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Abstract. Many KDD systems incorporate an implicit or explicit preference for simpler models,
but this use of “Occam’s razor” has been strongly criticized by several authors (e.g., Schaffer, 1993;
Webb, 1996). This controversy arises partly because Occam’s razor has been interpreted in two
quite different ways. The first interpretation (simplicity is a goal in itself) is essentially correct,
but is at heart a preference for more comprehensible models. The second interpretation (simplicity
leads to greater accuracy) is much more problematic. A critical review of the theoretical arguments
for and against it shows that it is unfounded as a universal principle, and demonstrably false. A
review of empirical evidence shows that it also fails as a practical heuristic. This article argues
that its continued use in KDD risks causing significant opportunities to be missed, and should
therefore be restricted to the comparatively few applications where it is appropriate. The article
proposes and reviews the use of domain constraints as an alternative for avoiding overfitting, and
examines possible methods for handling the accuracy–comprehensibility trade-off.
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1. Occam’s Two Razors

Occam’s razor is often considered one of the fundamental tenets of modern science.
In its original form, it states that “Nunquam ponenda est pluralitas sin necesi-
tate,” which, approximately translated, means “Entities should not be multiplied
beyond necessity” (Tornay, 1938). It was formulated by William of Occam in the
late Middle Ages as a criticism of scholastic philosophy, whose theories grew ever
more elaborate without any corresponding improvement in predictive power. Today
it is often invoked by learning theorists and KDD practitioners as a justification
for preferring simpler models over more complex ones. However, formulating Oc-
cam’s razor in KDD terms is trickier than might appear at first. One difficulty
is that many different definitions of simplicity are possible. In practice, simplicity
is typically equated (loosely) with the syntactic size of the model: for example,
the number of nodes in a decision tree, the number of conditions in a rule set,
the number of weights in a neural network, or, in general, the number of param-
eters in a model. Definitions of this type have obvious limitations, and we will
consider some more sophisticated ones below. Unfortunately, no fully satisfactory
computable definition of simplicity exists, and perhaps none is possible. Thus, for
the most part this article will be concerned with the heuristic view of simplicity
above, since it is this view that is typically implicit in the practical use of Occam’s
razor. Let generalization error of a model be its error rate on unseen examples,
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and training-set error be its error on the examples it was learned from. Then the
formulation of the razor that is perhaps closest to Occam’s original intent is:

First razor: Given two models with the same generalization error, the
simpler one should be preferred because simplicity is desirable in itself.

On the other hand, within KDD Occam’s razor is often used in a quite different
sense, that can be stated as:

Second razor: Given two models with the same training-set error, the sim-
pler one should be preferred because it is likely to have lower generalization
error.

We believe that it is important to distinguish clearly between these two versions
of Occam’s razor. The first one is largely uncontroversial, while the second one,
taken literally, is false. Several theoretical arguments and pieces of empirical evi-
dence have been advanced to support it, but each of these is reviewed below and
found wanting. The article also reviews previous theoretical arguments against the
“second razor,” and, more importantly, mounting empirical evidence that it fails
in practice. Finally, the first razor is revisited and refined, some consequences are
discussed, and alternatives to the use of the second razor are proposed.

2. Theoretical Arguments for the Second Razor

2.1. The PAC-Learning Argument

Although a large fraction of the computational learning theory literature is con-
cerned with the relationship between accuracy and simplicity (at least superficially),
the basic argument is neatly encapsulated in Blumer et al.’s (1987) paper “Occam’s
razor.” While the mathematical results in this paper are valid, they have only a
very indirect relationship to the second razor, and do not “prove” it.

For the present purposes, the results can be summarized thus. Suppose that the
generalization error of a hypothesis is greater than ε. Then the probability that the
hypothesis is correct on m independent examples is smaller than (1− ε)m. If there
are |H | hypotheses in the hypothesis class considered by a learner, the probability
that at least one is correct on all m training examples is smaller than |H |(1− ε)m,
since the probability of a disjunction is smaller than the sum of the probabilities
of the disjuncts. Thus, if a model with zero training-set error is found within a
sufficiently small set of models, it is likely to have low generalization error. This
model, however, could be arbitrarily complex. The only connection of this result
to Occam’s razor is provided by the information-theoretic notion that, if a set of
models is small, its members can be distinguished by short codes. But this in no
way endorses, say, decision trees with fewer nodes over trees with many. By this
result, a decision tree with one million nodes extracted from a set of ten such trees
is preferable to one with ten nodes extracted from a set of a million, given the same
training-set error.



