Hybrid Markov Logic Networks

Jue Wang

Pedro Domingos

Department of Computer Science and Engineering
University of Washington
Seattle, WA 98195-2350, U.S.A.
{juewang, pedrod} @cs.washington.edu

Abstract

Markov logic networks (MLNs) combine first-order logic
and Markov networks, allowing us to handle the complex-
ity and uncertainty of real-world problems in a single consis-
tent framework. However, in MLNs all variables and fea-
tures are discrete, while most real-world applications also
contain continuous ones. In this paper we introduce hybrid
MLNS, in which continuous properties (e.g., the distance be-
tween two objects) and functions over them can appear as
features. Hybrid MLNs have all distributions in the exponen-
tial family as special cases (e.g., multivariate Gaussians), and
allow much more compact modeling of non-i.i.d. data than
propositional representations like hybrid Bayesian networks.
We also introduce inference algorithms for hybrid MLN,
by extending the MaxWalkSAT and MC-SAT algorithms to
continuous domains. Experiments in a mobile robot map-
ping domain—involving joint classification, clustering and
regression—illustrate the power of hybrid MLNs as a model-
ing language, and the accuracy and efficiency of the inference
algorithms.

Introduction

Probabilistic models typically assume that objects are i.i.d.
(independent and identically distributed), but in many do-
mains this is far from the case. Taking relations between
objects into account can greatly improve predictive accu-
racy and yield new insights, but it also greatly increases the
complexity of inference and learning. This problem has re-
ceived much attention in recent years, and many approaches
have been proposed (Bakir et al. 2007; Getoor & Taskar
2007). Unfortunately, they have focused almost entirely
on discrete domains. The state-of-the-art approach for hy-
brid domains is hybrid Bayesian networks (Murphy 1998;
Lerner & Parr 2001), but these assume that objects are i.i.d.
In this paper we extend one of the leading relational learning
approaches, Markov logic networks (Richardson & Domin-
gos 2006), to hybrid domains. MLNSs use first-order logic to
specify features of Markov networks, allowing us to model
complex non-i.i.d. domains very compactly. We call the
generalized representation hybrid Markov logic networks
(HMLNs). We develop efficient algorithms for inference in

Copyright (© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

HMLNSs, combining ideas from satisfiability testing, slice-
sampling MCMC, and numerical optimization. Because
most probabilistic models are easily translated into HMLNSs,
our algorithms are a powerful general-purpose tool for infer-
ence in structured domains. Weight learning algorithms are
straightforward extensions of existing ones for MLNs. We
demonstrate the power of HMLNs and the associated algo-
rithms in a robot mapping domain.

Background
Markov Networks

Graphical models compactly represent the joint distribution
of a set of variables (or nodes) X = (X;,Xs,...,X,) €
X as a product of non-negative potential functions (Pearl
1988): P(X =) = % [[, #x(z(x}), where each poten-
tial ¢y is over a subset of the variables x(;y, and Z is
a normalization constant. Under appropriate restrictions,
the model is a Bayesian network and Z = 1. A Markov
network or Markov random field can have arbitrary poten-
tials. As long as P(X =) > 0 for all z, the distribu-
tion can be equivalently represented as a log-linear model:
P(X =z) = Ltexp(}, w;fi(x)), where the f;(z) are ar-
bitrary feature functions.

Given the observed values of some variables, two key
inference problems in probabilistic models are (a) finding
the most probable joint state of the unobserved variables
(MPE inference), and (b) computing conditional probabil-
ities of unobserved variables (conditional inference). Both
of these problems are computationally intractable, and are
often solved approximately. Methods for MPE inference in-
clude simulated annealing, iterated conditional modes, be-
lief propagation (max-product), and graph cuts. Simulated
annealing is probably the most widely used method. It con-
sists of repeatedly proposing a state change, accepting it if
the new state x’ is more probable than the old one z, and
otherwise accepting it with probability (P(z')/P(z))/T,
where 7' > 0 decreases over time. Methods for conditional
inference include Markov chain Monte Carlo (MCMC), be-
lief propagation (sum-product), variational approximation,
and others. The most widely used method is Gibbs sam-
pling, a form of MCMC, which consists simply of sampling
each variable in turn given its neighbors, repeating until
some termination criterion is met, and estimating probabili-

ties from counts over the sampling run (Gilks et al. 1996).

