
Lifted First-Order Belief Propagation

Parag Singla Pedro Domingos
Department of Computer Science and Engineering

University of Washington
Seattle, WA 98195-2350, U.S.A.
{parag, pedrod}@cs.washington.edu

Abstract

Unifying first-order logic and probability is a long-standing
goal of AI, and in recent years many representations com-
bining aspects of the two have been proposed. However, in-
ference in them is generally still at the level of propositional
logic, creating all ground atoms and formulas and applying
standard probabilistic inference methods to the resultingnet-
work. Ideally, inference should be lifted as in first-order
logic, handling whole sets of indistinguishable objects to-
gether, in time independent of their cardinality. Poole (2003)
and Braz et al. (2005, 2006) developed a lifted version of
the variable elimination algorithm, but it is extremely com-
plex, generally does not scale to realistic domains, and has
only been applied to very small artificial problems. In this
paper we propose the first lifted version of a scalable proba-
bilistic inference algorithm, belief propagation (loopy or not).
Our approach is based on first constructing a lifted network,
where each node represents a set of ground atoms that all
pass the same messages during belief propagation. We then
run belief propagation on this network. We prove the correct-
ness and optimality of our algorithm. Experiments show that
it can greatly reduce the cost of inference.

Introduction
Representations used in AI fall into two broad categories:
logical and probabilistic. Their strengths and weaknesses
are complementary: first-order logic is best for handling
complex relational structure, and probabilistic graphical
models for handling uncertainty. AI problems generally
contain both, and there have been many proposals to unify
the two languages, most recently in the emerging field of sta-
tistical relational learning (Getoor & Taskar 2007). Unfortu-
nately, at inference time these approaches typically become
purely probabilistic, in the sense that they propositionalize
all atoms and clauses and apply standard probabilistic infer-
ence algorithms. A key property of first-order logic is that it
allows lifted inference, where queries are answered without
materializing all the objects in the domain (e.g., resolution
(Robinson 1965)). Lifted inference is potentially much more
efficient than propositionalized inference, and extendingit
to probabilistic logical languages is a desirable goal.

The only approach to lifted probabilistic inference to date
was developed by Poole (2003) and extended by Brazet al.

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(2005; 2006). (Limited lifted aspects are present in some
earlier systems, like Pfefferet al.’s (1999) SPOOK.) Poole
and Brazet al. introduced a lifted version of variable elim-
ination, the simplest algorithm for inference in probabilistic
graphical models. Unfortunately, variable elimination has
exponential cost in the treewidth of the graph, making it in-
feasible for most real-world applications. Scalable approx-
imate algorithms for probabilistic inference fall into three
main classes: loopy belief propagation (BP), Monte Carlo
methods, and variational methods. In this paper we develop
a lifted version of BP, building on the work of Jaimovichet
al. (2007).

Jaimovichet al. pointed out that, if there is no evidence,
BP in probabilistic logical models can be trivially lifted,be-
cause all groundings of the same atoms and clauses become
indistinguishable. Our approach proceeds by identifying the
subsets of atoms and clauses that remain indistinguishable
even after evidence is taken into account. We then form a
network withsupernodesandsuperfeaturescorresponding
to these sets, and apply BP to it. This network can be vastly
smaller than the full ground network, with the correspond-
ing efficiency gains. We show that there is a unique minimal
lifted network for every inference problem, and that our al-
gorithm returns it.

Our method is applicable to essentially any probabilistic
logical language, including approaches based on Bayesian
networks and Markov networks. We will use Markov logic
as a concrete example (Richardson & Domingos 2006). Our
algorithm is also much simpler than the algorithms of Poole
and Brazet al. We present the first experimental results for
lifted probabilistic inference on real data. These, and sys-
tematic experiments on synthetic problems, show that lifted
BP can greatly outperform the standard propositionalized
version.

Background
Belief Propagation
Graphical modelscompactly represent the joint distribution
of a set of variablesX = (X1, X2, . . . , Xn) ∈ X as a
product of factors (Pearl 1988):P (X=x) = 1

Z

∏

k fk(xk),
where each factorfk is a non-negative function of a sub-
set of the variablesxk, andZ is a normalization constant.
Under appropriate restrictions, the model is aBayesian net-
work andZ = 1. A Markov networkor Markov random



Table 1: Example of a Markov logic network. Free variables are implicitly universally quantified.

