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Abstract

Silicon technology will continue to provide an exponential in-
crease in the availability of raw transistors. Effectively trans-
lating this resource into application performance, however,
is an open challenge. Ever increasing wire-delay relative
to switching speed and the exponential cost of circuit com-
plexity make simply scaling up existing processor designs fu-
tile. In this paper, we present an alternative to superscalar
design, WaveScalar. WaveScalar is a dataflow instruction
set architecture and execution model designed for scalable,
low-complexity/high-performance processors. WaveScalar is
unique among dataflow architectures in efficiently providing
traditional memory semantics. At last, a dataflow machine
can run “real-world” programs, written in any language,
without sacrificing parallelism.
The WaveScalar ISA is designed to run on an intelligent

memory system. Each instruction in a WaveScalar binary ex-
ecutes in place in the memory system and explicitly commu-
nicates with its dependents in dataflow fashion. WaveScalar
architectures cache instructions and the values they operate
on in a WaveCache, a simple grid of “alu-in-cache” nodes.
By co-locating computation and data in physical space, the
WaveCache minimizes long wire, high-latency communica-
tion. This paper introduces the WaveScalar instruction set
and evaluates a simulated implementation based on current
technology. Results for the SPEC and Mediabench applica-
tions demonstrate that the WaveCache out-performs an ag-
gressively configured superscalar design by 2-7 times, with
ample opportunities for future optimizations.

1 Introduction

It is widely accepted that Moore’s Law growth in available
transistors will continue for the next decade. Recent re-
search [1], however, has demonstrated that simply scaling up
current architectures will not convert these new transistors to
commensurate increases in performance. This gap between
the performance improvements we need and those we can re-
alize by simply constructing larger versions of existing archi-
tectures will fundamentally alter processor designs.

Three problems contribute to this gap, creating a processor
scaling wall: (1) the ever-increasing disparity between com-
putation and communication performance – fast transistors
but slow wires; (2) the increasing cost of circuit complexity,
leading to longer design times, schedule slips, and more pro-
cessor bugs; and (3) the decreasing reliability of circuit tech-
nology, caused by shrinking feature sizes and continued scal-
ing of the underlying material characteristics. In particular,
modern superscalar processor designs will not scale, because
they are built atop a vast infrastructure of slow broadcast net-
works, associative searches, complex control logic, and inher-
ently centralized structures that must all be designed correctly
for reliable execution.

Like the memory wall, the processor scaling wall has mo-
tivated a number of research efforts [2, 3, 4, 5]. These efforts
all augment the existing program counter-driven von Neu-
mann model of computation by providing redundant checking

mechanisms [2], exploiting compiler technology for limited
dataflow-like execution [3], or efficiently exploiting coarse-
grained parallelism [5, 4].

We take a different approach called WaveScalar. At its
core, WaveScalar is a dataflow instruction set and computing
model [6]. Unlike past dataflow work, which focused on max-
imizing processor utilization, WaveScalar’s goal is to mini-
mize communication costs by ridding the processor of long
wires and broadcast networks. To this end, it includes a com-
pletely decentralized implementation of the “token-store” of
traditional dataflow architectures and a distributed execution
model.

The key difference between WaveScalar and prior dataflow
architectures is that WaveScalar efficiently supports tradi-
tional von Neumann-style memory semantics in a dataflow
model. Previously, dataflow architectures provided their own
style of memory semantics and their own dataflow languages
that disallowed side effects, mutable data structures, and
many other useful programming constructs [7, 8]. Indeed,
a memory ordering scheme that allows a dataflow machine
to efficiently execute code written in general purpose, im-
perative languages (such as C, C++, Fortran, or Java) has
eluded researchers for several decades. In Section 3, we
present a memory ordering scheme that efficiently enables
true dataflow execution of programs written in any language.

Solving the memory ordering problem without resorting
to a von Neumann-like execution model allows us to build
a completely decentralized dataflow processor that eliminates
all the large hardware structures that make superscalars non-
scalable. Other recent attempts to build scalable processors,
such as TRIPS [3, 9] and Raw [10], have extended the von
Neumann paradigm in novel ways, but they still rely on a
program counter to sequence program execution and mem-
ory access, limiting the amount of parallelism they can re-
veal. WaveScalar completely abandons the program counter
and linear von Neumann execution.

WaveScalar is designed for intelligent cache-only comput-
ing systems. A cache-only computing architecture has no
central processing unit but rather consists of a sea of pro-
cessing nodes in a substrate that effectively replaces the cen-
tral processor and instruction cache of a conventional system.
Conceptually, WaveScalar instructions execute in-place in the
memory system and explicitly send their results to their de-
pendents. In practice, WaveScalar instructions are cached and
executed by an intelligent, distributed instruction cache – the
WaveCache.

The WaveCache loads instructions from memory and as-
signs them to processing elements for execution. They remain
in the cache over many, potentially millions of, invocations.
Remaining in the cache for long periods of time enables dy-
namic optimization of an instruction’s physical placement in
relation to its dependents. Optimizing instruction placement
also allows a WaveCache to take advantage of predictability
in the dynamic data dependencies of a program, which we
call dataflow locality. Just like conventional forms of locality
(temporal and spatial), dataflow locality can be exploited by
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cache-like hardware structures.
This paper is an initial study of the WaveScalar ISA and

an example WaveCache architecture. It makes four principle
contributions:

• WaveScalar, the first dataflow instruction set to provide
total load/store ordering memory semantics which al-
lows efficient execution of programs written in conven-
tional, imperative programming languages.

• An efficient, fully distributed dataflow tag management
scheme that is under compiler control.

• An architecture, the WaveCache, that executes
WaveScalar programs.

• A quantification of the WaveCache’s potential perfor-
mance relative to an aggressive out-of-order superscalar.

In the next section, we motivate the WaveScalar model by
examining three key unsolved challenges with superscalar de-
signs. Sections 3 and 4 describe the WaveScalar instruction
set and the WaveCache, respectively. In Section 5, we present
a detailed example of the WaveCache’s operation that ties to-
gether all the WaveScalar concepts. Section 6 presents an
initial evaluation of our WaveCache design, and in Section 7,
we discuss future work and conclude.

2 A case for exploring superscalar alternatives

The von Neumann model of execution and its most sophisti-
cated implementations, out-of-order superscalars, have been
a phenomenal success. However, superscalars suffer from
several drawbacks that are beginning to emerge. We discuss
three: (1) their inherent complexity makes efficient imple-
mentation a daunting challenge, (2) they ignore an important
source of locality in instruction streams, and (3) their execu-
tion model centers around instruction fetch, an intrinsic seri-
alization point.