OCCAM’S RAZOR IN KNOWLEDGE DISCOVERY 3

Put another way, the results in Blumer et al. (1987) only say that if we select a
sufficiently small set of models prior to looking at the data, and by good fortune
one of those models closely agrees with the data, we can be confident that it will
also do well on future data. The theoretical results give no guidance as to how to
select that set of models.

2.2. The Bayesian Argument

Claims of a general theoretical foundation for preferring simple models can also
be found in the statistical and pattern recognition literature. While the details
vary, they typically take the form of an approximation to the optimal prediction
procedure of Bayesian model averaging (BMA) (Bernardo & Smith, 1984; Chick-
ering & Heckerman, 1997). In BMA, no single “best” model is selected; rather,
every model in the chosen space is retained, and its posterior probability given the
data is computed. Predictions are made by voting among all models, with each
model weighted by its posterior probability. If the “true” model space and prior
distribution are known, this is the optimal prediction procedure in the sense of
minimizing generalization error (or, in general, a given loss function). However, for
most model spaces of interest to KDD the number of models is far too large for
the model average to be efficiently computable, and there is also no closed form
solution. Several approximation methods have been proposed to address this prob-
lem. A number of of these are based on the assumption that, for sufficiently large
samples, the distribution of model parameters given a model structure is approxi-
mately multivariate Gaussian. If we retain only those terms in this approximation
that increase with the sample size, and approximate the maximum a posteriori pa-
rameter settings by the maximum likelihood ones, we obtain an expression for the
(logarithm of) the probability of a model structure that is the sum of two terms: a
likelihood term (reflecting performance on the training data), and a term penaliz-
ing the complexity of the model (the number of parameters). Criteria of this type
include the Bayesian Information Criterion (BIC) (Schwarz, 1978), the Akaike In-
formation Criterion (AIC) (Akaike, 1978), and many others. Similar criteria with
an information-theoretic interpretation, like MML (Wallace & Boulton, 1968) and
MDL (Rissanen, 1978) are discussed below.

Consider BIC, the first criterion to be explicitly proposed as an approximation
to Bayesian model averaging. Leaving aside the fact that BIC involves a sequence
of approximations and assumptions that may or may not be valid in practice (e.g.,
a “large enough” sample), its use of a complexity penalty does not imply that
simpler models are more probable, because BIC computes probabilities for model
structures, as opposed to models. This distinction is important. ax + b and ax2 +
bx + c are model structures; each can be instantiated by many different models,
for example 5x + 2 and 3x2 + x + 10. BIC approximates the marginal likelihood
of a model structure, which is the average of the likelihoods of all the models that
instantiate it (weighted by their prior probabilities given the model structure). BIC
penalizes the model structure’s dimension because higher-order spaces effectively
contain many more models than lower-order ones, and thus contain many more
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low-likelihood models along with the “best” one(s). (In precise terms, higher-order
model structures have a higher VC dimension (Haussler, 1988); or, considering
finite-precision numbers, they literally contain more models.) For example, the
model space defined by ax2 + bx + c contains many more models than the one
defined by ax + b. Thus, if the correct model is 3x2 + x + 10, the quadratic
structure is correspondingly the correct one, but it may still appear less likely than
the linear structure, because the high likelihood of the 3x2 + x + 10 model will
be averaged with a large number of vanishingly small likelihoods corresponding to
the many poor quadratic models that are possible. However, this has no bearing
on the likelihood of the 3x2 + x + 10 model; it will still be more likely than any
linear model, irrespective of its quadratic degree. Thus, choosing a model structure
according to BIC and then instantiating the parameters can lead to a suboptimal
model.

Similar remarks apply to the more recent work of MacKay (1992). The “Occam
factors” that appear in his evidence framework penalize model structures with many
parameters, as opposed to models, and can also lead to suboptimal choices.

