
Limits to Parallel
Computation

Limits to Parallel
Computation:
P-Completeness
Theory

RAYMOND GREENLAW
University of New Hampshire

H. JAMES HOOVER
University of Alberta

WALTER L. RUZZO
University of Washington

New York Oxford
OXFORD UNIVERSITY PRESS
1995

This book is dedicated to our families,
who already know that life is inherently sequential.

Preface

This book is an introduction to the rapidly growing theory of P -
completeness — the branch of complexity theory that focuses on
identifying the “hardest” problems in the class P of problems solv-
able in polynomial time. P -complete problems are of interest because
they all appear to lack highly parallel solutions. That is, algorithm
designers have failed to find NC algorithms, feasible highly parallel
solutions that take time polynomial in the logarithm of the problem
size while using only a polynomial number of processors, for them.
Consequently, the promise of parallel computation, namely that ap-
plying more processors to a problem can greatly speed its solution,
appears to be broken by the entire class of P -complete problems.
This state of affairs is succinctly expressed as the following question:
Does P equal NC ?

Organization of the Material

The book is organized into two parts: an introduction to P -
completeness theory, and a catalog of P -complete and open prob-
lems.

The first part of the book is a thorough introduction to the theory
of P -completeness. We begin with an informal introduction. Then
we discuss the major parallel models of computation, describe the
classes NC and P , and present the notions of reducibility and com-
pleteness. We subsequently introduce some fundamental P -complete
problems, followed by evidence suggesting why NC does not equal
P . Next, we discuss in detail the primary P -complete problem, that
of evaluating a Boolean circuit. Following this we examine several se-
quential paradigms and their parallel versions. We describe a model
for classifying algorithms as inherently sequential. We finish Part I
with some general conclusions about practical parallel computation.

viii PREFACE

Because of the broad range of topics in the rapidly growing field of
parallel computation, we are unable to provide a detailed treatment
of several related topics. For example, we are unable to discuss
parallel algorithm design and development in detail. For important
and broad topics like this, we provide the reader with some references
to the available literature.

The second part of the book provides a comprehensive catalog
of P -complete problems, including several unpublished and new P -
completeness results. For each problem we try to provide the essen-
tial idea underlying its P -complete reduction, and as much informa-
tion and additional references about related problems as possible.
In addition to the P -complete problems catalog, we provide a list
of open problems, a list of problems in the class CC , and a list of
problems in the class RNC .

Using the Book in a Course

The book has been designed so that it will be suitable as a text for a
one semester graduate course covering topics in parallel computation.
The first part of the book provides introductory material and the
problems can easily be converted into numerous exercises. The book
would be ideal for use in a seminar course focusing on P -completeness
theory. It can also be used as a supplementary text for a graduate
level course in complexity theory. Several of the chapters in the book
could be covered in a graduate level course or the book could be used
as a reference for courses in the theory of computation. This work
could also be used as a rich source of sample problems for a variety of
different courses. For the motivated student or researcher interested
in learning about P -completeness, the book can be used effectively
for self study.

Additional Problems and Corrections

In producing this book over a period of many years we have tried to
be as accurate and thorough as possible. Undoubtedly, there are still
some errors and omissions in our lists of problems. In anticipation of
possible future printings, we would like to correct these errors and in-
corporate additional problems. We welcome suggestions, corrections,
new problems, and further references. For each of the P -complete
problems, we are also interested in references to papers that provide

PREFACE ix

the best known parallel algorithms for the problem.
Please send general comments, corrections, new problems, bibli-

ography entries, and/or copies of the relevant papers to

Ray Greenlaw at greenlaw@cs.unh.edu

Corrigenda and additions to this work can by found in the directory

pub/hoover/P-complete at ftp.cs.ualberta.ca

and via the World Wide Web in Jim Hoover’s home page at

http://www.cs.ualberta.ca/

Research Support

The authors gratefully acknowledge financial support from the fol-
lowing organizations:

Ray Greenlaw’s research was supported in part by the National
Science Foundation grant CCR-9209184.

Jim Hoover’s research was supported by the Natural Sciences and
Engineering Research Council of Canada grant OGP 38937.

Larry Ruzzo’s research was supported in part by NSF grants
ECS-8306622, CCR-8703196, CCR-9002891, and by NSF/DARPA
grant CCR-8907960. A portion of this work was performed while
visiting the University of Toronto, whose hospitality is also gratefully
acknowledged.

Acknowledgments

An extra special thanks to Martin Tompa who helped keep this
project alive when it was close to dying. Martin has provided us
with many useful suggestions over the years — all of which have
helped to make this a better book.

A special thanks to Anne Condon and Alex Schäffer for carefully
reading drafts of the book. Their suggestions helped to improve
specific sections.

We wish to thank the following for contributing new problems,
pointing us to appropriate literature, and providing us with cor-
rections and suggestions on drafts of the manuscript: Richard An-
derson, José Balcázar, David Barrington, Paul Beame, Erik Brisson,
Anne Condon, Stephen Cook, Derek Corneil, Pilar de la Torre, Larry
Denenberg, Sergio De Agostino, John Ellis, Arvind Gupta, John

x PREFACE

Hershberger, David Johnson, Marek Karpinski, Tracy Kimbrel, Dex-
ter Kozen, Luc Longpré, Mike Luby, Jon Machta, Andrew Malton,
Pierre McKenzie, Satoru Miyano, Christos Papadimitriou, Teresa
Przytycka, John Reif, Alex Schäffer, Roger Simons, Jack Snoeyink,
Paul Spirakis, Iain Stewart, Larry Stockmeyer, Ashok Subramanian,
Eva Tardos, Shang-Hua Teng, Martin Tompa, H. Venkateswaran,
Joachim von zur Gathen, and Thomas Zeugmann.

We want to thank the reviewers who provided us with general
comments about the organization of the book as well as detailed
comments. We have tried to incorporate as many of their suggestions
as possible although not all of them were feasible for us.

We want to thank Don Jackson at Oxford University Press. Don
has been very helpful at each step in the production of this book and
has been a great person to work with.

Finally, we would like to thank Mike Garey and David Johnson
whose book Computers and Intractability: A Guide to the Theory of
NP-completeness [113] has served as a model for this work.

November 1994 Ray Greenlaw
Jim Hoover

Larry Ruzzo

PREFACE xi

Authors’ Addresses

Raymond Greenlaw
Department of Computer Science
University of New Hampshire
Durham, NH 03824
e-mail address: greenlaw@cs.unh.edu
world wide web home page:

http://www.cs.unh.edu/

H. James Hoover
Department of Computing Science
University of Alberta
Edmonton, Alberta, Canada T6G 2H1
e-mail address: hoover@cs.ualberta.ca
world wide web home page:

http://www.cs.ualberta.ca/

Walter L. Ruzzo
Department of Computer Science and Engineering, FR-35
University of Washington
Seattle, WA 98195
e-mail address: ruzzo@cs.washington.edu
world wide web home page:

http://www.cs.washington.edu/

Contents

Preface vii

Part I: Background and Theory 1

1 Introduction 3
1.1 Bandersnatch Design 3
1.2 Informal Background 8

1.2.1 Feasible, Highly Parallel, and Inherently
Sequential Problems 8

1.2.2 Why is P -Completeness Important? 11
1.3 Some History 13
1.4 Related Works 16
1.5 Overview of This Book 17

2 Parallel Models of Computation 19
2.1 Introduction 19
2.2 The PRAM Model 21
2.3 The Boolean Circuit Model 26

2.3.1 Uniform Circuit Families 30
2.4 Circuits and PRAMs 33

3 Complexity 38
3.1 Search and Decision Problems 38
3.2 Complexity Classes 41

3.2.1 P , NC , FP , and FNC 44
3.2.2 The Classes NC k and FNC k 45
3.2.3 Random NC 46

3.3 Reducibility 46
3.3.1 Many-one Reducibility 47

xiv CONTENTS

3.3.2 Turing Reducibility 49
3.4 Other NC Compatible Reducibilities 52

3.4.1 NC k Turing Reducibility 52
3.4.2 Logarithmic Space Reducibility 54

3.5 Completeness 54

4 Two Basic P -Complete Problems 57
4.1 The Generic P -Complete Problem 57
4.2 The Circuit Value Problem 59

5 Evidence That NC Does Not Equal P 61
5.1 Introduction 61
5.2 General Simulations Are Not Fast 62
5.3 Fast Simulations Are Not General 63
5.4 Natural Approaches Provably Fail 68
5.5 Summary 69

6 The Circuit Value Problem 71
6.1 The Circuit Value Problem Is P -Complete 71
6.2 Restricted Versions of Circuit Value 75

7 Greedy Algorithms 87
7.1 Lexicographic Greedy Algorithms 87
7.2 Generic Greedy Algorithms 90

8 P -Complete Algorithms 94
8.1 Introduction 94
8.2 Inherently Sequential Algorithms 96
8.3 Applications of the Model 98

9 Two Other Notions of P -Completeness 100
9.1 Strong P -Completeness 100
9.2 Strict P -Completeness 103

10 Approximating P -Complete Problems 108
10.1 Introduction 108
10.2 Approximating LFMIS Is Hard 109
10.3 Approximation Schemes 111

11 Closing Remarks 114

CONTENTS xv

Part II: A Compendium of Problems 117

A P -Complete Problems 119
A.1 Circuit Complexity 121
A.2 Graph Theory 128
A.3 Searching Graphs 144
A.4 Combinatorial Optimization 150
A.5 Local Optimality 158
A.6 Logic 167
A.7 Formal Languages 176
A.8 Algebra 185
A.9 Geometry 201
A.10 Real Analysis 206
A.11 Games 208
A.12 Miscellaneous 215

B Open Problems 221
B.1 Graph Theory 223
B.2 Combinatorial Optimization 226
B.3 Logic 227
B.4 Formal Languages 227
B.5 Algebra 229
B.6 Geometry 232
B.7 Real Analysis 234
B.8 CC 235
B.9 RNC 239

C Notation 244

D Complexity Classes 247
D.1 Definitions 247
D.2 Relationships Among Complexity Classes 254

Bibliography 255

Problem List 285

Index 291

Part I:
Background and Theory

Chapter 1

Introduction

1.1 Bandersnatch Design

The subject of this book is best illustrated by the following scenario.
Suppose that you are employed in the halls of industry. More

than a decade ago your company entered the highly competitive
“bandersnatch”1 market. While other companies thought that ban-
dersnatch design was an intractable problem, and spent millions on
supercomputers to search for possible designs, your company had
the foresight to employ a few theoretical computer scientists. They
discovered that there was a feasible algorithm for designing a ban-
dersnatch directly from its specification. Your company can take an
n-word specification of a bandersnatch and, in about n3 steps, can
test if the specification is reasonable and design an optimal bander-
snatch that meets it. With your algorithm, a typical 15,000 word
bandersnatch specification takes about one month to design. Con-
struction only takes a week, so design dominates the bandersnatch
building process.

Your competitors, on the other hand, do not have a fast algorithm
for producing optimal bandersnatch designs. The best that they can
do is an exhaustive search through the approximately 2n/150 possible
different designs that meet the specification looking for the best one.
Since this exhaustive search for the typical size of specification would
take a while (say, 1016 years, assuming one design per microsecond)

1bandersnatch. A fleet, furious, fuming, fabulous creature, of dangerous
propensities, immune to bribery and too fast to flee from; later, used vaguely to
suggest any creature with such qualities. Lewis Carroll, Through the Looking
Glass, 1871.

4 CHAPTER 1. INTRODUCTION

your competitors must be content with the suboptimal designs that
they can produce in about the same time as you. At least that
was until yesterday. Seeing the value of research, your competition
formed a consortium and also invested in computer science. They too
have discovered the feasible optimal bandersnatch design algorithm.

Since design dominates the production process, your bosses de-
cide that the way to regain your company’s competitive advantage
is to reduce the design time. They give you the task of dramatically
speeding up the design process.

Like most modern computer scientists you begin working on the
problem by reading the news on the Net. One day an ad catches
your eye.

ADDICTED to SPEED?

Is your single processor too slow? The Concoction
Machine Mark-1 parallel computer is just for you!
No matter what your problem, solve it faster with
the Mark-1’s many processors working in parallel.
In fact, we promise that with enough processors,
any reasonable problem will run exponentially
faster on our machine. Send us e-mail for more
information.

Inconsequent Machine Co.
“We trade processors for speed.”

Sensing its corporate salvation, your company orders one of the
machines. When it arrives you unpack it and discover that its archi-
tecture is very simple. A very large collection of identical processors
is attached to a very large shared memory. Processors can read and
write simultaneously to the shared memory for essentially unit cost.
Input and output are performed by loading data into memory before
the computation and reading it out afterward.

You decide to try it on a simple problem that often occurs in
bandersnatch design: Given n items, sort them according to their
keys.

Your first algorithm uses a very simple divide and conquer strat-
egy. Divide the n items evenly among processors, sort each subset
with one processor, and then merge them. Not being sure of how

1.1. BANDERSNATCH DESIGN 5

many processors to actually use, you parameterize your algorithm
so that the number of processors p(n) is a function of the number
of items n. Since you have lots of processors, so long as p(n) is a
small polynomial in n you will not exhaust the capacity of your new
machine. Even if you do have to order more processors, your rate of
expansion will be reasonable.

You assume that the items to be sorted are already in shared
memory, stored in locations labeled x1, . . . , xn. The first phase of
your algorithm assigns disjoint equal-size subsets of the items, one
subset to each processor. In the second phase, each processor (in
parallel) sorts its subset using a good sequential algorithm, in time
O((n/p(n)) log(n/p(n))).

The final phase is to merge the sorted subsets into one ordered
set of items. This is the most complicated part of the algorithm.
The idea is to do simultaneous merges of pairs of subsets of items
into increasingly larger ordered subsets. The first stage uses p(n)/2
processors to merge p(n)/2 pairs of subsets, each of size n/p(n).
The next stage uses p(n)/4 processors to merge these p(n)/4 pairs of
subsets of size 2n/p(n), and so on. The final stage uses 1 processor to
merge 1 pair of subsets of size n/2. Each merge is done sequentially,
and it turns out that the time for the last stage dominates this phase
of your algorithm, taking O(n) time.

Adding the times of all phases in your algorithm, you get that
in asymptotic terms, a parallel sort using p(n) ≤ n processors takes
time

O
(

n +
n

p(n)
log

n
p(n)

)

.

The actual performance of your parallel algorithm depends on
p(n). When p(n) is a constant independent of n, the time simplifies
to O(n log n), which is asymptotically no faster than the sequential
case.

You then consider what happens when the number of processors
is small relative to the problem size, as when p(n) ≤ log n. In this
case, the time simplifies to O(n(log n)/p(n)), and you note that the
parallel sort exhibits an “optimal speedup” in the sense that

(number of processors) ∗ (parallel time) = (sequential time).

Unfortunately, for your algorithm, whenever p(n) exceeds log n,
the time simplifies to O(n), so additional processors help little.

This is discouraging, for although you obtain some speedup, it
is not enough to produce a dramatic reduction in sorting time. It is

6 CHAPTER 1. INTRODUCTION

certainly not of the kind of exponential reduction promised by the
ad. For that, you must be able to sort n items in O(log n) time steps,
although you would be happy with some polynomial version of that,
such as O((log n)2).

Thinking a bit more about the problem of sorting, you realize
that its essence is to compute the position, or rank, of each item in
the final sorted list. If the items stored in locations x1, . . . , xn have
ranks r1, . . . , rn, then in one parallel step n processors can rearrange
the items by having processor i do the assignment xi = xri , assuming
that the items are distinct.

Can ranking be done independently for each item? If so, then
the time to compute the rank of every item would be the same as
the time to compute the rank of one item. The time to sort would
then reduce to the time to rank one item.

You next realize that you can do the ranking quickly by using n2

processors. Since you have lots, n2 is not an unreasonable number
to apply to the problem, unless you are sorting a very large set.

The ranking algorithm has two phases. In the first, a processor
is assigned to each pair (i, j) where 1 ≤ i, j ≤ n. Processor (i, j)
determines whether the value stored in location xi is greater than
that stored in xj and stores a 1 in location ci,j if so, and a 0 otherwise.
In the second phase, for each item i, the n processors (i, 1), . . . , (i, n)
compute the sum

∑n
j=1 ci,j . This sum is the rank of item i, and is

stored in ri. The sum can be computed by using the processors to
mimic a fast addition tree. Overall, the ranking takes O(log n) time.

So by using n2 processors your new algorithm can sort n items in
time O(log n). This is a very dramatic speedup, of the exponential
kind promised in the ad.

You summarize your discoveries in Table 1.1. (Although this will
suffice for our story, a visit to your local University library, assuming
it has not been closed during the latest wave of budget reductions,
will uncover even better parallel sorting algorithms; see Leighton
[228], for example.)

Buoyed by your success with sorting, you go on to develop fast
parallel algorithms for many other problems. You notice that all of
your solutions have two common characteristics — they use a poly-
nomial number of processors, and have a polylogarithmic running
time. That is, on an input of size n, your algorithms use about
nk processors and take time (log n)l, for some constants k and l.
These algorithms are feasible, in the sense that they only use poly-

1.1. BANDERSNATCH DESIGN 7

Algorithm Processors Time

Sequential Sort 1 O(n log n)
Naive Divide p(n) = O(1) O(n log n)

and p(n) ≤ log n O(n(log n)/p(n))
Conquer Sort p(n) > log n O(n)

Parallel Ranking p(n) = n2 O(log n)

Table 1.1: Summary of Bandersnatch Sort Subroutines.

nomial numbers of processors, and they are highly parallel in the
sense that their running times are polynomial in log n (polyloga-
rithmic for short). You also notice that all of the problems have
polynomial time sequential algorithms; that is, they all have feasible
sequential solutions.

You formulate the following question.

Does every problem with a feasible sequential solution
also have a feasible highly parallel solution?

With confidence gained from your initial successes at developing
good parallel algorithms, you begin work on the core of the bander-
snatch design problem.

After a few weeks, your office filled with crumpled paper, you
have yet to develop a fast parallel algorithm for bandersnatch design.
It appears that the design problem contains an inherently sequential
component that defeats your, by now, rather sophisticated algorith-
mic tricks for obtaining highly parallel computations. You are faced
with the prospect of announcing failure to your boss. Discussing
your troubles with a colleague at lunch, she observes that what you
need is a theory for parallel computation similar to the theory of NP -
completeness for sequential computation. With that theory, showing
that a problem is NP -complete is evidence that an always fast and
exact sequential algorithm is probably not possible. You would like
a similar method to show that a fast parallel algorithm is probably
not possible.

Fortunately, your colleague has just read this book. What you
need, she says, is to show that bandersnatch design is P -complete.
By doing so, you will be showing that it is probably inherently se-
quential; thus, a fast parallel solution to every instance of the prob-

8 CHAPTER 1. INTRODUCTION

lem is probably not possible. With this evidence, you can go to
your boss and suggest that the design problem be relaxed somewhat
in the interest of speed, and that it makes sense to continue your
employment.

1.2 Informal Background

When this book’s distinguished ancestor Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness by Garey and John-
son [113] was published in 1979, complexity theory was not often a
part of the algorithm designer’s toolkit. Today every graduating
computer scientist is at least aware that problems whose worst case
time complexity is in the class P have feasible solutions, and that
problems that are NP -complete are probably difficult to solve in
general. Accordingly, we have relegated many standard definitions
to Appendix C and concentrate our formal definitions on the basic
notions relevant to parallel computation. Before embarking on such
a detailed treatment, however, we will introduce the material in an
informal way.

1.2.1 Feasible, Highly Parallel, and Inherently
Sequential Problems

As a general rule we want our algorithms to be feasible. By feasible
we mean the ability to solve the desired instances of a problem within
our available resources. In practice, feasibility is very dependent on
context and is not particularly portable between different problems
and situations. But one common principle holds throughout almost
all situations: an exponential growth rate in consumption of some re-
source required for a computation limits application of the method to
all but the smallest of instances. Thus, feasibility has come to mean
that the growth rate for the resource is bounded by a polynomial
in the input size. This gives us the common notion that a problem
has a feasible sequential solution only if we have a polynomial time
algorithm, that is, only if any size n instance of the problem can be
solved in time nO(1). Although widely acknowledged as being very
simplistic, the dichotomy between polynomial and nonpolynomial
time algorithms has proved to be a powerful discriminator between
those computations that are feasible in practice and those that are
not.

1.2. INFORMAL BACKGROUND 9

The same broad notion applies to parallel computations, except
that processors are also considered as a resource. So we consider a
parallel algorithm to be feasible only if we can find solutions to size
n problem instances in time nO(1) using nO(1) processors. However,
this definition of feasibility is not universally accepted, primarily
because hardware appears to be a qualitatively different resource
from time. But if we are not allowed to use a polynomial numbers
of processors, how many should we be allowed to use?

The most compelling justification for using this polynomial no-
tion of processor feasibility comes from considering what is involved
in trading processors for speed. Parallel computation provides the
potential of achieving a qualitative change in the time required to
solve a problem by reducing polynomial sequential time to subpoly-
nomial parallel time. So the goal of parallel computation is to de-
velop algorithms that use only a reasonable number of processors
and are extremely fast.

Regardless of the number of processors available, this goal is
fundamentally limited by the speedup equation:

(best sequential time)/(number of processors) ≤ (parallel time).

The obvious consequence of this is that to achieve any subpolynomial
time algorithm, a polynomial number of processors must be used.
Thus, using the term “highly parallel” as we do does not even make
sense unless we are willing to invest (at least conceptually) in a
number of processors roughly equal to the best sequential time for
the algorithm.

Still, what constitutes a reasonable number of processors and
what is very fast remain debatable issues. We tend to think of time
as an easily obtainable resource in the sense that any machine is
capable of using arbitrary amounts of time if we are willing to wait.
To handle a bigger problem we simply let the algorithm run longer.
Clearly this is not the case for processors. Any given machine is
finite, and to add more processors means at the very least that we
have to acquire them and integrate them into the interconnection
network of the machine. Thus, at first glance, it seems unreasonable
to entertain a model in which the number of processors is not fixed.
On closer inspection, however, this viewpoint is instructive.

There is a useful analogy to memory requirements in sequen-
tial complexity theory. In reality, computers have memories of some
fixed, finite size. Virtual memory may stretch that bound a bit in

10 CHAPTER 1. INTRODUCTION

practice, and (budget permitting) more memory chips can be bought
and installed, but fundamentally memory is a fixed resource whose
quantity is not subject to algorithmic control. This hard reality not
withstanding, it has proved very fruitful to study the space complex-
ity of algorithms as if space s(n), like time t(n), were an arbitrarily
flexible commodity. This patently unrealistic assumption does not
make the theory either wrong or irrelevant; it just means that the
application of the theory is slightly indirect. If the space consump-
tion s(n) of some algorithm for a given problem exceeds available
memory, it usually does not mean that we should jog to the corner
hardware store to buy more. Rather, it means that we must scale
back the problem size we expect to solve, or find a better (more
space efficient) algorithm.

