
Mining Massive Relational Databases

Geoff Hulten, Pedro Domingos, and Yeuhi Abe
Department of Computer Science and Engineering

University of Washington, Seattle, WA, 98195-2350�
ghulten, pedrod, yeuhi � @cs.washington.edu

Abstract
There is a large and growing mismatch between the
size of the relational data sets available for min-
ing and the amount of data our relational learning
systems can process. In particular, most relational
learning systems can operate on data sets contain-
ing thousands to tens of thousands of objects, while
many real-world data sets grow at a rate of millions
of objects a day. In this paper we explore the chal-
lenges that prevent relational learning systems from
operating on massive data sets, and develop a learn-
ing system that overcomes some of them. Our sys-
tem uses sampling, is efficient with disk accesses,
and is able to learn from an order of magnitude
more relational data than existing algorithms. We
evaluate our system by using it to mine a collection
of massive Web crawls, each containing millions of
pages.

1 Introduction
Many researchers have found that the relations between the
objects in a data set carry as much information about the do-
main as the properties of the objects themselves. This has
lead to a great deal of interest in developing algorithms capa-
ble of explicitly learning from the relational structure in such
data sets. Unfortunately, there is a wide and growing mis-
match between the size of relational data sets available for
mining and the size of relational data sets that our state of the
art algorithms can process in a reasonable amount of time. In
particular, most systems for learning complex models from
relational data have been evaluated on data sets containing
thousands to tens of thousands of objects, while many orga-
nizations today have data sets that grow at a rate of millions
of objects a day. Thus we are not able to take full advantage
of the available data.

There are several main challenges that must be met to al-
low our systems to run on modern data sets. Algorithmic
complexity is one. A rule of thumb is that any learning al-
gorithm with a complexity worse than �������
	����� (where n
is the number of training samples) is unlikely to run on very
large data sets in reasonable time. Unfortunately, the global
nature of relational data (where each object is potentially re-
lated to every other object) often means the complexity of re-

lational learning algorithms is considerably worse than this.
Additionally, in some situations for example when learning
from high speed, open ended data streams even ������� algo-
rithms may not be sufficiently scalable. To address this, the
most scalable propositional learning algorithms (for example
BOAT [Gehrke et al., 1999] and VFDT [Domingos and Hul-
ten, 2000]) use sampling to decouple their runtimes from the
size of training data. The scalability of these algorithms de-
pends not on the amount of data available, but rather on the
complexity of the concept being modeled. Unfortunately, it
is difficult to sample relational data (see Jensen [1998] for
a detailed discussion) and these propositional sampling tech-
niques will need to be modified to work with relational data.
Another scaling challenge is that many learning algorithms
make essentially random access to training data. This is rea-
sonable when data fits in RAM, but is prohibitive when it
must be repeatedly swapped from disk, as is the case with
large data sets. To address this, researchers have developed
algorithms that carefully order their accesses to data on disk
[Shafer et al., 1996], that learn from summary structures in-
stead of from data directly [Moore and Lee, 1997], or that
work with a single scan over data. Unfortunately, it is not
directly clear how these can be applied in relational settings.
Another class of scaling challenges comes from the nature of
the processes that generate large data sets. These processes
exist over long periods of time and continuously generate
data, and the distribution of this data often changes drasti-
cally as time goes by.

In previous work [Hulten and Domingos, 2002] we devel-
oped a framework capable of semi-automatically scaling up a
wide class of propositional learning algorithms to address all
of these challenges simultaneously. In the remainder of this
paper we begin to extend our propositional scaling framework
to the challenge of learning from massive relational data sets.
In particular, we describe a system, called VFREL, which can
learn from relational data sets containing millions of objects
and relations. VFREL works by using sampling to help it
very quickly identify the relations that are important to the
learning task. It is then able to focus its attention on these
important relations, while saving time (and data accesses) by
ignoring ones that are not important. We evaluate our sys-
tem by using it to build models for predicting the evolution of
the Web, and mine a data set containing over a million Web
pages, with millions of links among them.

In the next section we describe the form of the relational
data our system works with. Following that we briefly review
some of the methods currently used for relational learning and
discuss the challenges to scaling them for very large data sets.
The following section describes VFREL in detail. We then
discuss our application and the experiments we conducted,
and conclude.

2 Relational Data
We will now describe the form of the relational data that we
mine. This formulation is similar to those given by Friedman
et al. [1999] and by Jensen and Neville [2002c]. Data arrives
as a set of object sources, each of which contains a set of ob-
jects. Object sources are typed, and thus each is restricted
to contain objects conforming to a single class. It may be
helpful to think of an object source as a table in a relational
database, where each row in the table corresponds to an ob-
ject. In the following discussion we will use � to refer to an
object and ������� to refer to its class. Each class has a set of
intrinsic attributes, and a set of relations. From these, a set
of relational attributes is derived. We will describe each of
these in turn.

Intrinsic attributes are properties of the objects in the do-
main. For example a Product object’s attributes might include
its price, description, weight, stock status, etc. Each attribute
is either numeric or categorical. We denote the set of intrinsic
attributes for ������� as ������������� and � ’s intrinsic attribute
named � as ��� � .