2.3. The Information-Theoretic Argument

The minimum description length (MDL) principle (Rissanen, 1978) is one of the
forms in which the second razor is most often applied (e.g., Quinlan & Rivest,
1989). According to this principle, the “best” model is the one which minimizes
the total number of bits needed to encode the model and the data given the model.
The MDL principle is appealing because it reduces two apparently incommensu-
rable attributes of a model (error rate and complexity) to the same form: bits of
information. However, there is no guarantee that it will select the most accurate
model. Rissanen simply proposes it as a fundamental principle. The closely-related
minimum message length (MML) principle (Wallace & Boulton, 1968) is derived
from Bayes’ theorem and coding theory. Let h be a hypothesis, and let X be the
training set. Then the most probable hypothesis given X is the one for which

P (h|X) =
P (h)P (X |h)

P (X)

is maximum. Taking logarithms of both sides and multiplying by −1, this is equiv-
alent to minimizing

−log2P (h|X) = −log2P (h) − log2P (X |h) + log2P (X)

where the log2P (X) term can be ignored when choosing the most probable hypoth-
esis, since it is the same for all hypotheses. According to the source coding theorem
(Shannon’s first theorem) (Cover & Thomas, 1991), when we need to transmit sym-
bols s from an alphabet S across a channel, the most efficient binary encoding of the
symbols has length −log2P (s) for each s (i.e., more probable symbols have shorter
codes). Thus the above result can be interpreted as minimizing the length in bits of
the optimal coding for the hypothesis, plus the length in bits of the optimal coding
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for the data given the hypothesis. This has led some researchers to believe that a
trade-off between error and complexity is “a direct consequence of Bayes’ theorem,
requiring no additional assumptions” (Cheeseman, 1990). However, this belief is a
result of circular reasoning: models are more probable a priori because they have
shorter codes, but they have shorter codes because they are more probable a priori.
Care should be taken to avoid confusion between assigning the shortest codes to the
a priori most probable hypotheses and considering that the syntactically simplest
models in the representation being used (e.g., the decision trees with fewest nodes)
are the a priori most probable ones. If they have higher priors, more complex mod-
els can be assigned shorter codes, but this obviously does not imply any preference
for simpler models in the original representation. For example, if the model with
highest prior is a decision tree with a million nodes, it can be assigned a 1-bit code,
leaving longer codes for a priori less likely trees; since many of these will have fewer
nodes than the “best” tree, no preference for small trees is implied.

Information theory, whose goal is the efficient use of a transmission channel, has no
direct bearing on KDD, whose goal is to infer predictive and comprehensible models
from data. Having assigned a prior probability to each model in the space under
consideration, we can always recode all the models such that the most probable
ones are represented by the shortest bit strings. However, this does not make them
more predictive, and is unlikely to make them more comprehensible.

3. Theoretical Arguments Against the Second Razor

3.1. “Zero-Sum” Arguments

A number of well-known theoretical results have been established which imply that
the second razor cannot be true. These results include Schaffer’s (1994) conser-
vation law of generalization performance and Wolpert’s (1996) “no free lunch”
theorems, and are in turn implicit in Mitchell’s (1980) demonstration that bias-
free learning is impossible. In essence, they imply that, for every domain where a
simpler model is more accurate than a more complex one, there exists a domain
where the reverse is true, and thus no argument about which is preferable in gen-
eral can be made. This derives from the simple fact that, in the absence of further
information, knowledge of the target values for training examples implies nothing
about the target values for unseen examples, and so all models consistent with
the training data (i.e., all possible combinations of assignments of target values to
unseen examples) are equally likely to be correct. Although the “no free lunch”
results negate the second razor in a mathematical sense, they still leave open the
possibility that it will apply in most (or all) real-world domains (Rao et al., 1995).
This is a matter for empirical study, which the next two sections address.

3.2. The Vapnik-Chervonenkis Dimension

Vapnik’s (1995) theory of structural risk minimization shows that the generalization
ability of a class of models is not a function of its number of parameters, but of
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its VC dimension. The VC dimension of a hypothesis class H over an instance
space X is the size of the largest subset of X for which H can generate all possible
binary labelings. Although the VC dimension and the number of parameters are
sometimes related, in general they are not. Model structures with a very large
number of parameters can generalize quite reliably, if constrained in other ways.
The model structure class = sign(sinax), with a single parameter, has an infinite
VC dimension, because it can discriminate an arbitrarily large, arbitrarily labeled
set of points on the x axis (Vapnik, 1995, p. 78).