Similarly, it has been fruitful to view the processor requirements
p(n) of parallel algorithms as growing functions of n not because
the machines are flexible, but because the viewpoint allows us to
focus on important intrinsic issues, like parallel decomposition of
problems, and yet still be able to translate those insights into answers
to pragmatic questions, like “how big a problem can I solve in this
amount of time with this number of processors.”

The debate over appropriate models will undoubtedly continue.
Further opinions on these and related issues can be found in Sanz
[315]. Fortunately, in this work, we can ignore most of this debate
since we are concerned with problems that apparently have no sub-
polynomial time feasible parallel algorithms at all. In other words,
rather than being highly parallel, these problems appear to be in-
herently sequential in any reasonable model of parallel computation.

Thus, without creating much controversy, we can adopt the fol-
lowing informal definitions.

• A problem is feasible if it can be solved by a parallel algorithm
with worst case time and processor complexity nO(1).

• A problem is feasible highly parallel if it can be solved by an
algorithm with worst case time complexity (log n)O(1) and pro-
cessor complexity nO(1).

• A problem is inherently sequential if it is feasible but has no
feasible highly parallel algorithm for its solution.

Note that the class of feasible parallel problems is synonymous with
the class P , and we will use the two terms interchangeably.

1.2. INFORMAL BACKGROUND 11

1.2.2 Why is P -Completeness Important?

What can we do when faced with a problem that appears to be in-
herently sequential? One is to demonstrate at least a single instance
of the problem whose solution by a parallel algorithm requires more
than (log n)O(1) time. This bad instance would then provide a lower
bound for the worst case time complexity of the problem. Unfortu-
nately, nontrivial lower bounds are notoriously difficult to establish.
In fact, we know of no provably inherently sequential problem.

An alternative approach to understanding the difficulty of a prob-
lem is based on our usual experience with problem solving. Rarely
do we solve a problem from scratch. Instead, we usually attempt to
break the problem into subproblems that we already know how to
solve, and whose answers when suitably combined give us a solution
to the original problem. That is, we reduce the original problem to
simpler ones that we know how to solve. For example, in the intro-
ductory scenario we reduced the problem of sorting a set of items to
the problem of computing the rank of each item in the set.

Even in the absence of an absolute lower bound, we can exploit
this idea of reduction, using it counter to its normal problem solving
role, to establish relative lower bounds. Suppose that many others
have worked on highly parallel algorithms for solving some problem
B and all have failed. The general, but unproven, consensus is that
problem B is inherently sequential. Further, suppose that we begin
working on a new problem, B′, that we know to be feasible and for
which we seek a fast parallel algorithm. After a small amount of
work, we fail to show that B′ has a highly parallel solution, and we
begin to suspect that it also is inherently sequential.

Unfortunately, our small efforts on B′ are hardly convincing ev-
idence for the difficulty of B′ — perhaps we are just too slow at
seeing good parallel solutions. But suppose we also observe that the
hard problem B can be reduced to B′. Now our case for the inherent
sequentiality of B′ is as follows: B′ must be difficult because if we
could solve B′, then we could solve B, and B has resisted numerous
attempts by many experts.

How strongly does this argue the difficulty of B′? If B was ac-
tually provably inherently sequential, would the reduction of B to
B′ be irrefutable proof that B′ was also inherently sequential? The
answer depends on how the reduction was performed. Usually we de-
scribe the reduction of B to B′ in terms of an algorithm that makes
calls to a procedure for solving B′. The complexity of the reduction

12 CHAPTER 1. INTRODUCTION

is defined to be the complexity of the reducing algorithm under the
assumption that the cost of procedure calls for solving B′ are not
significant. So if the reduction of B to B′ was highly parallel, then a
highly parallel algorithm for B′ would translate into a highly parallel
algorithm for B. This would contradict the inherent sequentiality of
B, so B′ must itself be inherently sequential. The argument would
fail if the reduction was merely feasible, that is, accomplished by
a polynomial time sequential algorithm. Since in this case, the re-
duction composed with a solution to B′ would not produce a highly
parallel algorithm for B.

Unfortunately, no such proof of inherent sequentiality for B ex-
ists, so the fact that B is reducible to B′ is rather a weak case for
the difficulty of B′. After all, maybe reducing B to B′ is in fact the
route to a better parallel algorithm for solving B. One weakness of
the argument lies in the fact that we only reduced a specific prob-
lem to B′. Suppose, instead, that we can capture the nature of all
seemingly inherently sequential problems. If every such problem was
reducible to B′, then the argument favoring B′’s difficulty becomes
much stronger. For example, finding a highly parallel solution to B′

would imply that there are no inherently sequential problems after
all.

The way of showing that B′ contains within it all of the important
characteristics of every problem that might be inherently sequential
is to prove that every feasible problem can be reduced to B′ using a
highly parallel reduction. Since every inherently sequential problem
is feasible by definition, this would show that if there are any inher-
ently sequential problems, then B′ is one. Equivalently, this shows
that if B′ has a highly parallel solution, then there are no inherently
sequential problems. When we show how every problem having a
feasible sequential algorithm can be transformed into an instance of
problem B′, we have established that B′ is complete for the class of
feasible parallel problems. That is, B′ is complete for P .

We leave details of reductions and completeness to the next chap-
ter, but two remarks on the implications of establishing a body of
complete problems are in order.

Every time one shows another problem to be complete, we get a
larger body of problems that are diverse, yet of equivalent difficulty.
The entire body of P -complete problems then provides a rich char-
acterization of the difficult parallel problems. The hope is that some
common essence of inherent sequentiality can be extracted from the

1.3. SOME HISTORY 13

collection. Even more optimistically, one might hope to show that
they are in fact not inherently sequential at all.

For the algorithm designer, perhaps the more important impli-
cation is in guiding one’s search for good parallel solutions. Of-
ten, the particular difficult problem is only one component of some
larger problem. Knowing that the subproblem is complete strongly
suggests that the decomposition of the larger problem should be
reformulated. For example, Linear Programming (Problem A.4.3),
Maximum Flow (Problem A.4.4), and Maximum Matching (Problem
B.9.7) often play a role as key subroutines in the solution of more
complex combinatorial optimization problems. The former two prob-
lems are P -complete, while there is a feasible highly parallel prob-
abilistic algorithm for the latter. Thus, an algorithm designer seek-
ing a highly parallel solution to a novel combinatorial optimization
problem would be well-advised to avoid formulating his solution in
terms of Linear Programming or Maximum Flow subproblems, and
perhaps to cast it as a Matching problem, instead.

Alternatively, it may be that the particular instances one wishes
to solve are weaker than the general P -complete problem, and so may
actually have highly parallel solutions. For example, although Lin-
ear Programming and Maximum Flow are P -complete, restrictions
of them such as Two Variable Linear Programming (Problem B.2.2)
and 0-1 Maximum Flow (Problem B.9.6) do have highly parallel so-
lutions. Additionally, P -completeness theory can guide algorithm
designers in cases where a particular function has a highly paral-
lel solution, but certain algorithmic approaches to its computation
are not amenable to such solutions. Computing breadth-first level
numbers via queue- versus stack-based algorithms is an example (see
Chapter 8 for more details).

1.3 Some History

The notion of P -completeness appeared at roughly the same time
as that of NP -completeness, but for a very different reason. The
motivation was to study the relationship between sequential time
and space. In particular, Cook raised the question of whether ev-
erything computable in polynomial time is also in polylogarithmic
space. That is, the motivation was to ask whether a Turing machine
running in time nO(1) could in general be simulated by one operating
in space (log n)O(1). Cook did not answer this question, but his 1973

14 CHAPTER 1. INTRODUCTION

conference paper [63, 64] did show that this question was equivalent
to the question of whether a single, specific language, Path Systems
(Problem A.6.8), could be recognized in space (log n)O(1). That is,
he showed Path Systems to be complete for P , obtaining the first
P -completeness result! Like all fundamental complete problems, the
reduction Cook gave was a generic one for simulating a polynomial
time-bounded Turing machine, using Path Systems in this specific
case. The exact relationship between P and polylogarithmic space
remains open, although we do know that polylogarithmic space can-
not equal P ; see Johnson [177] for more details.

Since space complexity was the focus, Cook used a space-bounded
form of reduction, logarithmic space reduction (independently intro-
duced by Cook [63], Jones [179], and Stockmeyer and Meyer [344]).
It required that the algorithm accomplishing the reduction be re-
stricted to using O(log n) space on inputs of length n. Subsequent
work followed this lead; the parallel time-bounded reductions dis-
cussed in Section 1.2.2 were not introduced until much later. We
discuss reductions in more detail in Chapter 3.

The year after Cook’s paper, Jones and Laaser [180, 181], and
Galil [111, 112] presented more P -complete problems, still motivated
by the issue of polynomial sequential time versus polylogarithmic
space.

In 1975, Ladner showed that the Circuit Value Problem (CVP)
was P -complete [225]. In 1972, Savage had shown that any Turing
machine with time bound T (n) could be simulated by a Boolean
combinational circuit of size O(T (n)2) [317].2 Ladner’s proof hinged
on the observation that the transformation of the Turing machine
into a circuit could be accomplished in logarithmic space. Ladner
also remarked that CVP provided a simple example of a P -complete
language of the type identified by Galil [112]. Later, Goldschlager
showed that the more restricted monotone, and planar versions of
CVP were also P -complete [122]. CVP and its variants have turned
out to be among the most useful of the P -complete problems, and
will be discussed extensively in Chapters 4 and 6. These results es-
tablished the relationship between polynomial time sequential com-
putations and the parallel model of polynomial size circuits.

Around the same time period, numerous parallel models of com-
putation were being introduced, and evidence was accumulating for

2In 1973, Pippenger and Fischer improved this result to size O(T (n) log T (n))
and depth O(T (n)) [289].

1.3. SOME HISTORY 15

the Parallel Computation Thesis, which states that sequential space
is polynomially related to parallel time. In other words, what can be
computed in f(n)O(1) sequential space can be computed in f(n)O(1)

parallel time, and vice versa. The thesis first seems to have ap-
peared in the work of Chandra and Stockmeyer [50]. It was crisply
stated and further elaborated on in Goldschlager [123]. In addi-
tion, Goldschlager’s dissertation seems to be the first place to make
the connection between P -complete problems and problems that are
unlikely to parallelize. In light of the Parallel Computation Thesis,
P -complete problems can be solved in polylogarithmic time in paral-
lel if and only if every problem in P can be solved in polylogarithmic
space.

One weakness in the Parallel Computation Thesis, from the
standpoint of formally capturing the notion of “feasible” parallel
computation, is that the fast parallel simulation of anything more
than sequential O(log n) space came at the expense of a superpoly-
nomial number of processors. Similarly, anything more than an
O(log n) depth circuit required superpolynomial time to simulate
with a small space sequential machine. Borodin raised the question
of sharpening the Parallel Computation Thesis to consider simulta-
neous resource bounds [40]. For example, is the class of problems
that simultaneously use polynomial time and polylogarithmic space
equivalent to the class that simultaneously use polynomial numbers
of processors and polylogarithmic parallel time? Pippenger did not
answer this question directly, but showed that similar simultane-
ous resource bounds did in fact hold when Turing machine time
and reversals were compared to circuit size and depth, and when
Turing machine time and space were compared to circuit size and
width [285].

Another important contribution of Borodin’s paper was to in-
troduce the notion of uniformity conditions for the construction of
families of circuits. Various notions of uniformity were subsequently
explored by Allender [9], Barrington, Immerman, and Straubing [24],
Goldschlager [126], Pippenger [285], Ruzzo [308], and others.

Considerable interest was raised in this class of problems that
used polylogarithmic time and polynomial size circuits, much of it
originally due to Nick Pippenger. Cook indicates that Pippenger
studied these types of circuits during his 1978 visit to the University
of Toronto [65]. This prompted the naming of the class by Cook to be
“Nick’s Class” or NC for short [65]. Now the question of whether all

16 CHAPTER 1. INTRODUCTION

feasible problems had highly parallel algorithms could be succinctly
stated as whether P equals NC . A flurry of works soon appeared
showing that various polynomial time sequential algorithms had cor-
responding NC algorithms.

Goldschlager, Shaw, and Staples were some of the first authors to
state the importance of P -completeness in the parallel setting [128].
As usual, completeness arguments were used for those problems that
seemed to defy attempts to place them in NC . Since the issue was
now one of how a sequential computation could be transformed into
a parallel one, the reduction changed from a sequential one (log-
arithmic space) to a parallel one (NC). This did not render the
previous logarithmic space reductions obsolete, because Borodin’s
paper [40] also showed that any O(log n) space computation could
be simulated by an O((log n)2) depth and nO(1) size transitive clo-
sure circuit. Thus, any such reduction was also in NC . In many
cases more direct and depth efficient reductions do exist.

The phrase “inherently sequential” was used frequently in con-
nection with hard to parallelize problems after it appeared in a pa-
per by Reif entitled Depth-first Search is Inherently Sequential in
1985 [300].

Since then, the explosion in results on parallel computation has
made this book necessary.

We note that several early papers applied the term “P -complete”
to what are now called NP -complete problems. Additionally, the
term p-complete is used in another domain, involving projections;
see for example Valiant [357] or Geréb-Graus, Paturi, and Szemerédi
[115].

1.4 Related Works

The goal of this book is to provide a comprehensive overview of the
theory of P -completeness. Because of the sheer size of this subject,
we are unable to cover other important aspects of parallel computa-
tion in any detail. Indeed, topics such as parallel algorithm design
and analysis warrant their own books. We list a few references to
some of these other topics. Our intention is not to be complete, but
simply to note a few that we are familiar with.

The book Efficient Parallel Algorithms by Gibbons and Rytter
has a brief discussion of parallel models of computation followed by
substantial material on parallel algorithms [117]. It also has a short

1.5. OVERVIEW OF THIS BOOK 17

chapter describing P -completeness.
JáJá’s book An Introduction to Parallel Algorithms devotes a

chapter to discussing parallel models and then extensively delves
into parallel algorithms [172]. The book also has a brief section on
P -completeness.

The large work Introduction to Parallel Algorithms and Archi-
tectures: Arrays, Trees, Hypercubes by Leighton contains a detailed
discussion of many different types of parallel models and algorithms
for them [228].

Synthesis of Parallel Algorithms, edited by Reif [302], contains
twenty chapters organized around parallel algorithms for particu-
lar types of problems, together with an introductory chapter on P -
completeness (Greenlaw [138]), and one surveying PRAM models
(Fich [105]).

The chapter Parallel Algorithms for Shared-memory Machines by
Karp and Ramachandran [195] in the Handbook of Theoretical Com-
puter Science [360] describes a variety of highly parallel algorithms
for shared memory machines.

In the same handbook, the chapter A Catalog of Complexity
Classes by Johnson is a thorough overview of basic complexity the-
ory and of the current state of knowledge about most complexity
classes [177]. It is an excellent reference for establishing the context
of each class and its established relationships to others.

Miyano, Shiraishi, and Shoudai’s 1989 paper also surveys P -
completeness theory, as well as providing a catalog of most of the
then-known P -complete problems [268].

The papers (Kindervater and Lenstra [210, 211], Kindervater and
Trienekens [213]) provide extensive bibliographies of papers about
parallel algorithms and parallel algorithm development for combina-
torial optimization problems.

1.5 Overview of This Book

The remainder of this book is organized into two main parts. The
first part is devoted to the theory of P -completeness. The second
part is a compendium of P -complete and open problems.

Part I is directed to the reader who may be familiar with the
notions of NP -completeness and parallel computation but who has
only seen some, if any, of P -completeness theory. The reader familiar
with these topics will probably find much that can be skipped. Part I

18 CHAPTER 1. INTRODUCTION

is divided into the following chapters.
Chapter 2 introduces the two main models of parallel computa-

tion: the parallel random access machine, or PRAM, and the uniform
Boolean circuit family.

Chapter 3 gives precise complexity class definitions for the no-
tions of feasibly parallel and inherently sequential problems, and
formalizes the notions of reducibility and completeness.

Chapter 4 deals with two prototypical hard problems for parallel
computation — Generic Machine Simulation and the Circuit Value
Problem.

Chapter 5 discusses evidence suggesting that P -complete prob-
lems are in some sense “inherently sequential.”

Chapter 6 addresses the original Circuit Value Problem as de-
scribed by Ladner [225] in more detail, as well as giving several
restricted versions that are also P -complete.

Chapter 7 examines the greedy algorithm — a simple sequential
paradigm that gives rise to many P -complete problems.

Chapter 8, motivated by experience with the greedy algorithm,
presents a model that deals with inherently sequential algorithms.

Chapter 9 introduces two other notions of strong and strict P -
completeness.

Chapter 10 discusses approximations to P -complete problems.
Chapter 11 provides a wrap up of Part I of the book, addresses

recent developments, and contains conclusions.
Part II of the book contains the reference collections of P -

complete problems in Appendix A, and of open problems in Ap-
pendix B. To make this part as self-contained as possible we provide
definitions and background material for each problem. In most cases,
we provide a brief sketch of the P -completeness reduction. From our
sketch, a reader familiar with P -completeness theory should be able
to deduce the full reduction without it being necessary to track down
the original references. In addition, a number of the reductions we
present were previously unpublished and appear here for the first
time.

Finally, the various notations are collected in Appendix C, and
the complexity classes used are briefly defined in Appendix D.

Chapter 2

Parallel Models of
Computation

2.1 Introduction

Before we can discuss the difficulty of solving a problem, we must
first choose a suitable machine model in which to describe our com-
putations. A machine model is a parameterized description of a class
of machines. Each machine in the class is obtained from the model
by giving specific values for the parameters. For example, a Turing
machine is specified by giving the number of work tapes, symbol set,
and program. The choice of model that we make depends on how we
wish to balance such factors as simplicity, generality, historical use,
novelty, plausibility of actual implementation, and ease of program-
ming. This flexibility inevitably leads to a proliferation of different
models, and parallel computation is no exception to this tendency
toward diversity.

The menagerie of parallel models includes bit vector machines
(Pratt and Stockmeyer [293]), Boolean circuits (Borodin [40]), par-
allel random access machines, or PRAMs (Fortune and Wyllie [109],
Goldschlager [126]), k-PRAMs (Savitch and Stimson [323]), alter-
nating Turing machines (Chandra, Kozen, and Stockmeyer [49]),
parallel pointer machines (Cook and Dymond [68], Dymond [98],
Dymond and Cook [99, 100]), aggregates ([98, 99, 100]), conglom-
erates (Goldschlager [126]), and a large variety of machines based
on fixed interconnection networks, such as grids, hypercubes, and
shuffle-exchange (see Leighton [228]).

Such variety makes it difficult to compare competing models. At

20 CHAPTER 2. PARALLEL MODELS OF COMPUTATION

the qualitative level, models can be distinguished by their processor
granularity and their interconnection pattern. One important dis-
tinction among models is in the granularity with which they treat
parallel operations. A model can be fine-grained and treat bit oper-
ations as the basic unit of parallel computation, or it can be coarse-
grained and, for example, treat local subcomputations on processors
as the fundamental unit. In addition the model can be structured,
in which case the machine can only manipulate atomic data objects
and cannot access their representations (as bits for example).

Another important qualitative difference among models is the
nature of the communications between processing elements. Some
models allow unrestricted communication between processing ele-
ments at any time. Other models require a fixed communication
pattern. In some models there is no charge for the communication
pathway between elements, in others there is.

These kinds of qualitative distinctions are difficult to make pre-
cise, and so a more useful way of comparing models is via mutual
simulation. If any machine from model A can be simulated by some
machine from model B, then we know that any problem solvable by
a model A machine is solvable by a model B machine. But this is not
enough, as we also need to know how the resources used by model
A compare to those used by model B. Fortunately, despite the di-
versity of the models, each parallel model has some computational
resources that correspond to our intuitive notions of running time
and processing hardware. This enables us to compare the simulta-
neous time and processor requirements of a machine from model A
with its simulation from model B, and vice versa. If the require-
ments are roughly the same, then we can consider the models to be
essentially equivalent.

For feasible, highly parallel computations, most parallel models
are equivalent to within a polynomial in both time and hardware
resources, simultaneously. By this we mean that if the size n in-
stances of some problem can be solved in time t(n) = (log n)O(1)

and processors p(n) = nO(1) on a machine from model A, then there
exists a machine from model B that can solve the size n instances
of the problem in time t(n)O(1) and p(n)O(1) processors. Thus, if a
problem is feasibly highly parallel on one model, it is so on all other
models, and the theory of P -completeness becomes very robust and
insensitive to minor variations in the computational model.

Not all parallel models possess the property described above.

2.2. THE PRAM MODEL 21

Models with limited interconnection schemes can be too weak to
simulate other models. For example, for the tree connected parallel
machine, although any two processors can communicate via short
paths, there is a bottleneck at the root that limits the bandwidth of
the communication between processors. The mesh connected paral-
lel machine can only communicate directly with its neighbors, and
this results in an average path of length

√
n for n processors (see

Leighton [228]). On the other hand, some models of parallel compu-
tation are simply too powerful to be simulated by the more common
models. This includes most machines that can generate exponen-
tially long values or activate exponential numbers of processors in
polylogarithmic time. More discussion of the relationships among
various models can be found in the excellent surveys by Cook [66],
Fich [105], and Karp and Ramachandran [195]. Additional papers
surveying other aspects of parallel models and parallel computing
include Johnson [176], Kindervater and Lenstra [211], Spirakis [338],
van Emde Boas [359], and Vishkin [364].

Since our choice of model is relatively unimportant for a discus-
sion of inherently sequential problems, we can chose simply on the
basis of convenience. For high level discussions our preferred model
is the parallel random access machine (PRAM). When we are con-
cerned with more detailed questions of implementability and small
resource bounds, we will use the more low level uniform Boolean cir-
cuit model. These models are presented in the next two subsections.

2.2 The PRAM Model

In sequential algorithm design the favorite model of computation
is the random access machine, or RAM. Each RAM consists of a
computation unit with a fixed, user defined program; a read-only
input tape; a write only output tape; and an unbounded number
of local memory cells R0, R1, R2, . . . with each cell capable of hold-
ing an integer of unbounded size. The computation unit is very
simple. It has operations for moving data between memory cells,
either directly or indirectly; comparisons and conditional branches;
and simple arithmetic operations such as add, subtract, multiply,
divide, and so on. A RAM program is a sequence of these instruc-
tions. Execution starts with the first instruction and ends when a
halt instruction is encountered.