English First-Order Logic Weight
Most people don’t smoke. ¬Smokes(x) 1.4
Most people don’t have cancer. ¬Cancer(x) 2.3
Most people aren’t friends. ¬Friends(x, y) 4.6
Smoking causes cancer. Smokes(x)⇒ Cancer(x) 1.5
Friends have similar smoking habits.Smokes(x)∧ Friends(x, y)⇒ Smokes(y) 1.1

field can have arbitrary factors. As long asP (X=x) > 0
for all x, the distribution can be equivalently represented as a
log-linear model: P (X=x) = 1

Z
exp (

∑

i wigi(x)), where
thefeaturesgi(x) are arbitrary functions of (a subset of) the
state.

Graphical models can be represented asfactor graphs
(Kschischang, Frey, & Loeliger 2001). A factor graph is
a bipartite graph with a node for each variable and factor in
the model. (For convenience, we will consider one factor
fi(x) = exp(wigi(x)) per featuregi(x), i.e., we will not
aggregate features over the same variables into a single fac-
tor.) Variables and the factors they appear in are connected
by undirected edges.

The main inference task in graphical models is to compute
the conditional probability of some variables (the query)
given the values of some others (the evidence), by summing
out the remaining variables. This problem is #P-complete,
but becomes tractable if the graph is a tree. In this case, the
marginal probabilities of the query variables can be com-
puted in polynomial time bybelief propagation, which con-
sists of passing messages from variable nodes to the corre-
sponding factor nodes and vice-versa. The message from a
variablex to a factorf is

µx→f (x) =
∏

h∈nb(x)\{f}

µh→x(x) (1)

wherenb(x) is the set of factorsx appears in. The message
from a factor to a variable is

µf→x(x) =
∑

∼{x}



f(x)
∏

y∈nb(f)\{x}

µy→f (y)



 (2)

wherenb(f) are the arguments off , and the sum is over
all of these exceptx. The messages from leaf variables are
initialized to 1, and a pass from the leaves to the root and
back to the leaves suffices. The (unnormalized) marginal of
each variablex is then given by

∏

h∈nb(x) µh→x(x). Evi-
dence is incorporated by settingf(x) = 0 for statesx that
are incompatible with it. This algorithm can still be applied
when the graph has loops, repeating the message-passing
until convergence. Although thisloopy belief propagation
has no guarantees of convergence or of giving the correct re-
sult, in practice it often does, and can be much more efficient
than other methods. Different schedules may be used for
message-passing. Here we assumeflooding, the most widely
used and generally best-performing method, in which mes-
sages are passed from each variable to each corresponding
factor and back at each step (after initializing all variable
messages to 1).

Belief propagation can also be used for exact inference in
arbitrary graphs, by combining nodes until a tree is obtained,
but this suffers from the same combinatorial explosion as
variable elimination.

Markov Logic
First-order probabilistic languages combine graphical mod-
els with elements of first-order logic, by defining template
features that apply to whole classes of objects at once.
A simple and powerful such language isMarkov logic
(Richardson & Domingos 2006). AMarkov logic network
(MLN) is a set of weighted first-order clauses.1 Together
with a set of constants representing objects in the domain
of interest, it defines a Markov network with one node per
ground atom and one feature per ground clause. The weight
of a feature is the weight of the first-order clause that orig-
inated it. The probability of a statex in such a network
is given byP (x) = 1

Z
exp (

∑

i wigi(x)) = 1
Z

∏

i fi(x),
wherewi is the weight of theith clause,gi = 1 if the ith
clause is true, andgi = 0 otherwise. Table 1 shows an ex-
ample of a simple MLN representing a standard social net-
work model. In a domain with two objects Anna and Bob,
ground atoms will includeSmokes(Anna), Cancer(Bob),
Friends(Anna, Bob), etc. States of the world where more
smokers have cancer, and more pairs of friends have similar
smoking habits, are more probable.

Inference in Markov logic can be carried out by creat-
ing the ground network and applying belief propagation to
it, but this can be extremely inefficient because the size of
the ground network isO(dc), whered is the number of ob-
jects in the domain andc is the highest clause arity. In the
next section we introduce a better, lifted algorithm for in-
ference. Although we focus on Markov logic for simplicity,
the algorithm is easily generalized to other representations.
Alternatively, they can be translated to Markov logic and the
algorithm applied directly (Richardson & Domingos 2006).