Objects can be related to other objects. These relations are
typed, and each relation has a source class and a destination
class. Following a relation from an instance of the source
class yields a (possibly empty) set of instances of the destina-
tion class. One critical feature of a relation is the cardinality
of the set of objects that is reached by following it. If a rela-
tion always returns a single object it is called a one-relation;
if the number of objects returned varies from object to object
it is called a many-relation. Our notation for a relation � on
class ������� is ����������� . We denote the set of relations for������� as �!�"#�$�������%� . We will use �'&(� to denote the set
of objects reached by following relation � from object � , and
we will use �������)&*� to denote the target class of the rela-
tion. The series of relations that are followed to get from one
object to another is called a relational path. Also note that ev-
ery relation has an inverse relation. For example, the inverse
to the Product � producedBy relation is the Manufacturer �
produces relation.

An object’s relational attributes are logical attributes that
contain information about the objects it is related to. For ex-
ample, one of a Product object’s relational attributes is the
total number of products produced by its manufacturer. Re-
lational attributes are defined recursively, and the relational
attributes of an object consist of the intrinsic attributes and
relational attributes of the objects it is related to, and so on. It
is common to limit the depth of recursion in some manner.

Each object must have a fixed number of relational at-
tributes for any given depth to facilitate the use of exist-
ing tools on relational data. Unfortunately each object with
many-relations (or that is related to an object with many-

relations) has a variable number of related objects for any
given depth. In order to reconcile this difference, we aggre-
gate the values of a set of instances into a fixed number of
attributes using a set of aggregation functions. The attributes
for any particular instance are a subset of the attributes that
are possible at a class level (if a many-relation on an instance
is empty, some of the class level attributes have no value for
the instance). Thus, more formally, let ��$�,+.-/� be the set of
relational attributes for � up to a depth of - . Let the set of all
attributes (intrinsic and relational) for the class to depth - be�10#0��$�,+.-/�324���$����56 7���,+�-8� .

 ��$�,+�-8�92 :;=<�>@?�ACBEDGF :HI<KJ@LMLNBOD�P�;�Q RTS@U�F �WVXV��$�8� (1)

When � is a one-relation �,VXV is the identity function. When� is a many-relation �,VXV applies a set of aggregation func-
tions to � and results in one attribute per aggregation func-
tion. The aggregations used depend on the type of � ; in
our experiments we use min, max, mean, and standard de-
viation if � is numeric and mode if � is categorical. We also
include one additional relational attribute per many-relation,
which is the count of the number of objects that satisfy the
relation. Each relational attribute uses an intrinsic attribute
from a single class, and passes it through the set of aggrega-
tion functions for each many-relation between ������� and the
class with the intrinsic attribute. For example, the relational
attributes of Manufacturer might include the average price of
products it produces, the maximum price of a product it pro-
duces, the count of the number of products it produces, the
most common color of a product it produces, the maximum
of the average sale price of products it produces, etc.

The definition of above is at the class level, but we are
interested in the values for these attributes at an instance level.
This is simply a matter of starting from the instance, follow-
ing relations and calculating aggregations as specified in the
preceding definition. We describe this procedure in more de-
tail (including pseudo-code) in Section 4.1.

3 Relational Learning
One of the possible goals for relational learning is to build
models to predict the value of some target attribute (or at-
tributes) of a target class (or classes) from the other attributes
of the objects of the target class and the objects they are re-
lated to. (Note that the target attribute can be intrinsic or re-
lational.) A training data set–with the values of the target
attributes filled in–is presented to the learner, and the learner
must produce a model that accurately predicts the values of
the target attributes on some other data set, where they are
unknown. This is the type of relational learning we will fo-
cus on in the remainder of this paper. Other possible goals
for relational learning systems include building probabilistic
models over link existence and object existence (see Getoor
et al. [2001]).

Perhaps the simplest method for performing relational
learning is to flatten the data into a propositional data set,
and pass it to an existing propositional learning system. Flat-
tening proceeds as follows: a target depth - is selected, and a

propositional training example is constructed for each object
in the target source by calculating the values of the attributes
in the set �#010��$�������Y+.-/� . The advantage of this method is
its simplicity, but it has several disadvantages. One is that it is
very slow: calculating the value for each attribute potentially
requires loading a large portion of data set from disk, and,
even for modest values of - , there can easily be thousands
or tens of thousands of attributes for each object. This prob-
lem grows worse than linearly with the size of the relational
data set, because larger data sets have more objects that need
their attributes calculated, and each of these objects is related
to more objects in the larger data set; the exact cost depends
on the density of the relational structure in the data. Another
disadvantage of this method is that it produces propositional
learning problems with very large attribute spaces. Large at-
tribute spaces lead many learning algorithms to overfit the
training data. Further, this often means that the size of the
flattened data set is much larger than the relational one, which
leads to additional scaling challenges.

One method used to address these problems is to avoid flat-
tening the entire database, and instead perform a search over
the space of possible relational attributes. This is the method
used by PRMs [Friedman et al., 1999]. PRMs work by first
selecting a small subset of the possible attributes using some
form of feature selection. Sufficient statistics are gathered for
the selected attributes and passed to a propositional learner
(PRMs use a Bayesian Network learning algorithm, modified
to learn coherent joint distributions in the presence relational
data). When the learner produces a model, a new set of at-
tributes is selected by performing another round of feature se-
lection, taking into account the information contained in the
partially learned model. The system gathers any new suffi-
cient statistics it needs, and the propositional learner is called
to refine its existing model with the new set of attributes.
These steps are repeated until resources are exhausted or until
the quality of the resulting model asymptotes.