Typically, all operations in the RAM model are assessed one unit

22 CHAPTER 2. PARALLEL MODELS OF COMPUTATION

of cost regardless of the length of the numbers being manipulated by
the operation. The usual complexity measures of interest for RAM
computations are time, in the form of the number of instructions
executed, and space, in the form of the number of memory cells ac-
cessed. To prevent this notion of time from distorting our notion of
feasibility, the model prohibits (either by fiat or by careful choice of
instruction set) rapid generation of very large numbers. For exam-
ple, the model will prohibit numbers of superpolynomial length from
being generated or tested in polynomial time. Aside from these con-
siderations, the power of the RAM model is essentially unchanged
throughout a broad range of variations in the instruction set.

The natural generalization of the RAM model to parallel com-
putation is the parallel random access machine introduced indepen-
dently by Fortune and Wyllie [109], and by Goldschlager [126]. The
PRAM model consists of a collection of RAM processors that run in
parallel and communicate via a common memory.

The basic PRAM model consists of an unbounded collection of
numbered RAM processors P0, P1, P2, . . . and an unbounded collec-
tion of shared memory cells C0, C1, C2, . . . Each processor Pi has its
own local memory, knows its own index i, and has instructions for
direct and indirect read/write access to the shared memory.

Rather than being on tapes, inputs and outputs to the com-
putation are placed in shared memory to allow concurrent access.
Instructions are executed in unit time, synchronized over all active
processors.

A typical PRAM instruction set is given in Table 2.1, with the
addressing modes described in Table 2.2. Note that in this simple
machine, local memory cell R0 serves as an accumulator so that
at most one read and one write to shared memory occurs for each
instruction. Also, observe how the multiply and divide instructions
only take a constant operand in order to prevent the rapid generation
and testing of very large numbers.

Two important technical issues must be dealt with by the model.
The first is the manner in which a finite number of the processors
from the potentially infinite pool are activated for a computation.
A common way, although often unstated in the literature, is for
processor P0 to have a special activation register that specifies the
maximum index of an active processor. Any non-halted processor
with an index smaller than the value in the register can execute its
program. Initially only processor P0 is active, and all others are sus-

2.2. THE PRAM MODEL 23

Instruction Description

α ← α move data between cells
IDENT load the processor number into R0

CONST c load the constant c into R0

ADD α add contents of α to R0

SUB α subtract contents of α from R0

MULT c multiply contents of R0 by constant c
DIV c divide contents of R0 by constant c and truncate
GOTO i branch to instruction i
IFZERO i branch to instruction i if contents of R0 is 0
HALT stop execution of this processor

Table 2.1: Sample PRAM Instructions.

Address α Description

Ri address of local cell Ri

RRi local cell with address given
by contents of Ri

Ci address of shared cell Ci

CRi shared cell with address given
by contents of Ri

Table 2.2: Sample PRAM Addressing Modes.

pended waiting to execute their first instruction. P0 then computes
the number of processors required for the computation and loads this
value into the special register. Computation proceeds until P0 halts,
at which point all active processors halt. Goldschlager’s SIMDAG
model is an example of a PRAM using such a convention [126]. An-
other common approach, used, for example, by Fortune and Wyllie’s
PRAM, is to have active processors explicitly activate new ones via
fork instructions [109]. Again, this issue makes relatively little dif-
ference in the power of the model, provided numbers are not allowed
to grow too quickly.

24 CHAPTER 2. PARALLEL MODELS OF COMPUTATION

The second technical issue concerns the way in which simulta-
neous access to shared memory is arbitrated. In all models, it is
assumed that the basic instruction cycle separates shared memory
reads from writes. Each PRAM instruction is executed in a cycle
with three phases. First the read (if any) from shared memory is
performed, then the computation associated with the instruction (if
any) is done, and finally the write (if any) to shared memory is per-
formed. This eliminates read/write conflicts to shared memory, but
does not eliminate all access conflicts. This is dealt with in a number
of ways, including:

CRCW-PRAM — The concurrent-read concurrent-write PRAM
permits simultaneous reads and writes to the same memory
cell. Some method of arbitrating simultaneous writes to the
same cell is required. For example, in the PRIORITY ver-
sion only the write by the lowest numbered contending pro-
cessor succeeds. (Goldschlager’s SIMDAG is a model of this
type [126].) In the COMMON version the write succeeds only if
all processors are writing the same value; in the ARBITRARY
version any one of the writes succeeds.

CREW-PRAM — The concurrent-read exclusive-write PRAM per-
mits simultaneous reads of the same memory cell, but only one
processor may attempt to write to the cell. (Fortune and Wyl-
lie’s model is of this type [109].)

CROW-PRAM — The concurrent-read owner-write PRAM is a
commonly occurring restriction of the CREW-PRAM. It pre-
assigns an owner to each common memory cell. Simultaneous
reads of the same memory cell are allowed, but only the owner
can write to the cell. This restriction ensures exclusive-write
access. (This model was introduced by Dymond and Ruzzo
[101].)

EREW-PRAM — The exclusive-read exclusive-write PRAM re-
quires that no two processors simultaneously access any given
memory cell.

All of these variants of the PRAM are deterministic, except for the
ARBITRARY CRCW-PRAM. In this model it is possible that re-
peated executions on identical inputs result in different outputs.

The taxonomy above originates in Vishkin [364]. See Fich for an
in-depth discussion of PRAM models [105].

Any given PRAM computation will use some specific time and

2.2. THE PRAM MODEL 25

hardware resources. The complexity measure corresponding to time
is simply the time taken by the longest running processor. The mea-
sure corresponding to hardware is the maximum number of active
processors during the computation.

Our standard PRAM model will be the CREW-PRAM with a
processor activation register in processor P0. This means that pro-
cessor P0 is guaranteed to have run for the duration of the compu-
tation, and the largest value in the activation register is an upper
bound on the number of processors used.

Note that no explicit accounting is made of the local or shared
memory used by the computation. Since the PRAM is prevented
from generating large numbers, that is, for t ≥ log n no number may
exceed O(t) bits in t steps, a computation of time t with p processors
cannot store more than O(pt2) bits of information. Hence, for our
purposes p and t together adequately characterize the memory re-
quirement of the computation, and there is no need to parameterize
it separately.

To compare models, and later to introduce the notion of a re-
duction, it is important to identify what we mean by a computation
of a machine. This means specifying how the inputs are provided to
a computation, how the outputs are extracted, and how the cost of
the computation is accounted. For PRAMs we adopt the following
conventions.

Definition 2.2.1 Let M be a PRAM. The input/output con-
ventions for M are as follows. An input x ∈ {0, 1}n is presented to
M by placing the integer n in shared memory cell C0, and the bits
x1, . . . , xn of x in shared memory cells C1, . . . , Cn. M displays its
output y ∈ {0, 1}m similarly: integer m in shared memory cell C0,
and the bits y1, . . . , ym of y in shared memory cells C1, . . . , Cm.

M computes in parallel time t(n) and processors p(n) if for
every input x ∈ {0, 1}n, machine M halts within at most t(n) time
steps, activates at most p(n) processors, and presents some output
y ∈ {0, 1}∗.

M computes in sequential time t(n) if it computes in parallel
time t(n) using 1 processor.

With these conventions in place, and having decided on one ver-
sion of the PRAM model to be used for all computations, we can talk
about a function being computed in parallel time t(n) and processors
p(n).

26 CHAPTER 2. PARALLEL MODELS OF COMPUTATION

Definition 2.2.2 Let f be a function from {0, 1}∗ to {0, 1}∗. The
function f is computable in parallel time t(n) and processors
p(n) if there is a PRAM M that on input x outputs f(x) in time
t(n) and processors p(n).

All of the various PRAM models are polynomially equivalent
with respect to feasible, highly parallel computations, and so any
one is suitable for defining the complexity classes P and NC that we
present in Chapter 3. However, the subclasses NC k of NC are not
defined using PRAMs — for that we will require the Boolean circuit
model, described in the next subsection. (The reasons are largely
historical, but note that the set of functions computable in parallel
time O((log n)k) is probably different for each of the four PRAM
types listed above. Defining NC k in terms of circuits thus avoids
this sensitivity to details of the PRAM model, as well as, arguably,
making the definition more firmly based on technological realities.)

The final important point to note about the PRAM model is
that it is generally not difficult to see (in principle) how to translate
an informally described parallel algorithm into a PRAM algorithm.
Consider, for example, the parallel sorting algorithms described in-
formally in the introduction. There and as is typically done we
assume the input is specified by integers rather than bits. The sig-
nificance of this point is that it makes the PRAM a convenient vehicle
for parallel algorithm design, just as the RAM has proved to be a
convenient model for sequential algorithm design.

2.3 The Boolean Circuit Model

Although the PRAM model is a natural parallel extension of the
RAM model, it is not obvious that the model is actually reasonable.
That is, does the PRAM model correspond, in capability and cost,
to a physically implementable device? Is it fair to allow unbounded
numbers of processors and memory cells? How reasonable is it to
have unbounded size integers in memory cells? Is it sufficient to
simply have a unit charge for the basic operations? Is it possible
to have unbounded numbers of processors accessing any portion of
shared memory for only unit cost? Is synchronous execution of one
instruction on each processor in unit time realistic?

To expose issues like these, it is useful to have a more primi-
tive model that, although being less convenient to program, is more
closely related to the realities of physical implementation. Such a

2.3. THE BOOLEAN CIRCUIT MODEL 27

model is the Boolean circuit (Borodin [40]). The model is simple
to describe and mathematically easy to analyze. Circuits are ba-
sic technology, consisting of very simple logical gates connected by
bit-carrying wires. They have no memory and no notion of state.
Circuits avoid almost all issues of machine organization and in-
struction repertoire. Their computational components correspond
directly with devices that we can actually fabricate.

The circuit model is still an idealization of real electronic comput-
ing devices. It ignores a host of important practical considerations
such as circuit area, volume, pin limitations, power dissipation, pack-
aging, and signal propagation delay. Such issues are addressed more
accurately by more complex VLSI models (Lengauer [229]), but for
many purposes the Boolean circuit model seems to provide an excel-
lent compromise between simplicity and realism. For example, one
feature of PRAM models that has been widely criticized as unre-
alistic and unimplementable is the assumption of unit time access
to shared memory. Consideration of (bounded fanin) circuit models
exposes this issue immediately, since a simple fanin argument pro-
vides a lower bound1 of Ω(log p) on the time to combine bits from p
sources, say by or, a trivial problem on a unit cost CRCW-PRAM.

A circuit is simply a formal model of a combinational logic circuit.
It is an acyclic directed graph in which the edges carry unidirectional
logical signals and the vertices compute elementary logical functions.
The entire graph computes a Boolean function from the inputs to
the outputs in a natural way.

Let Bk = {f | f : {0, 1}k → {0, 1}} denote the set of all k-ary
Boolean functions. We refer informally to such functions by strings
“1,” “0,” “¬,” “∧,” “∨,” among others. For the sake of readability,
we will also frequently use “not,” “and,” “or,” and other common
descriptive words.

Definition 2.3.1 A Boolean circuit α is a labeled finite oriented
directed acyclic graph. Each vertex v has a type τ(v) ∈ {I}∪B0∪B1∪
B2. A vertex v with τ(v) = I has indegree 0 and is called an input.
The inputs of α are given by a tuple 〈x1, . . . , xn〉 of distinct vertices.
A vertex v with outdegree 0 is called an output. The outputs of α
are given by a tuple 〈y1, . . . , ym〉 of distinct vertices. A vertex v with
τ(v) ∈ Bi must have indegree i and is called a gate.

1The notation Ω(·) is used for lower bounds, analogously to O(·) for upper
bounds; see Appendix C.

28 CHAPTER 2. PARALLEL MODELS OF COMPUTATION

x1

@
@

@
@R

x2

�
�

�
���

�
�

�
�

�
�

�
�

���

@
@

@
@R

@
@

@
@@R

x3 y3

����⇒
?

����∨
?����∧

y1
����¬

?����y2 identity

Figure 2.3.1: A Sample Boolean Circuit.

Note that fanin is less than or equal to two but fanout is unre-
stricted. Inputs and gates can also be outputs. See Figure 2.3.1 for
an example. The circuit depicted there has inputs x1, x2, and x3;
and outputs y1, y2, and y3 = x3. Input x2 has fanout four. Gate y2
has fanin one.

Each circuit computes a well-defined function of its input bits as
specified in the following definition.

Definition 2.3.2 A Boolean circuit α with inputs 〈x1, . . . , xn〉 and
outputs 〈y1, . . . , ym〉 computes a function f : {0, 1}n → {0, 1}m

in the following way: input xi is assigned a value ν(xi) from {0, 1}
representing the ith bit of the argument to the function. Every other
vertex v is assigned the unique value ν(v) ∈ {0, 1} obtained by ap-
plying τ(v) to the value(s) of the vertices incoming to v. The value
of the function is the tuple 〈ν(y1), . . . , ν(ym)〉 in which output yj
contributes the jth bit of the output.

When the logical function associated with a gate is not symmet-
ric, the order of the incoming edges into the gate is important. See
Figure 2.3.1 for example, where there is an ⇒ gate. Orientation can
be ignored in the usual case in which only symmetric functions like
and and or are computed by the gates.

2.3. THE BOOLEAN CIRCUIT MODEL 29

The resource measures of interest for a circuit are its size and
depth.

Definition 2.3.3 The size of α, denoted size(α), is the number of
vertices in α. The depth of α, denoted depth(α), is the length of
the longest path in α from an input to an output.

The circuit shown in Figure 2.3.1 has size eight and depth three.
Each circuit α is described by a string denoted α. This descrip-

tion can be thought of as a blueprint for that circuit, or alternatively
as a parallel program executed by a universal circuit simulator. In
any case, although we speak of circuits, we actually generate and
manipulate circuit descriptions (exactly as we manipulate programs
and not Turing machines). Thus, we need a circuit description lan-
guage. We adopt the one described below, although many alternative
descriptions would work equally well. Ruzzo discusses a number of
different ones [308].

Definition 2.3.4 The standard encoding α of a circuit α is a
string from {0, 1}∗ grouped into a sequence of 4-tuples (v, g, l, r),
one tuple for each vertex of α, followed by two sequences of ver-
tex numbers 〈x1, . . . , xn〉 and 〈y1, . . . , ym〉. Within the encoding, the
vertices of α are uniquely (but arbitrarily) numbered in the range
1, . . . , size(α)O(1). The tuple (v, g, l, r) describes a vertex v and its
oriented connections to other vertices as follows. Vertex number v
is a g-gate, where g ∈ {I} ∪ B0 ∪ B1 ∪ B2. The left (right) input to
v, if any, is numbered l (respectively, r). The vertex number of the
ith input is given by xi, and that of the jth output is given by yj.

The main point of this definition is that circuit descriptions are
simple objects to generate and manipulate. Note that the 4-tuple is
actually a binary string, although for ease of presentation we have
described it as a string over the alphabet consisting of parentheses,
comma, decimal digits, and the like. Each 4-tuple can be encoded
in binary as a string of O(log(size(α))) bits. The length of α is
O(size(α) log(size(α))).

Note that in the Boolean circuits defined above, all gates have
fanin at most two, but there is no a priori upper bound on the fanout
of a gate. Hoover, Klawe, and Pippenger show that conversion to
bounded fanout entails at most a constant factor increase in either
size or depth [160]. On the other hand, we could also consider circuits
allowing gates of unbounded fanin. In this case it is common to
restrict the set of allowable gate functions to elementary symmetric

30 CHAPTER 2. PARALLEL MODELS OF COMPUTATION

functions like and or or, or perhaps other threshold functions like
majority. Usually, the size of an unbounded fanin circuit is defined
to be its number of edges. For unbounded fanin circuits, conversion
to bounded fanin entails no great size increase (at worse squaring
the size), but may increase depth by a factor proportional to the
logarithm of the size. In the other direction, any bounded fanin
circuit may be replaced by an unbounded fanin circuit of slightly
smaller depth (a factor of log log (size)) but polynomially greater
size (Stockmeyer and Vishkin [345]). Even greater depth reduction is
also possible, all the way down to depth two, but only at the expense
of a superpolynomial increase in size by converting the circuit into
disjunctive or conjunctive normal form.

2.3.1 Uniform Circuit Families

An individual circuit with n inputs and m outputs is a finite ob-
ject computing a function from binary strings of length n to binary
strings of length m. Consequently, different circuits are required for
different length inputs. This is in contrast to our usual notion of
computation: one algorithm handles all possible lengths of inputs.
How can the notion of circuit be generalized to functions on strings
of arbitrary length?

The simplest generalization occurs when the output length m is
a function, possibly constant, only of the length of the input. That
is, we are only considering the simple case of functions f where the
length of f(x) is the same for all n-bit inputs x. Call this length
m(n). In this case we can represent the function

fα : {0, 1}∗ → {0, 1}∗

by an infinite sequence of circuits, {αn}, where circuit αn computes
f restricted to inputs of length n. Such a sequence is called a circuit
family.

Definition 2.3.5 A Boolean circuit family {αn} is a collection
of circuits, each αn computing a function fn : {0, 1}n → {0, 1}m(n).
The function computed by {αn}, denoted fα, is the function

fα : {0, 1}∗ → {0, 1}∗,

defined by fα(x) ≡ f |x|(x).

The special case where the length of the output is always one is
particularly important for defining formal languages.

2.3. THE BOOLEAN CIRCUIT MODEL 31

Definition 2.3.6 Let {αn} be a Boolean circuit family that com-
putes the function fα : {0, 1}∗ → {0, 1}. The language accepted
by {αn}, denoted Lα, is the set Lα = {x ∈ {0, 1}∗ | fα(x) = 1}. We
say Lα is recognized by {αn}.

When the output length varies with the value as well as the length
of the input, some additional output bits must be computed by the
circuit to indicate which of the remaining output bits are valid data.
This is a technical complication that we will not explore.

How does one describe an infinite collection of circuits? With no
constraints whatsoever, we get the so called nonuniform circuit fam-
ilies. Nonuniform circuit families are unexpectedly powerful, in that
they can “compute” non-computable functions. For example, con-
sider the circuit family {αn}, where circuit αn consists of n inputs,
all ignored, and a single output gate v that is a constant function.
Gate v is defined to be the constant 1 function if the nth Turing
machine halts on its own description, and is defined to be a 0 gate
otherwise. Thus, the circuit family {αn} computes a function fα
that is uncomputable in the usual sense, since it can be used to solve
the Halting Problem.

Nonuniform circuit families are widely used as objects of lower
bound proofs, where their unexpected power merely serves to
strengthen the significance of the lower bounds. However, the ex-
ample above shows that they are a somewhat unsatisfactory model
in which to consider upper bounds. In particular, there is no effective
way, given n, to obtain a description of the nth circuit αn. The obvi-
ous approach to addressing this difficulty is to provide an algorithm
for generating the members of the family. That is, a circuit family is
defined by giving a program in some computational model that takes
n as input and then outputs the encoding αn of the nth member. In
doing so, an infinite object, the family, is effectively described by a
finite object, the program. The question then becomes, how much
computational power is permitted in producing the description αn ?

Guided by the intuition that the circuit constructor should have
no more computational power than the object it constructs, Borodin
introduced the notion of uniformity [40]. One example of a weak cir-
cuit constructor is a Turing machine that is limited to only O(log n)
work space on inputs of length n. Few problems of interest can
be solved in this limited amount of space, yet such machines can
describe a wide class of useful circuit families.

32 CHAPTER 2. PARALLEL MODELS OF COMPUTATION

Definition 2.3.7 A family {αn} of Boolean circuits is logarithmic
space uniform if the transformation 1n → αn can be computed in
O(log(size(αn))) space on a deterministic Turing machine.

Note that the complexity of producing the description of αn is
expressed in terms of the size of the resulting circuit, instead of the
usual method of expressing it in terms of the input length. For poly-
nomial size circuits, and by using the technical device of supplying
n in unary, the complexity is also logarithmic in terms of the length
of the input.

Logarithmic space uniformity is sometimes called Borodin-Cook
uniformity, and was first mentioned in Cook [65]. This notion of
uniformity has the desirable property that the description αn can
be produced in polynomial time sequentially, or in polylogarithmic
time in parallel with a polynomial number of processors. Thus, the
circuit constructor is reasonable from both sequential and parallel
perspectives.

Just as there is no general agreement as to the best model of
sequential or parallel computation, neither is there general agreement
as to the best notion of uniformity. Different notions are appropriate
to different purposes. For example, if one is willing to give up fast
parallel construction of the circuit descriptions, in essence trading
construction time for circuit size or depth, one can use P -uniformity.
Introduced by Beame, Cook, and Hoover [26], and further examined
by Allender [9], a family {αn} is P-uniform if the transformation
1n → αn can be computed by a deterministic Turing machine in
time nO(1).

As another example, although logarithmic space sequential com-
putations (hence logarithmic space uniformity) can be simulated
efficiently in parallel, it is not known whether they can be sim-
ulated in parallel time o((log n)2). Thus, logarithmic space uni-
formity is generally considered inappropriate for circuit families of
depth o((log n)2). For depths down to log n, the definitions proposed
by Ruzzo are preferable [308], and subsume logarithmic space uni-
formity at and above (log n)2 depth. These definitions are based
on alternating Turing machines, another reasonable parallel model
(Chandra, Kozen, and Stockmeyer [49]). For still smaller depths,
including constant depth unbounded fanin circuits, the definition
of Barrington, Immerman, and Straubing is preferred [24]. The
definitions of [24, 308] also have the virtue of having natural, uni-
form characterizations that are completely divorced from circuits

2.4. CIRCUITS AND PRAMS 33

and from any ancillary notions of uniformity. For example, Ruzzo
defines UE-uniformity and shows that any language is recognized by
a UE-uniform family of polynomial size, (log n)k depth circuits if and
only if it is accepted by a logarithmic space, (log n)k time bounded
alternating Turing machine. Barrington, Immerman, and Straubing
give a similarly clean characterization of uniform constant depth,
unbounded fanin circuits in terms of “First Order Definability” [24].
Other definitions of uniformity are considered by Goldschlager [126]
and Pippenger [285].

Given these conflicting definitions, which should we use? It seems
that in practice it rarely matters which definition is used, but in
the interest of precision we must choose one, and logarithmic space
uniformity seems the simplest to understand, even though the other
definitions cited above are often preferable on technical grounds.
Thus, hereafter the unqualified term uniform will mean logarithmic
space uniform.

2.4 Circuits and PRAMs

We have alluded to the fact that many parallel models are equivalent
when we consider feasible highly parallel algorithms. That is, if a
problem has a feasible highly parallel solution on one model, then
it also has one on any equivalent model. Originally the notion of
feasible and highly parallel came from the observations that certain
problems had polylogarithmic time and polynomial processor solu-
tions on many different models. In a triumph of circularity, all the
models that support feasibly highly parallel algorithms became the
“reasonable” parallel models. In order for any new parallel model to
be considered reasonable, it must be able to simulate some existing
reasonable model and vice versa.