Lifted Belief Propagation
We begin with some necessary definitions. These assume
the existence of an MLNM, set of constantsC, and ev-
idence databaseE (set of ground literals). For simplicity,
our definitions and explanation of the algorithm will assume
that each predicate appears at most once in any given MLN
clause. We will then describe how to handle multiple occur-
rences of a predicate in a clause.

Definition 1 A supernodeis a set of groundings of a predi-
cate that all send and receive the same messages at each step

1In this paper we assume function-free clauses and Herbrand
interpretations.



of belief propagation, givenM, C andE. The supernodes
of a predicate form a partition of its groundings.

A superfeatureis a set of groundings of a clause that all
send and receive the same messages at each step of belief
propagation, givenM, C andE. The superfeatures of a
clause form a partition of its groundings.

Definition 2 A lifted networkis a factor graph composed of
supernodes and superfeatures. The factor corresponding to
a superfeatureg(x) is exp(wg(x)), wherew is the weight
of the corresponding first-order clause. A supernode and a
superfeature have an edge between them iff some ground
atom in the supernode appears in some ground clause in the
superfeature. Each edge has a positive integer weight. A
minimal lifted networkis a lifted network with the smallest
possible number of supernodes and superfeatures.

The first step of lifted BP is to construct the minimal lifted
network. The size of this network isO(nm), wheren is the
number of supernodes andm the number of superfeatures.
In the best case, the lifted network has the same size as the
MLN; in the worst case, as the ground Markov network.

The second and final step in lifted BP is to apply standard
BP to the lifted network, with two changes:
1. The message from supernodex to superfeaturef becomes

µ
n(f,x)−1
f→x

∏

h∈nb(x)\{f} µh→x(x)n(h,x), wheren(h, x) is
the weight of the edge betweenh andx.

2. The (unnormalized) marginal of each supernode (and
therefore of each ground atom in it) is given by
∏

h∈nb(x) µ
n(h,x)
h→x (x).

The weight of an edge is the number of identical messages
that would be sent from the ground clauses in the superfea-
ture to each ground atom in the supernode if BP was carried
out on the ground network. Then(f, x) − 1 exponent re-
flects the fact that a variable’s message to a factor excludes
the factor’s message to the variable.

The lifted network is constructed by (essentially) simulat-
ing BP and keeping track of which ground atoms and clauses
send the same messages. Initially, the groundings of each
predicate fall into three groups: known true, known false
and unknown. (One or two of these may be empty.) Each
such group constitutes an initial supernode. All groundings
of a clause whose atoms have the same combination of truth
values (true, false or unknown) now send the same messages
to the ground atoms in them. In turn, all ground atoms that
receive the same number of messages from the superfeatures
they appear in send the same messages, and constitute a new
supernode. As the effect of the evidence propagates through
the network, finer and finer supernodes and superfeatures are
created.

If a clause involves predicatesR1, . . . , Rk, and N =
(N1, . . . , Nk) is a corresponding tuple of supernodes, the
groundings of the clause generated byN are found by join-
ing N1, . . . , Nk (i.e., by forming the Cartesian product of
the relationsN1, . . . , Nk, and selecting the tuples in which
the corresponding arguments agree with each other, and with
any corresponding constants in the first-order clause). Con-
versely, the groundings of predicateRi connected to ele-
ments of a superfeatureF are obtained by projectingF onto

Table 2: Lifted network construction.

function LNC(M, C, E)
inputs: M, a Markov logic network

C, a set of constants
E, a set of ground literals

output: L, a lifted network
for eachpredicateP

for each truth valuet in {true, false, unknown}
form a supernode containing all groundings ofP

with truth valuet
repeat

for eachclauseC involving predicatesP1, . . . , Pk

for each tuple of supernodes(N1, . . . , Nk),
whereNi is aPi supernode
form a superfeatureF by joiningN1, . . . , Nk

for eachpredicateP
for eachsuperfeatureF it appears in

S(P, F )← projection of the tuples inF down to
the variables inP

for each tuples in S(P, F )
T (s, F )← number ofF ’s tuples that were

projected intos
S(P )←

⋃

F S(P, F )
form a new supernode from each set of tuples inS(P )

with the sameT (s, F ) counts for allF
until convergence
add all current supernodes and superfeatures toL

for eachsupernodeN and superfeatureF in L

add toL an edge betweenN andF with weightT (s, F )
return L

the arguments it shares withRi. Lifted network construction
thus proceeds by alternating between two steps:

1. Form superfeatures by doing joins of their supernodes.

2. Form supernodes by projecting superfeatures down to
their predicates, and merging atoms with the same pro-
jection counts.

