
Extracting Semantic Networks from Text
Via Relational Clustering

Stanley Kok and Pedro Domingos

Department of Computer Science and Engineering
University of Washington, Seattle WA 98195-2350, USA

{koks,pedrod}@cs.washington.edu

Abstract. Extracting knowledge from text has long been a goal of AI.
Initial approaches were purely logical and brittle. More recently, the
availability of large quantities of text on the Web has led to the develop-
ment of machine learning approaches. However, to date these have mainly
extracted ground facts, as opposed to general knowledge. Other learning
approaches can extract logical forms, but require supervision and do not
scale. In this paper we present an unsupervised approach to extracting
semantic networks from large volumes of text. We use the TextRunner
system [1] to extract tuples from text, and then induce general concepts
and relations from them by jointly clustering the objects and relational
strings in the tuples. Our approach is defined in Markov logic using four
simple rules. Experiments on a dataset of two million tuples show that
it outperforms three other relational clustering approaches, and extracts
meaningful semantic networks.

1 Introduction

A long-standing goal of AI is to build an autonomous agent that can read and
understand text. The natural language processing (NLP) community attempted
to achieve this goal in the 1970’s and 1980’s by building systems for understand-
ing and answering questions about simple stories [3, 13, 23, 6]. These systems
parsed text into a network of predefined concepts, and created a knowledge base
from which inferences can be made. However, they required a large amount of
manual engineering, only worked on small text sizes, and were not robust enough
to perform well on unrestricted naturally occurring text. Gradually, research in
this direction petered out.

Interest in the goal has been recently rekindled [16][7] by the abundance of
easily accessible Web text, and by the substantial progress over the last few years
in machine learning and NLP. The confluence of these three developments led
to efforts to extract facts and knowledge bases from the Web [4]. Two recent
steps in this direction are a system by Pasca et. al [18] and TextRunner [1].
Both systems extract facts on a large scale from Web corpora in an unsuper-
vised manner. Pasca et. al’s system derives relation-specific extraction patterns
from a starting set of seed facts, acquires candidate facts using the patterns,

2 Extracting Semantic Networks from Text via Relational Clustering

adds high-scoring facts to the seeds, and iterates until some convergence crite-
rion. TextRunner uses a domain-independent approach to extract a large set of
relational tuples of the form r(x, y) where x and y are strings denoting objects,
and r is a string denoting a relation between the objects. It uses a lightweight
noun phrase chunker to identify objects, and heuristically determines the text
between objects as relations. These are good first steps, but they still fall short
of the goal. While they can quickly acquire a large database of ground facts in
an unsupervised manner, they are not able to learn general knowledge that is
embedded in the facts.

Another line of recent research takes the opposite approach. Semantic parsing
[26, 17, 29] is the task of mapping a natural language sentence into logical form.
The logical statements constitute a knowledge base that can be used to perform
some task like answering questions. Semantic parsing systems require a training
corpus of sentences annotated with their associated logical forms (i.e., they are
supervised). These systems are then trained to induce a parser that can convert
novel sentences to their logical forms. Even though these systems can create
knowledge bases directly, their need for annotated training data prevents them
from scaling to large corpora like the Web.

In this paper, we present SNE, a scalable, unsupervised, and domain-independent
system that simultaneously extracts high-level relations and concepts, and learns
a semantic network [20] from text. It first uses TextRunner to extract ground
facts as triples from text, and then extract knowledge from the triples. TextRun-
ner’s triples are noisy, sparse, and contain many co-referent objects and relations.
Our system has to overcome these challenges in order to extract meaningful high-
level relations and concepts from the triples in an unsupervised manner. It does
so with a probabilistic model that clusters objects by the objects that they are
related to, and that clusters relations by the objects they relate. This allows
information to propagate between clusters of relations and clusters of objects
as they are created. Each cluster represents a high-level relation or concept. A
concept cluster can be viewed as a node in a graph, and a relation cluster can
be viewed as links between the concept clusters that it relates. Together the
concept clusters and relation clusters define a simple semantic network. Figure 1
illustrates part of a semantic network that our approach learns. SNE is short for
Semantic Network Extractor.

SNE is based on Markov logic [22], and is related to the Multiple Relational
Clusterings (MRC) model [12] we recently proposed. SNE is our first step to-
wards creating a system that can extract an arbitrary semantic network directly
from text. Ultimately, we want to tightly integrate the information extraction
TextRunner component and the knowledge learning SNE component to form
a self-contained knowledge extraction system. This tight integration will enable
information to flow between both tasks, allowing them to be solved jointly for
better performance [14].

We begin by briefly reviewing Markov logic in the next section. Then we
describe our model in detail (Section 3). Next we describe related work (Sec-
tion 4). After that, we report our experiments comparing our model with three

Extracting Semantic Networks from Text via Relational Clustering 3

alternative approaches (Section 5). We conclude with a discussion of future work
(Section 6).

2 Markov Logic

Markov logic combines first-order logic with Markov networks.
In first-order logic [9], formulas are constructed using four types of sym-

bols: constants, variables, functions, and predicates. (In this paper we use only
function-free logic.) Constants represent objects in the domain of discourse (e.g.,
people: Anna, Bob, etc.). Variables (e.g., x, y) range over the objects in the do-
main. Predicates represent relations among objects (e.g., Friends), or attributes
of objects (e.g., Student). Variables and constants may be typed. An atom is
a predicate symbol applied to a list of arguments, which may be variables or
constants (e.g., Friends(Anna, x)). A ground atom is an atom all of whose ar-
guments are constants (e.g., Friends(Anna, Bob)). A world is an assignment of
truth values to all possible ground atoms. A database is a partial specification
of a world; each atom in it is true, false or (implicitly) unknown.

