer.

Soundness and completeness. The FlowFixer technique is neither
sound nor complete. The primary reason is that both the method
matching algorithm and the random testing technique used in Flow-
Fixer are based on heuristics. The method matching algorithm can-
not guarantee to identify the counterpart of each invoked method;
and the random testing algorithm cannot guarantee to find all in-

voked methods by a UI action. Despite such limitations, as demon-
strated in Section 4, FlowFixer is still useful in repairing many
real-world broken workflows.

Repairing broken GUI test scripts. Repairing broken GUI test
scripts is related to, but more challenging than, repairing broken
workflows. A test script can be written in a programming language.
This gives it more flexibility than a workflow, for instance, permit-
ting it to perform an action on a disabled GUI element by directly
calling its underlying event handler. In addition, a test script may in-
clude other computations besides UI actions, and repairing a broken
test script requires updating computations as well as UI actions. A
GUI test script may be more fragile to software evolution, if it pre-
cisely encodes the position of each target GUI element. Therefore,
a tiny UI change like switching the positions of two neighboring
menu items can break a GUI test script, but won’t affect a workflow
from an end-user’s perspective. Due to these difficulties, existing
test script repairing techniques [14, 17, 26] fix “execution errors”:
they identify statements affected by GUI changes or delete unusable
actions to make an obsolete test script executable, while ignoring
its original semantics. By contrast, FlowFixer aims to preserve the
semantics of a broken workflow. FlowFixer can be viewed as a first
step toward solving the more general GUI test script repair problem.

3. IMPLEMENTATION
We implemented FlowFixer using the WALA framework [36] and

the UISpec4J library [35]. FlowFixer uses WALA to perform offline
instrumentation of Java bytecode. To execute UI actions and gather
method invocation information, FlowFixer employs UISpec4J to
transparently intercept windows in the background without actually
rendering the GUI. Currently, FlowFixer supports GUI applications
using the Swing framework [19], and supports UI actions on most of
the built-in Swing GUI elements, such as button, menu, checkbox,
tree structure, listbox, etc. When executing UI actions, FlowFixer
employs several simple heuristics to skip actions on GUI elements
whose label contains “Exit” or “Quit”, since such UI actions of-
ten cause the whole application to abort. Although our current
implementation only supports GUI applications using the Swing
framework, there are no fundamental limitations that prevent the
technique itself from being extended to other frameworks.

To increase robustness, when executing a UI action, FlowFixer
spawns a UI action execution thread. If the thread hangs before a
user-specified time limit (default: 5 seconds), FlowFixer terminates
the thread and executes the next UI action.

The FlowFixer implementation is publicly available at
http://workflow-repairer.googlecode.com.

4. EVALUATION
We evaluated four aspects of FlowFixer’s effectiveness, answering

the following research questions:

1. How accurate is FlowFixer in repairing broken workflows for
real-world GUI applications? That is, what is the rank of the ac-
tual replacement UI actions in FlowFixer’s output (Section 4.3.1)?

2. How long does it take for FlowFixer to repair a broken workflow
(Section 4.3.2)?

3. How does FlowFixer’s effectiveness compare to an existing ap-
proach based on GUI comparison (Section 4.3.3)?

4. How does FlowFixer’s effectiveness compare to an alternative
approach based on static analysis (Section 4.3.4)?

4.1 Subject Programs and Broken Workflows
We evaluated FlowFixer on 5 Java programs shown in Figure 5.

We selected these programs because they are popular open-source,

Size of new version
Subject program Description LOC #Class #Method Versions ∆LOC Broken workflows

Crossword [4] A tool for solving crosswords 3087 19 193 0.3→ 0.35 1386 1. Create a new puzzle
JEdit [20] A cross-platform text editor 32607 275 1382 2.5→ 2.6 5017 2. Show the previous/next file
Gantt Project [13] A tool for project scheduling 55009 771 3852 2.0.1→ 2.5.4 3777 3. Zoom in/out the current chart

and management 4. Go to the previous/next date
5. Save the current chart
6. Show critical path
7. View chart options

JabRef [18] A tool for bibliography 83447 636 3340 2.0→ 2.8.1 38992 8. Search for a record
reference management 9. Import records into a new database

10. Export records from the current database
Freemind [10] A tool for writing mind maps 70430 354 3930 0.71→ 0.80 10757 11. Export a map as HTML

12. Export all map branches as HTML
13. Show the previous/next graph
14. Zoom in/out the current graph
15. Change a graph node property
16. Change a graph edge property

Figure 5: Subject programs and broken workflows used to evaluate FlowFixer. Column “∆LOC” shows the number of changed lines of code between
the old and versions, as counted by UNIX diff. Column “Broken workflows” lists unique broken workflows.