Pseudo-code for the algorithm is shown in Table 2. The
projection counts at convergence are the weights associated
with the corresponding edges.

To handle clauses with multiple occurrences of a predi-
cate, we keep a tuple of edge weights, one for each occur-
rence of the predicate in the clause. A message is passed
for each occurrence of the predicate, with the corresponding
edge weight. Similarly, when projecting superfeatures into
supernodes, a separate count is maintained for each occur-
rence, and only tuples with the same counts for all occur-
rences are merged.

Theorem 1 Given an MLNM, set of constantsC and set
of ground literalsE, there exists a unique minimal lifted net-
work L

∗, and algorithm LNC(M, C, E) returns it. Belief
propagation applied toL∗ produces the same results as be-
lief propagation applied to the ground Markov network gen-
erated byM andC.

Proof. We prove each part in turn.



The uniqueness ofL∗ is proved by contradiction. Sup-
pose there are two minimal lifted networksL1 andL2. Then
there exists a ground atoma that is in supernodeN1 in L1

and in supernodeN2 in L2, andN1 6= N2; or similarly for
some superfeaturec. Then, by Definition 1, all nodes inN1

send the same messages asa and so do all nodes inN2, and
thereforeN1 = N2, resulting in a contradiction. A similar
argument applies toc. Therefore there is a unique minimal
lifted networkL∗.

We now show that LNC returnsL∗ in two subparts:

1. The networkLi obtained by LNC at any iterationi is no
finer thanL

∗ in the sense that, if two ground atoms are
in different supernodes inLi, they are in different supern-
odes inL∗, and similarly for ground clauses.

2. LNC converges in a finite number of iterations to a net-
work L where all ground atoms (ground clauses) in a su-
pernode (superfeature) receive the same messages during
ground BP.

The claim follows immediately from these two statements,
since ifL is no finer thanL∗ and no coarser, it must beL∗.

For subpart 1, it is easy to see that if it is satisfied by
the atoms at theith iteration, then it is also satisfied by
the clauses at theith iteration. Now, we will prove sub-
part 1 by induction. Clearly, it is true at the start of the
first iteration. Suppose that a supernodeN splits intoN1

andN2 at theith iteration. Leta1 ∈ N1 anda2 ∈ N2.
Then there must be a superfeatureF in theith iteration such
that T (a1, F ) 6= T (a2, F ). SinceLi is no finer thanL∗,
there exist superfeaturesFj in L

∗ such thatF =
⋃

j Fj .
SinceT (a1, F ) 6= T (a2, F ), ∃j T (a1, Fj) 6= T (a2, Fj),
and thereforea1 anda2 are in different supernodes inL∗.
HenceLi+1 is no finer thanL∗, and by induction this is true
at every iteration.

We prove subpart 2 as follows. In the first iteration each
supernode either remains unchanged or splits into finer su-
pernodes, because each initial supernode is as large as pos-
sible. In any iteration, if each supernode remains unchanged
or splits into finer supernodes, each superfeature also re-
mains unchanged or splits into finer superfeatures, because
splitting a supernode that is joined into a superfeature nec-
essarily causes the superfeature to be split as well. Simi-
larly, if each superfeature remains unchanged or splits into
finer superfeatures, each supernode also remains unchanged
or splits into finer supernodes, because (a) if two nodes are
in different supernodes they must have different counts from
at least one superfeature, and (b) if two nodes have different
counts from a superfeature, they must have different counts
from at least one of the finer superfeatures that it splits into,
and therefore must be assigned to different supernodes.

Therefore, throughout the algorithm supernodes and su-
perfeatures can only remain unchanged or split into finer
ones. Because there is a maximum possible number of su-
pernodes and superfeatures, this also implies that the algo-
rithm converges in a finite number of iterations. Further, no
splits occur iff all atoms in each supernode have the same
counts as in the previous iteration, which implies they re-
ceive the same messages at every iteration, and so do all
clauses in each corresponding superfeature.