A Markov network or Markov random field [19] is a model for the joint dis-
tribution of a set of variables X = (X1, X2, . . . , Xn) ∈ X . It is composed of an
undirected graph G and a set of potential functions φk. The graph has a node
for each variable, and the model has a potential function for each clique in the
graph. A potential function is a non-negative real-valued function of the state
of the corresponding clique. The joint distribution represented by a Markov net-
work is given by P (X =x) = 1

Z

∏
k φk(x{k}) where x{k} is the state of the kth

clique (i.e., the state of the variables that appear in that clique). Z, known as
the partition function, is given by Z =

∑
x∈X

∏
k φk(x{k}). Markov networks

are often conveniently represented as log-linear models, with each clique poten-
tial replaced by an exponentiated weighted sum of features of the state, leading
to P (X = x) = 1

Z exp
(∑

j wjfj(x)
)
. A feature may be any real-valued func-

tion of the state. This paper will focus on binary features, fj(x) ∈ {0, 1}. In
the most direct translation from the potential-function form, there is one fea-
ture corresponding to each possible state x{k} of each clique, with its weight
being log φk(x{k}). This representation is exponential in the size of the cliques.
However, we are free to specify a much smaller number of features (e.g., logical
functions of the state of the clique), allowing for a more compact representation
than the potential-function form, particularly when large cliques are present.
Markov logic takes advantage of this.

A Markov logic network (MLN) is a set of weighted first-order formulas.
Together with a set of constants representing objects in the domain, it defines
a Markov network with one node per ground atom and one feature per ground
formula. The weight of a feature is the weight of the first-order formula that
originated it. The probability distribution over possible worlds x specified by the
ground Markov network is given by P (X =x) = 1

Z exp
(∑

i∈F

∑
j∈Gi

wigj(x)
)
,

where Z is the partition function, F is the set of all first-order formulas in the

4 Extracting Semantic Networks from Text via Relational Clustering

MLN, Gi is the set of groundings of the ith first-order formula, and gj(x) = 1 if
the jth ground formula is true and gj(x) = 0 otherwise. Markov logic enables us
to compactly represent complex models in non-i.i.d. domains. General algorithms
for inference and learning in Markov logic are discussed in [22].

3 Semantic Network Extraction

We call our model SNE, for Semantic Network Extractor. SNE simultaneously
clusters objects and relations in an unsupervised manner, without requiring the
number of clusters to be specified in advance. The object clusters and relation
clusters respectively form the nodes and links of a semantic network. A link
exists between two nodes if and only if a true ground fact can be formed from
the symbols in the corresponding relation and object clusters. SNE can cluster
objects of different types, and relations of any arity.

When faced with the task of extracting knowledge from noisy and sparse
data like that used in our experiments, we have to glean every bit of useful
information from the data to form coherent clusters. SNE does this by jointly
clustering objects and relations. In its algorithm, SNE allows information from
object clusters it has created at each step to be used in forming relation clus-
ters, and vice versa. As we shall see later in our experimental results, this joint
clustering approach does better than clustering objects and relations separately.

SNE is defined using a form of finite second-order Markov logic in which
variables can range over relations (predicates) as well as objects (constants).
Extending Markov logic to second order involves simply grounding atoms with
all possible predicate symbols as well as all constant symbols, and allows us to
represent some models much more compactly than first-order Markov logic.

For simplicity, we assume that relations are binary in our definition of SNE,
i.e., relations are of the form r(x, y) where r is a relation symbol, and x and
y are object symbols. (Extending the definition to an arbitrary number of n-
ary relations is straightforward.) We use γi and Γi to respectively denote a
cluster and clustering (i.e., a partitioning) of symbols of type i. If r, x, and y
are respectively in cluster γr, γx, and γy, we say that r(x, y) is in the cluster
combination (γr, γx, γy).

The learning problem in SNE consists of finding the cluster assignment
Γ = (Γr, Γx, Γy) that maximizes the posterior probability P (Γ |R) ∝ P (Γ,R) =
P (Γ)P (R|Γ), where R is a vector of truth assignments to the observable r(x, y)
ground atoms.

We define one MLN for the likelihood P (R|Γ) component, and one MLN
for the prior P (Γ) component of the posterior probability with just four simple
rules.

The MLN for the likelihood component only contains one rule stating that
the truth value of an atom is determined by the cluster combination it belongs
to:

∀r, x, y,+γr,+γx,+γy r ∈ γr ∧ x ∈ γx ∧ y ∈ γy ⇒ r(x, y)

Extracting Semantic Networks from Text via Relational Clustering 5

This rule is soft. The “+” notation is syntactic sugar that signifies that there
is an instance of this rule with a separate weight for each cluster combination
(γr, γx, γy). This rule predicts the probability of query atoms given the cluster
memberships of the symbols in them. This is known as the atom prediction rule.
As shown in [12], given a cluster assignment, the MAP weight wk of an instance
of the atom prediction rule is given by log(tk/fk), where tk is the empirical
number of true atoms in cluster combination k, and fk is the number of false
atoms. Adding smoothing parameters α and β, we estimate the MAP weight as
log((tk + α)/(fk + β)).