GUI-based applications available at SourceForge.net. Each program
contains multiple GUI screens and many GUI elements, and has
evolved over a long period of time (5–12 years). In addition, three of
the programs (Crossword, Freemind, and Gantt Project) have been
used in the GUI testing literature [26, 30].

For each application, we performed a retrospective analysis to
select two versions that contain significant GUI changes. We col-
lected all documented workflows from the old version’s user manual.
Workflows documented in the user manual, though by no means
completely covering an application’s functionality, are often among
the most useful and important ones. Then, we tried to perform
each collected workflow on the new version to check whether the
workflow broke or not. We considered a workflow broken if a GUI
element used in the old workflow did not appear in the new ver-
sion on the same panel (e.g., the same menu, or dialog). Location
changes, such as swapping the order of two menu items, do not
count as breaking a workflow: even though they may affect a GUI
test script [7], they are unlikely to confuse an end-user. We evaluated
every broken workflow we found; we did not select only workflows
on which FlowFixer works well. The workflows are of reasonable
complexity: each workflow contains 1 to 8 steps with one broken
action, and some are non-trivial for a human to fix (see Figure 7 for
an example).

Overall, there were 356 workflows in the user manuals, and 70 of
these (20%) were broken in the new version. Some of the broken
workflows had the same root cause: (1) Two workflows might use
the same UI element that was changed. (2) If all items of one menu
are moved to another, only one broken workflow related to those
two menus is listed. (3) A change in the way zooming is done
appears only once per application, even though zooming in and out
are distinct UI actions.

There were 16 root causes in total. Figure 5 lists one representa-
tive broken workflow for each root cause.

4.2 Evaluation Procedure
For each subject program, we first used FlowFixer to instru-

ment both old and new versions based on the strategy described
in Section 2.1. We demonstrated each broken workflow on the
instrumented old version to obtain an execution trace. After that,
FlowFixer analyzed the obtained execution trace and two program
versions. FlowFixer works in a fully automatic way to repair a given
workflow, and has two possible outcomes: it either recommends
a ranked list of replacement actions or concludes that the broken

Workflow FlowFixer
Program ID Rank Root Cause

Crossword 1 1 A menu item is re-named and moved
to another menu

JEdit 2 1 A menu item is moved to another menu

Gantt 3 1 A toolbar icon is replaced by button
Project 4 1 A toolbar icon is replaced by button

5 2 The original UI action is replaced by a
different action (see Figure 7 for details)

6 1 An icon is replaced by a button
7 X This functionality is removed

JabRef 8 1 A menu item is moved to another menu
9 1 A menu item is re-named

10 2 A menu item is re-named

Freemind 11 1 A menu item is re-named and moved to
another menu

12 1 A menu item is re-named and moved to
another menu

13 1 A menu item is moved to another menu
14 1 A menu item is moved to another menu
15 1 A menu item is moved to another menu
16 1 A menu item is moved to another menu

Figure 6: Experimental results in repairing broken workflows. Column
“Rank” shows the absolute rank of the actual replacement UI action in
FlowFixer’s output (lower is better), in which “X” means FlowFixer
output a list of replacement UI actions but the workflow is actually un-
repairable. Column “Root Cause” shows the root cause of the broken
workflow.

workflow cannot be repaired. For both cases, we manually examined
FlowFixer’s output to determine its correctness.

We made a simple change to each subject program by removing
the splash screen. This is a pure implementation consideration,
because the UISpec4J library cannot handle splash screens before a
GUI application launches. The code edit affected 10 lines of code
in total across the 5 applications, and it did not modify any GUI
functionality.

Our experiments were run on a 2.67GHz Intel Core PC with 4GB
physical memory, running Windows 7.

4.3 Results

4.3.1 Accuracy

As shown in Figure 6, FlowFixer is highly effective in repairing
broken workflows. FlowFixer successfully repaired 15 broken work-

Number of workflows that FlowFixer can repair
Identical Method Identical Method Identical Method

+ Similar Name + Similar Name
+ Co-evolving

11 13 15

Figure 8: Number of broken workflows that FlowFixer can repair using
the three heuristics in Section 2.2.

Random UI Action Execution
Program Event Handler Coverage Overall Method Coverage

Crossword 80% 27%

JEdit 52% 42%

Gantt Project 24% 26%

JabRef 10% 20%

Freemind 42% 26%

Average 42% 28%

Figure 9: Experimental results in executing random UI actions.
Columns “Event Handler Coverage” and “Overall Method Coverage”
show the coverage of event handlers and methods (including event han-
dlers) in random UI action execution, respectively.

flows. For 13 workflows, the correct action was FlowFixer’s first
suggestion. For 2 workflows, the correct action was FlowFixer’s
second suggestion. For 1 workflow, no repair was possible (the func-
tionality had been removed from the application), but FlowFixer
incorrectly output a list of possible replacement UI actions.