The proof that BP applied toL gives the same results as
BP applied to the ground network follows from Definitions 1
and 2, the previous parts of the theorem, modifications 1 and
2 to the BP algorithm, and the fact that the number of iden-
tical messages sent from the ground atoms in a superfeature
to each ground atom in a supernode is the cardinality of the
projection of the superfeature onto the supernode.2

Clauses involving evidence atoms can be simplified (false
literals and clauses containing true literals can be deleted).
As a result, duplicate clauses may appear, and the corre-
sponding superfeatures can be merged. This will typically
result in duplicate instances of tuples. Each tuple in the
merged superfeature is assigned a weight

∑

i miwi, where
mi is the number of duplicate tuples resulting from theith
superfeature andwi is the corresponding weight. During
the creation of supernodes,T (s, F ) is now the number of
F tuples projecting intos multiplied by the corresponding
weight. This can greatly reduce the size of the lifted net-
work. When no evidence is present, our algorithm reduces
to the one proposed by Jaimovichet al. (2007).

An important question remains: how to represent supern-
odes and superfeatures. Although this does not affect the
space or time cost of belief propagation (where each supern-
ode and superfeature is represented by a single symbol), it
can greatly affect the cost of constructing the lifted network.
The simplest option is to represent each supernode or su-
perfeatureextensionallyas a set of tuples (i.e., a relation), in
which case joins and projections reduce to standard database
operations. However, in this case the cost of constructing
the lifted network is similar to the cost of constructing the
full ground network, and can easily become the bottleneck.
A better option is to use a more compactintensionalrepre-
sentation, as done by Poole (2003) and Brazet al. (2005;
2006).2

A ground atom can be viewed as a first-order atom with
all variables constrained to be equal to constants, and sim-
ilarly for ground clauses. (For example,R(A, B) is R(x, y)
with x = A andy = B.) We represent supernodes by sets of
(α, γ) pairs, whereα is a first-order atom andγ is a set of
constraints, and similarly for superfeatures. Constraints are
of the formx = y or x 6= y, wherex is an argument of the
atom andy is either a constant or another argument. For ex-
ample,(S(v, w, x, y, z), {w = x, y = A, z 6= B, z 6= C}) com-
pactly represents all groundings ofS(v, w, x, y, z) compati-
ble with the constraints. Notice that variables may be left
unconstrained, and that infinite sets of atoms can be finitely
represented in this way.

Let thedefault valueof a predicateR be its most frequent
value given the evidence (true, false or unknown). LetSR,i

be the set of constants that appear as theith argument ofR
only in groundings with the default value. Supernodes not
involving any members ofSR,i for any argumenti are repre-
sented extensionally (i.e. with pairs(α, γ) whereγ contains

2Superfeatures are related, but not identical, to the parfactors of
Poole and Brazet al.. One important difference is that superfea-
tures correspond to factors in the original graph, while parfactors
correspond to factors created during variable elimination. Super-
features are thus exponentially more compact.



a constraint of the formx = A, whereA is a constant, for
each argumentx). Initially, supernodes involving members
of SR,i are represented using(α, γ) pairs containing con-
straints of the formx 6= A for eachA ∈ C \ SR,i.3 When
two or more supernodes are joined to form a superfeatureF ,
if the kth argument ofF ’s clause is thei(j)th argument of
its jth literal, Sk =

⋂

j Sr(j),i, wherer(j) is the predicate
symbol in thejth literal. F is now represented analogously
to the supernodes, according to whether or not it involves el-
ements ofSk. If F is represented intensionally, each(α, γ)
pair is divided into one pair for each possible combination
of equality/inequality constraints among the clause’s argu-
ments, which are added toγ. When forming a supernode
from superfeatures, the constraints in each(α, γ) pair in the
supernode are the union of (a) the corresponding constraints
in the superfeatures on the variables included in the supern-
ode, and (b) the constraints induced by the excluded vari-
ables on the included ones. This process is analogous to the
shattering process of Brazet al. (2005).

In general, finding the most compact representation for
supernodes and superfeatures is an intractable problem. In-
vestigating it further is a direction for future work.

Experiments
We compared the performance of lifted BP with the ground
version on three domains. All the domains are loopy (i.e.,
the graphs have cycles), and the algorithms of Poole (2003)
and Brazet al. (2005; 2006) run out of memory, rendering
them inapplicable. We implemented lifted BP as an exten-
sion of the open-source Alchemy system (Koket al. 2007).
Since our algorithm is guaranteed to produce the same re-
sults as the ground version, we do not report solution quality.
Diagnosing the convergence of BP is a difficult problem; we
ran it for 1000 steps for both algorithms in all experiments.
BP did not always converge. Either way, it was marginally
less accurate than Gibbs sampling. The experiments were
run on a cluster of nodes, each node having 3.46 GB of RAM
and two processors running at 3 GHz.