2.1 Complexity

As features and cycle times shrink, the hardware structures
that form the core of superscalar processors (register files, is-
sue windows, and scheduling logic) become extremely expen-
sive to access. Consequently, clock speed decreases and/or
pipeline depth increases. Indeed, industry recognizes that
building ever-larger superscalars as transistor budgets ex-
pand can be impractical, because of the processor scaling
wall. Many manufacturers are turning to larger caches and
chip multiprocessors to convert additional transistors into in-
creased performance without impacting cycle time.

To squeeze maximum performance from each core, archi-
tects constantly add new algorithms and structures to designs.
Each new mechanism, optimization, or predictor adds addi-
tional complexity and makes verification time an ever increas-
ing cost in processor design. Verification already consumes
40% of project resources on complex designs [11], and veri-
fication costs are increasing.

2.2 Untapped locality

Superscalars devote a large share of their hardware and com-
plexity to exploiting locality and predictability in program be-
havior. However, they fail to utilize a significant source of lo-
cality intrinsic to applications, dataflow locality. Dataflow lo-
cality is the predictability of instruction dependencies through
the dynamic trace of an application. A processor could take
advantage of this predictability to reduce the complexity of
its communication system (i.e., register files and bypass net-
works) and reduce communication costs.
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Figure 1: Dataflow Locality. The graph quantifies the
amount of dataflow locality present in the SPEC2000 integer
benchmark suite. A point, (x, y), means that y% of dynamic
instruction inputs are produced by one of their last x produc-
ers. For instance, when an instruction reads a value from the
register file, there is a 92% chance that it came from one of
the last two producers of that value.

Dataflow locality exists, because data communication pat-
terns among static instructions are predictable. There are two
independent, but complimentary, types of dataflow locality,
static and dynamic. Static dataflow locality exists, because,
in the absence of control, the producers and consumers of
register values are precisely known. Within a basic block and
between basic blocks that are not control dependent (e.g., the
basic blocks before and after an If-Then-Else) the data com-
munication patterns are completely static and, therefore, com-
pletely predictable. Dynamic dataflow locality arises from
branch predictability. If a branch is highly predictable, al-
most always taken, for instance, then the static instructions
before the branch frequently communicate with instructions
on the taken path and rarely communicate with instructions
on the not-taken path.

Figure 1 demonstrates the combined effect of static and
dynamic dataflow locality. The data show that the vast ma-
jority of operand communication is highly predictable. For
instance, 92% of source operands come from one of their two
most recent producer instructions. Such high rates of pre-
dictability suggest that current processor communication sys-
tems are over-general, because they provide instructions with
fast access to many more register values than needed. If the
processor could exploit dataflow locality to ensure that nec-
essary inputs were usually close at hand (at the expense of
other potential inputs being farther away), they could reduce
the average cost of communication.

Instead of simply ignoring dataflow locality, however, su-
perscalars destroy it in their search for parallelism. Register
renaming removes false dependencies, enables dynamic loop
unrolling, and exposes a large amount of dynamic ILP for the
superscalar core to exploit. However, it destroys dataflow lo-
cality. By changing the physical registers an instruction uses,
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renaming forces the architecture to provide each instruction
with fast access to the entire physical register file. This re-
sults in a huge, slow register file and complicated forwarding
networks.

Destroying dataflow locality leads to a shocking ineffi-
ciency in modern processor designs: The processor fetches
a stream of instructions with a highly predictable communi-
cation pattern, destroys that predictability by renaming, and
then compensates by using broadcast communication in the
register file and the bypass network combined with complex
scheduling in the instruction queue. The consequence is that
modern processor designs devote few resources to actual ex-
ecution (less than 10%, as measured on a Pentium III die
photo) and the vast majority to communication infrastruc-
ture. This infrastructure is necessary precisely because su-
perscalars do not exploit dataflow locality.

Several industrial designs, such as partitioned superscalars
like the Alpha 21264 [12], some VLIW machines [13, 14],
and several research designs [3, 15, 16], have addressed
this problem with clustering or other techniques and exploit
dataflow locality to a limited degree. But none of these ap-
proaches make full use of it, because they still include large
forwarding networks and register files. In Section 3, we
present an execution model and architecture built expressly
to exploit the temporal, spatial, and dataflow locality that ex-
ists in instruction and data streams.

2.3 The von Neumann model: serial computing

The von Neumann model of computation is very simple. It
has three key components: A program stored in memory, a
global memory for data storage, and a program counter that
guides execution through the stored program. At each step,
the processor loads the instruction at the program counter, ex-
ecutes it (possibly updating main memory), and updates the
program counter to point to the next instruction (possibly sub-
ject to branch instructions).

Two serialization points constrain the von Neumann model
and, therefore, superscalar processors: The first arises as the
processor, guided by the program counter and control instruc-
tions, assembles a linear sequence of operations for execu-
tion. The second serialization point is at the memory inter-
face where memory operations must complete (or appear to
complete) in order to guarantee load-store ordering. The ele-
gance and simplicity of the model are striking, but the price
is steep. Instruction fetch introduces a control dependence
between each instruction and the next and serves little pur-
pose besides providing the ordering that the memory interface
must adhere to. As a result, von Neumann processors are fun-
damentally sequential; there is no parallelism in the model.

In practice, of course, von Neumann processors do achieve
limited parallelism (i.e., IPCs greater than 1), by using several
methods. The explicitly parallel instructions sets for VLIW
and vector machines enable the compiler to express instruc-
tion and data independence statically. Superscalars dynam-
ically examine many instructions in the execution stream si-
multaneously, violating the sequential ordering when they de-
termine it is safe to do so. In addition, recent work [17] intro-
duces limited amounts of parallelism into the fetch stage by
providing multiple fetch and decode units.

Prior work [18, 19, 20, 21] demonstrated that ample in-
struction level parallelism (ILP) exists within applications,
but that the control dependencies that sequential fetch in-
troduces constrain this ILP. Despite tremendous effort over
decades of computer architecture research, no processor
comes close to exploiting the maximum ILP present in appli-
cations, as measured in limit studies. Several factors account

for this, including the memory wall and necessarily finite ex-
ecution resources, but control dependence and, by extension,
the inherently sequential nature of von Neumann execution,
remain dominant factors [18].

3 WaveScalar

This section and the two that follow describe the WaveScalar
execution model and the WaveCache architecture. The orig-
inal motivation for WaveScalar was to build a decentralized
superscalar processor core. Initially, we examined each piece
of a superscalar and tried to design a new, decentralized hard-
ware algorithm for it. By decentralizing everything, we hoped
we could design a truly scalable superscalar. It soon became
apparent that instruction fetch is difficult to decentralize, be-
cause, by its very nature, a single program counter controls it.
Our response was to make the processor fetch in data-driven
rather than program counter-driven order. From there, our
“superscalar” processor quickly became a small dataflow ma-
chine. The problem then became how to build a fully decen-
tralized dataflow machine, and WaveScalar the WaveCache
are the creative extension of this line of inquiry.