3.3. Overfitting Is Due to Multiple Testing

According to conventional wisdom, overfitting is caused by overly complex models,
and Occam’s razor combats it by introducing a preference for simpler ones. How-
ever, drawing on the study of multiple comparison problems in statistics (Miller,
1981), Jensen and Cohen (1999) have shown that overfitting in fact arises not be-
cause of complexity per se, but because attempting a large number of models leads
to a high probability of finding a model that fits the training data well purely by
chance. Attempting 10 complex models incurs a smaller risk of overfitting than
attempting 100 simple ones. Overfitting is thus best combatted not by the second
razor, but by taking this multiple testing phenomenon into account when scoring
candidate models. One way to do this is through the use of Bonferroni adjust-
ments (Jensen & Schmill, 1997), although this may cause underfitting when the
hypotheses being tested are not independent. A more general but computationally
intensive solution is randomization testing (Edgington, 1980; Jensen, 1992). An
approach that explicitly takes dependences into account is proposed in Domingos
(1998a) and Domingos (1999).

3.4. Bias-Variance

Bias and variance are two useful concepts in characterizing the generalization be-
havior of learning algorithms (Geman et al., 1992). Bias is the systematic compo-
nent of generalization error, that is incurred even if an infinite sample is available;
variance is the additional error incurred given a finite sample, produced by over-
responsiveness to random fluctuations. Schuurmans et al. (1997) have shown that
complexity-penalty methods assume a particular bias-variance profile, and that if
the true profile does not correspond to the postulated one then systematic un-
derfitting or overfitting will result. Thus these methods can only be optimal in
very specific cases. In particular, commonly-used complexity-penalty methods as-
sume that variance increases relatively slowly with model complexity (compared
with bias). Whenever this is not the case (e.g., in regression with wide-tailed in-
put distributions), complexity-penalty methods are prone to catastrophic mistakes,
choosing hypotheses that are much worse than the best available one.
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4. Empirical Evidence for the Second Razor

Arguably, most KDD researchers who routinely apply the second razor do not
believe that it is universally true, but simply that it generally applies in practice.
For example, Piatetsky-Shapiro (1996) argues that “Occam’s razor is not ‘ALWAYS’
true – but is mostly true in most real-world situations.” This section and the next
attempt to determine if this is indeed the case.

4.1. Pruning

A simple empirical argument for the second razor might be stated as “Pruning
works.” Indeed, pruning often leads to models that are both simpler and more
accurate than the corresponding unpruned ones (Mingers, 1989). However, it can
also lead to lower accuracy (Schaffer, 1993). It is easy to think of simple problems
where pruning can only hurt accuracy (e.g., applying a decision tree algorithm like
C4.5 to learning a noise-free, diagonal frontier). More importantly, as mentioned
above, Cohen and Jensen (1999) have shown persuasively that pruning should not
be seen as a correction of overly complex models, but as an effective reduction of
the number of models attempted. In related papers, Jensen and Schmill (1997)
and Oates and Jensen (1998) have shown empirically that correcting for multiple
testing when pruning leads to better results than MDL and related methods.

4.2. The 1R Algorithm

In an oft-cited paper, Holte (1993) observes that a decision tree containing a single
node can sometimes come reasonably close to C4.5 in accuracy. However, in Holte’s
experiments his 1R (“1-rule”) algorithm was on average 5.7% less accurate than
C4.5, which is hardly negligible. The closest results to C4.5 were obtained by
the 1R∗ measure, which finds the accuracy of the best possible 1-rule by looking
at the test set. These results appear to have led to some confusion. As Holte
points out, 1R∗ is a measure, not an algorithm; it makes no sense to consider its
accuracy “competitive” with C4.5’s. A similar measure for decision trees would
always achieve the Bayes rate (lowest error possible). At most, these experiments
suggest that the advantage of going to more complex models is small; they do not
imply that simpler models are better (Elomaa, 1994). However, as we shall see
below, more recent results call even this conclusion into question.