These approaches improve on flattening, but they still do
not scale to very large data sets. One reason is that they must
flatten each attribute they are considering for every object in
the target source before they can do any feature selection.
This is wasteful because the feature selection task is often rel-
atively easy, and decisions could be made much sooner with
high confidence. Additionally, the greedy search procedures
they use may miss interesting features that could be easily
found with more systematic search. In the next section we
will present our system, which addresses these problems.

4 Scaling Up Relational Learning
Our system, which we call VFREL, has three main compo-
nents. The first is a query planner designed to provide ef-
ficient access to training data on disk as needed by the rest
of our system. The second is a filter-based feature selection
algorithm that is accelerated with sampling. The third is a
propositional learning algorithm. At a high level, VFREL
works by using sampling to select a promising subset of the
possible relational attributes, saving time by flattening those
while ignoring the others, and then calling a propositional
learner on the flattened values. In particular, it begins by

scanning a sample of the target objects and flattening all at-
tributes up to a large depth. This is very slow, but VFREL
only does it for a small sample of the target objects. It then
pauses and uses statistical tests to identify attributes that are
poor enough that, with high confidence, they would not be
selected by the feature selection algorithm if it could see their
values for all of the target objects. As soon as it identifies
any such clear losers, VFREL saves time by eliminating them
from further consideration. VFREL repeats this procedure,
generating fewer and fewer attribute values (requiring fewer
disk accesses and less processor time) on more and more of
the data set. After computing attribute values for all of the
target objects, VFREL performs a final round of feature se-
lection, constructs a propositional data set from the final set
of selected attributes, and passes it to a propositional learn-
ing algorithm. We will now describe the components of our
system in more detail, starting with our data access module.

4.1 Efficient Data Access: Traversal Tree
VFREL needs to calculate the values of some relational at-
tributes for each target object. In order to do this, every re-
lated object that is relevant to one of these attributes needs to
be loaded from disk and processed. VFREL can determine
which relations it needs to follow to gather this set of objects
from the information it has at class level. It builds a tree of
these required relational paths. It then traverses the tree, fol-
lowing each relation at most once, loading data into RAM
only as it is needed, and computing the required attribute val-
ues. Traversal Trees work with binary relations. If the do-
main contains N-ary relations, they are encoded into binary
relations in the usual way.

Nodes in the traversal tree correspond to classes, and edges
correspond to relations. During its run, VFREL maintains a
tree that contains exactly the relations that must be followed
to calculate the values of the relational attributes of the target
object that have not been determined to be clear losers. And
so, at each node in the tree, VFREL maintains a list of the at-
tributes whose values need to be calculated from the instances
of that class that are encountered at that point in a traver-
sal. In VFREL’s first iteration the traversal tree is simply an
unrolled version of the class graph, and can be constructed
in time proportional to the size of �1010���0#�Z�I[/\I]%�X^O�8_`_�+�-8�
as follows. The root node represents the class of the tar-
get object. A child is added to this node for each class in �!�"1��0#�Z�I[/\I]%�X^O�8_`_a� , and so on recursively until the tree is
depth - . Let 0 be a node, 0Gb be the class represented by the
node, \ be an edge, and \ ; be the relation represented by the
edge. Next, we build a list on each node (let 0 H be the list
on node 0) that represents the attribute values that must be
calculated at that point in the traversal as follows. We com-
pute the set �1010c��0#�Z�I[/\I]%�X^��/_`_�+�-8� . Each of these attributes
is based on one of the attributes of one class (see Equation 1)
and is added to the associated node’s list. Following cycles in
the relational structure can lead to some obviously redundant
attributes. Many such attributes are removed at this point by
removing length one cycles that involve a one-relation and its
inverse.

When VFREL needs to calculate the value of the relational
attributes for a particular target object it uses the traversal tree

Table 1: Pseudo-code for calculating attribute values with a
traversal tree.

Procedure Traverse(0 , �)0 is a traversal tree� is an instance of class 0Gb
Let d2feKg be the results of the traversal
Record in the values for attributes in 0 H from �
For \chi�XjCkl^O-��a\T�3��0,�

Let 0 bnm be the node reached via \
Let �Xo%pZ_ be �q&r\ ;
If �Xo%pZ_ is empty, every attribute in 0 bnm and all of

its children is missing, note this in
If \ ; is a one relation, let � bnm be the object in �Xo%pZ_ d24 s5 Traverse(0 bnm , � bnm)
Else \ ; is a many relation, let 01t�uv2feKg

For � bnm h��Xolp/_0#t�uw2x0#t�uy5 Traverse(0 bnm , � bnm)
Perform needed aggregations, note values in

Return
to determine which objects to load from disk and when. Ta-
ble 1 contains pseudo-code for the procedure.