To give the reader some feel for how these simulation arguments
are constructed, we now sketch the equivalence between CREW-
PRAMs and logarithmic space uniform Boolean circuit families.
These kinds of simulation results are quite technical, and sensitive to
the precise details of the models involved. The actual details of the
subsidiary algorithms used in the simulations, such as the parallel
prefix computation, can be found in Karp and Ramachandran [195],
for example.

The first result concerns the simulation of a circuit family by a
PRAM.

34 CHAPTER 2. PARALLEL MODELS OF COMPUTATION

Lemma 2.4.1 Let {αn} be a logarithmic space uniform Boolean
circuit family, such that αn computes the function fn : {0, 1}n →
{0, 1}m(n), with depth(αn) = (log n)O(1) and size(αn) = nO(1). Then
there exists a CREW-PRAM M that computes f in parallel time
(log n)O(1) and processors nO(1).

Proof Sketch. The simulation consists of two phases. The first phase
takes n (the size of the input) and constructs the standard encoding
of the circuit αn. The second phase actually simulates αn on the
input.

First phase: The first phase must generate αn using a feasible
highly parallel algorithm. Since the circuit family is logarithmic
space uniform, there is a Turing machine Mα that on input 1n uses
work-tape space s(n) = O(log n) and generates αn. Because the
meaningful input to Mα consists only of n 1’s we can assume that
the Turing machine has a one-way, read-only input tape. We can also
assume a one-way write-only output tape on which the encoding is
written. For convenience we also assume that the tape heads advance
one cell to the right after an input or output operation. How can
such a machine be simulated quickly in parallel?

The first thing is to observe that the state (here meaning
configuration) of Mα can be completely described by the tuple
〈q, ipos, wpos, wdata〉 that specifies the internal state q of Mα, the in-
put head position in binary (relative to the start position), the work
tape head position in binary (relative to the start position), and the
work tape contents. The size of the state tuple is O(s(n)) = O(log n)
bits, and so there are only nO(1) distinct states. Call the set of such
states Q.

Next, we construct the state transition function Tα : Q → Q
for Mα. Note that neither the input nor the output tape contents
are explicitly included in the state tuples. In constructing the state
transition function, however, we can ignore the input tape contents,
since when we simulate Mα on input 1n, a read will deliver a 1 if the
head position is less than n and a 0 otherwise. We can also ignore
the output tape contents since they cannot affect the computation,
and, as described below, we can deduce later what was written by
examining the sequence of states occurring in the computation. Con-
structing Tα can be done quickly by assigning one processor to each
state tuple in Q.

Given the initial state Q0 = 〈q0, 0, 0, ε〉 we can simulate the exe-

2.4. CIRCUITS AND PRAMS 35

cution of Mα for t steps by computing

Qt = T t
α(Q0). (2.1)

That is, we compose the state transition function with itself t times
and apply it to the initial state.

Since Mα is logarithmic space bounded, it cannot run for more
than polynomial time, and so it has a polynomial length state se-
quence Q0, Q1, . . . , Qt(n). This sequence can be computed efficiently
by using the parallel prefix algorithm of Ladner and Fischer [226] to
compute the functions

T t
α, 1 ≤ t ≤ t(n),

then applying (2.1).
The encoding of αn can be extracted from this sequence by lo-

cating every Qi that writes a bit to the output tape, and then doing
parallel list contraction to produce a single string composed of these
bits.

Second phase: It is a simple task for a CREW-PRAM to simulate
the circuit αn given its encoding αn. The basic idea is that the gate
numbered i in the circuit is assigned to processor Pρ(i), and the
output value of gate i is written to shared memory cell Cρ(i). The
renumbering function ρ is used to allocate processors and cells to the
circuit gates. It is simply ρ(i) = i + n + |αn|.

Processor Pρ(i) executes a very simple loop that reads, from
shared memory, the value of the inputs to gate i, computes the
logical function associated with the gate, and writes the result to
Cρ(i). It takes some time for the correct logical values to propagate
from the inputs through to the output, so the loop has to run for
depth(αn) iterations. At this point the loop halts, and the values of
the output gates are compacted, using list ranking, to the first m(n)
memory cells C1, . . . , Cm(n). Recall m(n) is the output size of αn; it
is easily obtained from the circuit encoding. Finally, the value m(n)
is placed in C0.

One problem is that this phase needs to know the depth of the
circuit. This can be computed in a feasibly highly parallel way by
doing (max, +) transitive closure on the circuit graph. Alternatively,
the algorithm could stop the simulation when the state of the gates
is no longer changing.

Complexity: Each of the phases is feasible and highly parallel,
thus so is the simulation. 2

36 CHAPTER 2. PARALLEL MODELS OF COMPUTATION

How can a PRAM be simulated by a circuit? The main problem
is that the PRAM has a potentially unbounded number of memory
cells, each one with contents of potentially unbounded length.

Lemma 2.4.2 Let M be a CREW-PRAM that computes in paral-
lel time t(n) = (log n)O(1) and processors p(n) = nO(1). Then there
exists a constant c and a logarithmic space uniform Boolean circuit
family, {αn}, such that αn on input 〈x1, . . . , xn〉 computes output
〈y1,1, y1,2, . . . , yi,j , . . .〉, where yi,j is the value of bit j of shared mem-
ory cell i at time t(n), for 1 ≤ i ≤ p(n) ∗ t(n) and 1 ≤ j ≤ c ∗ t(n).
Furthermore, depth(αn) = (log n)O(1) and size(αn) = nO(1).

Proof Sketch. Since combinational circuits have no memory, they
must simulate the computation of M step-by-step, with the output
of one step becoming the input of the next step. Thus, the circuit
will have t(n) layers, one for each time step of M ’s computation on
an input of length n.

Without additional information, the circuit must be designed to
handle the worst case estimate of the number of local and shared
memory cells used by each processor, and the number of bits used
by each cell. The time and processor bounds guarantee that no
more than t(n) local memory cells per processor, and no more than
p(n) ∗ t(n) shared memory cells in total are accessed. In both cases,
no more than c ∗ t(n) bits are generated per cell. Therefore, each
layer of the simulation must maintain information on p(n)∗t(n) local
memory cells and p(n) ∗ t(n) shared memory cells, each containing
c ∗ t(n) bits.

The only problem is that, because of indirect addressing, the
accessed memory cells can be spread over an address space of size
2c∗t(n). Thus, it is not possible to simulate every cell that could be
accessed. Instead the simulation must dynamically allocate memory
cells from a pool of cells, each cell tagged with its address. Stock-
meyer and Vishkin show how this can be done in a feasible highly
parallel way [345]; see also Karp and Ramachandran [195]. For the
sake of simplicity we will assume that no indirect addressing occurs
outside the first p(n) ∗ t(n) cells.

A layer consists of p(n) copies of a circuit that simulates one
step of a single processor. The circuit simply implements the ba-
sic operations of the PRAM processor, which can all be done with
O(log(p(n) ∗ t(n))) = O(log n) depth, polynomial size subcircuits.

The circuit for a single step of one processor takes as input its
own local memory bits from the previous layer, and all shared mem-

2.4. CIRCUITS AND PRAMS 37

ory bits from the previous layer. The shared memory bits from all
processors must be merged together using a tree that allows the bits
from the (at most) one processor that wrote to each shared memory
cell to replace the existing bits.

The total depth of the simulation is at worst O(t(n) ∗ log n), and
the circuit is polynomial size.

Finally, we claim that the description αn can be generated by a
logarithmic space Turing machine. The overall circuit is very regular,
and the main issue is picking a simple numbering scheme for the
blocks that form a layer, and then for the individual layers. 2

These two results combine to give the following theorem.

Theorem 2.4.3 A function f from {0, 1}∗ to {0, 1}∗ can be com-
puted by a logarithmic space uniform Boolean circuit family {αn}
with depth(αn) = (log n)O(1) and size(αn) = nO(1) if and only if f
can be computed by a CREW-PRAM M on inputs of length n in
time t(n) = (log n)O(1) and processors p(n) = nO(1).

Similar simulation results among the various models of paral-
lel computation allow us to observe that if a problem is inherently
sequential on one reasonable parallel model, then it is inherently
sequential on all other reasonable models.

Chapter 3

Complexity

The goal of this chapter is to provide the formal basis for many
key concepts that are used throughout the book. These include
the notions of problem, definitions of important complexity classes,
reducibility, and completeness, among others.

3.1 Search and Decision Problems

Thus far, we have used the term “problem” somewhat vaguely. In
order to compare the difficulty of various problems we need to make
this concept precise. Problems typically come in two flavors: search
problems and decision problems.

Consider the following search problem, to find the value of the
maximum flow in a network.

Example 3.1.1 Maximum Flow Value (MaxFlow-V)
Given: A directed graph G = (V, E) with each edge e labeled by an
integer capacity c(e) ≥ 0, and two distinguished vertices, s and t.
Problem: Compute the value of the maximum flow from source s
to sink t in G.

The problem requires us to compute a number — the value of
the maximum flow. Note, in this case we are actually computing a
function. Now consider a variant of this problem.

3.1. SEARCH AND DECISION PROBLEMS 39

Example 3.1.2 Maximum Flow Bit (MaxFlow-B)
Given: A directed graph G = (V,E) with each edge e labeled by an
integer capacity c(e) ≥ 0, and two distinguished vertices, s and t,
and an integer i.
Problem: Is the ith bit of the value of the maximum flow from
source s to sink t in G a 1?

This is a decision problem version of the flow problem. Rather
than asking for the computation of some value, the problem is asking
for a “yes” or “no” answer to a specific question. Yet the decision
problem MaxFlow-B is equivalent to the search problem MaxFlow-V
in the sense that if one can be solved efficiently in parallel, so can
the other. Why is this?

First consider how solving an instance of MaxFlow-B can be re-
duced to solving an instance of MaxFlow-V. Suppose that you are
asked a question for MaxFlow-B, that is, “Is bit i of the maximum
flow a 1?” It is easy to answer this question by solving MaxFlow-V
and then looking at bit i of the flow. Since we can examine bit i of
the output of MaxFlow-V quickly in parallel, any feasible highly par-
allel solution to MaxFlow-V yields a feasible highly parallel solution
for MaxFlow-B.

Next, consider how solving an instance of MaxFlow-V can be
reduced to solving a number of instances of MaxFlow-B. Suppose
that you are given an instance of MaxFlow-V to solve. First compute
an upper bound on the maximum flow in G, such as the sum of
all the capacities of the edges of G. This can be done quickly in
parallel. The resulting limit on the flow gives a limit, m, on the
number of bits in the maximum flow. Then we solve m instances of
MaxFlow-B, one for each of the bits of the maximum flow, to obtain
the value of each bit. Finally, combine all the bits to compute the
value of the maximum flow. Thus, any highly parallel solution to
MaxFlow-B implies an highly parallel solution to MaxFlow-V. That
is, MaxFlow-V can be reduced, efficiently in parallel, to MaxFlow-B.

Thus, if we are interested in studying the intrinsic parallel com-
plexity of maximum flow, it is sufficient for us to look at this par-
ticular decision variant. This idea generalizes to any situation in
which one is computing a function. For example, any function
g : {0, 1}∗ → {0, 1}∗ induces the associated “bitwise” decision prob-
lem “Is bit i of g(x) equal to 1?” Provided that we have a bound
on the length of g(x), we can determine the value of g(x) bit by bit.
Consequently, the complexity of computing g(x) cannot be substan-

40 CHAPTER 3. COMPLEXITY

tially greater than that of deciding the value of a particular bit of
g(x).

Therefore, when it comes to assessing the difficulty of a problem,
it is usually sufficient simply to consider the problem’s associated
bitwise decision variant. Other related decision problems often work
as well, but one must be somewhat careful. For example, consider
the following variant of maximum flow.

Example 3.1.3 Maximum Flow Threshold (MaxFlow-T)
Given: A directed graph G = (V, E) with each edge e labeled by an
integer capacity c(e) ≥ 0, and two distinguished vertices, s and t,
and an integer k.
Problem: Is the value of the maximum flow from source s to sink
t in G less than k?

It is possible to reduce the computation of MaxFlow-V to the
decision problem MaxFlow-T, but the reduction seems to be impos-
sible to do in a feasible highly parallel way. Suppose that the flow
has at most m bits. Then the flow can be determined in m steps us-
ing a binary search. For example, the high-order bit of the flow can
be determined by asking if the flow is less than 2m−1. If the answer
to this question is no, bit m of the flow is 1. Assuming a negative
answer, the next bit can be determined by asking if the flow is less
than 2m−1 + 2m−2. In this way, solving m instances of MaxFlow-T
yields all bits of the flow.

This results in a reasonably fast sequential algorithm. Unfortu-
nately, it does not give a fast parallel algorithm since each particular
instance of the decision problem to be solved depends on the answers
from the previous ones, and so they apparently cannot be solved
in parallel. It is conceivable that MaxFlow-T has a feasible highly
parallel algorithm while MaxFlow-V and MaxFlow-B (see Problem
A.4.4) likely do not.

The reader is referred to (Abrahamson, Fellows, and Wilson [2]
or Karp, Upfal, and Wigderson [197]) for further discussion of “par-
allel self-reducibility,” that is, determining the parallel complexity
of a search problem assuming the availability of an oracle for the
corresponding decision problem.

Another possible area of concern is whether the specification of
the problem is functional or not. That is, whether each instance
has a unique solution, or admits many possible solutions. In the
case of MaxFlow-V the problem was functional. The special case of
a search problem where the solution is unique is called a function

3.2. COMPLEXITY CLASSES 41

problem. Below we provide an example of a search problem that is
not a function problem.

Example 3.1.4 Maximum Flow Pattern (MaxFlow-P)
Given: A directed graph G = (V, E) with each edge e labeled by an
integer capacity c(e) ≥ 0, and two distinguished vertices, s and t.
Problem: Compute a flow pattern. That is, a flow on each partic-
ular edge of G that overall achieves the maximum flow from source
s to sink t.

There may be many flow patterns attaining the maximum flow;
MaxFlow-P produces just one of them. It is possible that succes-
sive solutions of the same instance of MaxFlow-P result in different
flow patterns. Thus, reductions to MaxFlow-P must be carefully
designed. They cannot assume, for example, that parallel solutions
deliver the same answer as was done in the MaxFlow-V to MaxFlow-
B reduction above. Nor can they use the technique of recomputing
the solution in order to save space. One simple way of making these
kinds of relational problems into functional ones is to require an addi-
tional property of the solution, such as it being the lexicographically
first among all solutions.

3.2 Complexity Classes

A complexity class is a collection of problems (usually decision or
function) of some characteristic worst case difficulty — the most
famous being the class P of decision problems with polynomial time
sequential solutions. Within a class, some problems may be easier
than others, but all of the problems can be solved within the resource
bounds associated with the class.

An important consideration when defining a complexity class is
the type of objects it will contain. It is convenient to compare com-
plexity classes using the usual terminology of sets — we speak of
one class being a proper subset of another, or of one class being the
intersection of two other classes. Thus, if possible, we want all of our
complexity classes to contain the same kind of object. We also want
to perform computations that manipulate members of a class, such
as reducing one problem in the class to another. So an additional
consideration when defining a class is that the members of a class be
easy to code as strings from {0, 1}∗.

For these reasons, most complexity classes are defined in terms of

42 CHAPTER 3. COMPLEXITY

formal-language acceptance problems. This means that the members
of a complexity class are languages, each language being a set of
strings from {0, 1}∗. Hence, every complexity class contains the same
kind of object — a set of strings.

How can we make the jump from decision and function problems
to language recognition problems over the alphabet {0, 1}? There
are two issues we need to confront. The first is how problems are
encoded over the binary alphabet; the second is how to view decision
and function problems as languages. First, we address the coding
issue.

Decision and function problems are normally phrased over an
alphabet having many more than two symbols. For example, it is
often convenient to use delimiters such as #, (,), and the digits
0 − 9 when expressing a problem. When passing from our usual
informal description of a problem to a language recognition question,
we would like to preserve the amount of information contained in our
original description. Therefore, we introduce the informal notion
of the size of a problem. The size of an instance of a problem is
naturally measured by the number of symbols in the full problem
specification.

There are many ways of coding a specific decision problem, such
as MaxFlow-B, into a language recognition problem. Any encoding
that meets the following guidelines is acceptable. First, it must be
easy to produce the encoding of any instance of the problem. This
prevents encodings from containing the answer to the problem as
part of the encoding.

Next, the coding should be compact. The length of the binary
encoding should roughly correspond to the size of the problem in-
stance, say by being polynomial in the original instance size. This
way we can express the complexity of a problem either in terms of
the size of the problem instance, or the length of the instance en-
coding, and both measures will be equivalent to within a polynomial
factor.

For example, a directed graph G on n vertices can be coded as an
adjacency matrix of roughly n2 bits. The complexity of an algorithm
for finding a spanning tree of G can be expressed either in terms of
n or in terms of the length of the encoding of G. In either case the
complexity will be polynomial time. On the other hand, the size
of an integer is usually expressed in terms of the number of digits
in its binary or decimal representation. By encoding an integer x

3.2. COMPLEXITY CLASSES 43

in unary, it becomes possible to factor x in time polynomial in the
input length — something we do not know how to do if x is coded in
binary. Such cases where the length of the encoding is exponentially
larger than the instance size are considered unreasonable.

Finally, the encodings being considered should all be intercon-
vertible within the computational resources that we are studying.
That is, no one encoding contains more computational hints than
any other.

Now we return to the issue of how to view decision and function
problems as language recognition questions. When problems are ex-
pressed in decision form, they immediately provide an associated
language L consisting of those strings that encode the “yes” answers
to the problem. Membership of a binary string x in L is then equiva-
lent to an affirmative answer to question y for the decision problem,
where y is the original unencoded version of x.

Suppose L is the language corresponding to a particular decision
problem. We may think of coding an instance of the problem with
its answer. For example, x#1 means x ∈ L and y#0 means y 6∈ L.
Consider the language L′ = {x#1 | x ∈ L}. This language provides
an alternative view of L.

When we want to consider function problems as language recog-
nition questions, the approach described above turns out to be useful.
Fix an encoding of instances for a specific problem. A function prob-
lem F can be viewed as a language recognition question using the
language

L(F) = {x#i#j | bit i of the function at x has value j, j ∈ {0, 1}}

Note that if we can compute the solution to a function problem, we
can easily recognize its corresponding language, and vice versa.

The reader may have noticed that in our descriptions of languages
we have been using the delimiter #. By applying a homomorphism
h such that h(0) = 10 and h(1) = 00, and coding # as 11, we obtain
a language over {0, 1}∗.

To specify precisely the complexity of a decision problem and
of its associated language, we need the following definitions. The
reader may wish to refer to Definition 2.2.1.

Definition 3.2.1 Let L be a language over {0, 1}∗. The charac-
teristic function of L is the function fL defined on all x ∈ {0, 1}∗
such that fL(x) = 1 if x ∈ L, and fL(x) = 0 if x 6∈ L.

44 CHAPTER 3. COMPLEXITY

Definition 3.2.2 A language L ⊆ {0, 1}∗ is decidable in sequen-
tial time t(n) if and only if the characteristic function of L can be
computed in sequential time t(n).

Definition 3.2.3 A language L ⊆ {0, 1}∗ is decidable in parallel
time t(n) with p(n) processors if and only if the characteristic
function of L is computable in parallel time t(n) and processors p(n).

A single sequential processor running in polynomial time can
easily simulate a polynomial number of processors running in poly-
nomial time, and conversely. So if we wanted, we could restrict our
attention simply to PRAMs, as the following lemma indicates.

Lemma 3.2.4 A language L is decidable in sequential time nO(1)

if and only if L is decidable in parallel time nO(1) with processors
nO(1).

3.2.1 P , NC, FP , and FNC

We can now define the class of polynomial time sequential problems,
P , and the class of feasible highly parallel problems, NC . (For the
origin of the name NC , see Section 1.3.)

Definition 3.2.5 The class P is the set of all languages L that are
decidable in sequential time nO(1).

Since deterministic complexity classes are closed under comple-
ment, P = co-P . (As an aside, notice that this implies the comple-
ment of every P -complete language is also P -complete.)

Definition 3.2.6 The class NC is the set of all languages L that
are decidable in parallel time (log n)O(1) and processors nO(1).

From Lemma 3.2.4, we know that NC ⊆ P . The important
question for parallel computation is whether this inclusion is proper.

As we have seen, every decision problem of the form “Is x ∈ L?”
can be expressed as a function problem of computing the characteris-
tic function of L. Similarly, every function has an associated decision
problem of the form “Is bit i of f(x) a 1?” Thus, one could define the
complexity of a function by the complexity of its associated language
recognition question.

Although expressing complexity classes in terms of languages is
convenient as noted previously, it is also useful to talk about the
complexity of computing a function directly. We have seen that it is

3.2. COMPLEXITY CLASSES 45

possible to convert easily between the two notions. Thus, we have
the analogous function computation classes FP and FNC , which are
sets of functions, not languages.

Definition 3.2.7 The class FP is the set of all functions from
{0, 1}∗ to {0, 1}∗ that are computable in sequential time nO(1).

Definition 3.2.8 The class FNC is the set of all functions from
{0, 1}∗ to {0, 1}∗ that are computable in parallel time (log n)O(1) and
processors nO(1).

These two classes are very stable in the sense that the compo-
sition of any two functions in the class remains in the class. This
property ensures that when we use these classes later to define re-
ducibilities we can easily establish transitivity.

Lemma 3.2.9 The classes FP and FNC are closed under composi-
tion.

Proof. The proof is left as an exercise for the reader. 2

At this point we should remark that many authors use the symbol
P (NC) to denote both P and FP (respectively, NC and FNC)
relying on context to make the meaning clear.

3.2.2 The Classes NCk and FNCk

Under the uniform Boolean circuit family model, NC can be divided
into subclasses that differ by a logarithmic factor in depth.

Definition 3.2.10 For each integer k ≥ 1, the class NCk is the set
of all languages L, such that L is recognized by a uniform Boolean
circuit family {αn} with size(αn) = nO(1) and depth(αn) =
O((log n)k).

Observe that NC =
⋃

k ≥ 1 NC k. As two examples, we note
that determining the ith bit in the multiplication of two n-bit num-
bers is in NC 1 and the problem of determining if the rank of a matrix
is k is in NC 2.

In a similar manner FNC can be partitioned into the function
classes FNC k, k ≥ 1. See Appendix D for the formal definition.
So, for example, the problem of multiplying two n-bit numbers is
in FNC 1. We note that analogous to Lemma 3.2.9, FNC k is closed
under composition.