Entity Resolution
Entity resolution is the problem of determining which ob-
servations (e.g., records in a database) correspond to the
same objects. This problem is of crucial importance to many
large scientific projects, businesses, and government agen-
cies, and has received increasing attention in the AI com-
munity in recent years. We used the version of McCallum’s
Cora database available on the Alchemy website (Koket al.
2007). The inference task was to de-duplicate citations, au-
thors and venues (i.e., to determine which pairs of citations
refer to the same underlying paper, and similarly for author
fields and venue fields). We used the MLN (formulas and
weights) used by Singla and Domingos (2005) in their ex-
periments. This contains 46 first-order clauses stating reg-
ularities such as: if two fields have high TF-IDF similarity,
they are (probably) the same; if two records are the same,
their fields are the same, and vice-versa; etc.

3In practice, variables are typed, andC is replaced by the do-
main of the argument; and the set of constraints is only stored once,
and pointed to as needed.

Link Prediction
Link prediction is an important problem with many ap-
plications: social network analysis, law enforcement,
bibliometrics, identifying metabolic networks in cells,
etc. We experimented on the link prediction task of
Richardson and Domingos (2006), using the UW-CSE
database and MLN publicly available from the Alchemy
website (Koket al. 2007). The database contains a total
of 2678 groundings of predicates like:Student(person),
Professor(person), AdvisedBy(person1, person2),
TaughtBy(course, person, quarter), Publication

(paper, person) etc. The MLN includes 94 formulas
stating regularities like: each student has at most one advi-
sor; if a student is an author of a paper, so is her advisor;
etc. The task is to predict who is whose advisor, i.e., the
AdvisedBy(x, y) predicate, from information about paper
authorships, classes taught, etc. The database is divided into
five areas (AI, graphics, etc.); we trained weights on the
smallest using Alchemy’s default discriminative learning
algorithm, ran inference on all five, and averaged the results.

Social Networks
We also experimented with the example “Friends & Smok-
ers” MLN in Table 1. The goal here was to examine how
the relative performance of lifted BP and ground BP varies
with the number of objects in the domain and the fraction of
objects we have evidence about. We varied the number of
people from 250 to 2500 in increments of 250, and the frac-
tion of known peopleKF from 0 to 1. AKF of r means
that we know for a randomly chosenr fraction of all peo-
ple (a) whether they smoke or not and (b) who 10 of their
friends are (other friendship relations are still assumed to be
unknown). Cancer(x) is unknown for allx. The people
with known information were randomly chosen. The whole
domain was divided into a set of friendship clusters of size
50 each. For each known person, we randomly chose each
friend with equal probability of being inside or outside their
friendship cluster. All unknown atoms were queried.

Results
Results on all domains are summarized in Table 3. The
Friends & Smokers results are for 1000 people andKF =
0.1; the Cora results are for 500 records. All results for
Cora and Friends & Smokers are averages over five random
splits.4 LNC with intensional representation is comparable
in time and memory with the extensional version on Cora
and UW-CSE, but much more efficient on Friends & Smok-
ers. All the results shown are for the intensional representa-
tion. LNC is slower than grounding the full network, but BP
is much faster on the lifted network, resulting in better times
in all domains (by two orders of magnitude on Friends &
Smokers). The number of (super) features created is much
smaller for lifted BP than for ground BP (by four orders of
magnitude on Friends & Smokers). Memory (not reported
here) is comparable on Cora and UW-CSE, and much lower
for LNC on Friends & Smokers. Figure 1 shows how net-
work size varies with the number of people in the Friends

4For Cora, we made sure that each actual cluster was either
completely inside or outside each split.



Table 3: Time and memory cost of ground and lifted BP.

Domain Time (in seconds) No. of (Super) Features
Construction BP Total

Ground Lifted Ground Lifted Ground Lifted Ground Lifted
Cora 263.1 1173.3 12368.4 3997.7 12631.6 5171.1 2078629 295468

UW-CSE 6.9 22.1 1015.8 602.5 1022.8 624.7 217665 86459
Friends & Smokers 38.8 89.7 10702.2 4.4 10741.0 94.2 1900905 58

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0  500  1000  1500  2000  2500

N
o.

 o
f (

S
up

er
) 

F
ea

tu
re

s

No. of Objects

Ground
Lifted

Figure 1: Growth of network size on Friends & Smokers
domain.