Markov network weights can be learned from data using
a variety of methods, including convex optimization of the
likelihood or a related function, iterative scaling, and margin
maximization. Network structure can also be learned from
data, typically by performing a greedy search over conjunc-
tions of variables (Pietra et al. 1997).

Logic and Satisfiability

A first-order knowledge base (KB) is a set of sentences or
formulas in first-order logic (Genesereth & Nilsson 1987).
First-order logic allows us to compactly represent complex
relational structure. A central problem in logic is that of
determining if a KB (usually in clausal form) is satisfiable,
i.e., if there is an assignment of truth values to ground atoms
that makes the KB true. One approach to this problem is
stochastic local search, exemplified by the WalkSat solver
(Selman et al. 1996). Beginning with a random truth as-
signment, WalkSat repeatedly flips the truth value of either
(a) an atom that maximizes the number of satisfied clauses,
or (b) arandom atom in an unsatisfied clause. The weighted
satisfiability problem is a variant of satisfiability where each
clause has an associated weight, and the goal is to maximize
the sum of the weights of satisfied clauses. MaxWalkSat is
an extension of WalkSat to this problem (Kautz et al. 1997).

Numerical Optimization

Our inference algorithms use numerical optimization as a
subroutine. Numerical optimization is the problem of find-
ing the inputs to a function that maximize (or minimize) its
value. Gradient descent is a popular technique, but can be
very slow. We use L-BFGS, a state-of-the-art quasi-Newton
method (Liu & Nocedal 1989), which uses the Hessian ma-
trix (second derivatives) in addition to the gradient. L-BFGS
scales to large problems by computing a running approxima-
tion of the inverse Hessian instead of storing the full matrix.

Markov Logic Networks

First-order logic is brittle because formulas are hard con-
straints; violating a single formula has the same effect as
violating all. The basic idea in MLNs is to allow soft con-
straints: when a world violates one formula it becomes less
probable, but not impossible. Each formula has an associ-
ated weight that reflects how strong a constraint it is. To-
gether with a set of constants, an MLN defines a Markov
network with one node per ground atom and one feature
per ground clause. The weight of a feature is the weight
of the first-order clause that originated it. The probabil-
ity of a state z in such a network is given by P(z) =
(1/Z)exp (3, wifi(x)), where Z is a normalization con-
stant, w; is the weight of the ith clause, f; = 1 if the ith
clause is true, and f; = 0 otherwise. An MLN can be viewed
as a template for constructing Markov networks. Most com-
monly used probabilistic models can be succinctly formu-
lated as MLNs, including HMMs, CRFs, logistic regression,
Bayesian networks, etc.

MPE inference in MLNs can be performed using a
weighted satisfiability solver like MaxWalkSAT. In princi-
ple, conditional inference can be performed using Gibbs

sampling or other standard techniques, but in practice these
can be extremely slow when weights are large (represent-
ing strong dependencies), and break down when weights are
infinite (deterministic dependencies). Recently, Poon and
Domingos (2006) introduced MC-SAT, which handles de-
terminism and achieves very large speedups by combining
MCMC with satisfiability testing. MC-SAT is a slice sam-
pler with one auxiliary variable per clause. Slice samplers
alternately sample the state and auxiliary variables. The goal
of the auxiliary variables is to decorrelate the state ones, en-
abling rapid mixing. In state x, MC-SAT samples the auxil-
iary variable uy, corresponding to clause f uniformly from
[0, e /%(*)]. Tt then samples a new state uniformly from
the “slice,” i.e., the states compatible with the auxiliary vec-
tor u. This is done using the SampleSAT algorithm, which
achieves near-uniform sampling at near-WalkSAT speeds by
mixing WalkSAT and simulated annealing steps (Wei et al.
2004). Poon and Domingos showed that MC-SAT satisfies
ergodicity and detailed balance. In essence, MC-SAT is fast
because it uses a SAT solver to jump between modes, in-
stead of waiting exponential time for the Markov chain to
drift from one to the other, as in other MCMC methods.
MLN weights can be learned generatively using pseudo-
likelihood (Richardson & Domingos 2006) or discrimina-
tively using a variety of techniques (Lowd & Domingos
2007). MLN structure can be learned using a form of in-
ductive logic programming (Kok & Domingos 2005).

