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ABSTRACT

Approximate computing aims to expose and exploit quality vs. ef-
ficiency tradeoffs to enable ever-more demanding applications on
energy-constrained devices such as smartphones, or IoT devices.
This paper makes the case for arbitrary quantization as a compelling
approximation technique that exposes quality vs. energy tradeoffs
and provides practical error guarantees.

We present QAPPA (Quality Autotuner for Precision Programmable
Accelerators), an autotuning framework for C/C++ programs that au-
tomatically minimizes the precision of each arithmetic and memory
operation to meet user defined application level quality guarantees.
QAPPA integrates energy models of precision scaling mechanisms
to produce bandwidth and energy savings estimates for precision
scalable accelerator designs. We show that QAPPA can exploit pre-
cision scaling mechanisms to meet arbitrary user-provided quality
targets on the PERFECT benchmark suite to achieve significant
energy savings and memory bandwidth reduction.
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1 INTRODUCTION

Navigating quality-energy tradeoffs is fundamental to digital systems
design, and often starts with data representation, i.e. how to map a
set of real valued data to a finite digital representation. This process
is called quantization and can elegantly trade quality for energy
efficiency by tweaking the number of bits needed to represent data.
This paper argues towards adopting precision scaling as a general
approximation technique for its effectiveness in delivering smooth
quality-energy tradeoffs, and practical error guarantees. We assume
hardware accelerator architectures that can dynamically scale the
precision of its arithmetic and memory operation [3, 7].
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2 QAPPA: A QUALITY AUTOTUNER

QAPPA, shown in Figure 1, is a quality autotuning framework built
using ACCEPT [6], the LLVM-based approximate compiler for C
and C++ programs. In a nutshell, QAPPA takes an annotated C/C++
program and user-specified, high-level quality requirements and
greedily derives quantization settings for each program instruction.

Autotuner. QAPPA attempts to maximize bit savings while keep-
ing application accuracy within user-specified margins. We define
bit savings as a hardware-agnostic metric that quantifies how much
total precision can be trimmed-off in a program over its execution:

N
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where r; and g; denote the precision in bits of the reference, and
quantized instruction i, e; denotes the number of times instruction i
executes, and N denotes the total instructions that can be quantized
in the target program. QAPPA uses a greedy search algorithm sim-
ilar to the one used in [5] in order to maximize bit savings while
satisfying user-specified quality requirements. The greedy trial-and-
error search relies on program instrumentation to replace expensive
arithmetic and memory operations with cheaper operations.

Guarantees. We implement QAPPA to provide two types of qual-
ity guarantees: empirical and statistical. Empirical guarantees pro-
vide guarantees as good as the dataset provided by the user: this
approach puts pressure on the programmer to provide satisfactory
input coverage. Statistical guarantees on the other hand present a
robust alternative since they account for input samples that are not
covered by the user-provided input-set. Statistical error guarantees
are expressed in the form of a Clopper-Pearson [1] confidence inter-
val, requiring the user to model an input distribution.

3 APPLICATION STUDY

‘We run QAPPA on the PERFECT [2] benchmark suite kernels to
quantify approximation opportunities on compute intensive work-
loads. The PERFECT benchmark suite is composed of kernels cov-
ering DSP, radar, vision and machine learning applications domain.
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Figure 1: QAPPA Autotuner System Architecture.
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Figure 2: Arithmetic energy reduction on the PERFECT bench-
mark at different bit slicing granularities and at different SNR
targets (higher is better).

We follow the PERFECT manual guidelines for quality assessment
and use the Signal-to-Noise Ratio (SNR) quality metric across all
benchmarks to measure quality degradation.

Approximation Opportunities. QAPPA relies on ACCEPT to iden-
tify which instructions in a program can be quantized based on user
annotations: on average, 64% of all dynamic instructions can be
approximated. Those instructions are for the most part composed
of expensive operations such as floating-point arithmetic, memory
loads and stores. The bulk of the instructions that cannot be approxi-
mated are composed of control instructions and integer arithmetic
used for address computation, neither of which can be approximated
without compromising the safety of the program.
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Figure 3: Precision scaling mechanisms overview. (a) Default
wide addition on wide adder. (b) Narrow addition on wide adder.
(c) Wide addition on narrow adder (d) Narrow addition on nar-
row adder (combination of (b) and (c)).

Hardware Mechanisms. We survey two hardware dynamic preci-
sion scaling mechanisms shown in Figure 3 and discuss the savings
in arithmetic energy and memory bandwidth that these mechanisms
achieve on accelerator designs executing the PERFECT kernels. The
first technique, operand narrowing (3.b), aims to minimize power
by reducing transistor switching [7] on wide compute units. The
second technique, bit slicing (3.c) (or operator narrowing), utilizes
narrow compute unit in parallel to time-multiplex the computation
of wider operations, effectively scaling throughput with precision
on data-parallel workloads [3]. We synthesize adder and multiplier
designs of varying widths using the Synopsys Design Compiler with
the TSMC-65nm library and collect power data with PrimeTime PX
on post place-and-route designs to build an energy modeling library
which we incorporate into QAPPA.

Evaluation. We run QAPPA on the PERFECT benchmark suite to
guide our choice of an energy-optimal precision scaling mechanism
at different quality targets ranging from 60dB down to 10dB. Fig-
ure 2 shows energy savings across all PERFECT benchmarks over
a standard arithmetic unit executing 32 bit arithmetic operations.
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Figure 4: Ideal bandwidth reduction on PERFECT benchmark
suite at different data packing granularities and at different
SNR targets (higher is better).

Combining bit slicing and operand narrowing can greatly maximize
energy efficiency: a slice width of 16 bits yields optimal energy
reductions by 3.6x and 4.8 x at 40dB and 60dB over the baseline
arithmetic unit. Additionally, applying aggressive quantization to
data can significantly minimize memory bandwidth. Figure 4 shows
data movement reduction for a fixed-function accelerator. We vary
the data packing granularity from 1 to 32 bits and derive the result-
ing memory bandwidth reduction. A data packing granularity of 1
bit can achieve 4.4, 3.3 %, and 2.8 x average memory bandwidth
reduction on the PERFECT kernels at 20dB, 40dB and 60dB.

Discussion. Data packing at fine granularities can increase both
software and hardware overheads for packing and unpacking. A
hardware designer might therefore want to align the data packing
granularity with the bit slicing width of the precision scalable com-
pute units to minimize control overheads. The optimal data granular-
ity will differ based on the target system energy breakdown between
memory, computation, and control.

4 CONCLUSION.

We present QAPPA, a framework that fine-tunes quantization require-
ments of C/C++ programs, while meeting user defined, application
level quality guarantees. QAPPA incorporates hardware models of
precision scaling mechanisms to inform the user of potential energy
savings and memory bandwidth reduction. The insights of this work
are discussed in more detail in the following technical report [4],
which also compares the technique of precision scaling with other
mainstream approximation techniques.
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