We use a broken workflow from the Gantt Project program as
an example to illustrate FlowFixer’s effectiveness. As shown in
Figure 7, there are significant GUI changes between Gantt Project
versions 2.0.1 and 2.5.4. After the GUI evolution, the toolbar button
used to save the current chart state in version 2.0.1 (Figure 7(a))
disappeared in version 2.5.4 (Figure 7(b)). In version 2.5.4, the UI
action to save the current chart state is changed from “click a but-
ton” to “fill a table cell”. The difficulty of finding this replacement
action is further exacerbated by the fact that the table to receive
the desired UI action is in a different dialog that only becomes
visible after users click another button. For this example, Flow-
Fixer outputs the desired UI action as the second suggestion in its
report. The key fact explored by FlowFixer during repair is that
a method named UndoableEditImpl.createTemporaryFile, invoked
by the broken workflow on the old version, exists on the new version
and is uniquely invoked by the “table cell filling” UI action.

One broken workflow in Gantt Project is not repairable in the new
version. In version 2.0.1, Gantt Project provided a menu item called
“Chart options” as a shortcut to configure the current Gantt chart,
but this menu item was removed in version 2.5.4. We checked the
source code of version 2.5.4, and confirmed that code implementing
this shortcut was no longer reachable by any event handler. For
this workflow, FlowFixer produces a list of replacement UI actions
because the Method Matching step (Section 2.2) returns a matched
method in the new version that is not actually relevant. Future work
should remedy this problem. One possible way is to improve the
precision of the method matching algorithm by further analyzing a
method’s calling context [5].

Figure 8 shows the effects of using different method match-
ing heuristics (Section 2.2) in repairing broken workflows. Our
experimental results confirm the observation that the underlying
code implementing the same functionality often stays relatively
the same between versions, even when the codebase evolves sub-
stantially. For more than 75% of the workflows in our experi-
ment, two method-name-based matching heuristics are sufficient.
Figure 2 shows an example of method matching using the Iden-
tical Method heuristic. The Similar Name heuristic handles a

change in the Gantt Project program, when the method to han-
dle panel scrolling event is changed from ScrollingManagerImpl

.scrollRight to ScrollingManagerImpl.scrollBy. The Co-evolving
heuristic permits FlowFixer to identify a matching in the Free-
mind [10] program, when the event handler for editing a graph edge
is changed from EdgeStyleAction.actionPerformed(ActionEvent)
to EdgeStyleAction.apply(MapAdapter, MindMapNode).

Figure 9 shows the experimental results of executing random UI
actions. On average, the random UI action execution algorithm
described in Section 2.3 achieved 42% and 28% coverage for event
handlers and overall methods, respectively. The coverage is not
high, but still useful for recommending replacement UI actions. The
low coverage is because most of the uncovered event handlers and
methods require a UI action to satisfy some pre-condition, such as
executing on a specific application state, and the random testing
algorithm was not able to satisfy the pre-condition. Future work
should remedy this problem. One possible approach is to integrate
FlowFixer with existing symbolic analyses [16] to construct the
required desired application states. Despite this limitation, methods
invoked by a UI action even without satisfying all pre-conditions
often give enough information to disambiguate different UI ac-
tions. Take the Crossword program from Figure 2 as an example.
The showCrossworldBuilder method contains code to perform pre-
condition checking. Even though a randomly-generated UI action
may fail to bypass the pre-condition checking code and miss other
methods called by showCrossworldBuilder, knowing an action can
invoke method showCrossworldBuilder is sufficient to disambiguate
it from others. This is because the showCrossworldBuilder method
is uniquely invoked by the action of clicking “New Crossword”.

We next evaluate an alternative approach to recommend replace-
ment actions. This approach replaces FlowFixer’s algorithm in Sec-
tion 2.4 with a ranking heuristic based on the proportion of invoked
methods in response to the broken UI action that are covered by
each alternative replacement UI action, with higher ranks assigned
to actions that cover more methods. This approach degraded the
accuracy of FlowFixer for every broken workflow shown in Figure 6.
The primary reason is that each UI action can invoke many utility
methods, so two UI actions sharing a large proportion of (utility)
methods do not necessarily indicate that they perform similar tasks.
By contrast, FlowFixer’s heuristic focuses on the “uniqueness” of a
method being invoked by UI actions, and yields better results.

Summary. FlowFixer repairs realistic broken workflows with high
accuracy for evolving GUI applications with non-trivial GUI changes.

