
1

Approximating to the
Last Bit

Thierry Moreau, Adrian Sampson
Luis Ceze, Mark Oskin

Abstract—Existing architectures provide little incentive to min-
imize the precision of arithmetic and memory operations. This
paper looks at approximation opportunities from reducing pre-
cision on compute and memory operations in compute-intensive
kernels. We present Axe, an approximation-aware precision tun-
ing framework for C/C++ programs built on top of ACCEPT, that
maximizes bit-savings while satisfying application-level quality
constraints. We use Axe on 14 PERFECT benchmark kernels,
and argue that the significant savings achievable at varying qual-
ity levels motivates the need for architectures that incorporate
mechanisms to translate lower precision requirements into energy
savings.

I. INTRODUCTION

Reducing bit-width has been a popular approach in the de-
sign of accelerators to maximize efficiency. By narrowing the
datapath to just the right width, system designers can minimize
area and power, and benefit from improved performance and
effective memory bandwidth at the expense of precision that
they don’t need. Unfortunately, general purpose-processors
and programmable accelerators are not designed with precision
flexibility in mind. This usually means that a programmer
is faced with choosing between single-precision or double-
precision, or between 32- or 64-bit fixed-point integers. As if
that wasn’t limiting enough, large control and instruction-fetch
overheads can limit the energy savings resulting from precision
reduction in general-purpose processors, thus providing little
incentive for programmers to minimize precision.

If hardware offered the ability to gracefully trade precision
for energy savings, it would push application programmers to
think more seriously about quality. Surely adding a quality
knob to instructions or data would add some complexity
and overheads, but we need to understand the potential for
savings in a hardware-agnostic way. This paper addresses the
question of how many of the precision bits in a program are
really that important. And the answer is, if you are willing to
sacrifice some quality, it’s surprisingly few. This paper makes
the following contributions:

• We present Axe, an approximation-aware precision tun-
ing framework for C/C++ programs that fine-tunes the
precision of safe-to-approximate instruction.

• We introduce bit-savings, a hardware-agnostic metric that
quantifies precision reduction over the execution of an
approximate program.

• We use Axe to explore instruction-level precision-
reduction opportunities on the PERFECT benchmark
suite.

We use the results of this study to motivate the need for
precision-scalable architectures that can graciously translate
bit-savings into energy savings.

II. AXE: A PRECISION AUTOTUNER.

We present Axe, an instruction-level precision tuning frame-
work built on top of ACCEPT [1], the C/C++ approximate
compiler. In a nutshell, Axe takes an annotated approximate
program and greedily finds a configuration that maximizes
bit-savings while maintaining application-level quality bounds.
Bit-savings is a hardware-agnostic metric that quantifies how
aggressively precision can be reduced over the execution of
an approximate program. Bit-savings can be obtained with
Equation 1, where ri and ai is the precision in bits of reference
and approximate instruction i, and ei is the number of times
instruction i is executed. For floating-point instructions the
precision ri and ai get computed over the mantissa bits.

BitSavings =

N∑
i=1

(ri − ai)

ri
∗ ei∑N

j=1 ej
(1)

! Annotated
Program

"Program
Inputs &

Quality Metrics

ACCEPT
static analysis $ ILPC*

% ACCEPT
error injection &
instrumentation

& Approximate
Binary

' Execution &
Quality

Assessment

(Quality
Autotuner

)Output
Configuration

* Quality
Results

& Bit Savings

* Instruction-level Precision Configuration

Fig. 1: Overview of the Axe framework.

A high-level overview of Axe is provided in Figure 1. Axe
is built on top of ACCEPT [1]. The idea is to provide a
program with EnerJ-style [2] data annotations 0© which can
be used by ACCEPT’s analysis libraries 1© to statically iden-
tify safe-to-approximate instructions in an Instruction-Level
Precision Configuration (ILPC) 2©. Each safe-to-approximate
instruction is a knob that the precision autotuner can tweak
in order maximize bit-savings. For each relaxed instruction
in the ILPC, Axe emulates the effect of reduced-precision
execution using ACCEPT’s customizable error-injection li-
brary 3©. On low-precision arithmetic and load instructions,
ACCEPT truncates the destination register value after the
operation executed, while on low-precision store instructions,
ACCEPT truncates the data register value before it is written
to memory. We implement an instrumentation pass 3© in
ACCEPT in order to collect dynamic statistics. ACCEPT
produces an approximated and instrumented binary 4© that can
be executed on programmer-provided program inputs 5©. The
output quality of the approximate program is then assessed 6©
using programmer-provided quality metrics 5©. Along with an
output quality score, a bit-savings score 7© is computed by Axe
by combining the ILPC parameters with execution statistics.