Three rules are defined in the MLN for the prior component. The first rule
states that each symbol belongs to exactly one cluster:

∀x ∃1γ x ∈ γ

This rule is hard, i.e., it has infinite weight and cannot be violated.
The second rule imposes an exponential prior on the number of cluster com-

binations. This rule combats the proliferation of cluster combinations and con-
sequent overfitting, and is represented by the formula

∀γr, γx, γy ∃r, x, y r ∈ γr ∧ x ∈ γx ∧ y ∈ γy

with negative weight −λ. The parameter λ is fixed during learning, and is the
penalty in log-posterior incurred by adding a cluster combination to the model.
Thus larger λs lead to fewer cluster combinations being formed. This rule rep-
resents the complexity of the model in terms of the number of instances of the
atom prediction rule (which is equal to the number of cluster combinations).

The last rule encodes the belief that most symbols tend to be in different
clusters. It is represented by the formula

∀x, x′, γx, γx′ x ∈ γx ∧ x′ ∈ γx′ ∧ x 6= x′ ⇒ γx 6= γx′

with positive weight µ. The parameter µ is also fixed during learning. We expect
there to be many concepts and high-level relations in a large heterogenous body
of text. The tuple extraction process samples instances of these concepts and
relations sparsely, and we expect each concept or relation to have only a few
instances sampled, in many cases only one. Thus we expect most pairs of symbols
to be in different concept and relation clusters.

The equation for the log-posterior, as defined by the two MLNs, can be
written in closed form as 1

log P (Γ |R) =∑
k∈K

[
tk log

(
tk + α

tk + fk + α + β

)
+ fk log

(
fk + β

tk + fk + α + β

)]
− λmcc + µd + C (1)

1 The derivation of the log-posterior is given in an online appendix at
http://alchemy.cs.washington.edu/papers/kok08.

6 Extracting Semantic Networks from Text via Relational Clustering

where K is the set of cluster combinations, mcc is the number of cluster com-
binations, d is the number of pairs of symbols that belong to different clusters,
and C is a constant.

Rewriting the equation, the log-posterior can be expressed as

log P (Γ |R) =
∑

k∈K+

[
tk log

(
tk + α

tk + fk + α + β

)
+ fk log

(
fk + β

tk + fk + α + β

)]
+
∑

k∈K−

[
fk log

(
fk + β

tk + fk + α + β

)]
− λmcc + µd + C (2)

where K+ is the set of cluster combinations that contains at least one true
ground atom, and K− is the set of cluster combinations that does not contain
any true ground atoms. Observe that |K+|+ |K−| = |Γr||Γx||Γy|. Even though
it is tractable to compute the first summation over |K+| (which is at most the
number of true ground atoms), it may not be feasible to compute the second
summation over |K−| for large |Γi|s. Hence, for tractability, we assume that
all tuples in K− belong to a single ‘default’ cluster combination with the same
probability pfalse of being false. The log-posterior is simplified as

log P (Γ |R) =
∑

k∈K+

[
tk log

(
tk + α

tk + fk + α + β

)
+ fk log

(
fk + β

tk + fk + α + β

)]

+

(
|Sr||Sx||Sy| −

∑
k∈K+

(tk + fk)

)
log(pfalse)− λm+

cc + µd + C′ (3)

where Si is the set of symbols of type i, (|Sr||Sx||Sy| −
∑

k∈K+(tk + fk)) is
the number of (false) tuples in K−, m+

cc is the number of cluster combinations
containing at least one true ground atom, and C′ = C − λ.

SNE simplifies the learning problem by performing hard assignment of sym-
bols to clusters (i.e., instead of computing probabilities of cluster membership, a
symbol is simply assigned to its most likely cluster). Since, given a cluster assign-
ment, the MAP weights can be computed in closed form, SNE simply searches
over cluster assignments, evaluating each assignment by its posterior probability.

SNE uses a bottom-up agglomerative clustering algorithm to find the MAP
clustering (Table 1). The algorithm begins by assigning each symbol to its own
unit cluster. Next we try to merge pairs of clusters of each type. We create can-
didate pairs of clusters, and for each of them, we evaluate the change in posterior
probability (Equation 3) if the pair is merged. If the candidate pair improves
posterior probability, we store it in a sorted list. We then iterate through the
list, performing the best merges first, and ignoring those containing clusters that
have already been merged. In this manner, we incrementally merge clusters until
no merges can be performed to improve posterior probability.

To avoid creating all possible candidate pairs of clusters of each type (which is
quadratic in the number of clusters), we make use of canopies [15]. A canopy for
relation symbols is a set of clusters such that there exist object clusters γx and γy,

Extracting Semantic Networks from Text via Relational Clustering 7

Table 1. The SNE algorithm.