As the run progresses, and attributes are eliminated by fea-
ture selection, VFREL will remove the eliminated attributes
from the attribute lists on the traversal tree’s nodes. Notice
that a leaf with an empty attribute list corresponds to an ob-
ject where every attribute has been determined to be a loser.
Such objects do not need to be loaded from disk and so the
leaf is pruned from the tree (internal nodes may have empty
lists as they can still contribute through the objects that they
are related to).

This traversal strategy allows VFREL to follow each edge
in the traversal tree only once (instead of once per attribute,
as might be done if following an edge required just a pointer
dereference instead of a disk access).1 It also allows VFREL
to be very efficient with its RAM usage. In particular, at any
point in the traversal it requires that one object be in RAM
per edge in the path from the root to the current traversal
tree node. It also requires RAM to store the partially com-
puted attribute values. (The maximum space required for this
is on the order of the number of relational attributes of the
target class, since relational attribute values are computed in
an online manner as objects are loaded from disk.) For each
many-relation VFREL also maintains a list of hash keys for
the objects it will need to load to finish following the relation.

4.2 Feature Selection with Sampling
Our system uses filter-based feature selection [Kononenko,
1994], [Kohavi and John, 1997] to explore the space of re-

1Notice that the description here may require an object be loaded
from disk more than once per traversal if it is reached via several dif-
ferent relational paths. The full VFREL system uses several forms
of caching to reduce this redundancy, but they are not reported on or
evaluated in this paper.

lational attributes. The goal is to identify the relational at-
tributes that are most relevant to the learning task and acceler-
ate our system by only calculating the values of these relevant
attributes, while ignoring the rest. VFREL uses sampling to
accelerate this process, and is able to eliminate attributes (and
thus paths from the traversal tree) with less than one scan over
the data set. This allows it to be more efficient than standard
PRM learning.

Filter-based feature selection works as follows. The utility
of each feature is estimated on training data with a scoring
function (commonly information gain). The best N features
are selected, and the rest are discarded. Traditionally, calcu-
lating the information gain of an attribute requires knowing
the value of the attribute for every training example. In our
context, this means that the entire data set needs to be flat-
tened before feature selection can take place, which results
in no speed gain. If we are willing to accept a small chance
of making an error, we can use sampling to do much better.
VFREL uses techniques developed by Hulten and Domingos
[2002] and others to do just that. Standard statistical results
can be used to obtain a high confidence bound on the differ-
ence between the gain observed for a feature on a sample of
data and the true gain of the feature. For example, the Ho-
effding bound [Hoeffding, 1963] says the following. Let z be
a random variable with range . Let {z be the mean of n i.i.d.
(independent and identically distributed) observations of z .
Then, with probability |G}w~ , the Hoeffding bound guarantees
that z���{z�}�� where

�)2�� ��T^E�3��|`��~K�� � (2)

We apply this bound to our setting as follows. LetV���� U +���� be the information gain observed for attribute � U
on a sample of n examples and similarly for V��$� � +%��� . Re-
call that the range of the information gain function is the log
base two of the number of values of the target attribute. Let� 2�V���� U +����G}�V���� � + � � . We bound

�
with the Hoeffding

bound and thus, if
� }��1��� , we know with confidence |�}�~

that � U truly has a higher information gain than � � , and thus
that the feature selection algorithm would select � U over � �
if the gains were computed from the entire training set, in-
stead of from the sample. Thus, when trying to find the top N
features in the training set, and after the values of relational
attributes have been generated for the first n target objects, we
can state the following. Let �,� be the attribute with the ��� m
best gain on the sample. Then, with confidence |,}�~Z� , any
attribute with a gain less than V��$� � +�����}�� is not one of the
best N attributes. ~�� is different from the ~ in the Hoeffding
bound because many comparisons are involved in the feature
selection, and thus the bound needs to be applied many times
to assure a global level of confidence. We use a Bonferroni
correction and set ~ by dividing ~Z� , the desired global confi-
dence, by the number of bounds that need to hold during the
algorithm’s entire run.

Sampling from relational data may violate the i.i.d. re-
quirement of the Hoeffding bound. Taking this into account,
using non-i.i.d. extensions of Hoeffding-style bounds, is an
important direction for future research (see also Jensen and
Neville [2002a] [2002b]).

Table 2: Pseudo-code for the VFREL algorithm.

Let �f24�#010���0W���I[8\I]%�X^O�8_`_K+.-/�
Let 0s2 Initial Traversal tree for �
Let ��2 Initial step size
Let �f2 Database cursor for the target object source
While � is not finished

Calculate values for � on next � objects from �
Compute information gain for attributes in �
Order � by information gain
Let V � be gain of the ��� m best attribute
Remove from � every attribute with gain ��V � }��
Update 0 by dropping the removed attributes
Call the StepSize function to find next �

Return the result of the propositional learner on the
best N attributes

4.3 The VFREL Algorithm
We will now describe VFREL, our algorithm for mining mas-
sive relational data sets, in detail. The inputs are a relational
data set, a target class and target attribute of that class, a depth
cutoff - , a global confidence target ~Z� , a target number of fea-
tures N, a function that specifies how many samples to take
before performing a round of feature selection (StepSize be-
low), and a propositional learning algorithm. Table 2 contains
pseudo-code for VFREL.