3.1 Dataflow

Dataflow machines are perhaps the best studied alternative
to von Neumann processors. The first dataflow architectures
[6, 22] appeared in the mid to late 70’s, and in the late 80’s
and early 90’s there was a notable revival [23, 24, 25, 26,
27, 28]. Dataflow computers execute programs according
to the dataflow firing rule, which stipulates that an instruc-
tion may execute at any time after its operands are available.
Values in a dataflow machine generally carry a tag to distin-
guish them from other dynamic instances of the same vari-
able. Tagged values usually reside in a specialized memory
(the token store) while waiting for an instruction to consume
them. There are, of course, many variations on this basic
dataflow idea.

There have been two significant problems in the develop-
ment of dataflow as a general purpose computing technology.
The first is that the dataflow work of the late 80’s and early
90’s made it clear that high performance dataflow machines
were difficult to build. Culler et. al. [29] articulated this
difficulty as a cost/benefit problem and argued that dataflow
machines cannot keep sufficient data near the processor to
support substantial parallelism. While the arguments were
sound, they were based on the assumption that processing el-
ements are expensive and that getting fast memory near the
processing elements is difficult. Current technology allows
us to build thousands of processing elements on a die and sur-
round each with a small amount of fast storage. As a result,
these arguments are no longer applicable.

The second stumbling block was dataflow’s inability to ef-
ficiently provide total load/store ordering, the memory model
assumed by most programming languages. To avoid this
problem dataflow researchers resorted to special dataflow lan-
guages [30, 31, 32, 33, 34, 35, 36]. While these languages ex-
celled at expressing parallelism that dataflow machines could
exploit, they were impractical, because they also disallowed
side effects, mutable data structures, and many other pro-
gramming constructs that are ubiquitous in languages like C,
C++, and Java [7, 8].

3.2 The WaveScalar ISA

We propose a new approach to dataflow computing,
WaveScalar, that provides load/store ordering and addresses
the problems discussed in Section 2. Conceptually, a
WaveScalar binary is the dataflow graph of an executable and
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resides in memory as a collection of intelligent instruction
words. Each instruction word is intelligent, because it has a
dedicated functional unit. In practice, since placing a func-
tional unit at each word of instruction memory is impractical,
an intelligent instruction cache, a WaveCache, holds the cur-
rent working set of instructions and executes them in place.

A WaveScalar executable contains an encoding of the pro-
gram dataflow graph. In addition to normal RISC-like in-
structions, WaveScalar provides special instructions for man-
aging control flow. In this respect, WaveScalar is similar to
previous dataflow assembly languages [22, 37, 38, 39, 40].

Dataflow instructions Dataflow machines must convert
control dependencies into data dependencies. To accomplish
this, they explicitly send data values to the instructions that
need them instead of broadcasting them via the register file.
The potential consumers are known at compile time, but de-
pending on control flow, only a subset of them should receive
the values at run-time. There are two solutions to this prob-
lem, and different dataflow ISAs have used one or both.

The first solution is a conditional selector, or φ, instruc-
tion [41]. These instructions take two input values and a
boolean selector input and, depending on the selector, pro-
duce one of the inputs on their output. φ instructions are
analogous to conditional moves and provide a form of pred-
ication. They are desirable because they remove the selector
input from the critical path of some computations and there-
fore increase parallelism. They are also wasteful because they
discard the unselected input.

The alternative is a conditional split, or φ−1 [39] instruc-
tion. The φ−1 instruction takes an input value and a boolean
output selector. It directs the input to one of two possible
outputs depending on the selector value, effectively steering
data values to the instructions that should receive them. These
instructions correspond most directly with traditional branch
instructions, and they are required for implementing loops.

The WaveScalar ISA supports both types of instructions,
but our toolchain currently only supports φ−1 instructions.

Waves The WaveScalar compiler breaks the control flow
graph of an application into pieces called waves. Concep-
tually, a WaveScalar processor executes a wave at a time. The
key properties of a wave are that (1) each time it executes,
each instruction in the wave executes at most once, (2) the
instructions in the wave are partially ordered (there are no
loops), and (3) control can only enter at a single point. These
properties allow the compiler to reason about memory order-
ing within a wave.

Formally, a wave is a connected, directed acyclic portion of
the control flow graph with a single entrance. The WaveScalar
compiler (or binary translator in our case) partitions an appli-
cation into maximal waves and adds several wave manage-
ment instructions (see below).

Waves are similar to hyper-blocks, but can be larger, be-
cause they can contain control flow joins. This reduces the
amount of overhead due to wave management and makes par-
allelism easier to extract. In addition, simple loop unrolling
is sufficient for generating large waves, whereas hyper-block
generation requires heuristics for basic block selection and
extensive code replication [42].

Wave numbers A significant source of complexity in
WaveScalar is that instructions can operate on several in-
stances of data simultaneously. For example, consider a loop.
A traditional out-of-order machine can execute multiple it-
erations simultaneously, because instruction fetch creates a
copy of each instruction for each iteration. In WaveScalar,

the same processing element handles the instruction for all
iterations. Therefore, some disambiguation must occur to en-
sure that the instruction operates on values from one iteration
at a time.

Traditional dataflow machines use tags to identify different
dynamic instances. In WaveScalar every data value carries
a tag. We aggregate tag management across waves and use
wave numbers to differentiate between dynamic waves. A
special instruction, WAVE-ADVANCE, manages wave num-
bers. The WAVE-ADVANCE instruction takes a data value as
input, increments the wave number and outputs the original
data value with the updated wave number. Because WAVE-
ADVANCE is such a simple operation, it can be combined with
other instructions. For instance, WaveScalar has an ADD-
WITH-WAVE-ADVANCE instruction.

At the top of each wave there is a WAVE-ADVANCE node
for each of the wave’s live input values. These nodes reside
at the entrance to the wave and increment the wave numbers
for each input value. As they leave the WAVE-ADVANCE in-
structions, all values have the same wave number, since they
all came from the same previous wave. In the case of a loop,
the values of one iteration percolate through the loop body,
and the back-edges to the top of the loop lead to the WAVE-
ADVANCE instructions. These compute the wave number for
the next iteration and ensure that each iteration has a different
wave number.

A key feature of WaveScalar is that the WAVE-ADVANCE
instructions allow wave-number management to be entirely
distributed and under software control. This is in contrast to
traditional dataflow machines in which tag creation is either
partially distributed or completely centralized [31]. In the fu-
ture, we intend to exploit this fact to optimize WaveScalar
binaries by creating application-specific tagging schemes.