Hybrid Markov Logic Networks

Representation

Conceptually, extending MLNs to numeric and hybrid do-
mains is quite straightforward: it suffices to allow numeric
properties of objects as nodes, in addition to Boolean ones,
and numeric terms as features, in addition to logical formu-
las. Since the syntax of first-order logic already includes
numeric terms, no new constructs are required. A numeric
term is a term of numeric type, and a numeric property is a
designated function of numeric type. For example, if we are
interested in distances between objects as random variables,
we can introduce the numeric property Distance(x,y).

Definition 1 A hybrid Markov logic network L is a set of
pairs (F;,w;), where F; is a first-order formula or a nu-
meric term, and w; is a real number. Together with a finite
set of constants C = {c1,ca, ..., c|c|}, it defines a Markov
network My, ¢ as follows:

1. My, ¢ contains one node for each possible grounding with
constants in C' of each predicate or numeric property ap-
pearing in L. The value of a predicate node is 1 if the
ground predicate is true, and O otherwise. The value of
a numeric node is the value of the corresponding ground
term.

2. My, ¢ contains one feature for each possible grounding
with constants in C of each formula or numeric term F;
in L. The value of a formula feature is 1 if the ground
formula is true, and 0 otherwise. The value of a numeric
feature is the value of the corresponding ground term. The
weight of the feature is the w; associated with F; in L.

Thus an HMLN defines a family of log-linear models of
the form P(X = z) = L exp (>, wisi(x)), where s; is
the sum of the values of all groundings of F; in x. Notice
that logical formulas may contain numeric terms and these
may contain indicator functions, allowing for arbitrary hy-
brid features. As in Richardson and Domingos (2006), we
assume that the value of every function for every tuple of ar-
guments is known, and thus when grounding an HMLN ev-
ery functional term can be replaced by its value. Proper mea-
sures and finite solutions are guaranteed by requiring that all
variables have finite range, and features be finite everywhere
in this range. For convenience, we allow some extensions of
first-order syntax in defining HMLNSs:

Infix notation. Numeric terms may appear in infix form.

Formulas as indicators. First-order formulas may be used
as indicator functions within numeric terms.

Soft equality. « = [may be used as a shorthand for
—(a —)2, where « and 3 are arbitrary numeric terms.
This makes it possible to state numeric constraints as
equations, with an implied Gaussian penalty for diverg-
ing from them. If the weight of a formula is w, the stan-
dard deviation of the Gaussianis o = 1/ V2w. A numeric
domain can now be modeled simply by writing down the
equations that describe it. In our experience, this is the
most common use of numeric features in HMLNs.

Soft inequality. « > t may be used as a shorthand for
—log(1 + e®*=®), and o < t for —log(1 + (@),
with a an arbitrary numeric term. In other words, the
(log) sigmoid function is used to represent soft inequality,
with a controlling the degree of softness.

We now develop algorithms for inference in HMLNs by
extending the corresponding ones for MLNs. All algorithms
assume logical formulas have been converted to standard
clausal form. For simplicity, the exposition assumes that all
weights are positive. Weights can be learned using the same
algorithms as for MLNs, with feature counts generalized to
feature sums. Other numeric parameters require a straight-
forward extension of these algorithms. HMLNs structure
learning is a topic for future research.

Inferring the Most Probable State

Our algorithm for MPE inference in HMLNs combines
MaxWalkSAT and L-BFGS. We call it hybrid MaxWalk-
SAT, or HMWS for short. Pseudo-code for it is shown in
Algorithm 1, where x is the current state and S(x) is the
current sum of weighted features. Numeric variables are ini-
tialized uniformly at random, with user-determined range.
At each search step, HMWS randomly chooses an unsatis-
fied clause or numeric feature ¢, and performs a random step
with probability p and a greedy one otherwise. In random
steps, HMWS chooses a variable at random and sets it to
the value that maximizes ¢(x). For a Boolean variable in
an unsatisfied clause, this simply means flipping it. For a
numeric variable, the maximization is done using L-BFGS
(line 13), and HMWS then adds Gaussian noise to it (with
user-determined variance). In greedy steps, HMWS first per-
forms a one-dimensional optimization of S(x) as a function

