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Abstract

Bayesian networks are a powerful probabilis-
tic representation, and their use for classi-
fication has received considerable attention.
However, they tend to perform poorly when
learned in the standard way. This is at-
tributable to a mismatch between the objec-
tive function used (likelihood or a function
thereof) and the goal of classification (max-
imizing accuracy or conditional likelihood).
Unfortunately, the computational cost of op-
timizing structure and parameters for condi-
tional likelihood is prohibitive. In this pa-
per we show that a simple approximation—
choosing structures by maximizing condi-
tional likelihood while setting parameters
by maximum likelihood—yields good results.
On a large suite of benchmark datasets,
this approach produces better class proba-
bility estimates than naive Bayes, TAN, and
generatively-trained Bayesian networks.

1. Introduction

The simplicity and surprisingly high accuracy of the
naive Bayes classifier have led to its wide use, and
to many attempts to extend it (Domingos & Pazzani,
1997). In particular, naive Bayes is a special case of a
Bayesian network, and learning the structure and pa-
rameters of an unrestricted Bayesian network would
appear to be a logical means of improvement. How-
ever, Friedman et al. (1997) found that naive Bayes
easily outperforms such unrestricted Bayesian network
classifiers on a large sample of benchmark datasets.
Their explanation was that the scoring functions used
in standard Bayesian network learning attempt to op-
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timize the likelihood of the entire data, rather than
just the conditional likelihood of the class given the
attributes. Such scoring results in suboptimal choices
during the search process whenever the two functions
favor differing changes to the network. The natural
solution would then be to use conditional likelihood as
the objective function. Unfortunately, Friedman et al.
observed that, while maximum likelihood parameters
can be efficiently computed in closed form, this is not
true of conditional likelihood. The latter must be opti-
mized using numerical methods, and doing so at each
search step would be prohibitively expensive. Fried-
man et al. thus abandoned this avenue, leaving the
investigation of possible heuristic alternatives to it as
an important direction for future research. In this pa-
per, we show that the simple heuristic of setting the
parameters by maximum likelihood while choosing the
structure by conditional likelihood is accurate and ef-
ficient.

Friedman et al. chose instead to extend naive Bayes by
allowing a slightly less restricted structure (one parent
per variable in addition to the class) while still opti-
mizing likelihood. They showed that TAN, the result-
ing algorithm, was indeed more accurate than naive
Bayes on benchmark datasets. We compare our algo-
rithm to TAN and naive Bayes on the same datasets,
and show that it outperforms both in the accuracy of
class probability estimates, while outperforming naive
Bayes and tying TAN in classification error.

If the structure is fixed in advance, computing the
maximum conditional likelihood parameters by gra-
dient descent should be computationally feasible, and
Greiner and Zhou (2002) have shown with their ELR
algorithm that it is indeed beneficial. They leave op-
timization of the structure as an important direction
for future work, and that is what we accomplish in this
paper.

Perhaps the most important reason to seek an im-
proved Bayesian network classifier is that, for many



applications, high accuracy in class predictions is not
enough; accurate estimates of class probabilities are
also desirable. For example, we may wish to rank cases
by probability of class membership (Provost & Domin-
gos, 2003), or the costs associated with incorrect pre-
dictions may be variable and not known precisely at
learning time (Provost & Fawcett, 2001). In this case,
knowing the class probabilities allows the learner to
make optimal decisions at classification time, what-
ever the misclassification costs (Duda & Hart, 1973).
More generally, a classifier is often only one part of a
larger decision process, and outputting accurate class
probabilities increases its utility to the process.

We begin by reviewing the essentials of learning
Bayesian networks. We then present our algorithm,
followed by experimental results and their interpreta-
tion. The paper concludes with a discussion of related
and future work.