4.3.2 Time Cost

We measured FlowFixer’s performance in two ways: the time
cost in executing random UI actions for each subject program and
the time cost in recommending replacement UI actions for each
broken workflow. Figure 10 shows the results.

On average, FlowFixer uses 27 minutes to execute random UI
actions on each subject program. However, random testing is a
one-time cost per program and the computed results can be cached
to share across workflows.

FlowFixer spends an average of 3.2 minutes to recommend re-
placement UI actions for one workflow. The time used to repair a
workflow is roughly proportional to the number of methods invoked
by a workflow, rather than the size of the subject program.

Summary. FlowFixer repairs realistic broken workflows with ac-
ceptable time cost.

4.3.3 Comparison with a GUI-Comparison Approach

We compared FlowFixer with an existing approach called REST
[14]. We chose REST because it is a recent technique targeting a

(a) Gantt Project version 2.0.1

(b) Gantt Project version 2.5.4

 Figure 7: The GUI change between two Gantt Project versions breaks workflow #5: saving the current chart state. In version 2.0.1, users click a
toolbar button called “Save state” (highlighted in (a)) to complete this workflow. However, in version 2.5.4, the GUI change forces users to first click
a toolbar button “Baselines...” (highlighted in (b)), then input a name in the table cell in the popup modal dialog to save the current state. Our
FlowFixer technique can suggest this replacement action to repair the broken workflow.

Time (seconds)
Program Workflow ID Action Execution Recommendation

Crossword 1 22 37

JEdit 2 3611 47

Gantt Project 3 2664 205
4 324
5 353
6 299
7 319

JabRef 8 335 189
9 118
10 402

Freemind 11 700 65
12 112
13 150
14 192
15 110
16 122

Average 1642 190

Figure 10: FlowFixer’s performance in repairing broken workflows.
The time cost has been divided into two parts: executing random UI
actions for each subject program (column “Action Execution”) and rec-
ommending replacement UI actions for each workflow (column “Rec-
ommendation”).

similar problem. REST is a technique to maintain GUI test scripts.
It first compares the GUIs of two application versions to identify
changed GUI elements. Then, it localizes GUI test script statements
that are affected by the changed GUI elements. REST has a dif-
ferent focus than FlowFixer: it aims to identify affected test script
statements rather than repairing an affected test script.

We extended REST to support repairing a broken workflow as
follows. For each affected UI action in a broken workflow, we use
REST to identify the same GUI element in the new version, and
then recommend UI actions on this GUI element as the replacement
actions. For instance, if a menu item used in the broken workflow

Workflow Can repair the workflow?
Program ID Repairable? FlowFixer REST

Crossword 1 Yes Yes No

JEdit 2 Yes Yes Yes

Gantt Project 3 Yes Yes No
4 Yes Yes No
5 Yes Yes No
6 Yes Yes No
7 No No No

JabRef 8 Yes Yes Yes
9 Yes Yes No
10 Yes Yes No

Freemind 11 Yes Yes No
12 Yes Yes No
13 Yes Yes Yes
14 Yes Yes Yes
15 Yes Yes Yes
16 Yes Yes Yes

Figure 11: Experimental results in comparing FlowFixer with a REST-
based technique [14]. Each cell in columns “FlowFixer” and “REST”
shows whether the corresponding technique can repair a broken work-
flow or not. FlowFixer repairs 15 workflows in total. By contrast,
the REST-based technique repairs 6 workflows in total and incorrectly
states that 9 workflows are un-repairable. For workflow 7 that is actu-
ally un-repairable, FlowFixer incorrectly outputs a list of replacement
UI actions, while the REST-based technique correctly states that work-
flow cannot be repaired. The time cost of the REST-based technique is
slightly lower than FlowFixer and is omitted for brevity.

disappears in the new version, we use REST to find a menu item
with the same label in the new version as the replacement UI action.

Figure 11 shows the experimental results. FlowFixer repaired
16 broken workflows, while the REST-based technique only re-
paired 6 broken workflows. The primary reason for REST’s poor
performance is that a GUI can change substantially between two
application versions and such non-trivial change is often beyond
REST’s ability to identify the replacement UI actions in the new

FlowFixer Static Analysis
Program Workflow ID Rank Time (s) Rank Time (s)

Crossword 1 1 59 7 194

JEdit 2 1 3658 70 939

Gantt Project 3 1 2869 13 1951
4 1 2988 11 2402
5 2 3017 25 3078
6 1 2963 25 2414
7 X 2983 X 2546

JabRef 8 1 544 N 4040
9 1 473 22 4013
10 2 737 N 4134

Freemind 11 1 765 20 978
12 1 812 19 1132
13 1 850 21 1226
14 1 892 22 1255
15 1 810 14 1116
16 1 822 13 1198

