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Abstract

Interest in statistical relational learning
(SRL) has grown rapidly in recent years. Sev-
eral key SRL tasks have been identified, and
a large number of approaches have been pro-
posed. Increasingly, a unifying framework
is needed to facilitate transfer of knowledge
across tasks and approaches, to compare ap-
proaches, and to help bring structure to the
field. We propose Markov logic as such a
framework. Syntactically, Markov logic is
indistinguishable from first-order logic, ex-
cept that each formula has a weight attached.
Semantically, a set of Markov logic formu-
las represents a probability distribution over
possible worlds, in the form of a log-linear
model with one feature per grounding of a
formula in the set, with the corresponding
weight. We show how approaches like prob-
abilistic relational models, knowledge-based
model construction and stochastic logic pro-
grams are special cases of Markov logic. We
also show how tasks like collective classifi-
cation, link prediction, link-based clustering,
social network modeling, and object identifi-
cation can be concisely formulated in Markov
logic. Finally, we briefly describe learning
and inference algorithms for Markov logic,
and report positive results on a link predic-
tion task.

1. The Need for a Unifying Framework

Many (if not most) real-world application domains are
characterized by the presence of both uncertainty and
complex relational structure. Statistical learning fo-
cuses on the former, and relational learning on the
latter. Statistical relational learning (SRL) seeks to

combine the power of both. Research in SRL has
expanded rapidly in recent years, both because of
the need for it in applications, and because statisti-
cal and relational learning have individually matured
to the point where combining them is a feasible re-
search enterprise. A number of key SRL tasks have
been identified, including collective classification, link
prediction, link-based clustering, social network mod-
eling, object identification, and others. A large and
growing number of SRL approaches have been pro-
posed, including knowledge-based model construction
(Wellman et al., 1992; Ngo & Haddawy, 1997; Ker-
sting & De Raedt, 2001), stochastic logic programs
(Muggleton, 1996; Cussens, 1999), PRISM (Sato &
Kameya, 1997), probabilistic relational models (Fried-
man et al., 1999), relational Markov models (Ander-
son et al., 2002), relational Markov networks (Taskar
et al., 2002), relational dependency networks (Neville
& Jensen, 2003), structural logistic regression (Popes-
cul & Ungar, 2003), relational generation functions
(Cumby & Roth, 2003), CLP(BN) (Costa et al., 2003),
and others.

While the variety of problems and approaches in the
field is valuable, it makes it difficult for researchers,
students and practitioners to identify, learn and apply
the essentials. In particular, for the most part, the
relationships between different approaches and their
relative strengths and weaknesses remain poorly un-
derstood, and innovations in one task or application
do not easily transfer to others, slowing down progress.
There is thus an increasingly pressing need for a uni-
fying framework, a common language for describing
and relating the different tasks and approaches. To
be most useful, such a framework should satisfy the
following desiderata:

1. The framework must subsume both first-order
logic and probabilistic graphical models. Other-
wise some current or future SRL approaches will



fall outside its scope.

2. SRL problems should be representable clearly and
simply in the framework.

3. The framework must facilitate the incorporation
of domain knowledge into SRL. Because the
search space for SRL algorithms is very large even
by AI standards, domain knowledge is critical to
success. Conversely, the ability to incorporate
rich domain knowledge is one of the most attrac-
tive features of SRL.

4. The framework should facilitate the extension to
SRL of techniques from statistical learning, induc-
tive logic programming, probabilistic inference and
logical inference. This will speed progress in SRL
by taking advantage of the large extant literature
in these areas.

In the next section we propose a framework that we
believe meets all of these desiderata. We then describe
how several SRL approaches and tasks can be formu-
lated in this framework. Finally, we illustrate how ex-
isting learning and inference techniques can be applied
within it to yield practical algorithms.

2. Markov Logic

Markov logic is a simple yet powerful combination of
Markov networks and first-order logic. Recall that a
Markov network is a model for the joint distribution
of a set of variables X = (X1, X2, . . . , Xn) ∈ X (Pearl,
1988), often conveniently represented as a log-linear
model:
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where Z is a normalization factor, and the fj(x)’s are
features of the state x (i.e., functions with X as the
domain). Essentially every probabilistic model of in-
terest to SRL can be represented as a Markov net-
work or log-linear model, including Bayesian networks,
decision trees, logistic regression, etc. Markov logic
raises the expressiveness of Markov networks to en-
compass first-order logic. Recall that a first-order do-
main is defined by a set of constants (which we as-
sume finite) representing objects in the domain (e.g.,
Anna, Bob) and a set of predicates representing proper-
ties of those objects and relations between them (e.g.,
Smokes(x), Friend(x, y)). (For simplicity, we ignore
functions in this paper; see Richardson and Domin-
gos (2004) for a more complete treatment.) A pred-
icate can be grounded by replacing its variables with

constants (e.g., Smokes(Anna), Friend(Anna, Bob)). A
world assigns a truth value to each possible ground
predicate. A first-order knowledge base (KB) is a set
of formulas in first-order logic, constructed from predi-
cates using logical connectives and quantifiers. Essen-
tially all the relational languages used in SRL (e.g.,
logic programs, frame-based systems, database query
languages) are special cases of first-order logic.