VFREL iterates over the target objects and starts gener-
ating values for all of the attributes that are at most depth- away. It periodically pauses to perform a round of fea-
ture selection, informed by the data that has been generated
up to that point. The information gain for each of the at-
tributes being considered is computed, and they are sorted
by their information gain. The ��� m best attribute is deter-
mined, and its information gain is noted. From the Hoeffd-
ing bound, we know with high probability that any attribute
with a score less than V � }s� will not be selected as one
of the final N attributes, and does not need to be considered
further. In order to assure a global confidence of ~Z� that the
correct attributes are selected, each local � is determined with~X24~K�I�/�Y� �#010���0W���I[8\I]%�X^O�8_`_K+.-/���n�@k%� , where k is an estimate
of the total number of iterations of VFREL’s main loop that
will be performed2. When VFREL finishes with all the target
objects, it performs one final round of feature selection, keep-
ing only the top N features. Finally, a propositional data set is
created from the attribute values that were calculated during
the feature selection and the propositional learning algorithm
is called to produce a model.

Notice that this algorithm assumes that objects are re-
trieved from the target object source in random order, which
is usually possible. In our application, for example, we iter-

2If the estimate is exceeded we report the global confidence that
was actually achieved, or the algorithm can be run again with a better
estimate if needed. Our experiments required just 13 iterations of the
main loop.

ate over the keys of a DBM style hash table, which returns
keys in essentially random order. Other settings may require
a scan over the data set to randomize it.

Early iterations of VFREL take relatively long, as they gen-
erate values for many attributes, and thus require many ob-
jects be loaded from disk. As the algorithm proceeds, how-
ever, it is able to eliminate attributes that are clearly not go-
ing to be selected, stop following the relations associated
with them, focus its attention on the promising attributes,
and thus generate attribute values for later object much more
quickly. VFREL will be most effective when there are many
unpromising attributes that can be eliminated quickly, and
when the promising attributes are all found along the same
set of relational paths. In the next section we describe an
application we developed to evaluate the performance of our
algorithm, and to determine if it can successfully learn from
massive relational data sets.

5 Predicting the Evolution of the Web
The World Wide Web has received much study in recent
years. Researchers have studied ways to classify Web pages
into categories (e.g., Slattery and Craven [2001]), search
for high quality pages (e.g., Kleinberg [1998], Page et al.
[1998]), model the way Web pages acquire links over time
(e.g., Barabasi and Albert [2000], etc.) One commonality
among much of this work is that analyzing the content of Web
pages in isolation seldom produces the best results–the links
between pages often contain critical information that must be
taken into account. Unfortunately, as we have seen, state of
the art systems for building complex relational models are in
incapable of scaling to data sets the size of the Web.

In this section we describe an application of VFREL to
mining a massive Web data set. The goal is to build a model
that accurately predicts if a Web page’s popularity will rise or
fall in the future. Such models would be useful, for example,
to help improve search engine results for new pages, and to
help designers create pages that people will reference. We es-
timate the popularity change in a Web page by counting the
number of pages that point to it in one crawl, and trying to
predict if the page will be linked to by five or more additional
pages, five or more fewer pages, or within five of the same
number of pages in a future crawl. We take into account 47
intrinsic attributes of nearly two million Web pages. We also
make use of relational information that includes seven object
sources and millions of relations.

Our application begins with a crawl of approximately 1.7
million Web pages from .edu domains that was gathered in
early June of 2001. The crawl contains pages from 31k
unique Web hosts and uses 23 GB of disk space. It was gath-
ered starting from a small set of seed Web pages (Google’s
top 20 results for the query ‘university’) and performing a
breadth-first crawl until no more files would fit on the disk3.
The crawl ran on a cluster of five 1 Ghz Linux machines, and
took approximately 3 days to finish. We gathered a second
crawl, using the same procedure and set of seed pages, in

3The version of Linux we used for these studies limited the num-
ber of files in a partition to 1.7 million. We plan on removing this
limitation in a future study.

November of 2002. There were 563k pages that appeared in
both crawls.

We put each of the pages that appeared in both crawls into
a database (an object database which we implemented on top
of GDBM). We used seven object sources to represent the
domain, and their properties are as follows:

WebPage There are 563,083 Web page objects in our data
set. Each has 47 attributes, including binary attributes
to indicate the presence of the top 10 words according
to information gain on the training set; the number of
images; characterizations of alt text usage, script usage,
color usage, etc.4 and the PageRank [Page et al., 1998]
of the page within the subset of the Web covered by the
first crawl.

WebPageLink There are 2,154,420 Web page link objects,
one for each link between the pages in our data set. Each
of these objects has a one-relation for its source and a
one-relation for its destination.

Domain There are 21,069 domain objects in our data set.
Each has a single categorical attribute, the Carnegie
Classification (a publicly available classification of uni-
versities by their types) of the school it belongs to.

WebPageDomainLink There are 563,083 links from Web
pages to their domain, one for each Web page. Each link
has one numeric attribute, the depth of the page in the
domain. Each also has a one-relation for the page and a
one-relation for the domain.

Site We identified 412 sites in our crawl. A site is distinct
from a domain by being managed by a small group of
people and being about a well defined topic. We used
a set of handcrafted regular expressions that examined
URLs and identified sites including home pages, course
pages, group pages, and project pages. The very low
number of sites identified by our heuristics is problem-
atic, and in future work we hope to improve this. Each
site has an attribute that specifies its type.