Indirect jumps Modern systems rely upon object linking
and shared libraries, and many programs rely upon indirect
function calls. Supporting these constructs requires an addi-
tional instruction, INDIRECT-SEND, with three inputs: a data
value (i.e., a function argument), an address, and an offset
(which is statically encoded into the instruction). It sends the
value to the consumer instruction located at the address plus
the offset.

Using this instruction, we can both call a function and re-
turn values. Each argument to the function is passed through
its own INDIRECT-SEND instruction. At the start of a func-
tion, a set of instructions receives these operands and starts
function execution. The caller sends the return address to pro-
vide the target address for an INDIRECT-SEND that returns the
function’s result. The address of the called function need not
be known at compile time. A very similar mechanism allows
for indirect jumps.

Memory ordering Traditional imperative languages pro-
vide the programmer with a model of memory known as “total
load-store ordering.” WaveScalar brings load-store ordering
to dataflow computing using wave-ordered memory. Wave-
ordered memory annotates each memory operation with its
location in its wave and its ordering relationships (defined by
the control flow graph) with other memory operations in the
same wave. As the memory operations execute, these annota-
tions travel with the memory requests and allow the memory
system to apply the memory operations in the correct order.

To annotate memory instructions, the WaveScalar compiler
statically assigns a unique (within a wave) sequence number
to each memory operation by traversing the wave’s control
flow graph in breadth-first order. Within a basic block, mem-
ory operations receive consecutive sequence numbers. By as-
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st<1,3,7>

ld<1,2,?>

ld<2,4,5>
ld<4,5,7>

nop<2,6,7>

st<?, 7,?>

 ld <?,1,?>

Figure 2: Annotating memory operations. A simple
wave’s control flow graph showing the memory opera-
tions in each basic block and their links.
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Figure 3: A Simple WaveCache. A simple architec-
ture to execute the WaveScalar ISA. The WaveCache
combines clusters of processing elements (left) with
small data caches and store buffers to form a comput-
ing substrate (right).

signing sequence numbers in this way, the compiler ensures
that sequence numbers increase along any path through the
wave. Next, the compiler labels each memory operation with
the sequence numbers of its predecessor and successor mem-
ory operations, if they can be uniquely determined. Branches
and joins may make this impossible, because they can create
multiple successors or predecessors for a single memory op-
eration. In these cases, the compiler uses a special wild-card
value, ‘?’, instead. The combination of an instruction’s se-
quence number and the predecessor and successor sequence
numbers form a link, which we denote < pred, this, succ >.
Figure 2 provides an example of annotated memory opera-
tions in a wave.

The links encode the structure of the wave’s control flow
graph, and the memory system uses this information to ap-
ply operations in the correct order and enforce the load-store
ordering the programmer expects. When a memory instruc-
tion executes, it sends its link, its wave number (taken from
an input value), an address, and data (for a store) to the mem-
ory. The memory system uses this information to assemble
the loads and stores in the correct order to ensure that there
are no gaps in the sequence. This is possible because the cur-
rent wave number in combination with the memory instruc-
tion’s sequence number totally orders the memory operations
through any traversal of a wave, and, by extension, an appli-
cation. The memory system uses the predecessor and succes-
sor information to detect gaps in the sequence. The memory
system can be sure that a gap does not exist, if, for each mem-
ory operation, M , in the sequence, either M ’s succ number
matches the sequence number of its next operation, or M ’s
succ is ‘?’ and the next operation’s pred field matches M ’s
sequence number.

To ensure that gap detection is always possible, we must
enforce the no gap rule: No path through the program may
contain a pair of memory operations in which the first op-
eration’s succ value and the second operation’s pred value
are both ‘?’. If a violation of the rule occurs, the compiler
adds a MEMORY-NOP instructions to remove the ambiguity.
These instructions participate in memory ordering but other-
wise have no effect. In our experiments, MEMORY-NOP’s are
rare (fewer than 3% of instructions).

Wave-ordered memory is the key to efficiently execut-
ing programs written in conventional languages. It allows
WaveScalar to separate memory ordering from control flow

by succinctly annotating the memory operations with infor-
mation about their location in the control flow graph. The
processing elements are freed from managing implicit depen-
dencies through memory and can treat memory operations
just like other instructions. The sequencing information in-
cluded with memory requests provides a concise summary
of the path taken through the program. The memory system
can use this summary in a variety of ways. Currently, we as-
sume a wave-ordered store buffer. Alternatively, a speculative
memory system [43, 44, 45] could use the ordering to detect
misspeculations.

The most exciting aspect of wave-ordered memory is the
incorporation of instruction order into the instruction set as
a first-class entity. However, the above scheme for assign-
ing sequence information only encodes information about de-
pendencies between memory operations. It is possible to de-
vise a more general scheme that also expresses independence
among memory operations (i.e., that two memory operation
can proceed in any order). An ISA that incorporates such
a scheme could use memory aliasing information from the
compiler to expose large amount of memory parallelism to
the hardware. Designing such an ISA and building a suitable
compiler are the subject of ongoing work.

4 The WaveCache: a WaveScalar processor

In this section, we outline the design of a small WaveCache
that could be built within the next 5-10 years to execute
WaveScalar binaries (Figure 3). The WaveCache is a grid of
approximately 2K processing elements (PEs) arranged into
clusters of 16. Each PE contains logic to control instruction
placement and execution, input and output queues for instruc-
tion operands, communication logic, and a functional unit.

Each PE contains buffering and storage for 8 different in-
structions, bringing the total WaveCache capacity to 16 thou-
sand instructions – equivalent to a 64KB instruction cache in
a modern RISC machine. The input queues for each input re-
quire only one write and one read port and as few as 2 entries
per instruction (see Section 6.7), or 16 entries total. The input
queues are indexed relative to the current wave and a small,
multi-ported RAM holds full-empty bits for each entry in the
input queues. Matching logic accesses and updates the bits as
new inputs arrive, obviating the need for content addressable
memories.

In addition to the instruction operand queues, the Wave-
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Cache contains a store buffer and a traditional L1 data cache
for each 4 clusters of PEs. The caches access DRAM through
a conventional, unified, non-intelligent L2 cache. Total stor-
age in the WaveCache is close to 4MB when input and output
queues and the L1 data caches are accounted for.

Within a cluster, the processing elements communicate via
a set of shared buses. Tiles within the same cluster receive
results at the end of the clock cycle during which they were
computed. Cluster size is one of the key architectural pa-
rameters of the WaveCache. Larger clusters require more
wires and more area for intra-cluster communication, while
smaller clusters increase inter-cluster communication costs.
However, data in Section 6.5 demonstrate that even with sin-
gleton clusters, WaveCache performance is still very good.