Average 1.1 1682 22 2039

Figure 12: Comparison of FlowFixer with a static analysis-based ap-
proach described in Section 4.3.4. Column “Rank” shows the absolute
rank of the actual replacement UI action in the output. “N” repre-
sents that the actual replacement UI action is not in the output. “X”
represents that the workflow is un-repairable but the tool suggests a re-
placement UI action. Both “N” and “X” are dropped when averaging
ranks. The “Rank” and “Time (s)” columns for FlowFixer’s results are
taken from Figure 6 and Figure 10, respectively. For fair comparison,
the time cost of FlowFixer includes both the random UI execution time
and the replacement action recommendation time.

version. For example, the text on a GUI element can be modified
(e.g., the Crossword example in Figure 1), a GUI element can be
replaced by a different GUI element (e.g., workflows 3, 4, and 6),
and the action on a GUI element to complete the same workflow
can be changed to a different action (e.g., the Gantt Project example
in Figure 7). The 6 workflows that REST can repair all share the
same root cause: a menu item is moved from one menu to another
without changing its label.

We did not compare FlowFixer with other related GUI testing [27,
39, 40] and GUI test script repairing approaches [17, 26] because
these approaches target a rather different problem than FlowFixer.
Automated GUI testing frameworks like GUITAR [27, 39, 40] aim
to systematically validate a GUI application’s functionality. Test
script repairing approaches like [17, 26] aim to repair unusable test
scripts by simply removing or updating affected statements without
preserving the original testing semantics, and thus are inapplicable
to broken workflow repair. By contrast, FlowFixer recommends
replacement UI actions to complete the same workflow. In addition,
some techniques [17, 26] only work for GUI tests generated by the
techniques themselves. It is unknown whether such techniques can
be generalized to support repairing realistic broken workflows.

Summary. Comparing GUIs of two application versions without
analyzing the program is insufficient in repairing realistic broken
workflows. A program-analysis-based approach like FlowFixer can
produce significantly better results.

4.3.4 Comparison with Static Analysis

As described in Section 2.3, FlowFixer uses random testing, a
typical dynamic analysis, to identify methods that can be invoked by
a UI action. Another possible way to do so is to statically examine
the source code to identify reachable methods for each UI action.
Compared with random testing, using static analysis is conservative
and sound: it outputs results that describe the program’s behavior,
no matter on what inputs or in what environment the program is run.

However, a conservative static analysis may output methods that are
actually unreachable by any UI action.

To investigate the trade-offs between using dynamic and static
analyses, we compared FlowFixer with an alternative approach
based on static analysis. The alternative approach replaces the
random UI action execution step (Section 2.3) with the following
static analysis. The static analysis examines the source code to build
a call graph for the program and identifies possible event handlers
for each GUI element declaration. After that, the static analysis
follows the call graph to identify all reachable methods from each
event handler and treats them as reachable methods by a UI action.

Figure 12 shows the experimental results. The static analysis-
based approach produces less accurate results. There are two pri-
mary reasons for this. First, an event handler may be shared by many
GUI elements. For example, in Crossword, 12 UI actions share the
same event handler MenuListener.actionPerformed. Thus, without
executing the program, it is hard for a static analysis to precisely
reason about the correct UI action from an invoked event handler.
Second, static analysis is conservative and can include many meth-
ods that are actually unreachable by UI actions. This causes the
recommendation algorithm (Figure 3) to recommend UI actions that
cannot actually invoke a matched method at runtime.

As shown in Figure 12, the cost of static analysis is comparable
to FlowFixer’s. The majority of the time was spent traversing the
call graph to find reachable nodes for every UI action. The static
call graph contains 26639–44407 nodes when using the RTA call
graph construction algorithm [2]. We did not use more expensive
algorithms like k-CFA (k > 1), because they do not scale to our
subject programs.

Summary. Random testing, though neither sound nor complete, can
provide more accurate and useful results than static analysis.

4.4 Discussion
Threats to validity. There are several threats to the validity of our
evaluation.

The 5 Java programs and their changes might not be representa-
tive, though some were used in previous research. Likewise, the
16 broken workflows might not be representative, even though we
evaluated every broken workflow we found. For example, each
broken workflow we found contains only one one broken action.
Furthermore, FlowFixer ignores some UI actions, such as mouse
moving and key pressing. Thus, we do not claim the results will
apply for every workflow and GUI change.

FlowFixer’s effectiveness depends on the effectiveness of the
method matching algorithm and random testing. It may yield less
useful results for GUI programs with significant code changes, or
for programs with constrained interfaces (that random testing fails
to provide useful results). However, different algorithms can be
plugged into FlowFixer.