& Smokers domain, forKF = 0.1. The lifted network is
always much smaller, and the difference increases markedly
with the number of objects (note the logarithmic scale on
the Y axis). The ground version ran out of memory for more
than 1500 people. We also variedKF while keeping the
number of people constant at 1000 (results not shown due to
lack of space). The lifted network is always smaller than the
ground one by at least four orders of magnitude, rising to six
for extreme values ofKF .

Conclusion and Future Work

We presented the first scalable algorithm for lifted proba-
bilistic inference, and the first application of these to real-
world domains. Our algorithm constructs a network of su-
pernodes and superfeatures, corresponding to sets of nodes
and features that are indistiguishable given the evidence,and
applies belief propagation to this network. Our experiments
illustrate the efficiency gains obtainable by this method.

Directions for future work include: clustering atoms to
further compress the representation of supernodes; merg-
ing nodes that pass approximately the same messages; gen-
eralizing our approach to other inference methods (e.g.,
MCMC) and tasks (e.g., MPE); fully unifying lifted BP and
resolution; applying lifted BP to infinite domains (Singla &
Domingos 2007); extending lifted BP to subsume lazy in-
ference (Singla & Domingos 2006) and knowledge-based
model construction (Wellmanet al. 1992); using lifted BP
in learning; applying it to other domains; etc.

Acknowledgments
This research was funded by DARPA contracts NBCH-
D030010/02-000225, FA8750-07-D-0185, and HR0011-07-C-
0060, DARPA grant FA8750-05-2-0283, NSF grant IIS-0534881,
and ONR grant N-00014-05-1-0313. The views and conclusions
contained in this document are those of the authors and should not
be interpreted as necessarily representing the official policies, ei-
ther expressed or implied, of DARPA, NSF, ONR, or the United
States Government.

References
de S. Braz, R.; Amir, E.; and Roth, D. 2005. Lifted first-order
probabilistic inference. InProc. IJCAI-05, 1319–1324.
de S. Braz, R.; Amir, E.; and Roth, D. 2006. MPE and par-
tial inversion in lifted probabilistic variable elimination. InProc.
AAAI-06, 1123–1130.
Getoor, L., and Taskar, B., eds. 2007.Introduction to Statistical
Relational Learning. MIT Press.
Jaimovich, A.; Meshi, O.; and Friedman, N. 2007. Template
based inference in symmetric relational Markov random fields.
In Proc. UAI-07, 191–199.
Kok, S.; Sumner, M.; Richardson, M.; Singla, P.; Poon, H.; Lowd,
D; and Domingos, P. 2007. The Alchemy system for statistical
relational AI. Tech. Rept., Dept. Comp. Sci.& Eng., Univ. Wash-
ington, Seattle, WA. http://alchemy.cs.washington.edu.
Kschischang, F. R.; Frey, B. J.; and Loeliger, H.-A. 2001. Factor
graphs and the sum-product algorithm.IEEE Transactions on
Information Theory47:498–519.
Pearl, J. 1988.Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann.
Pfeffer, A.; Koller, D.; Milch, B.; and Takusagawa, K. T. 1999.
Spook: A system for probabilistic object-oriented knowledge rep-
resentation. InProc. UAI-99, 541–550.
Poole, D. 2003. First-order probabilistic inference. InProc.
IJCAI-03, 985–991.
Richardson, M., and Domingos, P. 2006. Markov logic networks.
Machine Learning62:107–136.
Robinson, J. A. 1965. A machine-oriented logic based on the
resolution principle.Journal of the ACM12:23–41.
Singla, P., and Domingos, P. 2005. Discriminative trainingof
Markov logic networks. InProc. AAAI-05, 868–873.
Singla, P., and Domingos, P. 2006. Memory-efficient inference
in relational domains. InProc. AAAI-06, 488–493.
Singla, P., and Domingos, P. 2007. Markov logic in infinite do-
mains. InProc. UAI-07, 368–375.
Wellman, M.; Breese, J. S.; and Goldman, R. P. 1992. From
knowledge bases to decision models.Knowledge Engineering
Review7.