WebPageSiteLink There were 1411 links between Web
pages and sites. Each contains a one-relation to the page
and a one-relation to the site.

SiteDomainLink There were 412 links from sites to their
domains. Each has a single attribute, the depth of the
site in the domain. Each also has a one-relation for the
site and a one-relation for the domain.

Note that conceptually this domain could be modeled with-
out the Link objects. We modeled it this way for several rea-
sons: it is the best way to encode the many-many relation
between WebPage objects in our database; it is conceptually
simpler to have all links modeled the same way; it is cleaner
and more extensible as we add additional features to the links
(which we plan to do in future work); and it does not hurt
efficiency compared to the other method.

We built index structures so that any relation could be fol-
lowed by accessing the index on disk, and then loading the

4Many of these attributes were gathered with the WebSAT
toolkit: http://zing.ncsl.nist.gov/WebTools/

related objects from the GDBM on-disk hash table that con-
tains them. The resulting database and associated index struc-
tures took on order of a day to construct on a 1Ghz PIII, and
occupy approximately 900MB of disk space. Reading all the
objects from disk in random order takes about 450 seconds.
Notice that many of the attributes in our domain are numeric.
We turn these attributes into categorical ones as needed by
dividing the attribute into ten approximately equal-frequency
regions. Each WebPage object has a target attribute, whose
value is ‘Gain5’ if the number of links to the page in the new
crawl is at least 5 greater than in the original crawl, ‘Lose5’
if the number of links to the page in the new crawl is at least
5 less than in the original crawl, and ‘Same’ otherwise. We
evaluated the learning algorithms in this domain by removing
the target attribute from a randomly selected 30% of the Web-
Page objects, using the learning algorithms to build models
on the data set, and using the models to fill in these missing
labels.

For these experiments we set VFREL’s parameters as fol-
lows: maximum depth, -�2�� ; global confidence, ~Z�72��Z� ;
N, number of features to select 2 |T�K� ; and StepSize began
at 1,000 and was doubled in every iteration where feature
selection did not shrink the size of the traversal tree. We
used the C4.5 decision tree learner [Quinlan, 1993] as the
propositional learner. We selected this learner over a scal-
able propositional learner for two reasons: the N-attribute
flattened training examples for the 563k Web page objects
fit in RAM, and we wanted to make the contribution of our
relational feature selection algorithm easier to evaluate. In
future work we plan on combining VFREL with the scal-
able VFDT decision tree induction algorithm [Domingos and
Hulten, 2000]. We ran our system in parallel on a cluster of
five 1Ghz Pentium III workstations running Linux with RAM
sizes ranging from 256MB to 512MB.

We compared our system to simply flattening the database
and passing the flattened data to C4.5. With our comput-
ing resources we were able to flatten depths up to 2, and the
flattened data sets are Flat0 (no relational attributes), Flat1,
and Flat2 below. We also compared to one of the leading
models of Web evolution, the preferential attachment model
[Barabási et al., 2000]. The preferential attachment model
proposes that links are constantly being added to the Web,
and that the probability that any particular page is the target
of the next link is proportional to the number of links that it
already has. We could not estimate the parameters needed to
apply this model directly in our setting. Instead, we used the
insight it is based on and built a decision tree on a single re-
lational attribute: the number of pages that point to the target
page (non-discretized).

We ran VFREL and Flat0-2 with all of their attributes (-
full below) and also after performing additional feature se-
lection to select the best 20 attributes in each setting. Table 3
contains the results of our experiments. Using 20 attributes
yielded the best results for every system. VFREL with its
20 best attributes achieved the highest accuracy of any of the
algorithms we considered. Note that while the differences in
error rate are small on a percentage basis, they were measured
on 169k test objects and represent real differences in perfor-
mance. Also notice that increasing the depth of attributes

Table 3: Results of the comparison between VFREL, flatten-
ing depth 0 - 2, the preferential attachment model, and pre-
dicting the most common class, MCC, which was Same. We
show VFREL and Flat0 - 2 with their full feature set and after
doing additional feature selection.

Algorithm Test Set Error # Nodes # Attribs
MCC 10.2% 0 0
PrefAtt 8.2% 5 1
Flat0 10.9% 18,372 20
Flat1 8.5% 11,663 20
Flat2 8.2% 9,741 20
VFREL 8.1% 7,465 20
Flat0-full 11.2% 10,197 47
Flat1-full 8.8% 15,117 50
Flat2-full 8.3% 10,308 330
VFREL-full 8.6% 14,289 100

considered results in smaller, more accurate models in our
experiments. This suggests that these deeper attributes actu-
ally do contain valuable information for our task, and that it
may be beneficial to explore further than depth 5 – we plan
on doing this in future work. The runtimes for generating the
flattened data sets were (in CPU + system hours): Flat0, .27;
Flat1, .30; Flat2, 12.9. We estimate from generating the first
10k examples that Flat4 would have taken 54 days, and we
estimate from generating the first 1,000 examples that Flat5
would have taken 261 days. Our system was able to gener-
ate values for the best 100 features up to depth 5 in 20 days
of CPU time (4 days of wall time because it ran in parallel).
VFREL is thus an order of magnitude faster than directly flat-
tening the data, and produces the most accurate model of any
of the systems we evaluated.