function SNE(Sr, Sx, Sy, R)
inputs: Sr, set of relation symbols

Sx, set of object symbols that appear as first arguments
Sy, set of object symbols that appear as second arguments
R, ground r(x, y) atoms formed from the symbols in Sr, Sx, and Sy

output: a semantic network, {(γr, γx, γy) ∈ Γr × Γx × Γy : (γr, γx, γy) contains at
least one true ground atom}

for each i ∈ {r, x, y}
Γi ← unitClusters(Si)

mergeOccurred← true
while mergeOccurred

mergeOccurred← false
for each i ∈ {r, x, y}

CandidateMerges← ∅
for each (γ, γ′) ∈ Γi × Γi

∆P ← change in P ({Γr, Γx, Γy}|R) if γ, γ′ are merged
if ∆P > 0, CandidateMerges← CandidateMerges ∪ {(γ, γ′)}

sort CandidateMerges in descending order of ∆P
MergedClusters← ∅
for each (γ, γ′) ∈ CandidateMerges

if γ 6∈MergedClusters and γ′ 6∈MergedClusters
Γi ← (Γi \ {γ, γ′}) ∪ {γ ∪ γ′}
MergedClusters←MergedClusters ∪ {γ} ∪ {γ′}
mergedOccurred← true

return {(γr, γx, γy) ∈ Γr × Γx × Γy : (γr, γx, γy) contains at least one true ground atom}

and for all clusters γr in the canopy, the cluster combination (γr, γx, γy) contains
at least one true ground atom r(x, y). We say that the clusters in the canopy
share the property (γx, γy). Canopies for object symbols x and y are similarly
defined. We only try to merge clusters in a canopy that is no larger than a
parameter CanopyMax. This parameter limits the number of candidate cluster
pairs we consider for merges, making our algorithm more tractable. Furthermore,
by using canopies, we only try ‘good’ merges, because symbols in clusters that
share a property are more likely to belong to the same cluster than those in
clusters with no property in common.

Note that we can efficiently compute the change in posterior probability
(∆P in Table 1) by only considering the cluster combinations with true ground
atoms that contain the merged clusters γ and γ′. Below we give the equation
for computing ∆P when we merge relation clusters γr and γ′r to form γ′′r . The
equations for merging object clusters are similar. Let TFk be a shorthand for
tk log(tk+α

tk+fk+α+β) + fk log(fk+β
tk+fk+α+β).

∆P =
∑

(γ′′r ,γ1,γ2)∈K+

γ
′′
r γ

′
rγr

[
TF(γ′′r ,γ1,γ2)

− TF(γ′r,γ1,γ2)
− TF(γr,γ1,γ2) + λ

]

+
∑

(γ′′r ,γ1,γ2)∈K+

γ
′′
r ·γr

[
TF(γ′′r ,γ1,γ2)

− f(γ′r,γ1,γ2)
log(pfalse)− TF(γr,γ1,γ2)

]

8 Extracting Semantic Networks from Text via Relational Clustering

+
∑

(γ′′r ,γ1,γ2)∈K+

γ
′′
r γ

′
r·

[
TF(γ′′r ,γ1,γ2)

− TF(γ′r,γ1,γ2)
− f(γr,γ1,γ2) log(pfalse)

]
−µ|γr

′||γr| (4)

where K+
γ′′r γ′rγr

is the set of cluster combinations with true ground atoms such

that each cluster combination (γ
′′

r , γ1, γ2) in the set has the property that (γ
′

r, γ1, γ2)
and (γr, γ1, γ2) also contains true atoms. K+

γ′′r ·γr
is the set of cluster combina-

tions with true ground atoms such that each cluster combination (γ
′′

r , γ1, γ2)
in the set has the property that (γr, γ1, γ2), but not (γ

′

r, γ1, γ2), contains true
ground atoms. K+

γ′′r γ′r·
is similarly defined. Observe that we only sum over cluster

combinations with true ground atoms that contains the affected clusters γr, γ
′

r

and γ
′′

r , rather than over all cluster combinations with true ground atoms.

4 Related Work

Rajaraman and Tan [21] propose a system that learns a semantic network by
clustering objects but not relations. While it anecdotally shows a snippet of
its semantic network, an empirical evaluation of the network is not reported.
Hasegawa et. al [10] propose an unsupervised approach to discover relations
from text. They treat the short text segment between each pair of objects as a
relation, and cluster pairs of objects using the similarity between their relation
strings. Each cluster corresponds to a relation, and a pair of objects can appear
in at most one cluster (relation). In contrast, SNE allows a pair of objects to par-
ticipate in multiple relations (semantic statements). Shinyama and Sekine [25]
form (possibly overlapping) clusters of tuples of objects (rather than just pairs
of objects). They use the words surrounding the objects in the same sentence to
form a pattern. Objects in sentences with the same pattern are deemed to be
related in the same way, and are clustered together. All three previous systems
are not domain-independent because they rely on name entity (NE) taggers to
identify objects in text. The concepts and relations that they learn are restricted
by the object types that can be identified with the NE taggers. All three sys-
tems also use ad-hoc techniques that do not give a probability distribution over
possible worlds, which we need in order to perform inference and answer queries.
By only forming clusters of (tuples of) objects, and not relations, they do not
explicitly learn high-level relations like SNE.

ALICE [2] is a system for lifelong knowledge extraction from a Web corpus.
Like SNE, it uses TextRunner’s triples as input. However, unlike SNE, it re-
quires background knowledge in the form of an existing domain-specific concept
taxonomy, and does not cluster relations into higher level ones.

RESOLVER [28] is a system that takes TextRunner’s triples as input, and
resolves references to the same object and relations by clustering the references
together (e.g., Red Planet and Mars are clustered together). In contrast, SNE
learns abstract concepts and relations (e.g., Mars, Venus, Earth, etc. are clus-

Extracting Semantic Networks from Text via Relational Clustering 9

tered together to form the concept of ‘planet’). Unlike SNE, RESOLVER’s prob-
abilistic model clusters objects and relations separately rather than jointly. To
allow information to propagate between object clusters and relation clusters,
RESOLVER uses an ad-hoc approach. In its experiments, RESOLVER gives
similar results with or without the ad-hoc approach. In contrast, we show in our
experiments that SNE gives better performance with joint rather than separate
clustering (see Table 3). In a preliminary experiment where we adapt SNE to
only use string similarities between objects (and relations), we find that SNE
performs better than RESOLVER on an entity resolution task on the dataset
described in Section 5.