For inter-cluster communication, the WaveCache uses a
dynamically routed on-chip network. Each “hop” in the net-
work crosses one cluster and takes a single cycle. In Sec-
tion 6.5, we demonstrate that contention on the network will
be minimal.

During execution, each instruction is bound to a processing
element, where it remains for possibly millions of executions.
Good instruction placement is paramount for optimal perfor-
mance, because communication latency depends on instruc-
tion placement.

Our initial design uses a distributed store buffer. Each set
of 4 processing element clusters contains a store buffer shared
among 64 functional units. Each dynamic wave is bound to
one of these, and all the memory requests for the wave go to
that store buffer. As a store buffer completes, it signals the
store buffer for the next wave to proceed. This scheme al-
lows the store buffer to be logically centralized but to migrate
around the WaveCache as needed.

The remaining difficulty is how to assign store buffers to
waves. We propose two different solutions. The first is to
add an instruction, MEM-COORDINATE, that acquires a store
buffer on behalf of its wave and passes the name of the store
buffer to the memory instructions in the wave. This forces a
dependency between the MEM-COORDINATE and all mem-
ory operations, slightly reducing parallelism.

The second solution uses a hash table kept in main memory
that maps wave numbers to store buffers. Memory instruc-
tions then send their requests to the nearest store buffer. The
store buffer accesses the map to determine where the message
should go. If the current wave does not yet have a store buffer,
the store buffer uses the cache coherence system to get exclu-
sive access to the wave’s entry in the hash, fills it with its own
location, and processes the request. If the map already has
an entry for the current wave, it forwards the message to the
appropriate store buffer. While this scheme does not reduce
parallelism in the dataflow graph, it places additional pres-
sure on the memory system and adds complexity to the store
buffer.

5 Example

In this section, we describe the creation and execution of a
WaveScalar executable in detail. To motivate the discussion,
we use the simple C program fragment shown in Figure 4.

5.1 Compilation

Compiling an executable for a WaveScalar processor is much
the same as compiling for a conventional architecture. Fig-
ure 5 shows the relationship between the traditional RISC as-
sembly for the code fragment (a) and the WaveScalar equiva-
lent (b). In this example, the WaveScalar program contains all
of the instructions in the RISC version. After the traditional

function s(char in[10], char out[10]) {
i = 0;
j = 0;
do {

int t = in[i];
if (t) {

out[j] = t;
j++;

}
i++;

} while (i < 10);
// no more uses of i
// no more uses of in

}

Figure 4: Example code fragment: This simple loop copies
in into out, ignoring zeros.

compiler stages (parsing and optimization), the transforma-
tion proceeds in four stages.

First, the compiler decomposes the dataflow graph into
waves. In this case, the loop body is a single wave. Any
code before or after the loop would be in separate waves.
In WaveScalar executables all inner-loop bodies are a single
wave.

Second, the compiler inserts MEMORY-NOP instructions
and assigns sequence numbers to the memory operations fill-
ing in the predecessor and successor fields. In this example,
MEMORY-NOP is required to make the memory ordering un-
ambiguous. If the MEMORY-NOP were not present, there
would be a direct path from the load in one iteration to the
load in the next (if control bypassed the store), violating the
no gap rule. In essence, the MEMORY-NOP informs the mem-
ory system when the store is not going to occur. In the exam-
ple, either the store in row 7 or the MEMORY-NOP in row 6
can follow the load, so a ‘?’ fills the successor position in the
load’s link. The load’s predecessor is also a ‘?’, because the
previous memory operation may be just before the loop or at
the tail of the loop body.

Third, the compiler inserts WAVE-ADVANCE instructions
at the top (row 1) of each wave for each live-in. In the exam-
ple, the loop body has four live-in values, but since i and in
are not used after the loop body, only two WAVE-ADVANCE
instructions (row 9) are required to start the wave that follows
the loop.

Finally, the compiler converts the branch instructions into
predicates (the two instructions in row 4) and inserts φ−1 in-
structions to steer data values to the appropriate instructions.
The branch within the loop must steer three values (j, out,
and t), so it requires three φ−1 instructions (row 5); the back-
ward branch to the top of the loop body requires four (row 8).

Once these transformations are complete, the graph con-
tains all the information needed to execute the program cor-
rectly. At this point, the compiler could apply additional,
WaveScalar-specific optimizations. Implementing such op-
timizations are the subject of future work.
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;; r0 = i
;; r1 = j
;; r2 = in
;; r3 = out
;; r4 = t

loop:
add  r6, r2, r0
ld   r4, r6(0)
bne  r4, L1
add  r6, r3, r1
st   r4, r6(0)
addi r1, r1, #1

L1:
addi r0, r0, #1
subi r7, r0, #10
blt  r7, loop

WA WAWA

T F T F T F T F

T F T F T F
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Figure 5: WaveScalar example. The RISC assembly (left) for the program fragment in Figure 4, the WaveScalar version
(center), and the WaveScalar version mapped onto a small WaveCache (right). To clarify the discussion in the text, the
numbers in the column label rows of instruction, and the vertical, dashed line divides the graph into two parts.

5.2 Encoding

WaveScalar binaries are larger than traditional RISC binaries
for two reasons. First, WaveScalar instructions are larger than
RISC instructions. Second, more instructions are needed for
data steering (φ−1), wave management (WAVE-ADVANCE),
and memory ordering (MEMORY-NOP).

Each WaveScalar instruction contains an opcode and a list
of targets for each of the instruction’s outputs. A target con-
tains the address of the destination instruction and an input
number to designate which input should receive the output
values. WaveScalar instructions have up to three inputs and
two outputs. In practice, the number of targets for each output
will be limited, but currently, we allow an unbounded number
of targets. Although encoding all this information requires
more than 32 bits, the size of individual instructions is of lit-
tle importance, because they are loaded once and executed
many times.

The additional instructions WaveScalar requires could po-
tentially be more troublesome, since more instructions lead
to more contention for the WaveCache’s functional units. We
address this question in Section 6.4.

5.3 Loading, finding, and replacing instructions

Execution in the WaveCache is analogous to execution on a
superscalar that can only execute instructions present in the I-
Cache. To initiate execution on a conventional superscalar the
operating system sets the PC to the beginning of the program.
An I-Cache miss results and loads part of the executable (a
cache line), which executes and causes more cache misses.

In the WaveCache, an instruction in the operating system
sends a message to the address of the first instruction in a pro-
gram. Since the instruction is not present in the WaveCache,
a miss occurs, and the WaveCache loads the instruction into a
functional unit. When placing a new instruction into a func-
tional unit, the WaveCache rewrites the targets of its outputs

to point to their location in the WaveCache instead of their
locations in memory. In the case of the first instruction, how-
ever, none of the destinations are present, so the targets are set
to a special “not-loaded” location. Any messages sent to the
“not-loaded” location result in additional misses. Therefore,
when the missing instruction arrives and fires, it generates ad-
ditional misses that result in more instructions being loaded.