At the beginning of its run, VFREL was forced to fol-
low 56 relational paths from each Web page to gather
the objects needed to calculate the 3,536 attributes in�10#0��$¡¢\ao¤£X��[8\�+Y��� (after the obviously redundant ones
were removed). By the end of the run it was following just
14 paths for each Web page. Every selected relational path
begins by following the ‘linked from’ relation from the target
object (that is, all selected relational attributes are properties
of pages that point to the target page). After that, the ‘links
to’, ‘linked from’, and ‘domain’ relations were used. None
of the Site related attributes or relations were used to calcu-
late the 100 best attribute values. We believe this will change
when we improve our site identification heuristics.

The top 20 attributes included attributes formed using ev-
ery aggregation we allowed except for mode. Eleven of them
were aggregations of the PageRank of pages that pointed to
the target, or were linked (in either direction) to pages that
pointed to the target. Other selected features included aggre-
gations of counts of Web pages, of depths of pages in their
domain, of the number of words in link anchors, and of the
size of related pages in bytes. The best attribute was the pref-
erential attachment one, the count of the number of pages that
point to the target. By examining the decision tree produced
by C4.5 we determined that the information in the PageRank
attributes was mostly captured by the preferential attachment

attribute. We found the attributes that contributed to our sys-
tem’s improvement over the preferential attachment model
were properties of other pages pointed to by the pages that
pointed to the target, like the variance of the domain depths
of the other pages pointed to by pages pointing to the target,
and the popularity (as measured by the number of inlinks)
of the other pages they point to. These features are a depth
of 5 from the target class, and it is unlikely that they would
have been found by other relational learning systems. We
believe that properties of the pages pointing to the target are
important for this prediction task because people find the tar-
get page (a prerequisite to linking to the page) through these
links.

Generating attribute values for the median hundred Web
pages out of the first thousand (before any feature selection)
took 3,488 seconds and required that nearly 5 million object
be loaded from disk. In the last iteration of VFREL’s main
loop, when it was exploring just 14 relational paths, the me-
dian 100 objects took just 153 seconds and 420k object loads
– an improvement of an order of magnitude by either metric.
There was a great deal of variance in the time it took to gener-
ate attributes for 100 objects. In fact, some single Web pages,
even on the final iteration with only 14 relational paths, re-
quired thousands of seconds and millions of object loads. We
examined some of these Web pages and found them to be ex-
tremely highly connected (tens of thousands of in links), on
very large domains (with many tens of thousands of pages),
or both. In future work we plan on exploring the use of on-
line aggregations [Hellerstein et al., 1997] to reduce the time
needed to generate attribute values for these highly connected
objects.

6 Related Work
Learning from relational data has been extensively studied by
the inductive logic programming (ILP) community [Lavrac
and Dzeroski, 1994]. In general, ILP learns models from a
richer class than our work (for example, learning recursive
concepts), but is also generally believed to be very inefficient
for large databases. Blockeel et al. [1999] developed a scal-
able ILP system named TILDE that effectively flattens rela-
tional data into what they call interpretations and then uses a
version of FOIL [Quinlan, 1990], modified to make efficient
access to data from disk, on these interpretations. TILDE was
evaluated on a synthetic data set with 100,000 training exam-
ples. VFREL scales to much larger data sets by using sam-
pling to focus on relevant attributes and relations. Slattery
and Craven [2001] extensively studied the use of relational
learning for hyper-text documents. They developed a hybrid
algorithm that combines Naive Bayes, FOIL, and many in-
sights into the nature of the Web, and applied it to several
Web mining tasks. Their focus, however, was not on scaling,
and the largest data set they considered contained on the order
of thousands of Web pages, while ours contains millions.

7 Future Work
Directions for future work on VFREL include: more closely
integrating it with a scalable propositional learning algorithm

(for example VFDT); modifying learners to exploit informa-
tion from the data generation process (for example, when a re-
lation is missing, many related attributes simultaneously have
missing values); extending it to the case where the contents
of object sources change over time; modifying it to iterate be-
tween feature selection and learning phases; and applying it
to other domains.

Future directions for our Web application include: per-
forming a similar study with a larger Web crawl; performing
a similar study on a more volatile portion of the Web (perhaps
.com); adding more intrinsic attributes to the objects (words
on links, more text, etc.); building models to predict which
links will appear over time; and building models from the
stream of pages that a crawler finds as it finds them.

8 Summary
In this paper we explored some of the issues that prevent rela-
tional learning algorithms from scaling to very large data sets.
We developed a system, VFREL, which uses efficient data ac-
cess and sampling to efficiently explore the space of relational
attributes. We used VFREL to mine data sets containing mil-
lions of objects and links, and found it to build models that
were more accurate than those produced by any of the sys-
tems we evaluated, discover novel relational attributes, and
work an order of magnitude faster than the alternative ap-
proaches.

Acknowledgments
This research was partly supported by an NSF CAREER
grant to the second author, by ONR grant no. N00014-02-
1-0408, and by a gift from the Ford Motor Co.

References
[Barabási et al., 2000] A. L. Barabási, R. Albert, and H. Jong.