The goal of the autotuner 8© is to find an ILPC that
satisfies application-level quality requirements and maximizes
bit-savings. The algorithm used by the autotuner is an iterative
greedy search inspired by previous work [3]. It finds a local-
minimal configuration in O(m2 ∗ n) worst-case time where
m is the number of static safe-to-approximate instructions
(knobs) and n is the number of precision levels (knob settings).
The autotuner returns a locally-optimal configuration 9© that
satisfies the user-provided quality requirements, and reports
the resulting bit-savings.

2

App. Kernel Approx. Approx. Savings at
Static
Count

Dyn.
Ratio

20dB 40dB 60dB

PA1
2D Convolution 9 37% 47% 29% 22%
DWT 54 47% 86% 77% 74%
Histogram Eq. 16 55% 59% 51% 46%

STAP
Outer Product 142 86% 77% 59% 45%
System Solver 77 83% 79% 64% 50%
Inner Product 83 88% 82% 67% 53%

SAR
Interpolation 1 40 72% 85% 75% 66%
Interpolation 2 40 57% 87% 76% 67%
Backprojection 43 86% 68% 59% 51%

WAMI
Debayer 168 41% 50% 41% 40%
Lucas-Kanade 93 56% 89% 73% 57%
Gaussian MMs 140 66% 86% 11% 4%

Req. FFT-1D 46 61% 77% 65% 53%
FFT-2D 100 64% 65% 52% 42%

Average 75 64% 74% 57% 48%

TABLE I: PERFECT overview and results summary.

III. EVALUATION

Applications and Quality. We use Axe to evaluate
instruction-level precision requirements of the PERFECT
benchmark suite [4]. PERFECT is composed of compute-
intensive benchmarks that span image processing, signal pro-
cessing, compression and machine learning. Table I provides
an overview of the PERFECT benchmark suite. For quality
assessment, we follow the PERFECT manual guidelines [5],
and use a uniform Signal-to-Noise Ratio (SNR) quality metric
across all benchmarks to measure quality degradation.

Program Characteristics. Table I summarizes relevant
characteristics of the PERFECT kernels that were derived us-
ing Axe. The approximate static count column lists the number
of static instructions that are safe-to-approximate according
to ACCEPT. The more safe-to-approximate static instructions
the more work the autotuner will have to perform. The
approximate dynamic ratio is the ratio of safe-to-approximate
dynamic instructions to total dynamic instructions. The higher
the ratio, the larger the opportunity for approximation in
a program. The approximate dynamic ratio is on average
64% which indicates that the PERFECT benchmark suite is
a compelling target for approximate computing. The bulk
of the not-safe-to-approximate instructions are composed of
branching instructions and integer arithmetic used for address
computation, neither of which could be approximated without
compromising the safety of the program. The good news is
that for costly instruction categories, such as floating point
arithmetic, loads and stores to memory and standard C math
functions, all instructions are safe-to-approximate.

Quality vs. Bit-Savings. For each PERFECT application
kernel, we use Axe to derive the bit-savings on safe-to-
approximate instructions over a range of SNR targets from
120dB down to 10dB (0.0001% up to 31.6% MSE). Figure 2
shows the average bit-savings obtained across the PERFECT
benchmark for safe-to-approximate integer arithmetic, floating
point arithmetic, memory ops and standard C math functions at
different SNR targets. In addition, we compute the aggregate
bit-savings for each benchmark, averaged over all benchmarks.

Bi
t-S

av
in

gs

0%

20%

40%

60%

80%

100%

Average SNR (dB)
10 20 40 60 80 100 120

int arith fp arith mem ops math AGGREGATE

26%
32%

40%
48%

57%

74%

83%83%

74%

57%

48%
40%

32%
26%

Fig. 2: Bit-savings vs. SNR averaged over PERFECT kernels,
for integer arithmetic, FP arithmetic, memory ops and math
functions.