In the WaveCache, a miss is a heavyweight event, because
all of the instruction’s state (input queues, etc.) must be
brought onto the chip instead of just the instruction itself. In
addition, if there is no room for the new instruction, an in-
struction must be removed. Removing an instruction involves
swapping out all of its state and notifying the instructions that
send it values that it has left the grid (overwriting their des-
tination fields with “not-loaded”). To reduce the cost of re-
moval, instructions mark themselves as “idle” if their queues
are empty and they have not executed for some time. Idle
instructions have no state to write back to memory, so other
instructions can cheaply replace them. At the same time, if
a message arrives before they are displaced, they can spring
back into action immediately.

Eventually, the working set of instructions stabilizes. Fig-
ure 5(c) shows one possible mapping of the example onto a
small WaveCache. Once the instructions are in place, they
execute in place by passing values within the grid.

5.4 Execution

As the loop in Figure 5(b) begins to execute, values arrive
along the input arcs at the WAVE-ADVANCE instructions at
the top of the loop. We assume that i and j have already
been initialized to 0; although it may not be the case in prac-
tice, that the inputs arrive at the WAVE-ADVANCE instruc-
tions simultaneously and that the dynamic wave just before
the loop is wave 0.

We first consider the subgraph to the left of the vertical
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dotted line. On the first cycle, i and in pass through their
WAVE-ADVANCE instructions unchanged except that their
wave numbers are incremented to 1. The resulting value of
in passes directly to one of the φ−1 instructions in row 8,
where it waits for the control input to arrive. On the next cy-
cle, “ADD #1” increments the value of i and passes the result
to a second φ−1 instruction. At the same time, “ADD” com-
putes the load address and sends it to the load instruction. We
will discuss this value’s fate shortly. “SUB #10” fires next
and triggers “< 0”, which in turns provides the control input
(“true”) to the φ−1 instructions in row 8. These fire and send
values from their “true” output to the WAVE-ADVANCE at the
top of the loop. The second iteration begins with i= 1 and
in unchanged; these values pass through WAVE-ADVANCE
instructions, and their wave numbers rise to 2. The next 8
iterations proceed in the same fashion. On the 10th and fi-
nal iteration, “< 0” produces “false,” and since the φ−1 in-
structions for i and in have no consumers for their “false”
outputs, they produce no values at all.

The right-hand side proceeds in a similar manner. After
the WAVE-ADVANCE instructions increment their wave num-
bers, j and out flow directly to two φ−1 instructions where
they await the arrival of the control input from “!=0.” Simul-
taneously, once the load has an input available (sent from the
left-hand side of the graph), it sends a request to the memory
system and awaits a response. When the input arrives, the
load forwards it to “!=0” and a φ−1 in row 5. Once one of the
φ−1 instructions has both its data value and its control input,
it fires and, depending on whether the value returned by the
load was equal to zero, sends the value on either its “true”
or “false” output. In the case of a non-zero value, both ADD
instructions in row 6 fire. One performs the address compu-
tation, and the other increments j and passes it to the φ−1 in
row 8. On the next cycle, the store fires and sends its link, the
address, and the data value to the memory system. If the load
value is equal to zero, only one φ−1 (the rightmost) produces
an output, and as a result, the MEMORY-NOP fires and sends
its link to the memory system. Execution continues until the
final iteration, when the final value of j passes out of the loop
along with the value of out.

Note that the left-hand side of the WaveScalar graph is in-
dependent of the right-hand side (edges only cross the dashed
line from left to right). This means that the computation of the
loop index, i, and the load addresses can potentially proceed
much more quickly than the rest of the loop. We frequently
observe this behavior in practice. In this case the values from
the “ADD” in row 2 and the “< 0” in row 4 accumulate at
the inputs to the LD and the two right-hand φ−1 instructions,
respectively.

This has two competing effects. First, it enables the load
to fire requests to the memory system as quickly as possi-
ble, allowing for greater throughput. Second, it could over-
flow the input queue at the load, forcing values to spill to
memory, increasing memory traffic and reducing throughput
(see Section 6.7). Finding the correct balance between these
two effects will involve providing an intelligent back-pressure
mechanism and is a subject of future work.

5.5 Termination

Terminating a program running in the WaveCache is more
complicated than terminating a program on a von Neumann
processor. Instead of descheduling the process and releas-
ing any resources it holds, the operating system must forcibly
remove any instructions remaining in the WaveCache that be-
long to the process. While this “big hammer” capability is
necessary to prevent malicious programs from consuming re-

sources unchecked, a gentler, more fine grained mechanism
is also desirable and is the subject of future work.

6 Results

In this section, we explore the performance of the WaveScalar
ISA and the WaveCache. We investigate seven aspects of exe-
cution: WaveCache performance relative to a superscalar and
the TRIPS [3] processor; the overhead due to WaveScalar in-
structions; and the effects of cluster size, cache replacement,
and input queue size on performance, as well as the poten-
tial effectiveness of control and memory speculation. These
results demonstrate the potential for good WaveScalar perfor-
mance and highlight fruitful areas for future investigation.

6.1 Methodology

Our baseline WaveCache configuration is the system de-
scribed in Section 4 with 16 processing element per clus-
ter, unbounded input queues, and perfect L1 data caches.
The baseline configuration executes nothing speculatively.
For some studies, we bound input queue size, vary the size
of the WaveCache, and implement speculation mechanisms.
We place instructions statically into clusters using a simple
greedy strategy that attempts to place dependent instructions
in the same cluster. We expect to achieve better results in the
future using a dynamic placement algorithm [46] to improve
layout. We also model an optimization that allows store ad-
dresses to be sent to the memory system as soon as they are
available, possibly before the corresponding data. This allows
loads to other accesses to return values more quickly.

For comparison, we use a high-performance superscalar
machine with 15 pipeline stages; a 16-wide, out-of-order
processing core; 1024-physical registers; and a 1024-entry
issue window with oldest-instruction-first scheduling. The
core uses an aggressively pipelined issue window and reg-
ister file similar to that described in [47] to reduce critical
scheduling/wake-up loop delays. The core also includes a
gshare branch predictor [48], store buffer, and perfect (i.e.,
16-ported) cache memory system. Neither the WaveCache
nor the superscalar speculate on any memory dependences,
although we relax this constraint for the comparison in Sec-
tion 6.8. Since the pipeline is not partitioned, 15 stages is
aggressive given the register file and issue window sizes and
the width of the machine.