2. Bayesian Networks

A Bayesian network (Pearl, 1988) encodes the joint
probability distribution of a set of v variables,
{x1, . . . , xv}, as a directed acyclic graph and a set of
conditional probability tables (CPTs). (In this paper
we assume all variables are discrete, or have been pre-
discretized.) Each node corresponds to a variable, and
the CPT associated with it contains the probability of
each state of the variable given every possible combi-
nation of states of its parents. The set of parents of xi,
denoted πi, is the set of nodes with an arc to xi in the
graph. The structure of the network encodes the asser-
tion that each node is conditionally independent of its
non-descendants given its parents. Thus the probabil-
ity of an arbitrary event X = (x1, . . . , xv) can be com-
puted as P (X) =

∏v

i=1
P (xi|πi). In general, encoding

the joint distribution of a set of v discrete variables
requires space exponential in v; Bayesian networks re-
duce this to space exponential in maxi∈{1,...,v} |πi|.

2.1. Learning Bayesian Networks

Given an i.i.d. training set D = {X1, . . . , Xd, . . . , Xn},
where Xd = (xd,1, . . . , xd,v), the goal of learning is
to find the Bayesian network that best represents the
joint distribution P (xd,1, . . . , xd,v). One approach is
to find the network B that maximizes the likelihood
of the data or (more conveniently) its logarithm:

LL(B|D) =
n∑

d=1

log PB(Xd) =
n∑

d=1

v∑

i=1

log PB(xd,i|πd,i)

(1)
When the structure of the network is known, this re-
duces to estimating pijk , the probability that variable i

is in state k given that its parents are in state j, for all
i, j, k. When there are no examples with missing val-
ues in the training set and we assume parameter inde-
pendence, the maximum likelihood estimates are sim-
ply the observed frequency estimates p̂ijk = nijk/nij ,
where nijk is the number of occurrences in the train-
ing set of the kth state of xi with the jth state of its
parents, and nij is the sum of nijk over all k.

In this paper we assume no missing data through-
out, and focus on the problem of learning network
structure. Chow and Liu (1968) provide an efficient
algorithm for the special case where each variable
has only one parent. Solution methods for the gen-
eral (intractable) case fall into two main classes: in-
dependence tests (Spirtes et al., 1993) and search-
based methods (Cooper & Herskovits, 1992; Hecker-
man et al., 1995). The latter are probably the most
widely used, and we focus on them in this paper. We
assume throughout that hill-climbing search is used;
this was found by Heckerman et al. to yield the best
combination of accuracy and efficiency. Hill-climbing
starts with an initial network, which can be empty,
random, or constructed from expert knowledge. At
each search step, it creates all legal variations of the
current network obtainable by adding, deleting, or re-
versing any single arc, and scores these variations. The
best variation becomes the new current network, and
the process repeats until no variation improves the
score.

Since on average adding an arc never decreases like-
lihood on the training data, using the log likelihood
as the scoring function can lead to severe overfit-
ting. This problem can be overcome in a number
of ways. The simplest one, which is often surpris-
ingly effective, is to limit the number of parents a
variable can have. Another alternative is to add a
complexity penalty to the log-likelihood. For exam-
ple, the MDL method (Lam & Bacchus, 1994) mini-
mizes MDL(B|D) = 1

2
m logn − LL(S|D), where m

is the number of parameters in the network. In both
these approaches, the parameters of each candidate
network are set by maximum likelihood, as in the
known-structure case. Finally, the full Bayesian ap-
proach (Cooper & Herskovits, 1992; Heckerman et al.,
1995) maximizes the Bayesian Dirichlet (BD) score

P (BS , D) = P (BS)P (D|BS)

= P (BS)

v∏

i=1

qi∏

j=1

Γ(n′
ij)

Γ(n′
ij + nij)

ri∏

k=1

Γ(n′
ijk + nijk)

Γ(n′
ijk)

(2)

where BS is the structure of network B, Γ() is the
gamma function, qi is the number of states of the



Cartesian product of xi’s parents, and ri is the num-
ber of states of xi. P (BS) is the prior probability of
the structure, which Heckerman et al. set to an expo-
nentially decreasing function of the number of differing
arcs between BS and the initial (prior) network. Each
multinomial distribution for xi given a state of its par-
ents has an associated Dirichlet prior distribution with
parameters n′

ijk , with n′
ij =

∑ri

k=1
n′

ijk . These param-
eters can be thought of as equivalent to seeing n′

ijk

occurrences of the corresponding states in advance of
the training examples. In this approach, the network
parameters are not set to specific values; rather, their
entire posterior distribution is implicitly maintained
and used. The BD score is the result of integrating
over this distribution. See Heckerman (1999) for a
more detailed introduction to learning Bayesian net-
works.