Algorithm 1 Hybrid MaxWalkSAT (clauses, numer-
ic_terms, weights, max_tries, max _flips)

1: x* =null
2: S(x*) = -
3: for i «— 1 to max_tries do

4: X <« random assignment
5. for j < 1to max_flips do
6: if S(x) > S(x*) then
7: X* —x
8: S(x*) «— S(x)
9: end if
10: ¢ < arandom unsatisfied clause or numeric term
11: if uniform(0,1) < p then
12: select a random variable x appearing in ¢
13: x — argmax_c(x)
14: if = is numeric then
15: x <« x + Gaussian noise
16: end if
17: else
18: for each variable x; in ¢ do
19: rj « argmax, S(x)
20: S(x}) « S(x) with z; « z
21: end for
22: a's «— x; with highest S(x;)
23: if S(x;) > S(x) or cis a clause then
24: Tp e
25: else
26: X « argmax, S(x),
27: where X, is the subset of x appearing in ¢
28: end if
29: end if
30: end for
31: end for

32: return x*

of each variable, and chooses the variable change that yields
the greatest improvement in S(x). In numeric features, if all
one-variable changes fail to improve S, HMWS performs a
greedy or exhaustive search over assignments to the Boolean
variables, for each assignment maximizing the feature sum
as a function of the numeric variables using L-BFGS (line
26). The choice between greedy and exhaustive search is de-
termined by the number of Boolean variables. The result of
the numeric search for each setting of the Boolean variables
is cached, to avoid redoing the search in the future. As in
MaxWalkSAT, this process continues for a predefined num-
ber of steps, and is restarted a predefined number of times.
The best assignment found is returned. When all variables
and features are Boolean, HMWS reduces to MaxWalkSAT;
when all are numeric, to a series of calls to L-BFGS.

Inferring Conditional Probabilities

We extend MC-SAT to handle numeric variables and fea-
tures by first extending WalkSAT and SampleSAT. A
Boolean constraint is a clause. A numeric constraint is
an inequality of the form fx(xz) > a. Given a set of con-
straints over Boolean and numeric variables, hybrid Walk-
SAT (HWS) attempts to find the assignment of values to

Algorithm 2 Hybrid MC-SAT(clauses, numeric_terms,
weights, num_samples)

1: 29 — Satisfy(hard clauses)
2: for ¢ < 1 to num_samples do
3 M0

4: for all ¢}, € clauses satisfied by (1) do
5: with probability 1 — e~ "* add ¢ to M
6: end for
7. for all ¢, € numeric_terms do
8: Uk ~ U[O,exp(wkfk(m(ifl)))]
9: add fi, () > log(uy) /wy, to M
10: end for
11: sample (¥ ~ Us aT ()
12: end for

the variables that maximizes the number of satisfied con-
straints. HWS is similar to HMWS with the functions f ()
as numeric features, except that in each step maximization
of fx(z) is halted as soon as fi(x) > a, and the global ob-
jective function is the number of satisfied constraints, not the
weighted sum of features.

Hybrid SampleSAT (HSS) generates a uniform sample
from the states that satisfy a set of constraints M. It mixes
HWS and simulated annealing steps. The energy (nega-
tive log probability) of a state for simulated annealing is the
number of satisfied constraints. A new candidate state is
generated by choosing a variable at random, flipping it if it
is Boolean, and adding Gaussian noise with user-determined
variance to it if it is numeric.

Hybrid MC-SAT (HMCS) is a slice sampler with one aux-
iliary variable per feature. In state z, the auxiliary vari-
able uy, corresponding to feature fj is sampled uniformly
from [0, e*7+(*)]. For Boolean features, the construction
of the constraint set M is the same as in MC-SAT. For
numeric feature fy, the standard slice sampling constraint
fr > log(ug)/wy is added to M. The constraints in M de-
fine the slice, and a new state is sampled from it using HSS.
Pseudo-code for HMCS is shown in Algorithm 2, where the
first step calls WalkSAT to satisfy all hard (infinite-weight)
clauses, and Uy is the uniform distribution over set S. The
proof that HMCS satisfies ergodicity and detailed balance is
analogous to that for MC-SAT. In purely discrete domains,
HMCS reduces to MC-SAT. In purely continuous ones, it is
a new type of slice sampler, using a combination of sim-
ulated annealing and numerical optimization to very effi-
ciently sample from the slice.