To perform a fair comparison to the superscalar design
and to leverage existing compiler technology, we used a cus-
tom binary re-writing tool to convert Alpha binaries into the
WaveScalar instruction set, effectively demonstrating the fea-
sibility of binary translation from the von Neumann to the
dataflow computing model. We compile a set of benchmarks
using the Compaq cc (v5.9) compiler on Tru64 Unix, us-
ing the -O4 and -unroll 16 flags. The benchmarks are
vpr, twolf, and mcf from SPECint2000 [49]; equake and
art from SPECfp2000; adpcm and mpeg2encode from me-
diabench [50]; and fft, a kernel from Numerical Recipes in
C [51]. We chose these benchmarks because they provide a
variety of application types and can be processed by our bi-
nary translator. We use gprof to identify the functions that
account for 95% of execution time and convert them into the
WaveScalar ISA using our binary translator. Finally, we sim-
ulate a segment of execution equivalent to 100 million dy-
namic Alpha instructions (or to completion) for each bench-
mark.

We report the results in terms of Alpha-equivalent instruc-
tions per cycle (AIPC). For the WaveCache measurements
we carefully distinguish between instructions from the orig-
inal Alpha binary and those the Alpha-to-WaveScalar bi-

8



vp
r

tw
olf mcf

eq
ua

ke
art

ad
pc

m
mpe

g
fft

0

2

4

6

A
IP

C

Superscalar
WaveCache; 16 element clusters

8
10

WaveCache; 1 infinite cluster
WaveCache; 1 element cluster

Figure 6: Superscalar vs. WaveCache. We evalu-
ate each application on the superscalar and the Wave-
Cache with 16 element element clusters, a single, infi-
nite cluster, and one element clusters.

100 1000 10000
WaveCache capacity (instructions)

0.0

0.5

1.0

N
or

m
al

iz
ed

 A
IP

C
 (

re
la

ti
ve

 t
o 

an
 in

fi
ni

te
 c

lu
st

er
)

vpr
twolf
mcf
equake
art
adpcm
mpeg
fft

Figure 7: WaveCache capacity. The curves depict
performance for each benchmark as the capacity of the
WaveCache increases. Performance peaks and then
decreases for larger sizes, demonstrating the impor-
tance of dynamic instruction placement.

nary rewriter adds (φ−1, WAVE-ADVANCE, etc.) but do not
include the latter in any of the throughput measurements.
We use AIPC, because it fairly compares the amount of
application-level work performed by each processor.

The performance we report is a conservative estimate of
the WaveCache’s real potential. We rely on a binary transla-
tor to produce WaveScalar binaries, and a compiler built to
optimize for the WaveScalar ISA and target the WaveCache
implementation would only improve performance.

6.2 Comparison to the superscalar

Figure 6 compares the WaveCache to the superscalar. The
WaveCache with 16 processing elements per cluster outper-
forms the superscalar by a factor of 3.1 on average. For highly
loop parallel applications such as equake and fft, the Wave-
Cache is 4-7 times faster than the superscalar. The Wave-
Cache outperforms the superscalar by such substantial mar-
gins, because the WaveCache does not introduce false con-
trol dependencies that artificially constrain ILP. The increase
in IPC belies an even greater improvement in overall perfor-
mance, since it is unlikely that the superscalar we simulate
could match the WaveCache’s cycle time.

6.3 Comparison to TRIPS

It is interesting to compare the WaveCache’s performance to
that of the TRIPS [3, 9] processor, a recent VLIW-dataflow
hybrid. TRIPS bundles hyperblocks of VLIW instructions
together vertically and describes their dependencies explic-
itly instead of implicitly through registers. Within a hyper-
block, instructions fire according to the dataflow firing rule,
while communication between hyperblocks occurs through a
register file. At its core, TRIPS remains a von Neumann ar-
chitecture, because the program counter still determines the
sequence of hyperblocks the processor executes.

Our memory speculation study (Section 6.8.2) and the
perfect-cache “D-mode” results of recent TRIPS work [9] use
nearly identical assumptions (a perfect memory system with
memory disambiguation). Both studies also ignore “over-
head” instructions and count only RISC-like instructions on
the correct path. For these reasons, a cross-study compari-
son of IPC is interesting, although not perfect, because the
two studies use different compilers (the Trimaran compiler
for TRIPS and the DEC/cc compiler combined with a binary
rewriter for WaveScalar). One significant difference between
the two studies is the amount of bypassing logic. The Wave-
Cache allows back-to-back execution of instructions in the
same cluster, perhaps leading to a longer cycle time, while
TRIPS incurs no delay for bypassing to the same functional
unit and 1/2 cycle of delay per node hop to access remote
functional units.

For the applications that the two studies have in com-
mon (adpcm, art, equake, twolf, mcf, and mpeg), the base-
line WaveCache configuration achieves a factor of 2.5 more
IPC than the baseline TRIPS architecture. However, a modi-
fied TRIPS design with 16 node clusters and full bypassing
that matches the WaveCache reduces the performance gap
to 90% [52]. Interestingly, the performance improvements
are not uniform and suggest improvements can be made to
both architectures. TRIPS is nearly twice as fast for art and
42% faster on twolf. We speculate that TRIPS outperforms
the WaveCache on these applications due to poor instruc-
tion placement. A badly chosen placement in the WaveCache
spreads instruction dependencies across clusters, contributing
additional latency. For all other applications the WaveCache
outperforms TRIPS because of its pure dataflow execution
model. This, combined with the execution of waves instead
of hyperblocks (which are smaller), enables execution across
larger regions of the application, unlocking IPC that is hid-

9



1 10
Input queue size

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

 (
re

la
ti

ve
 t

o 
in

f.
 q

ue
ue

s)

vpr
twolf
mcf
equake
art
adpcm
mpeg
fft

Figure 8: Input Queue Size. Queue size has a rela-
tively small effect on WaveCache performance.

vpr twolf mcf equake art adpcm mpeg fft 
0

2

4

6

8

10

A
IP

C

Baseline Perfect branch prediction
Perfect memory order
Perfect memory order & perfect branch predition

2020
20

19
646

Figure 9: WaveCache Speculation. Comparison of
the baseline WaveCache configuration with a variety
of speculation schemes.

den by the program counter in von Neumann machines. This
suggests that the memory ordering strategy introduced in this
paper would benefit a TRIPS-like processor.

6.4 Overhead

For our benchmarks, static instruction count overhead varies
from 20% to 140%. Although this overhead is substantial, the
effect on performance is small. Most of the added instruc-
tions execute in parallel (for instance the WAVE-ADVANCE
instructions at the top of the wave), and removing their la-
tency improves performance by only 11% on average.