Our evaluation only compared FlowFixer with two other ap-
proaches. Comparing with other analyses or tools might yield
different observations.

Our evaluation focuses on FlowFixer’s algorithm for workflow
repairing. A future user study should evaluate whether FlowFixer
helps users.

Experimental conclusions. We have three chief findings. (1) Flow-
Fixer is useful in recommending replacement UI actions to repair
broken workflows. (2) Comparing GUIs of versions to identify
replacement actions is insufficient in practice. (3) Compared with
static analysis, random testing yields more accurate and useful re-
sults for the broken workflow repair problem.

5. RELATED WORK
Work related to this paper falls into three main categories; (1) an-

alyzing and testing GUI applications; (2) techniques for supporting
GUI software evolution; and (3) automated software error patching
techniques.

5.1 Analyzing and Testing GUI Applications
Various techniques have been developed to automate GUI test-

ing including model creation [12], test generation [1, 44], test ex-
ecution [39], and test oracle selection [27]. For example, GUI-
TAR [27, 39, 40] is a GUI testing framework for Java and Microsoft
Windows applications; it generates event sequence-based test cases
for GUI programs using a structural event generation graph. Gross
et al. [15] proposed a search-based test generator for GUI appli-
cations. Their approach maximizes coverage metrics, and avoids
false failures by constructing tests at the system level. The UI action
execution algorithm implemented in FlowFixer (Section 2.3) can be
treated as a simple way to exercise a GUI application with the goal
of increasing UI action coverage. However, FlowFixer’s UI action
execution algorithm does not aim to increase source code coverage
or find new bugs. As demonstrated in the experiments, this simple
algorithm works well for our problem. More sophisticated testing
algorithms [15, 39] could be incorporated if necessary.

Stabilizer, proposed by Michail and Xie [30], is a tool that helps
users avoid bugs in GUI applications. Stabilizer monitors a user’s
actions in the background, and gives a warning as well as the oppor-
tunity to abort the action, when a user attempts an action that has
led to problems in the past. Stabilizer aims to prevent an existing
bug from happening again. By contrast, FlowFixer aims to repair a
broken workflow.

5.2 Supporting Software Evolution
As software evolves, its behavior must be validated. Regression

test selection and prioritization [38] indicate which tests need to
be executed for a changed program. When a regression test fails,
developers need to understand its root cause [23]. To address this
problem, many debugging techniques are developed for evolving
software. For example, Delta Debugging aims to find a minimal
subset of changes that still makes the test fail [41, 43]. Test mini-
mization techniques [22, 42] simplify the failed test to ease compre-
hension for developers. Recently, Qi et al. [33] proposed a symbolic
execution-based debugging approach to synthesize new inputs that
differ marginally from the failing input in their control flow behavior,
then compare the execution traces of the failing input and the new
inputs to obtain critical clues to the root-cause of the failure. All
these existing techniques focus on helping software developers un-
derstand divergent program behaviors between versions, rather than
giving a suggestion to software end-users about a broken workflow.

The evolution of software (in particular a framework) can break
client programs. Finding suitable replacements for software ele-
ments that were accessed by a client program and deleted as part of
the software’s evolution is an important task. Several approaches
have been proposed to address this problem. For example, SemD-
iff [5] is a technique to recommend adaptive changes for clients
of framework code that has evolved in a way that is not backward-
compatible. The key idea of SemDiff is analyzing how the frame-
work adapts to its own changes, and recommending similar adap-
tations. Compared with existing matching techniques, the method
matching heuristics used in FlowFixer (Section 2.2) are specifically
designed for the workflow repair problem. It uses the observation
that underlying code implementing the same functionality often
stays the same between versions. Investigating the benefits of more
sophisticated matching techniques [5, 29] is future work.

There is some research on maintaining GUI code. Li and Wohl-
stadter [24] used dynamic information to visualize generated GUI
elements in a GUI editor and to help GUI editors to map source
code to GUI views when code changes. Recently, Wang et al. [37]
proposed an approach to automating presentation changes in dy-
namic web applications. Their approach aims to help a developer
perform presentation changes in a dynamic web application in a
way similar to performing presentation changes in static web pages.
The proposed technique recommends GUI-related code changes by
mapping changes from the program output to its source code using
dynamic analysis and check the safety of the changes through static
and dynamic analysis. Compared to FlowFixer, these techniques
work in a different granularity with a rather different goal. They
aim to identify code fragment, or GUI elements that are affected
during GUI application evolution, but are not applicable in repairing
broken workflows encountered by software end-users.