5 Experiments

Our goal is to create a system that is capable of extracting semantic networks
from what is arguably the largest and most accessible text resource — the Web.
Thus in our experiments, we use a large Web corpus to evaluate the effectiveness
of SNE’s relational clustering approach in extracting a simple semantic network
from it. Since to date, no other system could do the same, we had to modify
three other relational clustering approaches so that they could run on our large
Web-scale dataset, and compared SNE to them. The three approaches are Multi-
ple Relational Clusterings [12], Information-Theoretic Co-clustering [5], and the
Infinite Relational Model [11].

5.1 Multiple Relational Clusterings

Like SNE, MRC is a model that simultaneously clusters objects and relations
without requiring the number of clusters to be specified in advance. However,
unlike SNE, MRC is able to find multiple clusterings, rather than just one.
MRC is also defined using finite second-order Markov logic. The main difference
between SNE and MRC is in the search algorithm used. MRC also differs from
SNE in having an exponential prior on the number of clusters rather than on
the number of cluster combinations with true ground atoms. MRC calls itself
recursively to find multiple clusterings. We can view MRC as growing a tree of
clusterings, and it returns the finest clusterings at the leaves. In each recursive
call, MRC uses a top-down generate-and-test greedy algorithm with restarts
to find the MAP clustering of the subset of relation and constant symbols it
received. While this ‘blind’ generate-and-test approach may work well for small
datasets, it will not be feasible for large Web-scale datasets like the one used in
our experiments. For such large datasets, the search space will be so enormous
that the top-down algorithm will generate too many candidate moves to be
tractable. In our experiments, we replaced MRC’s search algorithm with the
algorithm in Table 1. We use MRC1 to denote an MRC model that is restricted
to find a single clustering.

10 Extracting Semantic Networks from Text via Relational Clustering

5.2 Information-Theoretic Co-clustering

The ITC model [5] clusters discrete data in a two-dimensional matrix along
both dimensions simultaneously. It greedily searches for the hard clusterings
that optimize the mutual information between the row and column clusters.
The model has been shown to perform well on noisy and sparse data. ITC’s
top-down search algorithm has the flavor of K-means, and requires the number
of row and column clusters to be specified in advance. At every step, ITC finds
the best cluster for each row or column by iterating through all clusters. This
will not be tractable for large datasets like our Web dataset, which can contain
many clusters. Thus, we instead use the algorithm in Table 1 (∆P in Table 1 is
set to the change in mutual information rather than the change in log-posterior
probability). Notice that, even if ITC’s search algorithm were tractable, we would
not be able to apply it to our problem because it only works on two-dimensional
data. We extend ITC to three dimensions by optimizing the mutual information
among the clusters of three dimensions. Furthermore, since we do not know the
exact number of clusters in our Web dataset a priori, we follow [5]’s suggestion of
using an information-theoretic prior (BIC [24]) to select the appropriate number
of clusters. We use ITC-C and ITC-CC to respectively denote the model with a
BIC prior on clusters, and the model with a BIC prior on cluster combinations.
Note that, unlike SNE, ITC does not give a probability distribution over possible
worlds, which we need in order to do inference and answer queries (although that
is not the focus of this paper).

5.3 Infinite Relational Model

Like SNE, the IRM [11] is a model that simultaneously clusters objects and re-
lations without requiring the number of clusters to be specified in advance. It
defines a generative model for the predicates and cluster assignments. It assumes
that the predicates are conditionally independent given the cluster assignments,
and the cluster assignments for each type are independent. IRM uses a Chinese
restaurant process (CRP) prior on the cluster assignments. Under the CRP, each
new object is assigned to an existing cluster with probability proportional to the
cluster size. IRM assumes that the probability p of an atom being true con-
ditioned on cluster membership is generated according to a Beta distribution,
and that the truth values of atoms are then generated according to a Bernoulli
distribution with parameter p. IRM finds the MAP cluster assignment using a
top-down search similar to MRC, except that it also searches for the optimal
values of its CRP and Beta parameters. As mentioned earlier, top-down search
is not feasible for large Web-scale data, so we replace IRM’s search algorithm
with the one in Table 1. We also fixed the values of the CRP and Beta parame-
ters. As in SNE, we assumed that the atoms in cluster combinations with only
false atoms belonged to a default cluster combination, and they had the same
probability pfalse of being false. We also experimented with a CRP prior on
cluster combinations. We use IRM-C and IRM-CC to respectively denote the
IRM with a CRP prior on clusters, and the IRM with a CRP prior on cluster
combinations. Xu et al. [27] proposed a model closely related to the IRM.

Extracting Semantic Networks from Text via Relational Clustering 11

5.4 Dataset

We compared the various models on a dataset of about 2.1 million triples2 ex-
tracted in a Web crawl by TextRunner [1]. Each triple takes the form r(x, y)
where r is a relation symbol, and x and y are object symbols. Some exam-
ple triples are: named after(Jupiter, Roman god) and upheld(Court, ruling).
There are 15,872 distinct r symbols, 700,781 distinct x symbols, and 665,378 dis-
tinct y symbols. Two characteristics of TextRunner’s extractions are that they
are sparse and noisy. To reduce the noise in the dataset, our search algorithm
(Table 1) only considered symbols that appeared at least 25 times. This leaves
10,214 r symbols, 8942 x symbols, and 7995 y symbols. There are 2,065,045
triples that contain at least one symbol that appears at least 25 times. In all ex-
periments, we set the CanopyMax parameter to 50. We make the closed-world
assumption for all models (i.e., all triples not in the dataset are assumed false).