46 CHAPTER 3. COMPLEXITY

3.2.3 Random NC

Many search problems have no known FNC algorithm, but they do
have randomized algorithms that find a solution with high probabil-
ity, and in a feasible highly parallel way. For example, the problem
of computing a maximum matching (Problem B.9.7), and the prob-
lem of computing a depth-first search tree (Problem B.9.2). These
and other cases are mentioned in Appendix B.9.

To define RNC , the probabilistic version of NC , we first need
the notion of a probabilistic circuit.

Definition 3.2.11 A probabilistic circuit α is a Boolean cir-
cuit with ordinary inputs x = 〈x1, . . . , xn〉, random inputs z =
〈z1, . . . , zr〉, and outputs y = 〈y1, . . . , ym〉.

For a given distribution of random inputs, the probability that
on input x, the output of α equals b ∈ {0, 1}m, written P [α(x) = b],
is defined to be the fraction of random input strings z such that α
outputs b on input 〈x1, . . . , xn, z1, . . . , zr〉.

We say α computes f with error probability ε if

P [α(x) = f(x)] ≥ 1− ε.

The notions of circuit family and uniformity carry over directly
to these types of circuits. The class RNC is defined as follows.

Definition 3.2.12 Let all random inputs be obtained from a uni-
form distribution. For each integer k ≥ 1, the class RNCk is the
set of all languages L, such that L is recognized by a uniform prob-
abilistic Boolean circuit family {αn} with size(αn) = nO(1) and
depth(αn) = O((log n)k), and having error probability at most 1/4.

The class RNC =
⋃

k ≥ 1 RNC k.

One can also define RNC in terms of randomized PRAMs.
The corresponding function classes, FRNC k and FRNC , are also

important. Definitions for them are provided in Appendix D.

3.3 Reducibility

In Section 3.1 we alluded to the notion of reducing one problem B
to another problem B′ by expressing the solution to B in terms of
solutions to B′. When made precise, this concept of reducibility lets
us compare problems for relative difficulty and to characterize the
hardest problems in a complexity class.

3.3. REDUCIBILITY 47

3.3.1 Many-one Reducibility

There are two common forms of reducibility. The first is based on
transforming an instance of one problem into a single instance of
another; the transformation is called a many-one reduction. This
is the usual kind of reducibility associated with NP -completeness
results (Karp [193], Garey and Johnson [113]). It is called many-one
because many distinct instances of the original problem B can be
mapped to a single instance of the new problem B′.

Suppose that we have two languages L and L′. We want to
determine if some string x is a member of L. Further suppose that
we can transform x into a string y, using a function f , in such a way
that y is a member of L′ exactly when x is a member of L. That
is, x ∈ L if and only if f(x) ∈ L′. We have reduced L to L′ in the
sense that if we know how to test membership in L′, then we can
test membership in L. The function f is called a reduction. We use
the notation L≤mL′ to denote that L is many-one reducible to L′.

If we actually know how to decide membership in L′, then the
complexity of testing x ∈ L becomes the sum of the complexity of
computing f(x) and the complexity of testing whether f(x) ∈ L′.
So we are of course interested in the complexity of the reduction,
which in the case of many-one reductions is simply the complexity
of computing f . We follow convention and denote such a resource
bounded reduction by superscripting ≤m with the name of the deci-
sion problem complexity class associated with the complexity of the
reducing function. In what follows we provide formal definitions for
the ideas just presented.

Definition 3.3.1 A language L is many-one reducible to a lan-
guage L′, written L≤mL′, if there is a function f such that x ∈ L if
and only if f(x) ∈ L′.

We say that L is P many-one reducible to L′, written L≤P
mL′,

if and only if the function f is in FP.
For each k ≥ 1, we say that L is NCk many-one reducible to

L′, written L≤NCk

m L′, if and only if the function f is in FNC k.
We say that L is NC many-one reducible to L′, written

L≤NC
m L′, if and only if the function f is in FNC.

Since reductions are usually complicated, we would like to make
repeated use of them. The following notion often allows us to do
this.

48 CHAPTER 3. COMPLEXITY

Definition 3.3.2 Suppose ≤ is a reducibility such that whenever
L ≤ L′ and L′ ≤ L′′, then L ≤ L′′. We say that ≤ is transitive.

Many-one reducibility is transitive. That is, if x ∈ L if and only
if f(x) ∈ L′, and y ∈ L′ if and only if g(y) ∈ L′′, then x ∈ L if
and only if g(f(x)) ∈ L′′, and so the language L is also reducible to
L′′. Furthermore, because FP , FNC k, and FNC are closed under
composition (Lemma 3.2.9 and remarks in Section 3.2.2) resource
bounded reductions are also transitive.

Lemma 3.3.3 The reducibilities ≤m, ≤P
m, ≤NCk

m (k ≥ 1), and
≤NC

m are transitive.

Proof. The proof is left as an exercise for the reader. 2

The next definition is useful for equating problems of the same
complexity.

Definition 3.3.4 Suppose that for some reducibility ≤ we have L ≤
L′ and L′ ≤ L. Then we say that L and L′ are equivalent under
≤.

Often when reducing a language L to a language L′, the exact
complexity of L′ is unknown. Although this gives us no absolute in-
formation about the computational complexity of L, it still provides
useful information about the relative difficulties of the two languages.
In particular, assuming the reduction is not too powerful, it implies
that L is no more difficult to decide than L′. It is important to note
that if the reduction is allowed too much power, it will mask the
complexity of L′. As an extreme example, if polynomial time is al-
lowed for the reduction, then any problem in P can be ≤m reduced
to a trivial problem, such as the problem of deciding whether a given
string x is a member of the set {1}. Note {1} can be replaced by
any set other than the Ø or Σ∗.

Lemma 3.3.5

1. If L′ ∈ P and L≤P
mL′, L≤NCk

m L′, or L≤NC
m L′ then L ∈ P.

2. If L′ ∈ NC k and L≤NCk

m L′ then L ∈ NC k.

3. If L′ ∈ NC and L≤NC
m L′ then L ∈ NC.

Proof. The proof is left as an exercise for the reader. 2

As just defined, many-one reductions give us a way of comparing
decision problems. The many-one notion can be extended to search

3.3. REDUCIBILITY 49

problems so that search problem B is reduced to search problem B′

by transforming the instance of B into an instance of B′, solving
B′, and transforming the result into a solution for B. In practice,
we often need to solve more than a single instance of B′, and so
such many-one search reductions are not nearly as useful as their
generalization to Turing reductions, defined below.

3.3.2 Turing Reducibility

Turing reducibility is a generalization of many-one reducibility. In-
stead of performing a transformation on the input followed by asking
just the single question “Is f(x) ∈ L?,” we allow multiple questions,
with new questions possibly being a function of the answers to pre-
vious questions. In this way, Turing reducibility corresponds to our
usual notion of using subroutines to solve larger problems: to solve
problem B we make many calls to a subroutine for solving problem
B′.

Like many-one reducibility, Turing reducibility is often used to
compare problems whose intrinsic difficulty is unknown. Conse-
quently, the notion of complexity for Turing reductions must ab-
stract out the cost of the subroutine to solve the problem, while at
the same time accounting for the call in such a way that we get a
result analogous to Lemma 3.3.5.

One way of achieving this isolation is to hide the solutions to
problem B′ behind an interface, called an oracle, and to only count
the cost of placing questions and obtaining answers from the inter-
face. For example, if we are reducing language L to L′, the reduction
is done on a machine that is provided with an oracle for answering
membership questions to L′. Each oracle call is charged only unit
cost. In this way the complexity of the reduction captures the dif-
ficulty of reducing L to L′ independently of the true complexity of
L′.

Oracles can be added to the PRAM model by slightly modi-
fying the input/output conventions used for computations (Defini-
tion 2.2.1), and adding a new instruction.

A B-oracle PRAM for search problem B is a PRAM with an
additional instruction, oracle(s), which behaves as follows: integer
k is placed in shared memory cell Cs, and bits x1, . . . , xk encoding
instance x of B are placed into shared memory cells Cs+1, . . . , Cs+k.
When the instruction oracle(s) is executed, an integer l is placed in
shared memory cell Cs, and the bits y1, . . . , yl of answer y for instance

50 CHAPTER 3. COMPLEXITY

x are placed into shared memory cells Cs+1, . . . , Cs+l. Different pro-
cessors may make simultaneous oracle calls, and are responsible for
preventing conflicts in shared memory access.

A Turing reduction is simply a computation by an oracle PRAM.

Definition 3.3.6 A search problem B is Turing reducible to a
search problem B′, written B≤T B′, if and only if there is a B′-
oracle PRAM that solves B.

We say that B is P Turing reducible to B′, written B≤P
T B′,

if and only if the B′-oracle PRAM on inputs of length n uses time
nO(1) and processors nO(1).

We say that B is NC Turing reducible to B′, written
B≤NC

T B′, if and only if the B′-oracle PRAM on inputs of length
n uses time (log n)O(1) and processors nO(1).

We discuss NC k Turing reducibility in Section 3.4.1.
In the most general case, a search problem oracle returns any

one of the possible solutions to instance x. Repeated calls for the
same instance are not guaranteed to return the same answer. In
the case that the search problem is functional, that is, there is a
unique answer to every instance, then we can speak of one function
f being Turing reducible to another function g. Finally, in the case
of a decision problem, the oracle PRAM gives us a way of Turing
reducing one language L to another L′.

If the oracle call was actually invoking a computation, then the
cost of an oracle call should be a function of the length of the question
and resulting answer. However, if we only require a result like that
stated below in Lemma 3.3.9, it is sufficient to simply charge an
oracle call the same as any other instruction. Since the setup of each
bit of the oracle call requires one processor for one time unit, as
does interpreting the bits of the result, the length of an oracle call is
always less than the processor time product. Hence, on an input of
length n, any feasible highly parallel reduction can only make oracle
calls of length nO(1).

Lemma 3.3.7 The reducibilities ≤T , ≤P
T , and ≤NC

T are transitive.

Proof. The proof is left as an exercise for the reader. 2

Note these concepts, especially P Turing reducibility can be ex-
pressed in equivalent forms on other models, such as oracle Turing
machines. It is also worth observing that many-one reducibility im-
plies Turing reducibility.

3.3. REDUCIBILITY 51

Lemma 3.3.8

1. If L≤mL′ then L≤T L′.

2. If L≤P
mL′ then L≤P

T L′.

3. If L≤NC
m L′ then L≤NC

T L′.

Proof. Just supply an oracle for L′, implement the reducing function
f in the oracle PRAM, and ask one question to the oracle. 2

We focus on NC reducibility because we are interested in trans-
forming problems to one another quickly in parallel. NC reducibility
lets us preserve complexity in the sense of the following lemma.

Lemma 3.3.9 If L≤NC
T L′ and L′ ∈ NC (L′ ∈ P), then L ∈ NC

(respectively, L ∈ P).

Proof. Consider L′ ∈ NC , and suppose that M ′ is a PRAM that
decides L′ in time t′(n) = (log n)O(1) with p′(n) = nO(1) processors.
Suppose that M is an L′-oracle PRAM that decides L. Furthermore,
suppose that on an input of length n, M uses time t(n) = (log n)O(1)

with p(n) = nO(1) processors and makes oracle calls of length l(n) =
nO(1). M makes at most p(n) simultaneous oracle calls. If we replace
each of these oracle calls by direct execution of M ′, the resulting
machine uses at most p(n) ∗ p′(l(n)) = nO(1) processors and takes
time at most t(n) ∗ t′(l(n)) = (log n)O(1). Thus, L′ is in NC . A
similar argument works when NC is replaced by P . 2

Lemmas 3.3.5 and 3.3.9 illustrate why choosing a reducibility
compatible with the complexity classes that one is studying is im-
portant. This notion can be made precise.

Definition 3.3.10 Let ≤ be a resource bounded reducibility, and let
C be a complexity class. The reducibility ≤ is compatible with C if
and only if for all problems B and B′, when B ≤ B′, and B′ ∈ C
then B ∈ C.

Lemma 3.3.11 ≤NC
T reducibility is compatible with the classes P,

NC , FP, and FNC.

Proof. The proof is left as an exercise for the reader. 2

For further details we refer the interested reader to the article by
Johnson [177].

52 CHAPTER 3. COMPLEXITY

3.4 Other NC Compatible Reducibilities

When comparing problems in P and NC , any reduction compati-
ble with NC will do. In the following we describe two more useful
reductions.
3.4.1 NCk Turing Reducibility

Suppose that we have two problems, B and B′, with B≤NC
T B′. Sup-

pose B′ can be solved in O((log n)2) time on a CREW-PRAM. Since
the reducibility ≤NC

T is compatible with FNC , we know that the al-
gorithm for B′ can be used to implement a feasible highly parallel
algorithm for B. But, unless we examine the details of the reduction
from B to B′, we cannot know the actual time complexity of the
resulting algorithm.

If the reduction takes time O(log n), then we know that the algo-
rithm for B has time O((log n)3) at worst — at most O(log n) oracle
calls, each of time O((log n)2). So replacing the oracle call by the
actual solution of B′ increases the time to O((log n)3) at worst.

Therefore, to obtain more precise time estimates, it is reasonable
to consider a subclass of NC reducibility in which the time of the
reduction is limited. Unfortunately, our definition of NC reducibility
in Section 3.3 was stated in terms of PRAMs. Because of the log-
arithmic factor sloppiness between different versions of the PRAM
model, if we are really interested in the fine details of reductions then
we need a more precise model, such as Boolean circuit families.

Definition 3.4.1 Let B be a search problem. A B-oracle circuit
family is a Boolean circuit family {αn} augmented with oracle gates
for problem B. An oracle gate for B is a vertex with a sequence
〈x1, . . . , xk〉 of input vertices and a sequence 〈y1, . . . , yl〉 of output
vertices. When given as input an encoding of an instance of problem
B, the oracle gate outputs an encoding of a solution of B, provided
that l bits is sufficient to contain the full encoding. For the purpose
of defining the complexity of αn, this oracle gate counts as depth
dlog2(k + l)e, and size (k + l).

Note that the output encoding of the oracle gate is usually de-
signed so that it indicates whether the output encodes a complete
or only partial result due to lack of sufficiently many output bits.

Oracle circuit families serve the same purpose as oracle PRAMs.

3.4. OTHER NC COMPATIBLE REDUCIBILITIES 53

Definition 3.4.2 For each k ≥ 1, a search problem B is NC k Tur-
ing reducible to a search problem B′, written B≤NCk

T B′, if and
only if there is a uniform B′-oracle circuit family {αn} that solves
B, and has depth(αn) = O((log n)k) and size(αn) = nO(1).

Lemma 3.4.3 Let B and B′ be search problems. B≤NC
T B′ if and

only if B≤NCk

T B′ for some k.

Proof. The proof is left as an exercise for the reader. 2

Cook originally introduced the notion of NC1 Turing reducibility
for the purposes of studying subclasses of NC , such as those functions
reducible to the problem of computing the determinant of an integer
matrix [67]. NC1 Turing reducibility has the advantage of preserving
circuit depth — if L≤NC1

T L′ and L′ ∈ NC k, then L ∈ NC k. That
is, ≤NC1

T is compatible with NC k for each k ≥ 1.
NC1 Turing reducibility can be used to establish the depth equiv-

alence of problems, even though their precise complexities may be
unknown. For example, Beame, Cook, and Hoover show that binary
division, powering, and iterated product are all equivalent under
≤NC1

T reducibility [26]. Thus, if one of these can be solved by an
O(log n) depth uniform Boolean circuit family, then so can the other
two. They fail to find a polynomial size O(log n) depth, logarithmic
space uniform, family of circuits for any of the problems. However,
by relaxing the notion of uniformity somewhat, they construct a P -
uniform logarithmic depth circuit family for the iterated product.
The NC 1 equivalence then places all three problems in small depth.

Note, any ≤NC1

m reduction is also an ≤NC1

T reduction. It is
also worth noting that many NC reductions in the literature are in
fact ≤NC1

m reductions, and one could consider requiring only NC1

reductions (either many-one or Turing) in order to ensure that depth
is preserved across the reduction.

However, there is an advantage to sticking with NC reducibility.
Firstly, one would always have to use circuits to describe the reduc-
tions because of the sloppiness between PRAM models. In addition,
Ruzzo shows that for many different notions of uniformity, the class
NC k is stable for each k ≥ 2, but there may be a difference for
NC1 [308]. One avoids this issue completely with NC reducibility
and obtains a very stable notion of reduction.

54 CHAPTER 3. COMPLEXITY

3.4.2 Logarithmic Space Reducibility

The original P -completeness results were motivated by the question,
still unresolved, of whether P equals polylogarithmic space (Cook
[64], Jones and Laaser [181]). These results used logarithmic space
reducibility as do many of the results currently appearing in the
literature.

Definition 3.4.4 A language L is logarithmic space reducible
to a language L′, denoted L≤log

m L′ if there exists a function f , com-
putable in logarithmic space on a Turing machine, such that x ∈ L
if and only if f(x) ∈ L′.

The reason for choosing logarithmic space reducibility is because
such reductions are compatible with polynomial time, polylogarith-
mic space, or both combined. For example, if L is logarithmic space
reducible to L′, and if L′ is in polynomial time, polylogarithmic
space, or both simultaneously, then L is in the corresponding com-
plexity class.

It should be noted that any logarithmic space reduction is also an
NC many-one reduction (more precisely an NC 2 many-one reduc-
tion) as a consequence of the small space transitive closure simulation
of Borodin [40].

3.5 Completeness

We introduced reductions to relate problems. Now we use them to
relate a problem to an entire complexity class. The variants of many-
one and Turing reductions given so far, which involve logarithmic
space or NC , are compatible with NC ; consequently, we can use the
NC Turing reductions for any hardness results. In practice, we will
state results using the weakest form of reducibility possible down to
NC 1 many-one reducibility.

Suppose that we have two languages, L and L′, with L≤NC
m L′.

Lemma 3.3.5 tells us that if L′ ∈ NC , then so is L, but it also
tells us that if L 6∈ NC , then neither is L′. Thus, when attempting
to understand the actual complexity of L and L′, we can take two
approaches: show that there is an NC membership test for L′ by
finding an NC upper bound, or show that no NC membership test
for L is possible, say by proving a parallel polynomial time lower
bound. Of course, we can make an even stronger statement about
their complexity when we also have L′≤NC

m L. That is, L and L′ are

3.5. COMPLETENESS 55

equivalent. In this case, an upper or lower bound for either one gives
an upper or lower bound for the other.

Now consider the question of whether NC equals P . To distin-
guish these two classes, we need only find one problem in P that
provably is not solvable in NC . Unfortunately, all attempts at find-
ing such a problem have failed. However, the likely candidates for
such problems have two interesting properties. The first is that they
are all equivalent under NC Turing reductions. Consequently, a
proof that any one is inherently sequential results in an entire class
of inherently sequential problems. The second property is that every
problem in P is NC Turing reducible to any of the candidate hard
problems. This means that a feasible highly parallel algorithm for
any one problem would imply NC equals P .

We call problems that capture the difficulty intrinsic to a class
the complete problems for the class.

Definition 3.5.1 A language L is P -hard under NC reducibil-
ity if L′≤NC

T L for every L′ ∈ P. A language L is P -complete
under NC reducibility if L ∈ P and L is P-hard.

When we say a problem is P -hard, we are indicating that it is as
difficult to solve as any other problem in P . Stating it is P -complete
adds the additional information that the problem is in fact in P .
Since all problems in P are decision problems, only a decision prob-
lem can be P -complete. But many search problems with polynomial
time solutions also have the property that any language in P can
be reduced to them. That is, they are P -hard. Since such problems
cannot be P -complete, how should they be classified to indicate that
they also capture the essential difficulty of polynomial time compu-
tations? Those search problems that are actually functions can be
classified as FP -complete as follows.

Definition 3.5.2 A function problem B is P -hard under NC
reducibility if L≤NC

T B for every L ∈ P. A function problem B is
FP -complete if B ∈ FP and B is P-hard.

However, many search problems can only be stated as relations.
For example, the problem of finding a spanning tree. Their solutions
are not unique, so the problems are not in FP nor do such problems
have their own named complexity class. We call such problems quasi-
P-complete.

56 CHAPTER 3. COMPLEXITY

Definition 3.5.3 A search problem B is P -hard under NC re-
ducibility if L≤NC

T B for every L ∈ P. A search problem B is
quasi-P -complete if it has a polynomial time solution and is P-
hard.

The key result allowing us to relate P -completeness to fast par-
allel computation is the following theorem.

Theorem 3.5.4 If any P-complete problem is in NC then NC
equals P.

Proof. The proof is left as an exercise for the reader. 2

There is considerable evidence, as the following chapters will il-
lustrate, leading to the belief that NC and P are distinct classes.
Therefore, to say that a problem is P -complete is to say that it is
very unlikely to have an NC solution.

In Chapter 4 it is shown that the Circuit Value Problem (Def-
inition 4.2.1) is P -complete. Thus, the question of whether every
feasible sequential problem has a highly parallel solution is equiva-
lent to the following problem.

Given a polynomial size Boolean circuit, can its output
be computed in polylogarithmic time using a polynomial
number of processors?

If it can, then NC equals P .

Chapter 4

Two Basic P -Complete
Problems

We have now provided sufficient machinery to address the question
posed in the introduction: Does every problem with a feasible se-
quential solution also have a highly parallel solution? We begin by
asking the dual question.

Are there any inherently sequential problems?

We will try to develop some intuition for the answer to this question
by closely examining two basic P -complete problems: the Generic
Machine Simulation Problem and the Circuit Value Problem, both
introduced below.

4.1 The Generic P -Complete Problem

The canonical device for performing sequential computations is the
Turing machine, with its single processor and serial access to mem-
ory. Of course, the usual machines that we call sequential are not
nearly so primitive, but fundamentally they all suffer from the same
bottleneck created by having just one processor. So to say that a
problem is inherently sequential is to say that solving it on a par-
allel machine is not substantially better than solving it on a Turing
machine.

What could be more sequential than the problem of simulating
a Turing machine computation? If we could just discover how to
simulate efficiently, in parallel, every Turing machine that uses poly-
nomial time, then every feasible sequential computation could be

58 CHAPTER 4. TWO BASIC P -COMPLETE PROBLEMS

translated automatically into a highly parallel form. Thus, we are
interested in the following problem. (See also Problem A.12.1 in
Part II for related problems and remarks.)

Definition 4.1.1 Generic Machine Simulation Problem (GMSP)
Given: A string x, a description M of a Turing machine M , and
an integer t coded in unary. (To be precise, the input is the string
x#M#t, where # is a delimiter character not otherwise present in
the string.)
Problem: Does M accept x within t steps?