4.3. Other Low-Variance Algorithms

More generally, several pieces of recent work (e.g., Domingos & Pazzani, 1997;
Friedman, 1997) have suggested that simple learners like the naive Bayesian classi-
fier or the perceptron will often do better than more complex ones because, while
having a higher systematic error component (the bias), they are less prone to ran-
dom fluctuations (the variance). Again, these results do not imply a preference
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for simpler models, but for restricting search. Suitably constrained, decision-tree
or rule induction algorithms can be as stable as simpler ones, and more accurate.
Theory revision systems (e.g., Ourston & Mooney, 1994) are an example of this:
they can produce accurate theories that are quite complex with comparatively little
search, by making incremental changes to an initial theory that is already complex.

4.4. Physics, Etc.

The second razor is often justified by pointing to its success in the “hard” sciences.
(Although these arguments are fuzzier, they should still be addressed, because they
form a large part of the razor’s appeal.) A popular example comes from astronomy,
where it favors Copernicus’ model of the solar system over Ptolemy’s. Ironically, in
terms of predictive error the two models are indistinguishable, since they predict
the same trajectories. Copernicus’s model is preferable on the intrinsic merits of
simplicity (first razor). An alternative, slightly humorous example is provided by
flat earth vs. spherical earth. The second razor clearly favors the flat earth theory,
being a linear model, while the spherical one is quadratic and no better at explaining
everyday observations in the Middle Ages.

Another favorite example is relativity vs. Newton’s laws. The following passage
is from Cover & Thomas (1991):

In the end, we choose the simplest explanation that is consistent with the
observed data. For example, it is easier to accept the general theory of rel-
ativity than it is to accept a correction factor of c/r3 to the gravitational
law to explain the precession of the perihelion of Mercury, since the gen-
eral theory explains more with fewer assumptions than does a “patched”
Newtonian theory.

In fact, the general theory of relativity makes more assumptions than Newton’s
gravitational law, and is far more complex, so this cannot be the reason for prefer-
ring it. The preference comes from the fact that the c/r3 factor is a patch, applied
to (over)fit the theory to a particular observation. As Pearl (1978) insightfully
notes:

It would, therefore, be more appropriate to connect credibility with the
nature of the selection procedure rather than with properties of the final
product. When the former is not explicitly known . . . simplicity merely
serves as a rough indicator for the type of processing that took place prior
to discovery.

Yet another example is Maxwell’s four concise and elegant equations of electro-
magnetism. In fact, these equations are concise and elegant only in the notation
of differential operators that was introduced many years after his death. In their
original form, they were long and unwieldy, leading Faraday to complain of their
incomprehensibility, which precluded him from empirically testing them.
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The list goes on. In any case, the fact that comparatively simple equations
have proved successful in modeling many physical phenomena is no indication that
the same will be true in the large variety of areas KDD is being applied to—
medicine, finance, earth sensing, molecular biology, marketing, process control,
fault detection, and many others.

5. Empirical Evidence Against the Second Razor

Empirical evidence against the second razor comes from two main sources: ex-
periments that have been carried out specifically to test one aspect or another of
the relationship between simplicity and accuracy, and practical systems that learn
complex models and outperform systems that learn simple ones. We consider each
in turn.

5.1. Experiments Testing the Second Razor

Several authors have carried out experiments that directly or indirectly investi-
gate the relationship between simplicity and accuracy, and obtained results that
contradict the second razor. Fisher and Schlimmer (1988) observed that concept
simplification only sometimes improved accuracy in the ID3 and COBWEB system-
s, and that this was dependent on the training set size and the degree of dependence
of the concept on the attributes. Murphy and Pazzani (1994) induced all consistent
decision trees for a number of small, noise-free domains, and found that in many
cases the smallest consistent trees were not the most accurate ones. Schaffer (1993)
conducted a series of experiments showing that pruning can increase error, and that
this effect can increase with the noise level. Quinlan and Cameron-Jones (1995)
varied the width of the beam search conducted by the CN2 rule learner, and found
that excessive search often leads to models that are simultaneously simpler and
less accurate. Murthy and Salzberg (1995) made similar observations when vary-
ing the depth of lookahead in decision tree induction. Webb (1996) showed that,
remarkably, the accuracy of decision trees on common datasets can be consistently
increased by grafting additional nodes onto the tree, even after the data has been
perfectly fit. Chickering and Heckerman (1997) compared several different methods
for approximating the likelihood of simple Bayesian model structures, and found
that the BIC/MDL approach was almost always the least accurate one. Lawrence
et al. (1997) conducted experiments with backpropagation in synthetic domains,
and found that training neural networks larger than the correct one led to lower
errors than training networks of the correct size.