5.5 SNE vs. MRC

We compared the performances of SNE and MRC1 in learning a single clustering
of symbols. We set the λ, µ and pfalse parameters in SNE to 100, 100 and 0.9999
respectively based on preliminary experiments. We set SNE’s α and β parameters
to 2.81 × 10−9 and 10 − α so that α

α+β is equal to the fraction of true triples
in the dataset. (A priori, we should predict the probability that a ground atom
is true to be this value.) We evaluated the clusterings learned by each model
against a gold standard manually created by the first author. The gold standard
assigns 2688 r symbols, 2568 x symbols, and 3058 y symbols to 874, 511, and
700 non-unit clusters respectively. We measured the pairwise precision, recall and
F1 of each model against the gold standard. Pairwise precision is the fraction of
symbol pairs in learned clusters that appear in the same gold clusters. Pairwise
recall is the fraction of symbol pairs in gold clusters that appear in the same
learned clusters. F1 is the harmonic mean of precision and recall. For the weight
of MRC1’s exponential prior on clusters, we tried the following values and pick
the best: 0, 1, 10–100 (in increments of 10), and 110–1000 (in increments of 100).
We report the precision, recall and F1 scores that are obtained with the best
value of 80. From Table 2, we see that SNE performs significantly better than
MRC1.

We also ran MRC to find multiple clusterings. Since the gold standard only
defines a single clustering, we cannot use it to evaluate the multiple clusterings.
We provide a qualitative evaluation instead. MRC returns 23,151 leaves that
contain non-unit clusters, and 99.8% of these only contain 3 or fewer clusters of
size 2. In contrast, SNE finds many clusters of varying sizes (see Table 6). The
poor performance of MRC in finding multiple clusterings is due to data sparsity.
In each recursive call to MRC, it only receives a small subset of the relation and
object symbols. Thus with each call the data becomes sparser, and there is not
enough signal to cluster the symbols.

2 Publicly available at http://knight.cis.temple.edu/∼yates/data/resolver data.tar.gz

12 Extracting Semantic Networks from Text via Relational Clustering

Table 2. Comparison of SNE and MRC1 performances on gold standard. Object 1 and
Object 2 respectively refer to the object symbols that appear as the first and second
arguments of relations. The best F1s are shown in bold.

Relation Object 1 Object 2
Model Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

SNE 0.452 0.187 0.265 0.460 0.061 0.108 0.558 0.062 0.112
MRC1 0.054 0.044 0.049 0.031 0.007 0.012 0.059 0.011 0.018

Table 3. Comparison of SNE performance when it clusters relation and object symbols
jointly and separately. SNE-Sep clusters relation and object symbols separately. Object
1 and Object 2 respectively refer to the object symbols that appear as the first and
second arguments of relations. The best F1s are shown in bold.

Relation Object 1 Object 2
Model Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

SNE 0.452 0.187 0.265 0.460 0.061 0.108 0.558 0.062 0.112
SNE-Sep 0.597 0.116 0.194 0.519 0.045 0.083 0.551 0.047 0.086

5.6 Joint vs. Separate Clustering of Relations and Objects

We investigated the effect of having SNE only cluster relation symbols, first-
argument object symbols, or second-argument object symbols, e.g., if SNE clus-
ter relation symbols, then it does not cluster both kinds of object symbols. From
Table 3, we see that SNE obtains a significantly higher F1 when it clusters
relations and objects jointly than when it clusters them separately.

5.7 SNE vs. IRM and ITC

We compared IRM-C and IRM-CC with respect to the gold standard. We set
IRM’s Beta parameters to the values of SNE’s α and β, and set pfalse to the
same value as SNE’s. We tried the following values for the parameter of the
CRP priors: 0.25, 0.5, 0.75, 1–10 (in increments of 1), 20–100 (in increments of
10). We found that the graphs showing how precision, recall, and F1 vary with
the CRP value are essentially flat for both IRM-C and IRM-CC. Both system
perform about the same. The slightly higher precision, recall, and F1 scores
occur at the low end of the values we tried, and we use the best one of 0.25 for
the slightly better-performing IRM-CC system. Henceforth, we denote this IRM
as IRM-CC-0.25, and use it for other comparisons.

We also compared SNE, IRM-CC-0.25, ITC-C, and ITC-CC. From Table 4,
we see that ITC performs better with a BIC prior on cluster combinations than
a BIC prior on clusters. We also see that SNE performs the best in terms of F1.

We then evaluated SNE, IRM-CC-0.25 and ITC-CC in terms of the semantic
statements that they learned. A cluster combination that contains a true ground
atom corresponds to a semantic statement. SNE, IRM-CC-0.25 and ITC-CC

Extracting Semantic Networks from Text via Relational Clustering 13

Table 4. Comparison of SNE, IRM-CC-0.25, ITC-CC, and ITC-C performances on
gold standard. Object 1 and Object 2 respectively refer to the object symbols that
appear as the first and second arguments of relations. The best F1s are shown in bold.