A number of approaches have been proposed to automatically
repair unit tests [6] and GUI test scripts [3,11,14,17,26]. Memon et
al. proposed a technique that models GUIs with event-flow graphs
and brings obsolete GUI tests back in sync with the updated appli-
cation version [26]. To help in understanding and maintaining GUI
test scripts, Fu et al. presented a technique to infer GUI widget types
in a test script and map them to code fragments [11]. Grechanik
et al. proposed a GUI-comparison-based approach to identifying
GUI changes between two application versions and automatically
evolving test scripts [14]. Recently, Huang et al. employed a genetic
algorithm to repair broken GUI test scripts [17]; and Brett et al. [7]
introduced a set of GUI refactoring types to help developers accom-
modate the changes both in GUI views and their corresponding con-
trollers. However, there are several significant difference between
existing work and FlowFixer. First, most approaches [7,11,14] only
remind users of the affected program elements or test scripts during
software evolution, and do not give any repair suggestion. Further-
more, as we show in Section 4.3.3, extending such approaches can
only repair a small number of real broken workflows. Second, some
approaches [6] repair a test by updating the oracle part through moni-
toring and recording the test execution results. Those approaches are
not applicable to the problem of repairing broken workflows, since a
workflow breaks because some GUI elements disappear in the new
version rather than violating some pre-defined oracles. Third, other
approaches [17, 26] repair GUI test scripts by deleting or updating
the obsoleted test suites without preserving the test intentions, while
FlowFixer recommends replacement UI actions in the new version
to complete the same workflow. In addition, some approaches work
on the test suites that are generated by the tool itself. It is unclear
whether they can be extended to repair real-world broken workflows
as FlowFixer does.

5.3 Patching Software Errors
Automatically repairing broken workflows can be viewed as a

special case of automated error patching. Research in the area of
automated software error patching has ranged from using formal
specifications and repair templates to patch errors [8]; to automati-
cally inserting code to handle overflow errors using genetic program-
ming [17]; to using similar context information to repair runtime
exceptions [25]; to enforcing software behaviors at runtime [32].

Compared to FlowFixer, existing techniques usually search for
good patches using specifications or test oracles as the criterion,
and are concerned with bugs in the program that result in erroneous
program states. By contrast, FlowFixer does not try to fix the
program itself. Instead, it repairs a broken workflow caused by UI
changes that are not related to any erroneous program states.

6. CONCLUSION
This paper presented a practical technique (and its tool implemen-

tation, called FlowFixer) for repairing broken workflows for evolv-
ing GUI applications. Our experimental results show that FlowFixer
is accurate and efficient. The source code of FlowFixer is publicly
available at: http://workflow-repairer.googlecode.com.

We consider FlowFixer as one step towards improving the us-
ability of GUI applications. As future work, we plan a user study
to evaluate FlowFixer’s usefulness to end-users. A challenge will
be finding study participants who are familiar with an old version
of a subject program. We are also interested in investigating some
possible downstream applications of the FlowFixer technique. As
an example, FlowFixer could automatically update the documented
workflows in the user manual as a GUI application evolves.

7. ACKNOWLEDGEMENTS
We thank Forian Gross for discussion about UISpec4J. This

work was supported in part by ABB Corporation and NSF grants
CCF-1016701 and CCF-0963757.

8. REFERENCES
[1] S. Arlt, A. Podelski, C. Bertolini, M. Schaf, I. Banerjee, and

A. Memon. Lightweight static analysis for GUI testing. In
ISSRE, 2012.

[2] D. F. Bacon and P. F. Sweeney. Fast static analysis of C++
virtual function calls. In Proc. OOPSLA, 1996.

[3] S. R. Choudhary, D. Zhao, H. Versee, and A. Orso. WATER:
Web Application TEst Repair. In ETSE, 2011.

[4] Crossword.
http://sourceforge.net/projects/crosswordsage/.

[5] B. Dagenais and M. P. Robillard. Recommending adaptive
changes for framework evolution. TOSEM, 20(4), 9 2011.

[6] B. Daniel, D. Dig, T. Gvero, V. Jagannath, J. Jiaa, D. Mitchell,
J. Nogiec, S. H. Tan, and D. Marinov. ReAssert: a tool for
repairing broken unit tests. In ICSE, 2011.

[7] B. Daniel, Q. Luo, M. Mirzaaghaei, D. Dig, D. Marinov, and
M. Pezzè. Automated GUI refactoring and test script repair. In
ETSE, 2011.

[8] B. Demsky, M. D. Ernst, P. J. Guo, S. McCamant, J. H.
Perkins, and M. Rinard. Inference and enforcement of data
structure consistency specifications. In ISSTA, 2006.

[9] D. Dig, C. Comertoglu, D. Marinov, and R. Johnson.
Automated detection of refactorings in evolving components.
In ECOOP, 2006.