5.2. Systems that Learn Complex Models

Another source of evidence against the second razor is the growing number of prac-
tical machine learning systems that achieve reductions in error by learning more
complex models. Vapnik’s (1995) support vector machines learn polynomials of
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high degree (and resulting feature spaces of dimension up to 1016), and have outper-
formed simpler state-of-the-art models in handwritten digit recognition (Schölkopf
et al., 1995), text classification (Joachims, 1998) and other tasks (Schölkopf et al.,
1998). Cestnik and Bratko (1988), Gams (1989) and Datta and Kibler (1995) show
how redundancy can improve noise resistance and therefore accuracy. Schuurmans
(1997) has proposed a geometric evaluation measure that markedly outperforms
complexity-penalty ones in polynomial regression tasks. Webb’s (1997) decision-
tree grafting procedure, developed as a result of the experiments mentioned above,
improves C4.5’s accuracy in most commonly-used datasets by producing larger
trees. Another example is Domingos’ (1996b) RISE system, which consistently
outperforms CN2 and C4.5/C4.5RULES on common datasets by inducing substan-
tially more complex rule sets. RISE typically produces a few short, general rules
covering many training examples and a large number of longer, more specific ones
covering few. If the latter are removed, RISE’s accuracy and complexity both fall
to the level of CN2 and C4.5 (Domingos, 1996a). Thus the reason that CN2 and
C4.5 do not select more complex rule sets is not that accurate ones do not exist,
but that they are unable to find them using their simplicity-biased search.

Arguably, practical experience with MDL-based systems themselves provides ev-
idence against the second razor. For example, after spending considerable effort
to find a good coding for trees and examples, Quinlan and Rivest (1989) found
that better results were obtained by introducing an ad hoc coefficient to reduce the
penalty paid by complex decision trees.

Perhaps the single most significant piece of evidence against the second razor is the
broad success of multiple-model approaches. Methods like bagging (Breiman, 1996),
boosting (Freund & Schapire, 1996), stacking (Wolpert, 1992) and error-correcting
output codes (Kong & Dietterich, 1995) learn several models by varying the training
set or other factors, and combine them to make predictions. Compared to learning
a single model, this almost always results in reductions in error rate, often large
ones (e.g., Drucker et al., 1994; Quinlan, 1996; Maclin & Opitz, 1997). The model
ensemble is effectively equivalent to a single model, but a much more complex
one. This is verified in Domingos (1997b), where, for each domain, the ensemble
produced by bagging is explicitly converted to a single model using the original base
learner (C4.5RULES). In the overwhelming majority of cases, the result is both
more complex and more accurate than the model obtained using the base learner
directly. Rao and Potts (1997) also show how bagging builds increasingly accurate
and complex frontiers from simpler, less accurate ones obtained by CART. Thus
the success of model ensembles shows that large error reductions can systematically
result from significantly increased complexity.

All of this evidence supports the conclusion that not only is the second razor not
true in general; it is also typically false in the types of domains KDD has been
applied to.
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6. The First Razor Revisited

There is a good reason for preferring simpler models: they are easier for people
to understand, remember and use (as well as cheaper for computers to store and
manipulate). Thus the first razor is justified. However, simplicity and comprehen-
sibility are not always equivalent. For example, a decision table may be larger than
a similarly accurate decision tree, but more easily understood because all lines in
the table use the same attributes (Langley, 1996; Kohavi & Sommerfield, 1998).
Induced models are also more comprehensible if they are consistent with previous
knowledge, even if this makes them more complex (Pazzani, 1991; Pazzani et al.,
1997). A better form of the first razor would perhaps state that given two models
with the same generalization error, the more comprehensible one should be pre-
ferred. What exactly makes a model comprehensible is largely domain-dependent,
but also a matter for cognitive and empirical research (e.g., Kononenko, 1990; Paz-
zani, 1991; Kohavi & Sommerfield, 1998).

7. Discussion

All the evidence reviewed in this article shows that, contrary to the second razor’s
claim, greater simplicity does not necessarily (or even typically) lead to greater
accuracy. Rather, care must be taken to ensure that the algorithm does not per-
form more search than the data allows, but this search can (and often should) be
performed among complex models, not simple ones.