Relation Object 1 Object 2
Model Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

SNE 0.452 0.187 0.265 0.461 0.061 0.108 0.558 0.062 0.112
IRM-CC-0.25 0.201 0.089 0.124 0.252 0.043 0.073 0.307 0.041 0.072
ITC-CC 0.773 0.003 0.006 0.470 0.047 0.085 0.764 0.002 0.004
ITC-C 0.000 0.000 0.000 0.571 0.000 0.000 0.333 0.000 0.000

Table 5. Evaluation of semantic statements learned by SNE, IRM-CC-0.25, and ITC-
CC.

Total Num. Fract.
Model Statements Correct Correct

SNE 1241 965 0.778
IRM-CC-0.25 487 426 0.874
ITC-CC 310 259 0.835

respectively learned 1,464,965, 1,254,995 and 82,609 semantic statements. We
manually inspected semantic statements containing 5 or more true ground atoms,
and counted the number that were correct. Table 5 shows the results. Even
though SNE’s accuracy is smaller than IRM-CC-0.25’s and ITC-CC’s by 11%
and 7% respectively, SNE more than compensates for the lower accuracy by
learning 127% and 273% more correct statements respectively. Figure 1 shows
examples of correct semantic statements learned by SNE.

SNE, IRM-CC-0.25 and ITC-CC respectively ran for about 5.5 hours, 9.5
hours, and 3 days on identically configured machines. ITC-CC spent most of its
time computing the mutual information among three clusters. To compute the
mutual information, given any two clusters, we have to retrieve the number of
cluster combinations that contain the two clusters. Because of the large number
of cluster pairs, we choose to use a data structure (red-black tree) that is space-
efficient, but pays a time penalty when looking up the required values.

5.8 Comparison of SNE with WordNet

We also compared the object clusters that SNE learned with WordNet [8], a
hand-built semantic lexicon for the English language. WordNet organizes 117,798
distinct nouns into a taxonomy of 82,115 concepts. There are respectively 4883
first-argument, and 5076 second-argument object symbols that appear at least
25 times in our dataset, and also in WordNet. We converted each node (synset)
in WordNet’s taxonomy into a cluster containing its original concepts, and all its
children concepts. We then matched each SNE cluster to the WordNet cluster
that gave the best F1 score. We measured F1 as the harmonic mean of precision

14 Extracting Semantic Networks from Text via Relational Clustering

Table 6. Comparison of SNE object clusters with WordNet.

Cluster Num.
Size Clusters Level Prec. Recall F1

47 1 7.0±0.0 0.8±0.0 0.2±0.0 0.4±0.0
36 1 8.0±0.0 0.3±0.0 0.3±0.0 0.3±0.0
24 1 6.0±0.0 0.2±0.0 0.3±0.0 0.2±0.0
19 1 7.0±0.0 0.2±0.0 0.3±0.0 0.2±0.0
16 1 7.0±0.0 0.3±0.0 0.3±0.0 0.3±0.0
12 3 7.0±0.7 0.5±0.1 0.7±0.1 0.5±0.2
11 1 6.0±0.0 0.9±0.0 0.7±0.0 0.8±0.0
10 2 5.5±0.7 0.6±0.1 0.9±0.1 0.5±0.1
8 5 7.0±0.9 0.4±0.2 0.7±0.4 0.3±0.1
7 4 6.0±1.4 0.7±0.3 0.8±0.2 0.9±0.1
6 12 6.6±1.7 0.4±0.2 0.6±0.2 0.6±0.2
5 12 7.2±1.6 0.4±0.2 0.5±0.3 0.7±0.1
4 84 7.2±1.7 0.4±0.1 0.7±0.2 0.6±0.2
3 185 7.3±1.8 0.5±0.2 0.7±0.2 0.7±0.2
2 1419 7.2±1.8 0.6±0.1 0.7±0.1 0.8±0.1

and recall. Precision is the fraction of symbols in an SNE cluster that is also in
the matched WordNet cluster. Recall is the fraction of symbols in a WordNet
cluster that is also in the corresponding SNE cluster. Table 6 shows how pre-
cision, recall, and F1 vary with cluster sizes. (The scores are averaged over all
object clusters of the same size). We see that the F1s are fairly good for object
clusters of size 7 or less. The table also shows how the level of the matched
cluster in WordNet’s taxonomy vary with cluster size. The higher the level, the
more specifc the concept represented by the matched WordNet cluster. For ex-
ample, clusters at level 7 correspond to specific concepts like ‘country’, ‘state’,
‘dwelling’, and ‘home’, while the single cluster at level 0 (i.e., at the root of the
taxonomy) corresponds to ‘all entities’. We see that the object clusters corre-
spond to fairly specifc concepts in WordNet. We did not compare the relation
clusters to WordNet’s verbs because the overlap between the relation symbols
and the verbs are too small.

6 Conclusion and Future Work

We presented SNE, a scalable, unsupervised, domain-independent system for
extracting knowledge in the form of simple semantic networks from text. SNE is
based on second-order Markov logic. It uses a bottom-up agglomerative cluster-
ing algorithm to jointly cluster relation symbols and object symbols, and allows
information to propagate between the clusters as they are formed. Empirical
comparisons with three systems on a large real-world Web dataset show the
promise of our approach.

Extracting Semantic Networks from Text via Relational Clustering 15

Fig. 1. Fragments of a semantic network learned by SNE. Nodes are concept clus-
ters, and the labels of links are relation clusters. More fragments are available at
http://alchemy.cs.washington.edu/papers/kok08.