Scale-free characteristics of random networks: The topology of
the World Wide Web. Physica A, 281:69–77, 2000.

[Blockeel et al., 1999] H. Blockeel, L. D. Raedt, and N. Jacobs.
Scaling up inductive logic programming by learning from inter-
pretations. Data Mining and Knowledge Discovery, 3(1):59–93,
1999.

[Domingos and Hulten, 2000] P. Domingos and G. Hulten. Min-
ing high-speed data streams. In Proceedings of the Sixth ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 71–80, Boston, MA, 2000. ACM Press.

[Friedman et al., 1999] N. Friedman, L. Getoor, D. Koller, and
A. Pfeffer. Learning probabilistic relational models. In Proceed-
ings of the Sixteenth International Joint Conference on Artificial
Intelligence, pages 1300–1307, Stockholm, Sweden, 1999. Mor-
gan Kaufmann.

[Gehrke et al., 1999] J. Gehrke, V. Ganti, R. Ramakrishnan, and
W.-L. Loh. BOAT: optimistic decision tree construction. In Pro-
ceedings of the 1999 ACM SIGMOD International Conference
on Management of Data, pages 169–180, Philadelphia, PA, 1999.
ACM Press.

[Getoor et al., 2001] L. Getoor, N. Friedman, D. Koller, and
B. Tasker. Learning probabilistic models of relational structure.
In Proceedings of the 18th Intern. Conference on Machine Learn-
ing, pages 170–177, San Francisco, CA, 2001. Morgan Kauf-
mann.

[Hellerstein et al., 1997] J. Hellerstein, P. Hass, and H. Wang. On-
line aggregation. In Proceedings of the SIGMOD Intern. Confer-
encce on Managment of Data, Tuscon, AZ, 1997.

[Hoeffding, 1963] W. Hoeffding. Probability inequalities for sums
of bounded random variables. Journal of the American Statistical
Association, 58:13–30, 1963.

[Hulten and Domingos, 2002] G. Hulten and P. Domingos. Mining
complex models from arbitrarily large databases in constant time.
In Proceedings of the Eighth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pages 525–
531, Edmonton, Canada, 2002. ACM Press.

[Jensen and Neville, 2002a] D. Jensen and J. Neville. Autocorrela-
tion and linkage cause bias in evaluation of relational learners. In
Proceedings of the Twelfth International Conference on Inductive
Logic Programming, Sydney, Australia, 2002. Springer.

[Jensen and Neville, 2002b] D. Jensen and J. Neville. Linkage and
autocorrelation cause feature selection bias in relational learn-
ing. In Proceedings of the Nineteenth International Conference
on Machine Learning, pages 259–266, Sydney, Australia, 2002.
Morgan Kaufmann.

[Jensen and Neville, 2002c] D. Jensen and J. Neville. Schemas and
models. In Proceedings of the Multi-Relational Data Mining
Workshop, 8th SIGKDD Intern. Conf. on Knowledge Discovery
and Data Mining, Edmonton, Canada, 2002. ACM Press.

[Jensen, 1998] D. Jensen. Statistical challenges to inductive infer-
ence in linked data. In Preliminary papers of the 7th Intern. Work-
shop on Artificial Intelligence and Statistics, 1998.

[Kleinberg, 1998] J. M. Kleinberg. Authoritative sources in a hy-
perlinked environment. In Proceedings of the Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 668–677,
Baltimore, MD, 1998. ACM Press.

[Kohavi and John, 1997] R. Kohavi and G. John. Wrappers for fea-
ture subset selection. Artificial Intelligence, 97(1-2), 1997.

[Kononenko, 1994] I. Kononenko. Estimating attributes: Analysys
and extensions of relief. In F. Bergadano and L. D. Raedt, editors,
Proceedings of the European Conference on Machine Learning,
1994.

[Lavrac and Dzeroski, 1994] N. Lavrac and S. Dzeroski. Inductive
logic programming: techniques and applications. Chichester,
UK: Ellis Horwood, 1994.

[Moore and Lee, 1997] A. W. Moore and M. S. Lee. Cached suffi-
cient statistics for efficient machine learning with large datasets.
Journal of Artificial Intelligence Research, 8:67–91, 1997.

[Page et al., 1998] L. Page, S. Brin, R. Motwani, and T. Winograd.
The PageRank citation ranking: Bringing order to the web. Tech-
nical report, Stanford University, Stanford, CA, 1998.

[Quinlan, 1990] J. R. Quinlan. Learning logical definitions from
relations. Machine Learning, 5:239–266, 1990.

[Quinlan, 1993] J. R. Quinlan. C4.5: Programs for Machine Learn-
ing. Morgan Kaufmann, San Mateo, CA, 1993.

[Shafer et al., 1996] J. C. Shafer, R. Agrawal, and M. Mehta.
SPRINT: A scalable parallel classifier for data mining. In Pro-
ceedings of the Twenty-Second International Conference on Very
Large Databases, pages 544–555, Bombay, India, 1996. Morgan
Kaufmann.

[Slattery and Craven, 2001] S. Slattery and M. Craven. Relational
learning with statistical predicate invention: better models for hy-
pertext. Machine Learning, 43(1/2), 2001.