Experiments
Problem and Data

We tested HMLNSs and their algorithms on the problem of
mobile robotic map building (Limketkai et al. 2005). The
goal is to infer the map of an indoor environment from laser
range data, obtained by the robot as it moves about the en-
vironment. The evidence is a set of range finder segments,
defined by the (z,y) coordinates of their endpoints. The
output is: (a) a labeling of each segment as Door, Wall, or
Other (classification); (b) an assignment of wall segments to

the walls they are part of (clustering); and (c) the position of
each wall, defined by the (z,y) coordinates of its endpoints
(regression). We used the mobile robot sensor data from the
Radish robotics data set repository (radish.sourceforge.net).
On average, each map consists of about 100 segments. For
evaluation purposes, the “ground truth” labeling is the one
provided in the dataset, the assignment was done manually,
and a wall’s location was computed by fitting a least-squares
regression line to (the endpoints of) the wall’s true segments.
The line’s endpoints were obtained by projecting the first
and last segment’s endpoints onto the line. The datasets are
also available in the online appendix to this paper (alchemy.-
cs.washington.edu/papers/wang08).

HMLN for Mobile Robot Map Building

‘We now describe the HMLN we developed for this problem.
Every segment belongs to exactly one type. Every segment
type has a prior probability, represented by a unit clause
(e.g., SegType(s,Door)). Doors and walls also have a
typical length and depth, represented by numeric terms
(e.g., SegType(s,Door) - (Length(s) = DoorLength),
which has value O if the segment is not a door and
—(Length(s) — DoorLength)? otherwise). A segment’s
depth is defined as the signed perpendicular distance of
its midpoint to the nearest wall line. Lines are iteratively
estimated from the segments assigned to them, using the
formulas below, as part of the HMLN inference. A number
of rules involving depth and angle between a segment and
the nearest line identify segments of type Other, whose
distribution is more irregular than that of doors and walls.

The type of a segment is predictive of the types of consec-
utive segments along a wall line:

SegType(s,t) A Consecutive(s,s’)= SegType(s’, t)
Two segments are consecutive if they are the closest seg-
ments to each other along either direction of the nearest line.
In addition, aligned segments tend to be of the same type:

SegType(s,t) A Consecutive(s,s’) A Aligned(s,s’)

= SegType(s’, t)
Segments are aligned if one is roughly a continuation of the
other (i.e., their angle is below some threshold, and so is
their perpendicular distance). The rules above perform col-
lective classification of segments into types.
Aligned wall segments are part of the same wall line:

SegType(s,Wall) A SegType(s’,Wall) A Aligned(s,s’)

APart0f(s,1) = Part0f(s’,1)
This rule clusters wall segments into wall lines. Notice that it
captures long-range dependencies between segments along
the same corridor, not just between neighboring segments.
A segment is the start of a line if and only if it has no previ-
ous aligned segment:!

Part0f(s,1) =

(—PreviousAligned(s) < StartLine(s,1))
If a segment is the start of a line, their initial points are
(about) the same:
StartLine(s,1) - (xi(s) = x4(1))

"By convention, a point precedes another if it has lower x co-
ordinate and, if they are the same, lower y. Segments and lines are
ordered by their start points, which precede their final points.

where x; (s) is the x coordinate of s’s initial point, etc.; and
similarly for y. If a segment belongs to a line, its slope
should be the same as the slope of a line connecting their
initial points. Multiplying by the Ax’s to avoid singulari-
ties, we obtain:
Part0f(s, 1) - [(ye(s) — yi(s))(xi(s) — x:(1))
= (yi(s) = y1(1))(x¢(s) — x1(s))]

where the subscript £ denotes final points. Line ends are
handled similarly. These rules infer the locations of the wall
lines from the segments assigned to them. They also influ-
ence the clustering and labeling of segments (e.g., if a bet-
ter line fit is obtained by relabeling a segment from Wall to
Door and thus excluding it, this will be inferred). Classifi-
cation, clustering and regression are fully joint. In the next
section we empirically test the utility of this approach. The
full HMLN, containing some additional formulas, is avail-
able in the online appendix.