Directions for future work include: integrating tuple extraction into SNE’s
Markov logic framework so that information can flow between semantic network
learning and tuple extraction, potentially improving the performance of both;
extending the learning mechanism so as to learn richer semantic networks as well
as complex logical theories from text; etc.

Acknowledgments. This research was partly funded by DARPA contracts
NBCH-D030010/02-000225, FA8750-07-D-0185, and HR0011-07-C-0060, DARPA
grant FA8750-05-2-0283, NSF grant IIS-0534881, and ONR grant N-00014-05-
1-0313. The views and conclusions contained in this document are those of the
authors and should not be interpreted as necessarily representing the official poli-
cies, either expressed or implied, of DARPA, NSF, ONR, or the United States
Government.

References

1. M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead, and O. Etzioni. Open
information extraction from the web. In Proc. IJCAI-2007, Hyderabad, India,
2007. AAAI Press.

2. M. Banko and O. Etzioni. Strategies for lifelong knowledge extraction from the
web. In Proc. K-CAP-2007, British Columbia, Canada, 2007.

3. E. Charniak. Toward a Model of Children’s Story Comprehension. PhD thesis,
Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Boston,
MA, 1972.

4. M. W. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell, K. Nigam, and
S. Slattery. Learning to extract symbolic knowledge from the World Wide Web.
In Proc. AAAI-98, pages 509–516, Madison, WI, 1998. AAAI Press.

5. I. S. Dhillon, S. Mallela, and D. S. Modha. Information-theoretic co-clustering. In
Proc. KDD-2003, Washington, DC, 2003.

16 Extracting Semantic Networks from Text via Relational Clustering

6. M. G. Dyer. In-Depth Understanding. MIT Press, Cambridge, MA, 1983.
7. O. Etzioni, M. Banko, and M. J. Cafarella. Machine reading. In Proc. 2007 AAAI

Spring Symposium on Machine Reading, Palo Alto, CA, 2007. AAAI Press.
8. C. Gellbaum, editor. WordNet: An Electronic Lexical Database. MIT Press, Cam-

bridge, MA, 1998.
9. M. R. Genesereth and N. J. Nilsson. Logical Foundations of Artificial Intelligence.

Morgan Kaufmann, San Mateo, CA, 1987.
10. T. Hasegawa, S. Sekine, and R. Grishman. Discovering relations among named

entities from large corpora. In Proc. ACL-2004, Barcelona, Spain, 2004.
11. C. Kemp, J. B. Tenenbaum, T. L. Griffiths, T. Yamada, and N Ueda. Learning

systems of concepts with an infinite relational model. In Proc. AAAI-2006, Boston,
MA, 2006. AAAI Press.

12. S. Kok and P. Domingos. Statistical predicate invention. In Proc. ICML-2007,
pages 443–440, Corvallis, Oregon, 2007. ACM Press.

13. W. G. Lehnert. The Process of Question Answering. Erlbaum, Hillsdale, NJ, 1978.
14. A. McCallum and D. Jensen. A note on the unification of information extraction

and data mining using conditional-probability, relational models. In Proc. IJCAI-
2003 Workshop on Learning Statistical Models from Relational Data, pages 79–86,
Acapulco, Mexico, 2003. IJCAII.

15. A. McCallum, K. Nigam, and L. Ungar. Efficient clustering of high-dimensional
data sets with application to reference matching. In Proc. KDD-2000, pages 169–
178, 2000.

16. T. Mitchell. Reading the web: A breakthrough goal for AI. AI Magazine, 26(3):12–
16, 2005.

17. R. J. Mooney. Learning for semantic parsing. In Proc. CICLing-2007, Mexico City,
Mexico, 2007. Springer.

18. M. Pasca, D. Lin, J. Bigham, A. Lifchits, and A. Jain. Names and similarities on
the web: Fact extraction on the fast lane. In Proc. ACL/COLING-2006, 2006.

19. J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Francisco, CA, 1988.

20. M. R. Quillian. Semantic memory. In M. L. Minsky, editor, Semantic Information
Processing, pages 216–270. MIT Press, Cambridge, MA, 1968.

21. K. Rajaraman and A-H. Tan. Mining semantic networks for knowledge discovery.
In Proc. ICMD-2003, 2003.

22. M. Richardson and P. Domingos. Markov logic networks. Machine Learning,
62:107–136, 2006.

23. R. C. Schank and C. K. Riesbeck. Inside Computer Understanding. Erlbaum,
Hillsdale, NJ, 1981.

24. G. Schwarz. Estimating the dimension of a model. Annals of Statistics, 6:461–464,
1978.

25. Y. Shinyama and S. Sekine. Preemptive information extraction using unrestricted
relation discovery. In Proc. HLT-NAACL-2006, New York, New York, 2006.

26. Y. W. Wong and R. J. Mooney. Learning synchronous grammars for semantic
parsing with lambda calculus. In Proc. ACL-2007, Prague, Czech Republic, 2007.

27. Z. Xu, V. Tresp, K. Yu, and H.-P. Kriegel. Infinite hidden relational models. In
Proc. UAI-2006, Cambridge, MA, 2006.

28. A. Yates and O. Etzioni. Unsupervised resolution of objects and relations on the
web. In Proc. NAACL-HLT-2007, Rochester, NY, 2007.

29. L. S. Zettlemoyer and M. Collins. Learning to map sentences to logical form:
Structured classification with probabilistic categorial grammers. In Proc. UAI-
2005, Edinburgh, Scotland, 2005.