2.2. Bayesian Network Classifiers

The goal of classification is to correctly predict the
value of a designated discrete class variable y = xv

given a vector of predictors or attributes (x1, . . . , xv−1).
If the performance measure is accuracy (i.e., the frac-
tion of correct predictions made on a test sample), the
optimal prediction for (x1, . . . , xv−1) is the class that
maximizes P (y|x1, . . . , xv−1) (Duda & Hart, 1973). If
we have a Bayesian network for (x1, . . . , xv), these
probabilities can be computed by inference over it.
In particular, the naive Bayes classifier is a Bayesian
network where the class has no parents and each at-
tribute has the class as its sole parent. Friedman et
al.’s (1997) TAN algorithm uses a variant of the Chow
and Liu (1968) method to produce a network where
each variable has one other parent in addition to the
class. More generally, a Bayesian network learned us-
ing any of the methods described above can be used
as a classifier. All of these are generative models in
the sense that they are learned by maximizing the log
likelihood of the entire data being generated by the
model, LL(B|D), or a related function. However, for
classification purposes only the conditional log likeli-
hood CLL(B|D) of the class given the attributes is
relevant, where

CLL(B|D) =

n∑

d=1

log PB(yd|xd,1, . . . , xd,v−1). (3)

Notice LL(B|D) = CLL(B|D) +
∑n

d=1
log PB(xd,1,

. . . , xd,v−1). Maximizing LL(B|D) can lead to
underperforming classifiers, particularly since in
practice the contribution of CLL(B|D) is likely
to be swamped by the generally much larger
(in absolute value) log PB(xd,1, . . . , xd,v−1) term.
A better approach would presumably be to use

CLL(B|D) by itself as the objective function. This
would be a form of discriminative learning, be-
cause it would focus on correctly discriminating
between classes. The problem with this approach is
that, unlike LL(B|D) (Equation 1), CLL(B|D) =∑n

d=1
log[PB(xd,1, . . . , xd,v−1, y)/PB(xd,1, . . . , xd,v−1)]

does not decompose into a separate term for each
variable, and as a result there is no known closed
form for the optimal parameter estimates. When
the structure is known, locally optimal estimates can
be found by a numeric method such as conjugate
gradient with line search (Press et al., 1992), and this
is what Greiner and Zhou’s (2002) ELR algorithm
does. When the structure is unknown, a new gradient
descent is required for each candidate network at
each search step. The computational cost of this
is presumably prohibitive. In this paper we verify
this, and propose and evaluate a simple alternative:
using conditional likelihood to guide structure search,
while approximating parameters by their maximum
likelihood estimates.

3. The BNC Algorithm

We now introduce BNC, an algorithm for learning the
structure of a Bayesian network classifier by maximiz-
ing conditional likelihood. BNC is similar to the hill-
climbing algorithm of Heckerman et al. (1995), except
that it uses the conditional log likelihood of the class
as the primary objective function. BNC starts from an
empty network, and at each step considers adding each
possible new arc (i.e., all those that do not create cy-
cles) and deleting or reversing each current arc. BNC
pre-discretizes continuous values and ignores missing
values in the same way that TAN (Friedman et al.,
1997) does.