Intuitively at least, it is easy to see that this problem is solv-
able in polynomial time sequentially — just interpret M ’s program
step-by-step on input x until either M accepts or t steps have
been simulated, whichever comes first. Such a step by step sim-
ulation of an arbitrary Turing machine by a fixed one is exactly
the essence of the famous result that universal Turing machines
exist. Given a reasonable encoding M of M , the simulation of it
by the universal machine will take time polynomial in t and the
lengths of x and M , which in turn is polynomial in the length of
the universal machine’s input. (This is why we insist that t be
encoded in unary.) See, for example, Hopcroft and Ullman [161,
162] for details of the universal machine’s construction.

Reducing an arbitrary language L in P to the Generic Machine
Simulation Problem is easy. Let ML be a Turing machine recognizing
L in polynomial time and let p(n) = nO(1) be an easy-to-compute
upper bound on that running time. To accomplish the reduction,
given a string x, simply generate the string f(x) = x#ML#p(|x|).
Then f(x) will be a “yes” instance of the Generic Machine Simulation
Problem if and only if x is in L.

This transformation is easily performed by an NC1 circuit (see
Definition 3.2.10) as follows. First, note the string #ML# is con-
stant, independent of x, and that the string 1p(|x|) is constant for
any fixed n = |x|. Thus, for fixed n, the circuit that accomplishes
the transformation for inputs x of length n simply outputs a copy
of its input x followed by the fixed string #ML#p(|x|). This can be
done by an n-input bounded fanin circuit αn of small depth, in fact,
one of constant depth. Basically, αn consists of a sequence of n in-
put gates, each of which computes the identity function, followed by
a fixed sequence of constant gates computing the successive bits of
#ML#, followed by p(n) gates computing the constant “1.” Each
gate is also an output gate. Finally, note that the circuit family

4.2. THE CIRCUIT VALUE PROBLEM 59

{αn} is highly uniform. The most difficult part of constructing αn
given n is to compute p(n), which is easy since p(n) can be chosen
to have a very simple form, say 2kdlog(n+1)e for some k being an in-
teger power of 2. Note that dlog(n + 1)e is just the number of bits
needed to express n in binary. Thus, the binary representation of
p(n) is a single one bit followed by some number of zero bits, where
that number is determined by appending log k zeros to dlog(n + 1)e.
Hence, the uniformity computations are reduced to little more than
counting and shifting.

In summary, we have shown the following theorem.

Theorem 4.1.2 The Generic Machine Simulation Problem is P-
complete under ≤NC1

m reductions.

4.2 The Circuit Value Problem

One obvious drawback of tackling the Generic Machine Simulation
Problem directly is its generality. It is hard to see how one could
take an arbitrary Turing machine program and, without any hints as
to what problem it is solving, produce a highly parallel simulation.
Instead, it might be useful to study a very simple problem that
captures all the computational power of Turing machines and, in
addition, has some obvious parallel aspects that could potentially be
exploited.

As an analogy in the theory of NP -completeness, consider the
Generic Nondeterministic Machine Simulation Problem versus Sat-
isfiability. Both are NP -complete, but the simplicity of the latter
problem has made it a valuable starting point for a wide variety of
investigations. The P -complete problem analogous to Satisfiability
is the Circuit Value Problem (CVP) proposed by Ladner [225]. (Also
see Problem A.1.1 and related problems in Part II.)

Definition 4.2.1 Circuit Value Problem (CVP)
Given: An encoding α of a Boolean circuit α, inputs x1, . . . , xn,
and a designated output y.
Problem: Is output y of α true on input x1, . . . , xn?

The formal statement of CVP requires a language for describ-
ing Boolean circuits. There are a variety of suitable choices. For
definiteness, we will use the standard encoding, specified in Defini-
tion 2.3.4. It is worth noting that the formulation of CVP permits

60 CHAPTER 4. TWO BASIC P -COMPLETE PROBLEMS

us to ask for the value of any gate of α, not just one of the outputs,
by simply designating the gate as an output.

It is easy to see that the Circuit Value Problem is solvable se-
quentially in polynomial time. Simply make one pass through the
circuit from inputs to outputs (that is, in topological order) evaluat-
ing each gate based on the values already computed for its immediate
predecessors.

The fact that any polynomial time computation can be repre-
sented as a circuit evaluation problem is also easy to see, at least at
an intuitive level. Ordinary digital computers are essentially built
from Boolean logic circuits, and a polynomial time computation can
“activate” at most a polynomial number of these gates. Therefore,
a reduction of an arbitrary polynomial time computation to an in-
stance of the Circuit Value Problem basically involves “unrolling”
the machine’s “wiring diagram” to produce the circuit activated by
the computation. In outline, we have shown the following basic P -
completeness result.

Theorem 4.2.2 (Ladner [225]) The Circuit Value Problem is P-
complete under ≤NC1

m reductions.

In the formal proof of this fact we will find it easier to simulate
Turing machines by circuits, rather than more realistic digital com-
puters. Even so, the proof is somewhat technical, and is deferred to
Chapter 6.

Armed with the two basic P -complete problems introduced in
this chapter, we can now answer the fundamental question raised in
the introduction. We do not believe that every problem with a feasi-
ble sequential solution has a feasible highly parallel solution; specifi-
cally, we believe P -complete problems are inherently sequential. The
explanation of our answer is the subject of the next chapter.

Chapter 5

Evidence That NC Does
Not Equal P

5.1 Introduction

Why should we believe that NC does not equal P? One form of
evidence is that many people have tried, but failed, to show them
equal. More persuasive, perhaps, is the way they have failed, or
rather, the character of the limited successes. Specifically, known
approaches consistently leave a large gap between what we know
how to solve by highly parallel algorithms, and general problems in
P . In outline, the state of the art is as follows.

General simulations are not fast: The best known parallel sim-
ulations of general sequential models give very modest im-
provements, basically reducing sequential time T to parallel
time T/ log T or

√
T , depending on the parallel model. Fur-

thermore, 2TΩ(1)
processors are needed to achieve even these

modest improvements.

Fast simulations are not general: Rapid simulations of sequen-
tial models by highly parallel models are known only for rather
weak sequential models.

Natural approaches provably fail: Certain natural approaches
to highly parallel simulation are provably insufficient. Equiv-
alently, in certain natural structured models of computation
(Borodin [41]), one can prove that the analogs of NC and P
are not equal, and indeed are separated by a nearly exponential
gap, as suggested by the two points above.

62 CHAPTER 5. EVIDENCE THAT NC DOES NOT EQUAL P

In this chapter we will present this evidence in more detail. The
nature of the available evidence renders this chapter, especially Sec-
tion 5.4, somewhat more technical than the rest of Part I. The reader
may wish to skim or skip it, at least on first reading.

5.2 General Simulations Are Not Fast

First, consider the Generic Machine Simulation Problem introduced
in Section 4.1. Intuitively, why should we expect this problem to
be hard to parallelize? Notice that we defined the problem in terms
of Turing machines as a technical convenience; they are not in any
way fundamental to the result. Theorem 4.1.2 remains true if we
rephrase the Generic Machine Simulation Problem so that M be-
comes a program in FORTRAN, C, Pascal, Lisp, or any other rea-
sonable programming language. The universal machine in the proof
simply becomes an interpreter for that language. Thus, a highly par-
allel solution to the Generic Machine Simulation Problem would be
precisely a programming language interpreter that is able to achieve
highly parallel execution on completely arbitrary programs.

Is such a highly parallel interpreter likely? We believe it is not.
In general, program code is remarkably opaque — our ability to me-
chanically deduce nontrivial properties of programs given just the
text of the program is severely limited. Indeed, many such questions
are undecidable, and many decidable ones are provably computa-
tionally infeasible. Feasible properties, such as those exploited by
optimizing compilers, tend to be very syntactic, local, or relatively
simplistic. In particular, compiler optimizations rarely make radical
alterations to the set of intermediate values computed by a program,
to the method by which they are computed, or even to the order in
which they are computed. Such transformations would certainly be
necessary to achieve a highly parallel Generic Simulation.

Additionally, experience to date has been that, while highly par-
allel algorithms are known for a large number of interesting problems
in P , in many cases all such algorithms are strikingly different from
good sequential algorithms for the same problem. The excellent sur-
vey by Karp and Ramachandran contains a number of examples of
this nature [195]. In particular, automatic generation of these par-
allel algorithms from their sequential counterparts is far beyond the
current state of the art in parallelizing compilers. Empirically, such
compilers usually attain speedups of no more than a small constant

5.3. FAST SIMULATIONS ARE NOT GENERAL 63

factor, say 5 to 10, reaching perhaps a factor of 50 on rare occa-
sions. While such achievements are impressive, and of undeniable
practical importance, they fall far short of satisfying the demand for
highly parallel algorithms to exploit the potentials of machines with
hundreds or thousands of processors that are now becoming com-
mercially available, let alone of answering the theoretical question
we have posed.

The best methods known for speedup of general sequential com-
putations give very limited speedup, and even then only at a very
high cost. Paterson and Valiant have shown that for any bounded
fanin Boolean circuit of size T , there exists an equivalent circuit of
depth O(T/ log T) (requiring size 2Ω(T/ log T)) [282]. Dymond and
Tompa present analogous results for Turing machines, showing that
any Turing machine running in time T can be simulated by a uniform
circuit of depth O(T/ log T) (again, requiring size 2Ω(T/ log T)) [102].
For bounded fanin parallel models, these are the best results known.

As noted in Chapter 2, unbounded fanin models are often faster
than bounded fanin ones. As another example of this, Dymond and
Tompa [102] also show that any Turing machine running in time T
can be simulated by a CREW-PRAM running in time O(

√
T) (but

again at the cost of an enormous number of processors — 2ω(
√

T)).
The simulation involves precomputation in parallel of the (huge) ta-
ble giving the (

√
T)-step transition function of the simulated Turing

machine, after which it can be simulated rapidly by repeated table
look-ups. Using a more complex table-building idea, Mak shows how
to simulate a unit cost sequential random access machine (RAM) by
a CREW-PRAM in time O(

√
T log T) (again, at the cost of an in-

crease in the number of processors that is exponential in the time
bound) [252]. See also Reif [299] for earlier, somewhat weaker re-
sults of this form, and Mak [251] and Parberry [281, Section 6.2] for
related results.

In the case when the number of processors of the simulating
parallel machine is feasibly bounded, little is known. In this case, the
PRAM results of Dymond and Tompa, and of Reif can be modified
to give constant factor speedups, but no stronger results are known.

5.3 Fast Simulations Are Not General

Another perspective on the difficulty of parallelizing the Generic Ma-
chine Simulation Problem can be obtained by looking at classes of al-

64 CHAPTER 5. EVIDENCE THAT NC DOES NOT EQUAL P

gorithms for which automatic parallelization is known to be possible.
In other words, for what restricted classes of (sequential) machines
M is the problem known to be in NC ? A handful of results of this
flavor are known. We will describe four below. Three of the four
examples have the following general characteristics (the remaining
example is more specialized). Each class of machines allows running
times that are at least polynomial, yet the computations in each class
have certain special characteristics that have been exploited to allow
highly parallel simulation. In each case the machine class is defined
by simultaneously restricting two resources (for example, time and
space). It is also true in each case that relaxing the constraint on one
of the resources by a nearly exponential amount, from polylogarith-
mic to polynomial, gives a class that is known to equal P . Thus, we
can conclude that NC equals P if and only if a nearly exponential
increase in this resource adds no power to the model. Finally, in each
case the known highly parallel simulation degrades to a polynomial
time one, or worse, when applied to the relaxed variant.

It is difficult to give a simple intuitive characterization of the
features making these machines amenable to parallelization, but the
fact that different portions of their computations are only loosely
coupled is perhaps a common thread. This is not a feature that
is evident in the Generic Machine Simulation Problem. Table 5.1
summarizes the results discussed below.

For our first example, if M is a finite state machine, then the
language it accepts is in NC1. More generally, the output string
produced by a one-way finite state transducer can be constructed
in NC1 by an application of the parallel prefix algorithm (Ladner
and Fischer [226]; see also Blelloch [35, 36], Kruskal, Rudolph, and
Snir [223], Ofman [273]). (This is the specialized example alluded
to above; simple generalizations of finite state machines accept only
languages in P , but not all such languages.)

For our second example, if M is a Turing machine that uses only
logarithmic space, then the language it accepts is in NC 2 (Borodin
[40]).

Both results have a similar intuitive justification — since M car-
ries very little state information as it performs its computation, the
first and second halves of its computation are only loosely coupled.
More precisely, one can afford to simulate (recursively) the second
half of the computation in parallel with the first, by trying in parallel
all states that might be the state at the midpoint, and then select-

5.3. FAST SIMULATIONS ARE NOT GENERAL 65

Model Resource Resource Max R2 Min R2
1 2 C ⊆ NC C ⊇ P

DTM Time = nO(1) Space log n nO(1)

DTM Time = nO(1) Reversals (log n)O(1) nO(1)

D- or NauxPDA 2Space = nO(1) log(Time) (log n)O(1) nO(1)

Alternating TM 2Space = nO(1) log(Treesize) (log n)O(1) nO(1)

Uniform Circuit Size = nO(1) Depth (log n)O(1) nO(1)

PRAM Procs = nO(1) Time (log n)O(1) nO(1)

Let C be the class of languages accepted by machines of
any type in the first column, with Resource 1 polynomially
bounded, and some simultaneous bound on Resource 2.

“Max R2” gives the maximum consumption of Resource 2
for which C ⊆ NC is known.

“Min R2” gives the minimum consumption of Resource 2
for which C ⊇ P is known.

In all cases shown, C ⊆ P , independent of Resource 2, so
C ⊇ P implies C = P . In all cases except the first row, with
Resource 2 usage (log n)O(1), C = NC .

Table 5.1: The Gap Between Generic NC Simulations and P .

ing the correct second half after the state resulting from the first
half is known. (A related idea underlies Savitch’s Theorem [322].)
A logarithmic space bounded Turing machine necessarily runs for
only a polynomial number of steps (or else is in an infinite loop),
so such machines only accept languages in P . Do they accept all
languages in P? This is a long-standing open problem. Note, how-
ever, that many polynomial time algorithms use polynomial space
as well, so this question has an affirmative answer only if every poly-
nomial time, polynomial space algorithm can be converted to one
using polynomial time but only logarithmic space.

For our third example, M can be an O(log n) space- and
2(log n)O(1)

time-bounded auxiliary pushdown automaton, or an
O(log n) space- and 2(log n)O(1)

treesize-bounded alternating Turing
machine (Ruzzo [307, 308]). We will not define these classes here;
suffice it to say that both are generalizations of logarithmic space
bounded Turing machines. As one example of the power of such

66 CHAPTER 5. EVIDENCE THAT NC DOES NOT EQUAL P

machines, the polynomial time/treesize case, where we consider the
exponents in both cases above to be O(log n), essentially corre-
sponds to context-free language recognition. (Indeed, CFL parse
trees were the major motivating example for the investigation of
treesize bounds on alternating Turing machines. Connections be-
tween CFLs and pushdown automata are well known.) Contain-
ment of the bounded treesize classes in NC is basically a general-
ization of the method described above — since the machine’s space
bound is small, different subtrees are only loosely coupled, hence
a large tree can be decomposed into a few trees of about half the
size, each solved (recursively) in parallel, then recombined to solve
the global problem. Tree contraction (Miller and Reif [259, 260,
261]) is a bottom-up method essentially equivalent to this top-down
one. (See also Abrahamson et al. [1], Cole and Vishkin [57], Gazit,
Miller, and Teng [114], He [151], Karp and Ramachandran [195],
Kosaraju and Delcher [220], and Mayr [253]). The restricted storage
access regimen of a pushdown automaton allows analogous efficient
solutions. With the stated resource bounds, these classes character-
ize NC — that is, a language is in NC if and only if it is accepted by
such a machine. Allowing their time/treesize bound to increase to
2nO(1)

from 2(log n)O(1)
allows the machines to recognize any language

in P (Chandra, Kozen, and Stockmeyer [49] and Cook [61]). Since
the running time for the parallel algorithm sketched above is roughly
the logarithm of the treesize, this algorithm would use polynomial
time to simulate an alternating Turing machine with the larger tree-
size bound. Similar remarks apply to auxiliary pushdown automata.
Thus, although this algorithm suffices to provide a highly parallel
simulation of some feasible sequential computations, it clearly does
not suffice for all of them. A nearly exponential gap remains be-
tween what can be simulated in NC and what would be required to
simulate all of P .

As our fourth and final example, M can be a polynomial time and
polylogarithmic reversal bounded Turing machine (Pippenger [285]).
In a Turing machine computation a reversal occurs when any tape
head first moves, or moves in the direction opposite to its last move.
The key observation is that between reversals (a phase), the ma-
chine acts like a finite state transducer, and so by the first example
above, each phase can be simulated quickly in parallel. Pippenger
also shows a converse result — any polynomial processor, polylog-
arithmic time parallel algorithm can be simulated by a polynomial

5.3. FAST SIMULATIONS ARE NOT GENERAL 67

time, polylogarithmic reversal Turing machine, and thus the latter
class exactly characterizes NC . The key observation in this direc-
tion of the simulation is that one parallel time step can be simulated
with few (O(log n)) reversals by using a sorting subroutine to gather
operands of, and distribute results from, the (independent) opera-
tions performed in that step. Returning to the question of whether
this class might equal P , note that general polynomial time Turing
machines might make a polynomial number of reversals, rather than
only polylogarithmic, and so are perhaps much more powerful. The
notion of reversal has been generalized to other models including
RAMs (Hong [157]), but the basic result remains unchanged — NC
equals polylogarithmic reversals, P equals polynomial reversals, and
hence NC equals P if and only if this nearly exponential increase in
reversals adds no power.

In summary, in all known cases where a class of sequential ma-
chines accepts only languages in NC , the machines are very re-
stricted. If a related class is known that accepts arbitrary languages
in P , then the machines consume exponentially more of some re-
source to recognize such languages.

As an historical note, it was in recognition of Pippenger’s sur-
prising characterization of polynomial size, polylogarithmic depth
uniform circuits [285] that Stephen A. Cook christened the class
NC , for “Nick’s Class.” In return, Nicholas J. Pippenger dubbed
the class of languages recognized by polynomial time, polylogarith-
mic space Turing machines, SC , for “Steve’s Class,” in recogni-
tion of Cook’s surprising demonstration that deterministic context-
free languages are in this class (Cook [65], von Braunmühl et al.
[367]). Part of the motivation for interest in SC is an anomaly
in Table 5.1. One might conjecture that the first row, (the poly-
nomial time, logarithmic space case) should behave like the oth-
ers, in that polynomial time and polylogarithmic space should pro-
vide yet another characterization for NC . Further support for this
conjecture comes from the fact that Turing machine time and cir-
cuit size are polynomially related (Pippenger and Fischer [289],
Savage [317]), as are Turing machine space and circuit depth
(Borodin [40]); hence, it is natural to suspect that these two re-
lations should hold simultaneously. However, Cook conjectures that
this is not the case, and that directed s-t connectivity is an example
of a problem in NC − SC [65].

68 CHAPTER 5. EVIDENCE THAT NC DOES NOT EQUAL P

5.4 Natural Approaches Provably Fail

Another line of evidence supporting the conjecture that NC and P
are different is the following. Certain approaches to highly paral-
lel simulation of arbitrary polynomial time sequential computations
have occurred naturally to many people who have studied the prob-
lem. To date, these approaches have been fruitless. In many of these
cases, one can prove that the failure of the approach is intrinsic. To
be more precise, one can formulate an abstract model that embod-
ies the essence of the approach in a fairly general setting, and prove
that in this abstract model, it is impossible to achieve a result strong
enough to show that NC equals P .

Prime examples of this style of evidence concern “pebbling.” By
results of Borodin, any NC algorithm can be simulated using small
(polylogarithmic) space, basically by doing a depth-first traversal
of the circuit [40]. (The relationship between sequential space and
parallel time is one aspect of the so-called Parallel Computation
Thesis. See Section 1.3, Chandra and Stockmeyer [50], Goldschlager
[126], Dymond and Cook [99, 100], and Parberry [280, 281].) Thus, if
P ⊆ NC , then the Circuit Value Problem is solvable in small space.
The naive algorithm for CVP that evaluates gates in topological
order obviously uses a large amount of space, since it eventually
stores the value of every gate. Some savings may be attained by
discarding a gate’s value after all its immediate successors have been
evaluated, but the improvement is not asymptotically significant in
the worst case. A natural approach to achieve greater space savings
(at the expense of time) is to discard certain values even before
all successors have been evaluated, and to recompute them when
needed. Pebbling models this process.

Pebbling a circuit or other directed acyclic graph proceeds ac-
cording to the following rules. A pebble placed on a gate represents
the fact that the value of that gate is stored. A pebble may be
removed from a gate at any time (corresponding to discarding the
associated value and freeing its storage), or placed on an input at any
time, but may not be placed on any other gate unless all of its im-
mediate predecessors are pebbled (corresponding to (re-)evaluating
the gate based on the stored values of its predecessors). The goal
of the process is to pebble the circuit’s output vertex. “Space” in
the pebbling model is the maximum number of pebbles simultane-
ously present on the circuit, and “time” is the number of pebble

5.5. SUMMARY 69

placements. This seems to be a very natural model of algorithms for
circuit evaluation. Indeed, although the model is restricted in that
it cannot represent situations where combinations of gate values are
stored in a single location, there are no known algorithms that ex-
ploit this potential behavior in any substantive way — essentially all
known algorithms for CVP fit the pebbling model, or variants of it.

How few pebbles suffice to solve CVP? Clearly any n-vertex
graph can be pebbled using n pebbles in time n, by following topo-
logical order. Paul, Tarjan, and Celoni have shown that there are
n-vertex graphs that cannot be pebbled using fewer than Ω(n/ log n)
pebbles [283]. Furthermore, Lengauer and Tarjan have extended the
results to show that to pebble these graphs using O(n/ log n) pebbles
requires time 2nΩ(1)

[230]. Note that these are not just lower bounds
on a specific algorithm. Instead, they show that every algorithm
in the broad class of potential algorithms that follow the pebbling
paradigm necessarily uses a large amount of space in the worst case.
Thus, if pebbling algorithms were the only avenue for attaining small
space solutions to CVP, we would have a proof that NC and P are
distinct. Similar lower bounds are known for variants of the pebbling
model, including black-and-white pebbling (Cook and Sethi [69]) and
two-person pebbling (Dymond and Tompa [102]).

There is an extensive literature on pebbling. See the survey by
Pippenger [286], and more recent papers by Pippenger [287, 288],
Wilber [373], Venkateswaran [362], and Venkateswaran and Tompa
[363] for other results and variants on the model.