6.5 Cluster size

One of the WaveCache’s goals is to communicate data effi-
ciently and to achieve high performance without resorting to
long wires. We now examine this aspect of the WaveCache in
detail. Recall that communication takes a single cycle within
a cluster. Since larger clusters require longer wires and, there-
fore, a slower clock, cluster size is a key parameter. Fig-
ure 6 shows performance results for a configuration with a
single, infinite cluster as an upper bound on WaveCache per-
formance.

Overall, the performance of 16-processing-element clus-
ters is 90% of the infinite case. Sixteen-element clusters strike
a nice balance between smaller, 4-element clusters (73% of
infinite) and larger, 64-elements clusters (97%). Sixteen-
element clusters also do a fine job of capturing dataflow local-
ity. For each benchmark, less than 15% of values leave their
cluster of origin, and less than 10% must cross more than one
cluster to reach their destination. Because so few messages
must leave their cluster of origin, fewer than 5 data messages
(on average) are in flight on the inter-cluster network each
cycle. The additional protocol traffic (cache coherence, etc.)
that we do not yet model increases the load, but given this
initial result, we do not expect contention in the interconnect
to be a bottleneck.

The figure also shows performance with isolated process-
ing elements. Using singleton clusters reduces performance
by 51%. While this may seem like a dramatic drop, a single-
element cluster WaveCache still outperforms a 15-stage su-

perscalar by an average of 72%. Tiny clusters also reduce
wire length and increase the potential clock rate dramatically.

6.6 Cache replacement

To measure the effects of capacity on WaveCache perfor-
mance, we vary the cache capacity from a single process-
ing element cluster (128 instructions) to a 16-by-16 array of
clusters (32K instructions). In each case, every instruction is
statically assigned to a cluster and replacement is done on a
per-cluster basis according to an LRU algorithm. We assume
32 cycles to read the instruction state from memory and be-
tween 1 and 24 cycles to transmit the data across the cache,
depending on the cache size.

Figure 7 shows the effect of cache misses on performance.
For all the benchmarks except adpcm, which has a very low
miss rate, performance increases quickly as the miss rate de-
clines. For four applications (mcf, equake, fft, and mpeg),
performance decreases as the cache size increases past this
point, because spreading all the instructions in an application
across a large WaveCache is inefficient. Allowing the cache
replacement policy to collect the working set of instructions
in a smaller physical space, thereby reducing communica-
tion latency and increasing performance, is better. The abil-
ity to exploit dynamic instruction placement sets the Wave-
Cache apart from other “grid” architectures like RAW [10],
TRIPS [9], and Nanofabrics [40]. By letting the current needs
of the program guide instruction placement, the WaveCache
can aggressively exploit dataflow locality and achieve higher
performance. Dynamic instruction placement and optimiza-
tion is one of our highest priorities for future work.

6.7 Input queue size

The WaveScalar model assumes that each instruction can
buffer an unlimited number of input values and perform wave
number matching among them. In reality, limited storage is
available at each processing element. Each input queue in
the WaveCache stores its overflow values in a portion of the
virtual address space dedicated to it. The address of an over-
flow value is the instruction address, queue number, and wave
number concatenated together. When a new overflow value
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is stored to memory, the processing element checks for the
corresponding inputs in the other input queues (also possibly
stored in main memory). If a match is found, the instruc-
tion can fire. To ensure that in-memory matching is rare, we
use a simple prefetching mechanism that brings values back
into the queue as space becomes available. When a space be-
comes available at the end of an input queue, the prefetch unit
attempts to load the value with the next wave number (i.e., the
largest wave number in the queue plus 1).

Figure 8 shows the effect of queue size on performance.
For all but the smallest queue sizes, performance is largely
unaffected by queue size. This is encouraging because more
instructions can fit into the WaveCache, if smaller queues are
used. One application, adpcm, shows a 20% slowdown with
even 32 entry queues. This is a manifestation of the well-
known “parallelism explosion” problem with dataflow archi-
tectures [53]. In the future, we plan to address this issue by
adding a back pressure mechanism to keep the required queue
size small.

6.8 Control and memory speculation

Speculation is required for high performance in superscalar
designs [54]. The WaveCache can also benefit from specula-
tion but does not require it for high performance. We inves-
tigate the limits of both control and memory independence
prediction in the WaveCache.

6.8.1 Control speculation

In the WaveCache, perfect branch prediction means that φ−1

instructions steer values to the correct output without wait-
ing for the selector input. Perfect branch prediction increases
the performance of the WaveCache by 47% on average (Fig-
ure 9). This represents a significant opportunity to improve
performance, since the WaveCache currently uses no branch
prediction at all.

6.8.2 Memory speculation

In many cases, a processor can execute memory accesses out
of order if the accesses are to different locations. To measure
the potential value of this approach, we added perfect mem-
ory disambiguation to both the WaveCache and superscalar
simulators.

Figure 9 shows that memory disambiguation gives a sub-
stantial boost to WaveCache performance, increasing it by an
average of 62%. With perfect disambiguation, WaveScalar
out-performs the superscalar by an average of 123%. Per-
fect disambiguation combined with perfect branch prediction
yields a 340% improvement over the baseline WaveCache.
The results for equake are especially interesting, since they
demonstrate that, with speculation, WaveScalar can automat-
ically parallelize applications to great effect.

Although we cannot hope to achieve these results in prac-
tice (the predictors are perfect), speculation can clearly play
an important role in improving WaveCache performance. We
have also shown that the WaveCache does not require specu-
lation to achieve high performance, as von Neumann proces-
sors do.

7 Conclusion

In this paper, we have presented WaveScalar, a new dataflow
instruction set with several attractive properties. In con-
trast to prior dataflow work, WaveScalar provides a novel
memory ordering model, wave-ordered memory, that effi-
ciently supports mainstream programming languages on a
true dataflow computing platform without sacrificing paral-
lelism. By dividing the program into waves WaveScalar

provides decentralized, inexpensive, software-controlled tag
management. WaveScalar programs run in a distributed com-
putation substrate called the WaveCache that co-locates com-
putation and data values to reduce communication costs and
exploit dataflow locality.

The performance of our initial WaveCache is promising.
The WaveCache’s ability to exploit parallelism usually hid-
den by the von Neumann model leads to a factor of 2-7
performance increase in our study of the SPEC and media-
bench applications when compared to an aggressively con-
figured superscalar processor. It achieves these gains in a
communication-scalable architecture, without speculation.

We have only begun to study WaveScalar architectures.
Many exciting challenges remain including handling inter-
rupts, I/O, and other operating system issues. WaveScalar
also presents some tantalizing opportunities. For example,
given its large number of processing elements, the Wave-
Cache should efficiently execute workloads with enormous
inherent parallelism. How do we realize this potential?
Likely approaches include extending the model to include
threads and other mechanisms for expressing the parallelism
present in the application as well as developing programming
paradigms that express as much parallelism as possible.
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