A formula in Markov logic is a formula in first-order
logic with an associated weight. We call a set of formu-
las in Markov logic a Markov logic network or MLN.
MLNs define probability distributions over possible
worlds (Halpern, 1990) as follows.

Definition 2.1 A Markov logic network L is a set of
pairs (Fi, wi), where Fi is a formula in first-order logic
and wi is a real number. Together with a finite set of
constants C = {c1, c2, . . . , c|C|}, it defines a Markov
network ML,C (Equation 1) as follows:

1. ML,C contains one binary node for each possible
grounding of each predicate appearing in L. The
value of the node is 1 if the ground predicate is
true, and 0 otherwise.

2. ML,C contains one feature for each possible
grounding of each formula Fi in L. The value
of this feature is 1 if the ground formula is true,
and 0 otherwise. The weight of the feature is the
wi associated with Fi in L.

A first-order KB can be seen as a set of hard con-
straints on the set of possible worlds: if a world vio-
lates even one formula, it has zero probability. The ba-
sic idea in Markov logic is to soften these constraints:
when a world violates one formula in the KB it is less
probable, but not impossible. The fewer formulas a
world violates, the more probable it is. A formula’s
associated weight reflects how strong a constraint it
is: the higher the weight, the greater the difference in
log probability between a world that satisfies the for-
mula and one that does not, other things being equal.
As weights increase, an MLN increasingly resembles a
purely logical KB. In the limit of all infinite weights,
the MLN represents a uniform distribution over the
worlds that satisfy the KB.

An MLN without variables (i.e., containing only
ground formulas) is an ordinary Markov network. Any
log-linear model over Boolean variables can be repre-
sented as an MLN, since each state of a Boolean clique
is defined by a conjunction of literals. (This extends
trivially to discrete variables, and to binary encoding
of numeric variables.)



An MLN can be viewed as a template for constructing
Markov networks. In different worlds (different sets
of constants) it will produce different networks, and
these may be of widely varying size, but all will have
certain regularities in structure and parameters, given
by the MLN (e.g., all groundings of the same formula
will have the same weight).

3. SRL Approaches

Since Markov logic subsumes first-order logic and
probabilistic graphical models, it subsumes all repre-
sentations used in SRL that are formed from special
cases of them. However, it is enlightening to see how
these representations map into Markov logic, and here
we informally do this for a few of the most popular
ones.

3.1. Knowledge-Based Model Construction

Knowledge-based model construction (KBMC), the
oldest SRL approach (Wellman et al., 1992; Ngo &
Haddawy, 1997; Kersting & De Raedt, 2001), is a
combination of logic programming and Bayesian net-
works. KBMC, like all other SRL approaches based on
logic programming, is a restriction of Markov logic to
KBs containing only Horn clauses. As in Markov logic,
nodes in KBMC represent ground predicates. The par-
ents of a node are the predicates appearing in the bod-
ies of Horn clauses having the node as a consequent.
The conditional probability of a node given the truth
values of its parent rule bodies is specified by a com-
bination function (e.g., noisy OR, logistic regression,
arbitrary CPT). A KBMC model is translated into
Markov logic by writing down a set of formulas for
each first-order predicate Pk(...) in the domain. Each
formula is a conjunction containing Pk(...) and one lit-
eral per parent of Pk(...) (i.e., per first-order predicate
appearing in a Horn clause having Pk(...) as the con-
sequent). A subset of these literals are negated; there
is one formula for each possible combination of posi-
tive and negative literals. The weight of the formula
is w = log[p/(1− p)], where p is the conditional prob-
ability of the child predicate when the corresponding
conjunction of parent literals is true, according to the
combination function used. If the combination func-
tion is logistic regression, it can be represented using
only a linear number of formulas, taking advantage
of the fact that it is a (conditional) Markov network
with a binary clique between each predictor and the
response. Noisy OR can similarly be represented with
a linear number of parents.

3.2. Stochastic Logic Programs

Stochastic logic programs (SLPs) (Muggleton, 1996;
Cussens, 1999) are a combination of logic program-
ming and log-linear models. Puech and Muggleton
(2003) showed that SLPs are a special case of KBMC,
and thus they can be represented in Markov logic in
the same way.