The second razor can be trivially made true by, after the fact, assigning the
simplest representations to the most accurate models found. However, this is of
no help in finding those models in the first place. Using “simple model” as just
another way of saying “probable model” or “model from a small space,” as is often
done in the literature, constitutes a multiplication of entities beyond necessity, and
thus runs afoul of the first razor, which is as applicable to KDD research as to
other branches of science. More importantly, it can lead to the misconception that
simpler models in the initial, commonly-used representation (e.g., a decision tree
or a list of rules) are for some reason more likely to be true.

The second razor will be appropriate when we really believe that the phenomenon
under study has a simple model in the representation language used. But this seems
unlikely for the domains and representations KDD typically deals with, and the
empirical evidence bears this out. More often, the second razor seems to function as
a poor man’s substitute for domain knowledge—a way of avoiding the complexities
of adjusting the system to the domain before applying it to the data. When this
happens, overfitting may indeed be avoided by use of the second razor, but at
the cost of detectable patterns being missed, and unnecessarily low accuracy being
obtained. The larger the database, the likelier this is. Databases with millions or
tens of millions of records potentially contain enough data to discriminate among
a very large number of models. Applying the second razor when mining them
risks rediscovering the broad regularities that are already familiar to the domain
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experts, and missing the second-order variations that are often where the payoff of
data mining lies.

7.1. Constrained Knowledge Discovery

If we abandon the preference for simpler hypotheses, in what other ways can we
avoid overfitting when learning very flexible models? One answer lies in constraining
discovery by the use of domain knowledge, or of educated guesses about the do-
main. This does not create a knowledge acquisition bottleneck, because constraints
reflecting only weak knowledge or quite general assumptions are often sufficient.
Domain constraints can appear in many forms: Boolean expressions over the pres-
ence or absence of certain types of items in discovered rules (Srikant et al., 1997);
restrictions on the sign of inequalities in antecedents of rules (Pazzani et al., 1997);
qualitative models that induced rules should be consistent with (Clark & Matwin,
1993); knowledge of which variables are causes and which are effects (Cooper, 1997;
Domingos, 1998b); knowledge of determinations (i.e., which variables determine
which others) (Russell, 1986); and many others. Donoho and Rendell (1996) list
a large number of such types of available “fragmentary knowledge,” and success-
fully use a subset of them in a bankruptcy prediction task (for example, features
in incompatible units should not be added when forming derived features). Abu-
Mostafa (1989) similarly describes several different types of “hints” that can be
given to a learner, and methods for incorporating them into the learning process.
Bishop (1995, Section 8.7) reviews several different ways in which knowledge of
symmetries and invariances in the domain can be incorporated into neural network
learning. The RL rule induction system (Clearwater & Provost, 1990) allows the
user to specify a wide range of information on the attributes, and preferences and
constraints on the rules to be induced. This has been instrumental in the success of
its application to carcinogenicity prediction and other problems (Lee et al., 1998).

The use of constraints on the form of discovered rules is widespread in the field of
inductive logic programming, under the name of “declarative bias” (Nédellec et al.,
1996). For example, GRENDEL(Cohen, 1994) allows the user to specify a grammar
for the language in which the rule antecedents will be expressed. This facility is
also available in RIPPER, a very efficient propositional rule learner (Cohen, 1995).
Similar ideas have been used in the LAGRAMGE equation discovery system, and
successfully applied to modeling ecosystems (Todorovski & Dz̆eroski, 1997).

Domain constraints are often used in association rule discovery, typically in the
form of extensions to SQL that allow the user to specify the form of the rules to
be discovered (Han et al., 1996; Meo et al., 1996; Shen et al., 1996; Kamber et al.,
1997). KDD systems can also be constrained to look for rules that contradict prior
knowledge, in the hope that these rules will represent interesting new deviations
(Liu et al., 1997; Padmanabhan & Tuzhilin, 1998). Constraints can be accumulated
in an interactive manner, by letting the user reject rules produced by the system
and generalizing from his/her justifications (Provost & Jensen, 1998), or by letting
the user give advice to the system as he/she observes its learning in progress (Maclin
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& Shavlik, 1996). Domain constraints can be combined with a simplicity bias, if
the latter is believed to be appropriate (Djoko et al., 1995).