In general, the lower the quality target, the higher the bit-
savings. All instruction categories exhibit a smooth quality
vs. bit-savings trade-off curve. We provide a breakdown of the
aggregate bit-savings over all safe-to-approximate instructions
in Table I at 20dB, 40dB and 60dB (10%, 1% and 0.1%
respectively) for each PERFECT kernel. At 20dB, 40dB and
60dB SNR, bit-savings reach a substantial average of 74%,
57% and 48% for the safe-to-approximate instructions in the
PERFECT benchmarks. Interestingly, bit-savings for integer
arithmetic remains large at high SNR. This is because the
most-significant bits of integer values can be trimmed off
without affecting the final output.

Towards Bit-Serial Architectures. Future challenges will
consist in designing precision-scalable architectures that can
effectively translate bit-savings into energy savings. Precision-
scalable architectures exhibit (1) mechanisms to dynamically
scale precision in the compute and memory pipeline, and (2)
minimal control overheads that won’t impede the gains ob-
tained from a leaner memory and compute pipeline. While the
Quora [6] work proposed a compelling quality-scalable vector
processor architecture, the mechanisms it used resulted in
limited power reduction in the compute units. We believe that
by using the old trick of bit-slicing arithmetic operations, we
can translate bit-savings into performance improvements. Bit-
serial computation for instance can execute simple operations
like addition and bit-wise arithmetic in O(n) time, and multi-
plication in O(n2) time, where n is the precision requirement,
thus providing a compelling incentive to minimize precision
in compute-intensive programs. Preliminary results on one of
the PERFECT integer benchmarks using a bit-serial datapath
shows an order-of-magnitude performance improvement at
10dB compared to its precise execution. Much of the challenge
in designing such a quality-scalable architecture will be to
ensure that precise evaluation is not worse on a bit-serial
architecture than it is on a bit-parallel architecture. We believe
that such a mechanism is key in generating significant energy
savings, thus motivating programmers to think more about
quality trade-offs.

Conclusions. We present Axe, a framework that fine-
tunes precision requirements of approximate C/C++ programs.
Using Axe, we find that at reasonable quality targets, a
surprisingly large number of precision bits are not required
in compute-intensive programs. This observation motivates
the need for architectures that can translate lower-precision
requirements into large energy savings.

3

REFERENCES

[1] A. Sampson, A. Baixo, B. Ransford, T. Moreau, J. Yip, L. Ceze, and
M. Oskin, “ACCEPT: A programmer-guided compiler framework for
practical approximate computing,” Tech. Rep. UW-CSE-15-01-01, U.
Washington, 2015.

[2] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman, “EnerJ: Approximate data types for safe and general low-
power computation,” in ACM Conf. Programming Language Design and
Implementation (PLDI), 2011.

[3] C. Rubio-Gonzalez, C. Nguyen, H. D. Nguyen, J. Demmel, W. Kahan,
K. Sen, D. H. Bailey, C. Iancu, and D. Hough, “Precimonious: Tuning
assistant for floating-point precision,” in Int. Conf. High Performance
Computing, Networking, Storage and Analysis, 2013.

[4] “DARPA PERFECT program.” http://hpc.pnl.gov/PERFECT/.
[5] K. Barker, T. Benson, D. Campbell, D. Ediger, R. Gioiosa, A. Hoisie,

D. Kerbyson, J. Manzano, A. Marquez, L. Song, N. Tallent, and
A. Tumeo, PERFECT (Power Efficiency Revolution For Embedded
Computing Technologies) Benchmark Suite Manual. Pacific Northwest
National Laboratory and Georgia Tech Research Institute, December
2013. http://hpc.pnnl.gov/projects/PERFECT/.

[6] S. Venkataramani, V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghu-
nathan, “Quality programmable vector processors for approximate com-
puting,” in IEEE/ACM Int. Symp. Microarchitecture (MICRO), 2013.

http://hpc.pnl.gov/PERFECT/
http://hpc.pnnl.gov/projects/PERFECT/

	Introduction
	Axe: A Precision Autotuner.
	Evaluation
	References