Experimental Methodology

We implemented HMLNs and their algorithms as extensions
of the Alchemy system (alchemy.cs.washington.edu). We
learned HMLN weights using Alchemy’s voted perceptron
with HMWS for inference, 100 steps of gradient descent,
and a learning rate of 1.0. To combat ill-conditioning, we
divided each formula/term’s learning rate by the absolute
sum of its values in the data (Lowd & Domingos 2007).
Other parameters were learned by fitting Gaussian distribu-
tions to the relevant variables. We used leave-one-map-out
cross-validation throughout. In all inferences, the correct
number of walls was given. We evaluated inference results
for discrete variables (SegType and Part0f) using F1 score
(harmonic mean of precision and recall over all groundings).
We used mean square error (MSE) for continuous variables
(xi(1), yi(1), %¢(1) and y¢(1)). We also computed the
negative log likelihoods of the test values. To obtain den-
sity functions for continuous variables from the output of
MCMC, we placed a Gaussian kernel at each sample, with a
standard deviation of 3r/n, where r is the sampled range of
the variable and n is the number of samples. Details of the
experimental procedure, parameter settings and results are
included in the online appendix.

Inferring the Most Probable State

We compared HMWS with simulated annealing, starting
from the same initial random state. We tried a range of pa-
rameter values for each algorithm, and report the best results
(0.06 random move probability for HMWS, initial temper-
ature of 10 and reduction rate of 0.96 for every 100 steps
of simulated annealing). The results are shown in Figures 1
and 2. HMWS is roughly two orders of magnitude faster
than simulated annealing.

We also compared HMWS, which infers the discrete and
continuous variables jointly, with a more traditional pipeline
approach, where the segment types and assignments are
first inferred using MWS, and the lines are then estimated
by least-squares linear regression over the endpoints of the
segments assigned to them by MWS. HMWS and MWS
were started from the same initial random state and run
for 1,000,000 flips; they typically converged within 100,000

) HMWS SegType ——

SA SegType
HMWS PartOf - -

SA PartOf e

0 1 10 100 1000 5000
Time (Secs)

F1 Score

Figure 1: F1 scores for MPE inference.

20 T T T T
HMWS

15

Mean Square Error

0 1 10 100 1000 5000
Time (Secs)

Figure 2: Mean square error for MPE inference.

Table 1: Joint vs. pipeline approaches.

Measure | SegType F1 | Part0f F1 | MSE
HMWS 0.746 0.753 0.112
MWS+LR 0.742 0.717 0.198
HMCS 0.922 0.931 0.002
MCS+LR 0.904 0.919 0.037
RMNs 0.899 N/A N/A

flips. The results are shown in the top two rows of Table 1.
Joint inference outperforms pipelined inference on both dis-
crete and and numeric variables.

Inferring Conditional Probabilities

We compared HMCS with Gibbs sampling with ten chains,
and with simulated tempering (Marinari & Parisi 1992) with
three runs of ten swapping chains. We used the best set-
tings for simulated tempering found by Poon and Domingos
(2006). In HSS we used a probability of simulated annealing
of 0.4, a temperature of 0.5, 100 steps after reaching a so-
lution, and a standard deviation of one tenth of the variable
range for the annealing proposal distribution. The results
are shown in Figures 3, 4 and 5. HMCS greatly outperforms
Gibbs sampling and simulated tempering.

We also compared HMCS with a pipeline approach,
where the discrete variables are first inferred using MC-SAT,
and the lines are then estimated by linear regression over the
endpoints of the segments that have probability greater than
0.3 of belonging to them. (There are typically four to six
lines in a map). HMCS and MC-SAT were both run for

g
o)
o)
—
L
HMCS SegType —+— HMCS PartOf ---g---
o2t [SiSmee x| STemClos-
----%--- Gibbs PartOf ---- - -
o1 i sSeq ype . ibbs Par
0.1 1 10 100 1000
Time (Mins)
Figure 3: F1 scores for conditional inference.
1
S o8t
T
o
g 06
S .
B 04Ff ;
= 02 §
0 ' : ;
0.1 1 10 100 1000
Time (Mins)
Figure 4: Mean square error for conditional inference.
'§ 3000 . Hvice
N
< 2500 [
2
5 2000
g 1500
|
o 1000
=
® 500
g
z 0
0.1 1 10 100 1000

Time (Mins)

Figure 5: Negative log likelihood of query variables for con-
ditional inference.