We consider two versions of BNC. The first, BNC-nP,
avoids overfitting by limiting its networks to a maxi-
mum of n parents per variable. Parameters in each
network are set to their maximum likelihood values.
(In contrast, full optimization of both structure and
parameters, described more fully in Section 4, would
set the parameters to their maximum conditional like-
lihood values.) The network is then scored using the
conditional log likelihood CLL(B|D) (Equation 3).
The rationale for this approach is that computing max-
imum likelihood parameter estimates is extremely fast,
and, for an optimal structure, they are asymptotically
equivalent to the maximum conditional likelihood ones
(Friedman et al., 1997).

The second version, BNC-MDL, is the same as BNC-
nP, except that instead of limiting the number of par-
ents, the scoring function CMDL(B|D) = 1

2
m logn−



CLL(S|D) is used, where m is the number of param-
eters in the network and n is the training set size.

The goal of BNC is to produce accurate class prob-
ability estimates. If correct class predictions are all
that is required, a Bayesian network classifier could in
principle be learned simply by using the training-set
accuracy as the objective function (together with some
overfitting avoidance scheme). While trying this is an
interesting item for future work, we note that even in
this case the conditional likelihood may be preferable,
because it is a more informative and more smoothly-
varying measure, potentially leading to an easier opti-
mization problem.

4. Experiments

To gauge the performance of our BNC variants for
the task of classification, we evaluated them and sev-
eral alternative learning methods on the 25 benchmark
datasets used by Friedman et al. (1997). These in-
clude 23 datasets from the UCI repository (Blake &
Merz, 2000) and 2 extra datasets developed by Ko-
havi and John (1997) for feature selection experiments.
We used the same experimental procedure as Friedman
et al., choosing either 5-fold cross-validation or hold-
out testing for each domain by the same criteria. In all
cases, we measured both the conditional log likelihood
(CLL) of the test data given the learned model, and
the model’s classification error rate (ERR).

4.1. Full Structure and Parameter

Optimization

We first compared BNC to optimizing both struc-
ture and parameters for conditional log likelihood, to
the extent possible given the computational resources
available. In this version, the parameters of each al-
ternative network at each search step are set to their
(locally) maximum conditional likelihood values by
the conjugate gradient method with line search, as in
Greiner and Zhou (2002). The parameters are first ini-
tialized to their maximum likelihood values, and the
best stopping point for the gradient descent is then
found by two-fold cross-validation (this is necessary to
prevent overfitting of the parameters).

Clearly, examining hundreds of networks per search
step and performing gradient descent over all of the
training data for each structure is impractical. For the
smallest datasets in our experiments, full optimization
was possible but took two orders of magnitude longer
to complete than BNC (which requires several minutes
on a 1 GHz Pentium 3 processor). To experiment on
larger datasets, we introduced two variations. First,

we used only 200 randomly-chosen samples for gra-
dient descent, keeping the full training set to score
networks and to fit the final parameters. This makes
the running time of gradient descent independent of
the training set size, while degrading the optimiza-
tion only by increasing the variance of the objective
function. Second, we imposed a maximum number of
line searches for the gradient descent on each network.
This takes advantage of the fact that the greatest im-
provement in the objective function is often obtained
in the first few iterations.

These alterations sped up the full optimization ap-
proach to the point where small domains (i.e., those
with few attributes) such as core, diabetes, and
shuttle-small, could be completed within an hour or
two. Medium-sized domains (e.g., heart, cleve, breast)
required on the order of five hours runtime. One of the
larger domains, segment, was tried on a 2.4 GHz ma-
chine and was still running two days later when we
terminated the process. The completed experiments
revealed that neither the full optimization nor the ac-
celerated versions produced better results than those
obtained by BNC. We thus conclude that, at least for
small to medium datasets, full optimization is unlikely
to be worth the computational cost.

4.2. Structure Optimization

We compared BNC with the following algorithms:

• C4.5, for which we obtain only classification error
results.

• The naive Bayes classifier (NB).

• The tree-augmented naive Bayes (TAN) algo-
rithm from Friedman et al. (1997).

• HGC, the original Bayesian network structure
search algorithm from Heckerman et al. (1995)
that utilizes the Bayesian Dirichlet (BD) score
(with Dirichlet parameters n′

ijk = 1 and structure
prior parameter κ = 0.1).