[10] Freemind. http://freemind.sourceforge.net.

[11] C. Fu, M. Grechanik, and Q. Xie. Inferring types of references
to GUI objects in test scripts. In ICST, 2009.

[12] S. Ganov, C. Killmar, S. Khurshid, and D. E. Perry. Event
listener analysis and symbolic execution for testing GUI
applications. In ICFEM, 2009.

[13] Gantt Project. http://www.ganttproject.biz/.

[14] M. Grechanik, Q. Xie, and C. Fu. Maintaining and evolving
GUI-directed test scripts. In ICSE, 2009.

[15] F. Gross, G. Fraser, and A. Zeller. Search-based system
testing: high coverage, no false alarms. In ISSTA, 2012.

[16] W. Halfond, S. Anand, and A. Orso. Precise interface
identification to improve testing and analysis of web
applications. In ISSTA, 2009.

[17] S. Huang, M. B. Cohen, and A. M. Memon. Repairing GUI
test suites using a genetic algorithm. In Proc. ICST, 2010.

[18] JabRef. http://jabref.sourceforge.net/.
[19] JDK Swing Framework. http://docs.oracle.com/

javase/6/docs/technotes/guides/swing/.

[20] JEdit. http://www.jedit.org/.

[21] M. Kim, D. Notkin, and D. Grossman. Automatic inference of
structural changes for matching across program versions. In
ICSE, 2007.

[22] A. Leitner, M. Oriol, A. Zeller, I. Ciupa, and B. Meyer.
Efficient unit test case minimization. In ASE, 2007.

[23] B. Li, X. Sun, H. Leung, and S. Zhang. A survey of
code-based change impact analysis techniques. In STVR,
2012.

[24] P. Li and E. Wohlstadter. View-based maintenance of
graphical user interfaces. In AOSD, 2008.

[25] S. Mani, V. S. Sinha, P. Dhoolia, and S. Sinha. Automated
support for repairing input-model faults. In ASE, 2010.

[26] A. M. Memon. Automatically repairing event sequence-based
GUI test suites for regression testing. ACM Trans. Softw. Eng.

Methodol., 18(2):4:1–4:36, Nov. 2008.

[27] A. M. Memon, M. E. Pollack, and M. L. Soffa. Automated
test oracles for GUIs. In Proc. FSE, 2000.

[28] A. M. Memon and M. L. Soffa. Regression testing of GUIs. In
FSE, 2003.

[29] S. Meng, X. Wang, L. Zhang, and H. Mei. A history-based
matching approach to identification of framework evolution.
In ICSE, 2012.

[30] A. Michail and T. Xie. Helping users avoid bugs in GUI
applications. In ICSE, 2005.

[31] Microsoft Office Community Forums. http:
//support.microsoft.com/gp/gp_newsgroups_master.

[32] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach,
M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou,
G. Sullivan, W.-F. Wong, Y. Zibin, M. D. Ernst, and
M. Rinard. Automatically patching errors in deployed
software. In SOSP, 2009.

[33] D. Qi, A. Roychoudhury, Z. Liang, and K. Vaswani. Darwin:
an approach for debugging evolving programs. In FSE, 2009.

[34] The SimMetrics String Similarity Metric Library.
http://sourceforge.net/projects/simmetrics/.

[35] UISpec4J. http://www.uispec4j.org/.

[36] WALA. http://wala.sourceforge.net.

[37] X. Wang, L. Zhang, T. Xie, Y. Xiong, and H. Mei.
Automating presentation changes in dynamic web
applications via collaborative hybrid analysis. In FSE, 2012.

[38] S. Yoo and M. Harman. Regression testing minimization,
selection and prioritization: a survey. Softw. Test. Verif.

Reliab., 22(2):67–120, Mar. 2012.

[39] X. Yuan, M. B. Cohen, and A. M. Memon. GUI interaction
testing: Incorporating event context. IEEE TSE, 37(4), 2011.

[40] X. Yuan and A. M. Memon. Using GUI run-time state as
feedback to generate test cases. In Proc. ICSE, 2007.

[41] A. Zeller. Yesterday, my program worked. today, it does not.
why? SIGSOFT Softw. Eng. Notes, 24(6):253–267, 1999.

[42] S. Zhang. Practical semantic test simplification. In Proc. ICSE

(NIER), 2013.

[43] S. Zhang, Y. Lin, Z. Gu, and J. Zhao. Effective identification
of failure-inducing changes: A hybrid approach. In PASTE,
2008.

[44] S. Zhang, D. Saff, Y. Bu, and M. D. Ernst. Combined static
and dynamic automated test generation. In Proc. ISSTA, 2011.