30,000 steps, with all other settings as above. The results
are shown in Table 1 (the bottom three lines). Joint infer-
ence performs best, illustrating its benefits. Table 1 also
shows the results on classifying SegType of Limketkai et
al.’s (2005) state-of-the-art approach, which is based on re-
lational Markov networks. HMLNs perform best, illustrat-
ing the benefits of using a more flexible modeling language.

Conclusion

Hybrid Markov logic networks are an elegant language for
defining complex non-i.i.d. models in domains with both
discrete and numeric features. In this paper we introduced
the language and inference algorithms for it, and illustrated
their effectiveness on a robot mapping task.

Acknowledgements

We are grateful to Dieter Fox, Henry Kautz, Hoifung Poon,
Dan Weld, and Fei Wu for helpful discussions. This re-
search was funded by DARPA contracts NBCH-D030010/02-
000225, FA8750-07-D-0185, and HRO0011-07-C-0060, DARPA
grant FA8750-05-2-0283, NSF grant 11S-0534881, and ONR grant
N-00014-05-1-0313. The views and conclusions contained in this
document are those of the authors and should not be interpreted
as necessarily representing the official policies, either expressed or
implied, of DARPA, NSF, ONR, or the U.S. Government.

References

Bakir, G. H., Hofmann, T., Scholkopf, B., Smola, A. J., Taskar,
B., and Vishwanathan, S. V. N. (2007). Predicting Structured
Data. MIT Press.

Genesereth, M., and Nilsson, N. (1987). Logical Foundations of
Artificial Intelligence. Morgan Kaufmann.

Getoor, L., and Taskar, B. (2007). Introduction to Statistical Re-
lational Learning. MIT Press.

Gilks, W. R., Richardson, S., and Spiegelhalter, D. J., editors
(1996). Markov Chain Monte Carlo in Practice. Chapman and
Hall.

Kautz, H., Selman, B., and Jiang, Y. (1997). A general stochastic
approach to solving problems with hard and soft constraints. In
The Satisfiability Problem. AMS.

Kok, S., and Domingos, P. (2005). Learning the structure of
Markov logic networks. In Proc. ICML-05 (pp. 441-448).
Lerner, U., and Parr, R. (2001). Inference in hybrid networks:
Theoretical limits and practical algorithms. In Proc. UAI-01 (pp.
310-318).

Limketkai, B., Liao, L., and Fox, D. (2005). Relational object
maps for mobile robots. In Proc. IJCAI-05 (pp. 1471-1476).

Liu, D. C., and Nocedal, J. (1989). On the limited memory BFGS
method for large scale optimization. Mathematical Programming,
45:503-528, 1989.

Lowd, D., and Domingos, P. (2007). Efficient weight learning for
Markov logic networks. In Proc. PKDD-07 (pp. 200-211).
Marinari, E., and Parisi, G. (1992). Simulated tempering: a new
Monte Carlo scheme. Europhysics Letters, 19, 451-458, 1992.
Murphy, K. (1998). Inference and learning in hybrid bayesian
networks. Tech. Rept. UCB/CSD-98-990, U. C. Berkeley, CA.
Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems.
Morgan Kaufmann.

Pietra, S. D., Pietra, V. D., and Lafferty, J. (1997). Inducing fea-
tures of random fields. Trans. PAMI, 19, 380-393, 1997.

Poon, H., and Domingos, P. (2006). Sound and efficient inference
with probabilistic and deterministic dependencies. In Proc. AAAI-
06 (pp. 458-463).

Richardson, M., and Domingos, P. (2006). Markov logic net-
works. Machine Learning, 62, 107-136, 2006.

Selman, B., Kautz, H., and Cohen, B. (1996). Local search strate-
gies for satisfiability testing. In Cliques, Coloring, and Satisfia-
bility. AMS.

Wei, W., Erenrich, J., and Selman, B. (2004). Towards efficient
sampling: Exploiting random walk strategies. In Proc. AAAI-04
(pp- 670-676).