• Two basic maximum likelihood learners, one us-
ing the MDL score (ML-MDL) and the other
restricted to a maximum of two parents per node
(ML-2P). We also tried higher maximum num-
bers of parents, but these did not produce better
results.

• NB-ELR and TAN-ELR, NB and TAN with
parameters optimized for conditional log likeli-
hood as in Greiner and Zhou (2002).



Mean negative-CLL and ERR data from BNC and the
competing algorithms are presented in Tables 1 and
2, respectively. One-standard-deviation bars for those
data points appear in the corresponding graphs in Fig-
ures 1 and 2. In both figures, points above the y = x
diagonal are datasets for which BNC achieved better
results than the competing algorithm. The significance
values we report for these results below were obtained
using the Wilcoxon paired-sample signed-ranks test.

We also compared different versions of BNC. As with
ML-2P, we found that increasing the maximum num-
ber of parents per node in BNC-nP did not yield im-
proved results beyond the two-parent version. BNC-
2P outperformed BNC-MDL at the p < .01 and
p < .001 significance levels for CLL and ERR, re-
spectively. A similar comparison showed that ML-
2P likewise outperforms ML-MDL in both measures.
These observations suggest that the MDL penalty is
not well suited to the task of training Bayesian net-
work classifiers, a conclusion consistent with previous
results (e.g., Chickering and Heckerman (1997), Allen
and Greiner (2000)) showing that MDL does not per-
form well for learning Bayesian networks. We thus
used BNC-2P as the default version for comparison
with other algorithms.

We see in Figures 1a and 2a that BNC-2P outper-
forms NB on both classification error (p < .06) and
CLL (p < .001). BNC-2P and TAN have similar er-
ror rates (Figure 2b), but BNC outperforms TAN in
conditional likelihood with significance p < .06 (Fig-
ure 1b). On these 25 datasets, NB performs about
as well as C4.5 in terms of classification error. TAN,
originally suggested as a superior alternative to C4.5
(Friedman et al., 1997), attained a significance level
of only p < .24 against it in our experiments, whereas
BNC-2P fared slightly better with p < .20. HGC,
Heckerman et al.’s (1995) algorithm for learning un-
restricted Bayesian networks, falls well below BNC in
both the CLL and ERR metrics (p < .015, p < .006)
(Figures 1c and 2c). As mentioned above, ML-MDL
substantially underperforms other algorithms. ML-2P
(Figures 1d and 2d) is competitive with BNC-2P in
terms of conditional log likelihood, but BNC-2P out-
performs it in classification accuracy in a large major-
ity of the domains (p < .069).

Finally, in Figures 1e,f and 2e,f we see that BNC-2P
outperformed NB-ELR and TAN-ELR in CLL, while
obtaining similar error rates. We also applied ELR op-
timization to the networks produced by BNC-2P. In all
domains, ELR either converged to the original max-
imum likelihood parameters or to worse-performing
ones. This is consistent with Greiner and Zhou’s

(2002) observation that parameter optimization is less
helpful for structures that are closer to the “true” one,
and further supports the use of BNC. An additional
advantage of BNC relative to ELR is that optimiz-
ing structure is arguably preferable to optimizing pa-
rameters, in that the networks it produces may give
a human viewer more insight into the domain. Maxi-
mum likelihood parameters are also much more inter-
pretable than conditional likelihood ones.

We suspect that there may be further performance dif-
ferences between BNC and other algorithms that the
benchmark datasets used in these experiments are too
small and simple to elicit. For example, the advan-
tage of discriminative over generative training should
be larger in domains with a large number of attributes,
and/or when the dependency structure of the domain
is too complex to capture empirically given the avail-
able data. Conducting experiments in such domains is
thus a key area for future research.