In addition to accuracy, domain constraints can also improve comprehensibility
and speed. Accuracy and speed are improved by reducing the search needed to
find an accurate model. Comprehensibility is improved by making the results of
induction consistent with previous knowledge.

One consequence of the theory of structural risk minimization (Vapnik, 1995) is
that any restriction on the model space that limits its VC dimension is an a priori

valid way to combat overfitting. In order to obtain the type of continuous trade-off
between error and complexity that is found in typical implementations of the sec-
ond razor, a sequence of progressively less restricted model spaces (or structure) is
required. This can potentially be provided by many different factors (called “luck-
iness functions” by Shawe-Taylor et al. (1996). For classification learners where
class predictions are obtained by thresholding a continuous output, one such factor
is the margin, or minimum distance by which the continuous output is on the cor-
rect side of the threshold. Requiring progressively larger margins correspondingly
reduces the learner’s VC dimension, and thus its ability to overfit. Support vector
machines are an example of a large margin classifier (Smola et al., 1998), where
the margin is the distance of the separating hyperplane to the closest instances of
either class (the support vectors). Multiple-model methods like boosting can also
be seen as large margin classifiers, where the continuous output is the sum of the
models’ weighted votes (Schapire et al., 1997) (but see also Grove & Schuurmans
(1998)).

The general Bayesian method for combatting overfitting is the attachment of prior
probabilities to models. It is unfortunate that these are often used only to penalize
complexity. Many other types of information can be incorporated into the prior
distribution; for example, models that differ more from the “a priori best guess”
model can be assigned lower priors (Heckerman et al., 1995).

Structural risk minimization and prior distributions only take into account the
model space searched by the learner, not the way it is searched. Process-oriented
evaluation (Domingos, 1998a; Domingos, 1999) instead computes how the differ-
ence between the current best model’s training-set error and expected generaliza-
tion error increases as search progresses. Intuitively, the more models have been
attempted, the less likely the observed error of the “best” model found so far is
to be close to its true error, and so the higher the expected true error for a giv-
en observed error. Using this method, training error can be continuously traded
off against the amount of search conducted, even in the absence of VC-dimension
results or informative priors.

7.2. Separating Accuracy and Comprehensibility

If we accept the fact that the most accurate models will not always be simple
or easily understandable, we should allow an explicit trade-off between the two.
Systems that first induce the most accurate model they can, and then extract
from it a more comprehensible model of variable complexity, seem a promising
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avenue. Many methods have been developed to first learn a neural network, on
the assumption that this is the appropriate representation, and then extract a
comprehensible model from it, in the form of a set of rules or a decision tree
(Craven, 1996; Andrews & Diederich, 1996). Recently, approaches for extracting
single models from model ensembles have also been developed (Domingos, 1997a;
Breiman & Shang, 1997). The more comprehensible models obtained by these
methods are typically less accurate than the “full” models, as might be expected,
but still more accurate than models of the same type learned directly from the data.
In many cases (e.g., Craven, 1996; Domingos, 1997a), it is also possible to trade off
accuracy and comprehensibility by varying parameters of the translation system.

Comprehensible output from a complex model can also be obtained by extracting
only those parts that are relevant to the user’s immediate goals. Association rule
systems that allow the user to sift through the (often very many) rules produced
are an example of this approach (Imielinski et al., 1996; Shen et al., 1996). This
second stage of “mining the model” can also be accomplished visually (Kohavi &
Kunz, 1997; Brunk et al., 1997).

For applications where the goal is not immediate insight, the extraction of com-
prehensible output can often be delayed until performance time. It then takes the
form of explanations for the decisions made (Hasling et al., 1984). Generating an
explanation for a specific decision is likely to be much easier than producing a
comprehensible global model.

8. Conclusion

Occam’s razor can be interpreted in two ways: as favoring the simpler of two models
with the same generalization error because simplicity is a goal in itself, or as favoring
the simpler of two models with the same training-set error because this leads to
lower generalization error. This article found the second version to be provably
and empirically false, and argued that in the first version simplicity is only a proxy
for comprehensibility. A resulting prescription for KDD research and applications
is to prefer simpler models only when we honestly believe the target phenomenon
to be simple. Given that this is seldom the case in practice, we should instead
seek to constrain induction using domain knowledge, and decouple discovering the
most accurate (and probably quite complex) model from extracting comprehensible
approximations to it.
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