5.5 Summary

In summary, the known speedups for arbitrary sequential models
are modest, and/or come at the cost of an enormous number of
processors. The sequential models for which we know highly parallel
simulations seem on the face of it to be comparatively weak relatives
of polynomial time Turing machines. Among the models discussed
above, finite state machines provably cannot compute all polynomial
time computable functions, and the other models require a nearly
exponential increase in one resource before we can prove equivalence
to P . Intuitively, this seems like a large gulf between NC and P .
To date all approaches at bridging this gulf have failed, and broad
classes of appealing natural approaches, like pebbling algorithms,
provably must fail.

70 CHAPTER 5. EVIDENCE THAT NC DOES NOT EQUAL P

However, compelling though this evidence may be, it is ultimately
inconclusive. It does not prove that a feasible highly parallel solution
to the Generic Machine Simulation Problem is impossible. While we
know, by the space hierarchy theorem [148], that NC 6= PSPACE , it
is still possible, for example, that NC equals P , or NP , or even PH .
It is safe to say, however, that any such result would be a significant
breakthrough, with potentially dramatic practical implications.

Chapter 6

The Circuit Value
Problem

In this chapter we return to the Circuit Value Problem, introduced
in Section 4.2. First, we will give the formal proof of Theorem 4.2.2
that CVP is P -complete, which we only sketched previously. Then
we will show that a number of useful variants and restricted versions
of CVP are also P -complete.

6.1 The Circuit Value Problem Is
P -Complete

Recall the definition of the Circuit Value Problem (Definition 4.2.1)
in which given an encoding α of a Boolean circuit α, a designated
output y, and values for the inputs x1, . . . , xn, we ask if output y of
α is true.

To show CVP is P -complete under ≤NC1

m reducibility requires
showing CVP is in P , and that each language L in P is ≤NC1

m re-
ducible to CVP. It is easy to see that given the encoding α of a
circuit and the values of its inputs, one can compute the value of
each gate in a number of steps that is polynomial in the size of α.
On a random access machine this can be done in linear time by con-
sidering the gates in topological order (which also can be computed
in linear time; see Cormen, Leiserson, and Rivest [70], for example).
On a deterministic Turing machine the process is a bit more clumsy
but can still be done in polynomial time. Pippenger shows that even
time O(n log n) suffices, where n is the length of the encoding of
α [284]. Thus, we have the following lemma.

72 CHAPTER 6. THE CIRCUIT VALUE PROBLEM

Lemma 6.1.1 The Circuit Value Problem is in P.

The more difficult step in proving that CVP is P -complete under
≤NC1

m reducibility is showing there is a ≤NC1

m reduction from each
language in P to CVP. Ladner proved this by simulating Turing
machines with circuits. The idea is as follows. First, recall that for
each language L in P , there is a 1-tape Turing machine M that on
input x = x1, . . . , xn halts in time t(n) = nO(1) with output equal to
1 if and only if x is in L. Note that, for each n, the machine M uses
at most t(n) space on its tape.

The entire computation of M is captured by the answers to the
following questions. For 1 ≤ i, j ≤ t(n), at time i, what is the
contents of tape cell j, is M ’s tape head positioned at cell j, and
if so what is M ’s state? These are not easy questions to answer in
isolation, but the answer to each is a simple function of the answers
to the same questions for tape cells j − 1, j, and j + 1 at time
i − 1. These functions are easily computed by a Boolean circuit of
size O(1), and hence the entire computation can be described by a
Boolean circuit, βn, of size O(t2(n)) whose input is the input to M ,
and whose single output bit indicates whether or not M accepts the
input. The key to the reduction will be to produce βn in parallel
efficiently.

The following lemma shows how this is done.

Lemma 6.1.2 (Ladner [225]) If L ∈ P, then L≤NC1

m CVP.

Proof. As is customary, we assume M has its input in adjacent
positions of the input tape with the tape head initially positioned
over x1. Without loss of generality, we can assume M never moves
left of the initial position of its input head and halts with its head
back at the initial position with the output bit written in the initial
position. Consider an input to M of length n. Since M runs in time
t(n), its head can touch at most t(n)+1 tape cells. We will construct
a circuit βn that simulates M on the first t(n) + 1 tape cells.

Associated with each tape cell at each time step we have a repre-
sentation r, consisting of two quantities — contents and state. The
contents indicates the value stored in the tape cell. The state speci-
fies whether the head of M is positioned over the cell, and if so, also
specifies the internal state of M at that time. Suppose M has tape
alphabet Σ and state set Q with Σ∩Q = Ø. The representation for
a given cell is encoded by |Σ| + |Q| + 1 bits ra, a ∈ Σ ∪Q ∪ {¬} in
the obvious way: bit rσ is true for σ ∈ Σ if and only if the contents

6.1. THE CIRCUIT VALUE PROBLEM IS P -COMPLETE 73

ci,j

w

w

ÿ

ri−1,j−1
w

w

ÿ

ri−1,j
w

w

ÿ

ri−1,j+1

w

w

ÿ

ri,j

Figure 6.1.1: The ci,j Subcircuit.

is σ, and rq is true for q ∈ Q if and only if the head is positioned
over the cell and M ’s internal state is q. Bit r¬ is true if and only
if the head is not positioned over the cell.

The circuit simulating M will compute the representation ri,j of
each cell j, 1 ≤ j ≤ t(n) + 1, for each time i, 0 ≤ i ≤ t(n). It is
also convenient to handle certain boundary conditions by introduc-
ing “dummy” cell representations for ri,j with j = 0 and j = t(n)+2
for all i, 0 ≤ i ≤ t(n). For j = 0 and j = t(n)+2 and all i the repre-
sentation ri,j is the same — the contents is the blank tape symbol b̄,
and the head is not positioned there. That is, rb̄

i,j and r¬i,j are true
and all other bits of ri,j are false. Similarly, the representations
r0,j for 1 ≤ j ≤ t(n)+1 are directly computed from the input — the
contents of r0,j is the jth symbol of x1 · · ·xnb̄t(n)+1−n, and the head
is positioned over x1 in M ’s initial state.

Representations of the remaining cells are computed by a t(n)×
(t(n) + 1) array of identical subcircuits ci,j , 1 ≤ i ≤ t(n), 1 ≤
j ≤ t(n) + 1, connected in a regular way as follows. Subcircuit ci,j
simulates the ith step of M on tape cell j, thus computing ri,j . The
inputs to ci,j are ri−1,j+d for d ∈ {−1, 0, 1}. Figure 6.1.1 depicts the
ci,j subcircuit.

Each subcircuit ci,j performs as follows based on the transition
function of M :

1. If ri−1,j indicates the head is positioned over the jth cell at the
start of the ith step, then the contents portion of ri,j is dictated
by M ’s transition function, based on the state and contents

74 CHAPTER 6. THE CIRCUIT VALUE PROBLEM

portions of ri−1,j . Otherwise, the contents portion of ri,j is the
same as that of ri−1,j .
For each σ ∈ Σ, let Aσ be the set of all pairs q ∈ Q, τ ∈ Σ
for which M writes σ when in state q reading τ . Then rσ

i,j is
computed as follows.

rσ
i,j :=

∨

(q,τ)∈Aσ

(rq
i−1,j ∧ rτ

i−1,j)

 ∨ (r¬i−1,j ∧ rσ
i−1,j).

2. The state portion of ri,j is computed similarly. If at the start
of the ith step the head was positioned over the jth cell, and
does not move as a result of the ith transition, then the state
portion of ri,j will indicate that the head is present over the
jth cell and indicate M ’s resulting internal state. Likewise, if
the head was positioned over cell j − 1 (j + 1) and moved right
(respectively, left), then ci,j also computes the new state. In all
other cases the state portion of ri,j will indicate that the head
is not present.
Specifically, for each q ∈ Q, let Bq be the set of all triples
p ∈ Q, τ ∈ Σ, d ∈ {−1, 0, 1} for which M when in state p
reading τ enters state q and moves its head in direction d (where
−1 means move left, +1 means move right, and 0 means sit
still). Then rq

i,j is computed as follows.

rq
i,j :=

∨

(p,τ,d)∈Bq

(rp
i−1,j−d ∧ rτ

i−1,j−d).

By convention, if state p is a halt state, its successor is defined to
be state p regardless of the input symbol. This way we ensure
that the machine is in a well-defined state at the end of the
simulation, even if it halts earlier.
The head position component of the state, r¬i,j , is computed as
follows.

r¬i,j :=

∨

(p,τ,d)∈C

(rp
i−1,j−d ∧ rτ

i−1,j−d)

 ∨
∧

d∈{−1,0,1}
r¬i−1,j−d,

where C is the set of all triples p ∈ Q, τ ∈ Σ, d ∈ {−1, 0, 1} for
which M when in state p reading τ does not move its head in
direction d.

6.2. RESTRICTED VERSIONS OF CIRCUIT VALUE 75

The size of the circuit to compute the state change of one cell is
O(1), specifically 4|Σ||Q|+ |Σ| fanin 2 and’s, one fanin 3 and, plus
|Σ|+ |Q|+ 1 or’s of fanin O(1).

It is a straightforward induction on i to verify that the represen-
tations ri,j correctly encode the configuration of M after i steps.

The final step in the construction is to establish that βn is NC
computable. Since the circuit consists of many replicas of a single,
fixed subcircuit c1,1, the main tasks in constructing βn are to com-
pute the value of t(n), to generate the correct number of copies of the
basic subcircuit, with its constituent gates appropriately numbered
so as to be unique, and to connect neighboring subcircuits appropri-
ately. These tasks are easily accomplished by an NC algorithm, and
indeed are NC1 computable. We leave the details as an exercise.

Lastly, x ∈ L if and only if a 1 is written into tape square 1 if
and only if r1

t(n),1 is true. 2

Combining Lemmas 6.1.1 and 6.1.2, we obtain Theorem 4.2.2.
Finally, we remark that the Circuit Value Problem remains P -

complete if either the input or the circuit is fixed. Replacing n input
bits by two (a 0 and a 1) with appropriate fanout, depending on
the input, is straightforward. Alternatively, to see that the circuit
can be fixed, replace the arbitrary machine M in the construction
above by a polynomial time Turing machine solving the Generic
Machine Simulation Problem (that is, a universal polynomial time
Turing machine). This gives essentially a single circuit, fixed in all
respects except for its size, whose evaluation is P -complete. Namely,
the circuit consists of an n × (n + 1) array of copies of the single,
fixed subcircuit c1,1 of size O(1) arising in the construction above
as particularized to the single universal machine. Any language in
P can be reduced to evaluating this circuit for appropriately chosen
input and appropriately chosen n.

An interesting question is to see just how simple CVP can be
made while retaining P -completeness. For example, CVP for bal-
anced binary trees of nor gates of depth dlog2 ne is complete for
NC1. Perhaps CVP for an n × n grid of nor’s, each connected to
the two nearest neighbors on the previous level is P -complete.

6.2 Restricted Versions of Circuit Value

The Circuit Value Problem plays the same role in P -completeness
theory that Satisfiability (SAT) (Cook [62]) does in NP -completeness

76 CHAPTER 6. THE CIRCUIT VALUE PROBLEM

theory. Like SAT, CVP is the fundamental P -complete problem in
the sense that it is most frequently used to show other problems are
P -complete. Analogously to SAT, CVP has many variants that are
also P -complete. In this section, we describe several, and prove them
complete. Others are described in Section A.1. Restricted variants
of a problem often simplify reductions, as in the case, for example,
of the CNF-SAT and 3CNF-SAT variants of SAT in the theory of
NP -completeness.

The following versions of CVP each have novel characteristics
that can help simplify reductions to them. Additionally, their P -
completeness proofs nicely illustrate a number of techniques fre-
quently found in other reductions.

The CVP variants we will describe in this chapter are listed be-
low. The formal specifications of the problems may be easily traced
through the cross references provided.

Topologically Ordered CVP (TopCVP, Problem A.1.2) A topo-
logical ordering of a directed acyclic graph is a numbering of
its vertices so that u is less than v for every (directed) edge
(u, v). Any of the succeeding variants of CVP can be addi-
tionally restricted to have its circuit be topologically ordered,
and furthermore to have the string encoding the circuit list the
vertices in this order. One of the key properties of the Circuit
Value Problem is that for any given circuit there is a simple
sequential algorithm that given any input to the circuit evalu-
ates individual gates of the circuit in a fixed order, evaluating
each exactly once, and arriving at the circuit’s designated out-
put value in polynomial time. The virtue of a topologically
ordered Circuit Value Problem is that this valuation order is
transparently specified in the CVP instance.

NANDCVP (Problem A.1.5) This is the special case of the Circuit
Value Problem where the circuit contains only nand gates.
Reductions are often simplified when only one type of gate
needs to be simulated.

Monotone CVP (MCVP, Problem A.1.3) This is the restricted
version of the Circuit Value Problem where the circuit contains
only monotone gates, that is, and’s and or’s. This problem
is useful in the common situation where negations are hard to
simulate directly.

6.2. RESTRICTED VERSIONS OF CIRCUIT VALUE 77

Alternating, Monotone CVP (AMCVP) This is a special case
of the previous problem. A monotone circuit is alternating
if on any path from an input to an output the gates on the
path alternate between or and and gates. Additionally, we
require that inputs connect only to or gates, and that out-
puts be or gates. Reductions often replace individual gates by
certain small “gadgets.” The alternating property reduces the
number and kinds of interactions between gadgets that must
be considered, which again often simplifies reductions.

Fanin 2, Fanout 2 AMCVP (AM2CVP, Problem A.1.4) This,
again, is a restriction of the previous problem. In this case, all
vertices in the circuit are restricted to have fanin and fanout
two, with the obvious exception of the inputs and outputs,
which by definition have fanin zero and fanout zero, respec-
tively. Again, the potential advantage is that simpler gadgets
can be used in a reduction, and there are fewer cases to consider
in establishing its correctness.

Synchronous AM2CVP (SAM2CVP, Problem A.1.6) In a cir-
cuit, define the level of a vertex v, denoted level(v), to be zero
for input vertices, and otherwise one more than the maximum
level of a predecessor of (that is, input to) v. Equivalently,
level(v) is the length of the longest path from an input to v.
A circuit is synchronous if all inputs to a gate v come from
vertices at level [level(v) − 1]. Furthermore, we require that
all output vertices be on one level, namely the highest. Thus,
the vertices can be partitioned into layers, with all edges go-
ing from one layer to the next higher one, and all outputs on
the last layer. SAM2CVP is the restriction of AM2CVP to
synchronous circuits. Notice, in a circuit that is both alternat-
ing and synchronous, all gates on any given level must be of
the same type. The fanin two and fanout two restrictions fur-
ther imply that every level contains exactly the same number
of vertices. Again, this structural regularity simplifies some
reductions.

The construction given above in the proof of Lemma 6.1.2 yields
a circuit with several of these properties. Specifically, the formulas
we gave are all disjunctive normal form with two monotone literals
per term except for one three-literal term. The circuit is therefore
synchronous, alternating and monotone (but neither fanin nor fanout
two). Rather than modify that construction, for pedagogical reasons

78 CHAPTER 6. THE CIRCUIT VALUE PROBLEM

we prefer to show the P -completeness of some of these variants by
starting from the most general form of the Circuit Value Problem.

We will begin with topological ordering. The general problem
of topologically ordering a directed acyclic graph, although in NC 2

(Cook [67]), is not known to be in NC1. Nevertheless, Topologically
Ordered CVP is still P -complete under ≤NC1

m reductions.

Theorem 6.2.1 The Circuit Value Problem when restricted to topo-
logically ordered instances remains P-complete under ≤NC1

m reduc-
tions.

Proof. The construction used to prove CVP complete in the proof of
Theorem 4.2.2 (see Lemma 6.1.2) can easily be modified to produce
its circuit in topological order. Specifically, let C be the number
of input vertices in the circuit. Number them 1, 2, . . . , C. Suppose
that the basic subcircuit that is the template for ci,j has g gates, g a
constant. Number these gates 1, 2, . . . , g in topological order. Then,
for 1 ≤ i ≤ t(n), 1 ≤ j ≤ t(n)+1, 1 ≤ k ≤ g, give gate k in ci,j (that
is, the kth gate in the (i, j)th instance of the template) the number

g ∗ ((i− 1) ∗ (t(n) + 1) + (j − 1)) + k + C.

This is a topological numbering and is easily computed in NC1. 2

Two other useful gate numbering tricks are that gates need not be
numbered consecutively starting from one, nor need they be listed
in numerical order. An encoding lacking either or both of these
properties can be converted (in NC1) to one possessing both by first
sorting the gate numbers, then replacing each number by its rank in
the sorted list. Tricks such as these allow all the reductions presented
later in this chapter to preserve the topological order (if any) of
the input circuit. Thus, all the CVP variants considered in this
chapter remain complete (under ≤NC1

m reduction) when restricted to
topologically ordered instances. Hence, we will generally not mention
topological order subsequently.

Next, we consider the Monotone Circuit Value Problem (MCVP).
As we already observed, the basic simulation of a Turing machine by
a circuit in the proof of Theorem 4.2.2 is monotone. However, the
general direct monotone reduction is interesting in its own right and
we present it here.

We will also argue in more detail than elsewhere in this book that
the reduction is in fact NC1 computable, since the reduction is sim-

6.2. RESTRICTED VERSIONS OF CIRCUIT VALUE 79

ple enough that it provides a convenient example of some techniques
commonly used in this portion of P -completeness proofs.

Theorem 6.2.2 (Goldschlager [122]) The Monotone Circuit Value
Problem is P-complete under ≤NC1

m reductions.

Proof. We reduce a CVP instance α to a MCVP instance β by con-
structing “double railed” logic. That is, for every value v computed,
we also compute ¬v. For each vertex vk in the original circuit, con-
struct a pair of vertices uk, uk in the new circuit. They will have the
property that uk is true if and only if vk is true if and only if uk is
false. If vk is an input xi, then uk is also xi and uk is its negation
¬xi. (Note that β has twice as many inputs as α; for each i, ¬xi
is computed by the machine performing the reduction, and both xi
and ¬xi are provided as inputs to β. A monotone circuit, of course,
cannot by itself compute ¬xi from xi.) For an and gate vk ← vi∧vj
of the original circuit, construct the and gate uk ← ui ∧ uj and the
or gate uk ← ui ∨ uj . For an or gate do the dual. Finally, add
two new inputs having value 0 and 1, and for a not gate vk ← ¬vi
construct two gates uk ← ui ∧ 1 and uk ← ui ∨ 0. It is easy to
show by induction on vertex depth that vk evaluates to true in the
original circuit if and only if uk is true and uk is false in the new
circuit.

Next, we argue in some detail that the construction can be ac-
complished in NC1.

We have not yet carefully specified how the circuit α is encoded.
We assume the following reasonable formulation of the standard en-
coding scheme. An n-vertex circuit will be represented by n∗(2k+2)
bits, where k = dlog2(n + 1)e. The string is viewed as n blocks, with
2k + 2 bits per block, each block specifying one vertex, with the
block number being used as the vertex number. The first two bits
of each block indicate the type of the vertex (either input, or, and,
or not), and the remaining 2k bits encode either the single input
bit, or the vertex number(s) of the one or two vertices that are the
predecessors of this vertex in the circuit.

As is often the case with such reductions, the key point is to
devise a scheme for numbering vertices in the new circuit that allows
its vertices and edges to be easily computed from vertices and edges
in the circuit α. For this purpose, for each vertex vi in α, we simply
assign the numbers 2i + 2 and 2i + 3 to the two vertices ui and ui
in β that are derived from vi. The two new input vertices receiving
values 0 and 1 (used for simulating not gates) are numbered 0 and

80 CHAPTER 6. THE CIRCUIT VALUE PROBLEM

1, respectively.
Given this encoding, it is easy to see how, in NC1, to trans-

form the encoding of α to the encoding of β. Namely, compute
k′ = dlog2(2n + 3)e. Then simply build n replicas of a circuit of
depth O(log n) with 2k+2 input bits and 2(2k′+2) output bits that
performs the obvious transformation on the block of bits describing
one vertex of α to produce the two blocks of bits describing the two
corresponding vertices in β. Note that the arithmetic necessary to
recode vertex numbers (for example, i → (2i + 3)) is easily accom-
plished by a circuit of depth O(log n), especially considering that
vertex numbers are themselves only O(log n) bits long. Remaining
details are omitted. 2

We will not usually give proofs that our reductions are in fact
NC1 or NC computable. They are usually more tedious than the
one presented above, but not conceptually more difficult. Known
NC1 algorithms1 (see Karp and Ramachandran [195]) for a variety
of basic operations such as arithmetic, sorting, ranking, and parallel
prefix often prove useful.

Next, we show that CVP remains P -complete when restricted in
all of the following ways: the circuit will be monotone, inputs will
connect only to or gates, outputs will be or gates, along any paths
from an input to an output the gates will strictly alternate between
or and and gates, and all vertices will have indegree and outde-
gree exactly two, with the obvious exceptions that (by definition)
the circuit’s input vertices have indegree zero, and its outputs have
outdegree zero. That is, we show that AM2CVP is P -complete. Of
course, this implies that the less restricted AMCVP problem men-
tioned above is also P -complete.

Theorem 6.2.3 The Alternating, Monotone Circuit Value Problem
with fanin and fanout of gates restricted to two (AM2CVP) is P-
complete under ≤NC1

m reductions.

Proof. We accomplish this, starting from a monotone circuit, by a
series of five transformations, each of which assures one additional
property without destroying any of the properties achieved by the
previous steps. The transformations are as follows.

1The phrase NC k algorithm means an algorithm with polynomial hardware
and (log n)k running time regardless of the type of problem it solves — decision,
search, or other.

6.2. RESTRICTED VERSIONS OF CIRCUIT VALUE 81

xi
�����

HHHHj����g1
. . . ����gd

�����

HHHHj����g1
. . . ����gd

@
@R

�
��

xi xi

����∨-

Figure 6.2.1: Connecting Inputs to or Gates in Theorem 6.2.3,
Step 1.

1. Replace each input vertex xi of fanout d by an or gate of fanin
two and fanout d (connected to the same vertices g1, . . . , gd as
xi). This new or gate will receive its inputs from two new input
vertices, each with fanout one, each receiving as value a copy
of xi. See Figure 6.2.1. Thus, all inputs have fanout one and
are connected only to or gates.

2. For each fanout zero and gate v, create a new or vertex of
fanin one, receiving its input from v. Thus, all output vertices
are or’s.
Replace any gate v with fanout d greater than two by a fanout
tree consisting of v plus d− 2 new gates of fanin one. All d− 1
of these gates will have fanout two. The types of the new gates
are arbitrary; for definiteness, say they are all or’s. Now all
vertices have fanout at most two. See Figure 6.2.2.