5. Related Work

The issue of discriminative vs. generative learning has
received considerable attention in recent years (e.g.,
Rubinstein and Hastie (1997)). It is now well un-
derstood that, although in the infinite-data limit an
unrestricted maximum-likelihood learner is necessar-
ily optimal, at finite sample sizes discriminative train-
ing is often preferable (Vapnik, 1998). As a result,
there has been considerable work developing discrim-
inative learning algorithms for probabilistic represen-
tations (e.g., the conditional EM algorithm (Jebara &
Pentland, 1999) and maximum entropy discrimination
(Jaakkola et al., 1999)). This paper falls into this line
of research.

Ng and Jordan (2002) show that, for very small sam-
ple sizes, generatively trained naive Bayes classifiers
can outperform discriminatively trained ones. This
is consistent with the fact that, for the same repre-
sentation, discriminative training has lower bias and
higher variance than generative training, and the vari-
ance term dominates at small sample sizes (Domingos
& Pazzani, 1997; Friedman, 1997). For the dataset
sizes typically found in practice, however, their results,
ours, and those of Greiner and Zhou (2002) all support
the choice of discriminative training.

Discriminatively-trained naive Bayes classifiers are
known in the statistical literature as logistic regres-
sion (Agresti, 1990). Our work can thus be viewed as
an extension of the latter to include structure learning.
Discriminative learning of Bayesian network structure
has received some attention in the speech recognition



Table 1. Experimental results: negative conditional log likelihood.

Dataset BNC-2P BNC-MDL NB TAN HGC ML-2P ML-MDL NB-ELR TAN-ELR
australian 0.349 0.357 0.408 0.434 0.358 0.351 0.343 0.380 0.434
breast 0.121 0.141 0.223 0.113 0.223 0.155 0.223 0.194 0.122
chess 0.135 0.116 0.298 0.190 0.137 0.263 0.272 0.151 0.134
cleve 0.494 0.510 0.461 0.509 0.477 0.418 0.523 0.421 0.509
corral 0.088 0.115 0.314 0.091 0.106 0.084 0.082 0.252 0.238
crx 0.370 0.344 0.409 0.450 0.339 0.341 0.341 0.375 0.448
diabetes 0.562 0.530 0.527 0.541 0.530 0.531 0.479 0.507 0.541
flare 0.417 0.410 0.586 0.427 0.410 0.400 0.410 0.421 0.427
german 0.605 0.551 0.536 0.588 0.534 0.563 0.547 0.530 0.588
glass 1.145 1.535 1.232 1.521 1.535 1.104 1.535 1.173 1.332
glass2 0.586 0.726 0.558 0.572 0.698 0.556 0.726 0.517 0.572
heart 0.477 0.705 0.450 0.448 0.412 0.474 0.716 0.440 0.448
hepatitis 0.481 0.410 0.516 0.310 0.489 0.410 0.474 0.365 0.310
iris 0.155 0.256 0.189 0.236 0.137 0.154 0.169 0.189 0.236
letter 0.640 1.244 1.261 0.655 1.170 0.679 1.190 1.261 0.655
lymphography 0.438 0.697 0.430 0.419 0.790 0.585 0.746 0.364 0.419
mofn-3-7-10 0.197 0.225 0.228 0.202 0.226 0.195 0.226 0.245 0.000
pima 0.562 0.530 0.527 0.541 0.530 0.531 0.479 0.513 0.541
satimage 0.453 0.651 3.120 0.751 0.780 0.510 0.780 1.046 0.665
segment 0.171 0.377 0.565 0.246 0.303 0.228 0.312 0.212 0.211
shuttle-small 0.033 0.124 0.087 0.070 0.241 0.063 0.241 0.047 0.033
soybean-large 0.200 0.804 0.441 0.171 1.541 0.251 0.874 0.220 0.172
vehicle 0.686 1.018 2.034 0.741 1.105 0.743 0.958 0.773 0.696
vote 0.126 0.137 0.618 0.169 0.183 0.121 0.144 0.129 0.150
waveform-21 0.714 0.707 0.876 0.779 0.891 0.630 0.745 0.503 0.779

Table 2. Experimental results: classification error.