3.3. Probabilistic Relational Models

Probabilistic relational models (PRMs) (Friedman
et al., 1999) are a combination of frame-based sys-
tems and Bayesian networks. PRMs can be repre-
sented in Markov logic by defining a predicate S(x, v)
for each (propositional or relational) attribute of each
class, where S(x, v) means “The value of attribute S in
object x is v.” A PRM is then translated into Markov
logic by writing down a formula for each line of each
(class-level) conditional probability table (CPT) and
value of the child attribute. The formula is a conjunc-
tion of literals stating the parent values and a literal
stating the child value, and its weight is the logarithm
of P (x|Parents(x)), the corresponding entry in the
CPT. In addition, the MLN contains formulas with
infinite weight stating that each attribute must take
exactly one value. Notice that this approach handles
all types of uncertainty in PRMs (attribute, reference
and existence uncertainty).

3.4. Relational Markov Networks

Relational Markov networks (RMNs) (Taskar et al.,
2002) are a combination of Markov networks and con-
junctive queries, a subset of the SQL database query
language. An RMN is simply an MLN with a formula
(in particular, a conjunction of literals) for each pos-
sible state of each clique template in the RMN, with
the corresponding weight.

3.5. Structural Logistic Regression

In structural logistic regression (SLR) (Popescul &
Ungar, 2003), the predictors are the output of SQL
queries over the input data. Just as a logistic re-
gression model is a discriminatively-trained Markov
network, an SLR model is a discriminatively-trained
MLN.1

3.6. Relational Dependency Networks

In a relational dependency network (RDN), each
node’s probability conditioned on its Markov blanket is

1Use of SQL aggregates requires that their definitions
be imported into the MLN.



given by a decision tree (Neville & Jensen, 2003). Ev-
ery RDN has a corresponding MLN in the same way
that every dependency network has a corresponding
Markov network, given by the stationary distribution
of a Gibbs sampler operating on it (Heckerman et al.,
2000).

4. SRL Tasks

In this section, we show how key SRL tasks can be
concisely formulated in Markov logic, making it pos-
sible to bring the full power of logical and statistical
learning and inference approaches to bear on them.

4.1. Collective Classification

The goal of ordinary classification is to predict the
class of an object given its attributes. In collective
classification, we also take into account the classes
of related objects. Attributes can be represented in
Markov logic as predicates of the form A(x, v), where
A is an attribute, x is an object, and v is the value
of A in x. The class is a designated attribute C, rep-
resentable by C(x, v), where v is x’s class. Classifica-
tion is now simply the problem of inferring the truth
value of C(x, v) for all x and v of interest given all
known A(x, v). Ordinary classification is the special
case where C(xi, v) and C(xj, v) are independent for
all xi and xj given the known A(x, v). In collective
classification, the Markov blanket of C(xi, v) includes
other C(xj, v), even after conditioning on the known
A(x, v). Relations between objects are represented by
predicates of the form R(xi, xj). A number of interest-
ing generalizations are readily apparent, for example
C(xi, v) and C(xj, v) may be indirectly dependent via
unknown predicates, possibly including the R(xi, xj)
predicates themselves. Background knowledge can be
incorporated by stating it in first-order logic, learning
weights for the resulting formulas, and possibly refin-
ing them (see Richardson and Domingos (2004) for an
example).

4.2. Link Prediction

The goal of link prediction is to determine whether
a relation exists between two objects of interest (e.g.,
whether Anna is Bob’s Ph.D. advisor) from the prop-
erties of those objects and possibly other known rela-
tions. The formulation of this problem in Markov logic
is identical to that of collective classification, with the
only difference that the goal is now to infer the value
of R(xi, xj) for all object pairs of interest, instead of
C(x, v).

4.3. Link-Based Clustering

The goal of clustering is to group together objects with
similar attributes. In model-based clustering, we as-
sume a generative model P (X) =

∑

C P (C)P (X |C),
where X is an object, C ranges over clusters, and
P (C|X) is X ’s degree of membership in cluster C. In
link-based clustering, objects are clustered according
to their links (e.g., objects that are more closely related
are more likely to belong to the same cluster), and pos-
sibly according to their attributes as well. This prob-
lem can be formulated in Markov logic by postulating
an unobserved predicate C(x, v) with the meaning “x
belongs to cluster v,” and having formulas in the MLN
involving this predicate and the observed ones (e.g.,
R(xi, xj) for links and A(x, v) for attributes). Link-
based clustering can now be performed by learning the
parameters of the MLN, and cluster memberships are
given by the probabilities of the C(x, v) predicates con-
ditioned on the observed ones.