Dataset BNC-2P BNC-MDL NB TAN C4.5 HGC ML-2P ML-MDL NB-ELR TAN-ELR
australian .1296 .1405 .1489 .1751 .1510 .1445 .1391 .1373 .1488 .1723
breast .0425 .0518 .0245 .0351 .0610 .0245 .0668 .0245 .0339 .0351
chess .0422 .0450 .1266 .0760 .0050 .0469 .0966 .0994 .0600 .0375
cleve .1997 .2563 .1791 .2164 .2060 .2129 .1820 .2196 .1660 .2164
corral .0119 .0000 .1277 .0143 .0150 .0000 .0000 .0000 .1273 .0771
crx .1580 .1397 .1505 .1631 .1390 .1308 .1370 .1238 .1505 .1603
diabetes .2666 .2569 .2571 .2384 .2590 .2569 .2550 .2484 .2419 .2384
flare .1804 .1776 .2024 .1780 .1730 .1776 .1810 .1776 .1813 .1780
german .2643 .2977 .2458 .2609 .2710 .2748 .3085 .3069 .2456 .2609
glass .4173 .6884 .4412 .4578 .4070 .6884 .4412 .6884 .4220 .5018
glass2 .2691 .4701 .2236 .2249 .2390 .4701 .2329 .4701 .1938 .2249
heart .1874 .4635 .1550 .1847 .2180 .1484 .2221 .4390 .1550 .1847
hepatitis .1618 .1877 .1930 .1302 .1750 .1877 .1967 .2011 .1294 .1302
iris .0420 .0563 .0699 .0763 .0400 .0427 .0414 .0699 .0485 .0763
letter .1830 .3530 .3068 .1752 .1220 .3092 .1896 .2998 .3068 .1752
lymphography .1635 .2794 .1662 .1784 .2160 .3624 .2247 .3027 .1470 .1784
mofn-3-7-10 .0859 .1328 .1328 .0850 .1600 .1328 .0859 .1328 .1367 .0000
pima .2666 .2569 .2571 .2384 .2590 .2569 .2550 .2484 .2505 .2384
satimage .1745 .2220 .1915 .1395 .1770 .2710 .1840 .2710 .1730 .1420
segment .0571 .1364 .1221 .0675 .0820 .1130 .0831 .1130 .0701 .0571
shuttle-small .0047 .0186 .0140 .0093 .0060 .1349 .0145 .1349 .0083 .0052
soybean-large .0754 .3373 .0852 .0644 .0890 .6466 .0922 .3668 .0920 .0663
vehicle .2922 .4478 .3892 .2718 .3170 .5077 .3451 .4001 .3453 .2727
vote .0417 .0420 .0991 .0509 .0530 .0463 .0467 .0489 .0370 .0487
waveform-21 .2670 .3281 .2142 .2534 .3490 .4345 .2543 .2160 .1772 .2534
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Figure 1. BNC-2P vs. competing algorithms: negative conditional log likelihood.
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Figure 2. BNC-2P vs. competing algorithms: classification error.



community (Bilmes et al., 2001). Keogh and Pazzani
(1999) augmented naive Bayes by adding at most one
parent to each node, with classification accuracy as the
objective function.

6. Conclusions and Future Work

This paper showed that effective Bayesian network
classifiers can be learned by directly searching for the
structure that optimizes the conditional likelihood of
the class variable. In experimental tests, BNC, the
resulting classifier, produced better class probability
estimates than maximum-likelihood approaches such
as naive Bayes and TAN.

Directions for future work include: studying fur-
ther heuristic approximations to full optimization of
the conditional likelihood; developing improved meth-
ods for avoiding overfitting in discriminatively-trained
Bayesian networks; extending BNC to handle missing
data, undiscretized continuous variables, etc.; apply-
ing BNC to a wider variety of datasets; and extending
our treatment to maximizing the conditional likelihood
of an arbitrary query distribution (i.e., to problems
where the variables being queried can vary from ex-
ample to example, instead of always having a single
designated class variable).
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