4.4. Social Network Modeling

Social networks are graphs where nodes represent so-
cial actors (e.g., people) and arcs represent relations
between them (e.g., friendship). Social network anal-
ysis (Wasserman & Faust, 1994) is concerned with
building models relating actors’ properties and their
links. For example, the probability of two actors form-
ing a link may depend on the similarity of their at-
tributes, and conversely two linked actors may be more
likely to have certain properties. These models are
typically Markov networks, and can be concisely rep-
resented by formulas like ∀x∀y∀v R(x, y) ⇒ (A(x, v) ⇔
A(y, v)), where x and y are actors, R(x, y) is a rela-
tion between them, A(x, v) represents an attribute of x,
and the weight of the formula captures the strength of
the correlation between the relation and the attribute
similarity. For example, a model stating that friends
tend to have similar smoking habits can be represented
by the formula ∀x∀y Friends(x, y) ⇒ (Smokes(x) ⇔
Smokes(y)). Notice that this formula is false as a uni-
versally quantified statement in first-order logic, but
is true in some domains as a probabilistic statement
in Markov logic (Lloyd-Richardson et al., 2002). As
well as encompassing existing social network models,
Markov logic allows richer ones to be easily stated
(e.g., by writing formulas involving multiple types of
relations and multiple attributes, as well as more com-
plex dependencies between them). These models can
then be learned and applied using techniques like those
in Richardson and Domingos (2004) (see next section).



4.5. Object Identification

Object identification (also known as record linkage,
de-duplication, and others) is the problem of de-
termining which records in a database refer to the
same real-world entity (e.g., which entries in a bib-
liographic database represent the same publication).
This problem is of crucial importance to many com-
panies, government agencies, and large-scale scientific
projects. One way to represent it in Markov logic is
by defining a predicate Same(x, y) with the meaning
“x represents the same real-world entity as y.” This
predicate is applied both to records and their fields
(e.g., Same(“ICML”, “Intl. Conf. on Mach. Learn.”)).
The dependencies between record matches and field
matches can then be represented by formulas like
∀x∀y Same(x, y) ⇔ Same(fi(x), fi(y)), where x and
y are records and fi(x) is a function returning the
value of the ith field of record x. We have success-
fully applied this approach to de-duplicating the Cora
database of computer science papers (Parag & Domin-
gos, 2004). Because it allows information to propa-
gate from one match decision (i.e., one grounding of
Same(x, y)) to another via fields that appear in both
pairs of records, it effectively performs collective object
identification, and in our experiments outperformed
the traditional method of making each match deci-
sion independently of all others. For example, match-
ing two references may allow us to determine that
“ICML” and “MLC” represent the same conference,
which in turn may help us to match another pair of
references where one contains “ICML” and the other
“MLC.” Markov logic also allows additional informa-
tion to be incorporated into a de-duplication system
easily, modularly and uniformly. For example, tran-
sitive closure is incorporated by adding the formula
∀x∀y∀z Same(x, y) ∧ Same(y, z) ⇒ Same(x, z), with a
weight that can be learned from data.

5. Implementation

In principle, any inductive logic programming (ILP)
approach can be used to learn the structure of an
MLN, and any approach for learning Markov network
parameters (e.g., conjugate gradient or iterative scal-
ing) can be used to learn the weights. Likewise, any
method for inference in Markov networks (e.g., Markov
chain Monte Carlo, belief propagation) can be used
to perform inference in grounded MLNs, and logical
inference methods can be used to construct the sub-
sets of these networks relevant to a particular query.
Logical inference can also be used to find modes of
the distribution, which, if the KB is satisfiable and all
weights are positive, are the satisfying assignments of

truth values to ground predicates. When no satisfy-
ing assignments exist, modes can still be found using
methods like MaxWalkSat, a variation of the WalkSat
satisfiability search algorithm for finding truth assign-
ments that maximize the sum of weights of satisfied
clauses (Selman et al., 1996).

In Richardson and Domingos (2004), we describe
one possible implementation of Markov logic, us-
ing MaxWalkSat and Gibbs sampling for inference,
the CLAUDIEN ILP system (De Raedt & Dehaspe,
1997) for structure learning, and a pseudo-likelihood
method for parameter learning (Besag, 1975). We
have tested this approach on a link prediction task
(predicting which students are advised by which fac-
ulty from a multi-relational database describing our
department), and found that it outperforms a purely
relational learner (CLAUDIEN), a purely statistical
learner (Bayesian networks, restricted or not to a
naive Bayes structure), and a pure knowledge-based
approach (manually constructed first-order KB).

6. Conclusion

The rapid growth in the variety of SRL approaches and
tasks has led to the need for a unifying framework. In
this paper we propose Markov logic as a candidate for
such a framework. Markov logic subsumes first-order
logic and Markov networks, and allows a wide variety
of SRL tasks and approaches to be formulated in a
common language. Initial experiments with an imple-
mentation of Markov logic have yielded good results.
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