3. Split any edge connecting two gates of the same type, inserting
a fanin one, fanout one gate of the opposite type. Thus, types
will strictly alternate along all paths.

4. For all or gates v of fanin one, create a new input vertex receiv-
ing the value 0, and connect it to the fanin two replacement for
v. For all and gates v of fanin one, create three new vertices.
Two of them will be input vertices receiving the value 1. They
will be connected to the third, a fanin two, fanout one or gate
that is in turn connected to the fanin two replacement for v.
Thus, all gates have fanin exactly two. Note that we took care
to preserve the properties introduced in steps 1 and 3.

82 CHAPTER 6. THE CIRCUIT VALUE PROBLEM

@
@R

�
������∧v

����g1
. . . ����gd

�����

HHHHj

-

@
@R

�
������∧v

�
��

@
@R

����

�
��

@
@R

����∨����g1

����g2
· · ·

· · ·

@
@R

�
��

@
@R

����∨
����gd−1 ����gd

Figure 6.2.2: Fanout Tree in Theorem 6.2.3, Step 2.

5. Replicate the circuit, excluding its input vertices, with both
replicas fed from the one set of inputs. More precisely, let α
be the circuit at the beginning of this step. Form a new circuit
β as follows. In addition to the original gates and edges, for
all gates (but not input vertices) v in α, add to β a copy v′

of v. For every edge (u, v) in α, if u is an input vertex, also
add the edge (u, v′); otherwise, add the edge (u′, v′). Next, for
every and vertex v of outdegree one, create a new or vertex
v′′ of outdegree zero and indegree two, with inputs from v and
v′. For every or vertex v of outdegree one, create four new
vertices v′′, v0, v1, and v2. Gate v′′ will be a fanin two, fanout
two and gate receiving its inputs from v and v′. Vertex v0 will
be a new input vertex receiving value 0. Gates v1 and v2 are
or gates of outdegree zero and indegree two, each connected to
v0 and v′′. Thus, all gates (except outputs) have fanout two.
See Figure 6.2.3.

The resulting circuit has all of the desired properties. 2

It is well known that nand is a complete basis for the set of
Boolean functions. Thus, reduction of an arbitrary instance of the
Circuit Value Problem to an instance of NANDCVP is easy. There

6.2. RESTRICTED VERSIONS OF CIRCUIT VALUE 83

����∧x

?����∨y

����∧x

?����∨y

����z����z
?

����

?

����∧ x′

?����∨ y′
HHHH

?����z′

-

HHHHj

���������∨ x′′

HHHHj

���������∧ y′′
����

?

HHHH

?

0 y0
�����

HHHHj����∨ y1 ����∨y2

Figure 6.2.3: Replication in Theorem 6.2.3, Step 5.

is an even more straightforward reduction from AM2CVP to NAND-
CVP.

Theorem 6.2.4 The NAND Circuit Value Problem is P-complete
under ≤NC1

m reductions.

Proof. Reduce AM2CVP to NANDCVP by complementing all in-
puts, and relabeling all gates as nand gates. Correctness follows
from DeMorgan’s Laws.2 2

Finally, we examine the synchronous version of the Circuit Value
Problem.

A natural approach to transforming a circuit into a synchronous
one would be to identify and “fix” each edge that violates the syn-
chronous restriction, that is an edge (u, v) such that level(v)−level(u)
is greater than 1. The offending edge could be fixed by inserting
level(v)− level(u)− 1 new vertices along it. This approach is work-
able, but not as simple as we would like. In particular, the level
function depends on knowledge of the global structure of the graph.
Further, level numbers are not known to be NC1 computable, (al-
though they are NC 2 computable), which would preclude an NC1

2x ∨ y = ¬(¬x ∧ ¬y) and x ∧ y = ¬(¬x ∨ ¬y).

84 CHAPTER 6. THE CIRCUIT VALUE PROBLEM

reduction using this approach. Instead, as is often the case with
P -completeness reductions, we are able to take an approach that
achieves our goal (synchrony) by globally applying a simple local
transformation.

Theorem 6.2.5 (Greenlaw, Hoover, and Ruzzo, This Work) The
Synchronous, Alternating, Monotone Circuit Value Problem with
fanin and fanout of gates restricted to two (SAM2CVP) is P-
complete under ≤NC1

m reductions.

Proof. We show AM2CVP ≤NC1

m SAM2CVP. Since AM2CVP is
P -complete, it follows that SAM2CVP is also P -complete.

Let n be the number of gates in the instance α of AM2CVP
and let m be the number of inputs. We make dn/2e copies of the
vertices (both input vertices and gate vertices) of this circuit. For
0 ≤ i ≤ dn/2e − 1, the ith copy will be organized into two levels.
The first level in the ith copy, which will be level 2i in the new
circuit, consists of the (copies of the) input vertices, together with
the (copies of the) and gates, and is called an and level. On level 0,
all vertices will be input vertices; on level 2i, where i is greater than
0, all vertices will be and gates. The second level in the ith copy,
which will be level 2i+1 in the new circuit, consists of the (copies of
the) or gates, and is called the or level. All gates on all or levels
will be or gates. Thus, in odd (even) numbered levels all gates are
or (respectively, and) gates, with the obvious exception of the input
level. All edges will connect adjacent levels, so the synchronous and
alternating properties easily follow.

In an instance of AM2CVP, since the or’s have fanin exactly two,
all being from and or input vertices of fanout exactly two, it must be
true that the number of or gates equals the number of inputs plus
the number of and gates. Thus, each level in the new circuit will
have exactly (n + m)/2 vertices. By similar reasoning, the number
of output vertices is equal to the number of input vertices, m. We
will need this fact shortly.

We describe below how to connect the dn/2e copies to make a
new circuit equivalent to α.

For a given vertex v, label the copies of it vi, 0 ≤ i ≤ dn/2e − 1.
The edges into or gates in α are preserved within each copy. That
is, if (u, v) is an edge in α, with v being an or gate, then there are
edges (ui, vi) for all 0 ≤ i ≤ dn/2e− 1. The edges out of or gates in
α go from one copy into the corresponding vertex in the next copy.
That is, if (u, v) is an edge in α, with u being an or gate, then there

6.2. RESTRICTED VERSIONS OF CIRCUIT VALUE 85

are edges (ui, vi+1) for all 0 ≤ i ≤ dn/2e − 2.
The input vertices, which are the vertices on level zero, are as-

signed values as follows. Those that are copies of input vertices in α
are given the same input values as in α. Those that are copies of and
gates in α are given input 0, arbitrarily. The copies of output ver-
tices (recall, they are all or gates) on the last level are the circuit’s
correct outputs, as we will argue shortly. Copies of input and output
vertices on all other levels must be handled specially. We need to
deliver each of α’s input bits to the copy of the corresponding input
vertex on the ith and level for all 1 ≤ i ≤ dn/2e−1. Also, the copies
of the output vertices on each or level other than the last must be
connected to something, to satisfy the synchrony restriction. Recall
that the number of inputs and outputs are both m. Pair them ar-
bitrarily. Then it suffices to add 2m replicas of the gadget shown
in Figure 6.2.4 (Luc Longpré, Personal Communication, 1986). This
gadget can deliver a copy of its input bit to each even numbered level
greater than zero, while providing a sink for the useless output from
the paired output vertex on the previous odd numbered level.

This completes the construction. It should be clear that the
circuit satisfies the restrictions of synchrony, alternation, fanin, and
fanout. Correctness is established by induction using the following
assertion. Let v be a vertex whose level in α is level(v) = i. Then
in β all copies vk of v with k ≥ bi/2c compute the same value as v
does in α. Since the depth of α is at most n, and is odd, we have
dn/2e − 1 ≥ bdepth(α)/2c and so all output gates have the correct
value.

Again we omit the straightforward argument showing that the
reduction can be performed in NC1. 2

We will close the chapter with a few technical remarks. The re-
ductions performed in Theorems 6.2.2, 6.2.3, and 6.2.4 increased the
size of the original circuit by only a constant factor. However, the
reduction in Theorem 6.2.5 produces a circuit of size O(n2) from
one of size n. We remark that the later reduction also provides
an alternative proof of Theorem 6.2.1, which showed that CVP is
≤NC1

m reducible to Topologically Ordered CVP, even though topo-
logical numbering of a directed acyclic graph is not known to be NC1

computable. The price one pays for this seems to be the quadratic
increase in size.

86 CHAPTER 6. THE CIRCUIT VALUE PROBLEM

Gadget for x2 dn/2e Copies of α

x2 x2 x1 x2 x3 · · · xn

level
0

1

2

3

4

5

����∨ ����∨ ����∨ ����∨ ����∨ · · · ����∨? ?

HHHHj

�����

����∨ ����∨ ����∨ ����∨ ����∨ · · · ����∨? ?

HHHHj

�����

����∨ ����∨ ����∨ ����∨ ����∨ · · · ����∨? ?

HHHHj

�����

����∧ ����∧ ����∧ ����∧ ����∧ · · · ����∧?

Z
Z

Z
Z~

�
�

�
�=

XXXXXXXXXXXXz

������������9

����∧ ����∧ ����∧ ����∧ ����∧ · · · ����∧?

Z
Z

Z
Z~

�
�

�
�=

XXXXXXXXXXXXz

������������9

...
...

...
...

...
...

...
...

Figure 6.2.4: Input Propagation Gadget in Theorem 6.2.5.

Chapter 7

Greedy Algorithms

We consider the selection of two basketball teams at a neighborhood
playground to illustrate the greedy method. Usually the top two
players are designated captains. All other players line up while the
captains alternate choosing one player at a time. Usually, the play-
ers are picked using a greedy strategy. That is, the captains choose
the best unclaimed player. The system of selection of choosing the
best, most obvious, or most convenient remaining candidate is called
the greedy method. Greedy algorithms often lead to easily imple-
mented efficient sequential solutions to problems. Unfortunately, it
also seems to be that sequential greedy algorithms frequently lead
to solutions that are inherently sequential — the solutions produced
by these algorithms cannot be duplicated rapidly in parallel, unless
NC equals P . In the following subsections we will examine this
phenomenon.

7.1 Lexicographic Greedy Algorithms

We illustrate some of the important aspects of greedy algorithms
using one that constructs a maximal independent set in a graph.
An independent set is a set of vertices of a graph that are pairwise
nonadjacent. A maximum independent set is such a set of largest
cardinality. It is well known that finding maximum independent
sets is NP -hard. An independent set is maximal if no other vertex
can be added while maintaining the independent set property. In
contrast to the maximum case, finding maximal independent sets is
very easy. Figure 7.1.1 depicts a simple polynomial time sequential
algorithm computing a maximal independent set. The algorithm

88 CHAPTER 7. GREEDY ALGORITHMS

Greedy Maximal Independent Set Algorithm
Input: An undirected graph G = (V,E) with the vertices
numbered 1, . . . , |V |.
Output: The lexicographically first maximal independent set
of G.
begin

I←Ø;
for j ← 1 to |V | do

if vertex j is not connected to any vertex in I
then I← I ∪ {j};

end.

Figure 7.1.1: A Greedy Maximal Independent Set Algorithm.

is a greedy algorithm: it processes the vertices in numerical order,
always attempting to add the lowest numbered vertex that has not
yet been tried.

The sequential algorithm in Figure 7.1.1, having processed ver-
tices 1, . . . , j−1, can easily decide whether to include vertex j. How-
ever, notice that its decision about j potentially depends on its deci-
sions about all earlier vertices — j will be included in the maximal
independent set if and only if all j′ less than j and adjacent to it
were excluded. Thus, the algorithm seems highly sequential. Based
on this intuition, Valiant conjectured that this algorithm would be
difficult to parallelize [356]. Cook showed that the following natural
decision problem derived from it is P -complete [67], which we take
to be strong evidence in support of Valiant’s conjecture. (Actually,
Valiant and Cook considered the dual problem of finding a maximal
clique, Problem A.2.2.)

In general, a graph may have many maximal independent sets.
The algorithm in Figure 7.1.1, being deterministic, finds one unique
maximal independent set among the many candidates. The solution
it finds is dictated by the way the vertices are numbered — and it
finds the “first” solution in the following sense.

Take any maximal independent set I = {v1, . . . , v|I|}, and sup-
pose that v1 < v2 < · · · < v|I|. Now list the elements in ascending
order by vertex number, v1, v2, . . . , v|I| and call this sequence the

7.1. LEXICOGRAPHIC GREEDY ALGORITHMS 89

signature of I. Then any two maximal independent sets I and I ′

can be lexicographically ordered by their signatures. That is, I < I ′

if and only if the signature of I is less than the signature of I ′ when
they are compared as strings.

The algorithm in Figure 7.1.1 finds the lexicographically first
maximal independent set. Below we define a natural decision prob-
lem based on maximal independent sets. (See also Problem A.2.1 in
Part II for related problems and remarks.)

Definition 7.1.1 Lexicographically First Maximal Independent Set
Problem (LFMIS)
Given: An undirected graph G = (V, E) with an ordering on the
vertices and a designated vertex v.
Problem: Is vertex v in the lexicographically first maximal inde-
pendent set of G?

Theorem 7.1.2 (Cook [67]) The Lexicographically First Maximal
Independent Set Problem is P-complete under ≤NC1

m reductions.

Proof. Membership in P follows from the algorithm in Figure 7.1.1.
Completeness follows by reducing the nor Circuit Value Problem

(NORCVP) to LFMIS by modifying a construction due to Anderson
(Richard J. Anderson, Personal Communication, 1987). Without
loss of generality, we assume the instance α of NORCVP has its
gates numbered (starting from 1) in topological order with inputs
numbered first and outputs last. Suppose y is the designated output
gate in the instance of NORCVP. We construct from α an instance
of LFMIS, namely an undirected graph G. The graph G will be
exactly the same as the graph underlying the circuit α, except that
we add a new vertex, numbered 0, that is adjacent to all 0-inputs of
α. It is easy to verify by induction that a vertex i in G is included
in the lexicographically first maximal independent set if and only if
either i equals 0 (the new vertex), or gate i in α has value true. A
choice of v equal to y completes the reduction.

The proof that the reduction can be performed in NC1 is left to
the reader. 2

We show in Chapter 10 that the simpler problem of computing
just the size of the lexicographically first maximal independent set
is also difficult.

There are many other decision problems based on greedy al-
gorithms that are known to be P -complete. Several examples are

90 CHAPTER 7. GREEDY ALGORITHMS

Lexicographically First Depth-first Search (Problem A.3.3), Lexico-
graphically First ∆ + 1 Vertex Coloring (Problem A.2.6), and First
Fit Decreasing Bin Packing (Problem A.4.7). These examples fit
within the common framework of the next section.

7.2 Generic Greedy Algorithms

Many problems can be formulated as independence systems, and
consequently can be solved by greedy methods. An independence
system is a pair I = (E,F), where E is an ordered set of elements
{e1, . . . , en}, and F is a collection of subsets of E, each called an
independent set. We require that the independent sets have the
property that Ø ∈ F , and that independence is hereditary, that is if
X is in F then all subsets of X are also in F . The computational
problem of interest is to compute the lexicographically first maximal
independent set in F . More precisely, we must compute the greedy
set G = {ej1 , . . . , ejk} for I, where

• 1 = j0 ≤ j1 < j2 < · · · < jk < jk+1 = n + 1,

• for each 0 ≤ i ≤ k, the set Gi = {ej1 , . . . , eji} is independent
(with G0 = Ø), and

• for all ji < l < ji+1, Gi ∪ {el} is not independent.

For example, for any graph G, if EG is the set of vertices of
G, and FG is the set of subsets of EG whose members are pairwise
nonadjacent in G, then IG = (EG,FG) is an independence system.
Furthermore, the lexicographically first maximal independent set in
IG is precisely the lexicographically first maximal independent set
in G. Thus, the LFMIS problem for graphs is a special case of
the Lexicographically First Maximal Independent Set Problem for
independence systems.

How difficult is this more general problem on independence sys-
tems? Sequentially it is very simple — a straightforward modifi-
cation of the greedy LFMIS algorithm in Figure 7.1.1 solves the
problem easily. This is true even in the abstract setting where F is
not given explicitly but rather as an oracle A for membership in F
(an independence oracle). That is, we do not have an explicit listing
of F (it can be quite large), nor may we assume anything about the
underlying structure of F (e.g., we may not assume that F is FG
for some graph G). Instead, oracle A simply lets us test whether a
given subset X of E is in F .

7.2. GENERIC GREEDY ALGORITHMS 91

Although easy to solve sequentially, this problem is provably not
parallelizable. Karp, Upfal, and Wigderson show that any deter-
ministic parallel decision tree algorithm for finding a maximal inde-
pendent set, given an independence oracle, must take time at least
Ω(n/ log p) where p is the number of processors [197]. Even a ran-
domized algorithm requires Ω(n/ log(np)) [197].

Are there natural restrictions of the general problem that are
highly parallelizable? One important class of restrictions is where
the set E of the independence system is the vertex set of a graph
G, and the set X, a subset of E, is included in F just in case the
vertex induced subgraph determined by X has some special prop-
erty. For example, take the independence system IG corresponding
to the LFMIS problem in the case where the vertex induced sub-
graph contains no edges. Are these special cases parallelizable? We
know that they cannot all be parallelizable, unless P equals NC , be-
cause LFMIS is P -complete. Surprisingly, as shown by the following
result of Miyano, essentially all other special cases of this form are
also P -complete [265]. We first present the terminology necessary
for explaining his result.

A graph property π is simply a predicate on graphs. A prop-
erty π is nontrivial on a given graph family D if there are infinitely
many graphs in D satisfying π and at least one graph violating π.
A property is hereditary (on induced subgraphs) if whenever a graph
G satisfies π, so do all vertex induced subgraphs. Some examples of
nontrivial hereditary properties are planarity, acyclicity, and edge-
lessness. The LFMS(π) problem is to compute the lexicographically
first maximal vertex induced subgraph satisfying π. For example,
when π is the edgelessness property, the LFMS(π) problem is just
the LFMIS problem. Note that the simple greedy algorithm shows
the LFMS(π) problem is in FP for any polynomial time computable
hereditary property π. Miyano has shown that this problem is highly
sequential for any graph property π, no matter how simple, provided
only that π is nontrivial and hereditary.

Theorem 7.2.1 (Miyano [265]) Let π be a polynomial time testable
property that is nontrivial on graphs (respectively, on bipartite graphs
and on planar graphs) and is hereditary on vertex induced subgraphs.
Then LFMS(π), the lexicographically first maximal subgraph problem
for property π, (respectively restricted to bipartite graphs, restricted
to planar graphs) is complete for FP.

92 CHAPTER 7. GREEDY ALGORITHMS

Parallel Greedy Matroid Maximal Independent Set
Algorithm Using a Rank Oracle
Input: A matroid I = (E,F) with elements E = {e1, . . . , en},
and with F given via a rank oracle.
Output: The lexicographically first maximal independent set
of I.
begin

r0← 0; G←Ø;
for j← 1, . . . , n do in parallel

rj ← rank{e1, . . . , ej};
if rj−1 < rj then include ej in G;

end.

Figure 7.2.1: Parallel Greedy Algorithm Using a Rank Oracle.

The foregoing results suggest that greedy algorithms are always
difficult or impossible to parallelize. This is too pessimistic a view.
With further restrictions on the independence system, or relaxed re-
quirements on the solution, it is sometimes possible to obtain highly
parallel algorithms. The idea is that if order among elements is unim-
portant, do not make it part of the problem specification. Examples
are discussed below.

The study of independence systems above was motivated in part
by the greedy algorithm for matroids. Matroids are independence
systems with the additional property that all maximal independent
sets have the same cardinality (Lawler [227]). Thus all maximal
independents sets are maximum independent sets and the greedy
algorithm obtains the optimal solution. Construction of minimum
weight spanning trees is a classic application of matroid theory. For
this application, the elements of the independence system are the
edges of a graph, and a set of edges is called independent if it is
acyclic. That is, if it is a forest. Cook gives a fast parallel greedy al-
gorithm for matroids given a rank oracle, a function rank{e1, . . . , ej}
giving the size of some (hence any) maximal independent set among
{e1, . . . , ej} [67]. See Figure 7.2.1.

Notice that this algorithm computes the lexicographically first
maximal independent set. Cook applies the algorithm to show that

7.2. GENERIC GREEDY ALGORITHMS 93

finding the minimum weight spanning tree for a graph is in NC .
This is accomplished by sorting the edges in the graph according to
their weight and then directly applying the algorithm. The value
rank{e1, . . . , ej} is simply n minus the number of connected com-
ponents in the n-vertex subgraph induced by {e1, . . . , ej}, an NC
computable function.

In the general case, where the independence system is not neces-
sarily a matroid, finding a maximum independent set using a rank
oracle is still difficult. Karp, Upfal, and Wigderson show that any
deterministic parallel decision tree algorithm for maximum indepen-
dent set with a rank oracle requires time Ω(n/ log(np)) [197]. But
when randomization is allowed, a feasible highly parallel algorithm
exists that takes time O((log n)2) on n processors. This is a clear
example of the power of randomization in parallel computation. For
more on this subject, the reader is referred to the survey article by
Rajasekaran and Reif [294].

The second example shows that even in cases where the problem
solved by a greedy algorithm is P -complete, it may be possible to
obtain a highly parallel solution to a related problem. Specifically,
although finding the lexicographically first maximal independent set
in a graph is P -complete, there is an NC algorithm to find some
maximal independent set (Luby [246]). For a summary of the his-
tory about the development of results regarding the independent set
problem see Karp and Ramachandran [195].

As another example fitting into this group, consider the first fit
decreasing algorithm for bin packing. There is a well known greedy
heuristic that is guaranteed to find a packing within 11/9 of optimal
— first fit decreasing. Anderson, Mayr, and Warmuth show that it is
P -complete to construct the same packing as the first fit decreasing
algorithm (Problem A.4.7), but that there is an NC algorithm giving
another packing that is also within 11/9 of optimal [17]. Other ex-
amples of problems for which the greedy solution is P -complete but
naturally related problems are known to be in NC or RNC include
Depth-first Search (see Problems A.3.3 and B.9.2), ∆+1 Vertex Col-
oring (see Problem A.2.6), and Maximal Path (see Problems A.3.1
and B.9.4).

Chapter 8

P -Complete Algorithms

8.1 Introduction

Our focus up to this point has been primarily on problems — either
decision, search, or function. In this chapter we shift directions and
apply P -completeness theory to the study of algorithms. The the-
ory when extended properly will allow us to make statements about
whether or not certain sequential algorithms will parallelize well.

The phrase “inherently sequential algorithm” is one that appears
frequently in the research literature. The general intent of the phrase
is obvious. However, if pressed for details one might come up with
several different possible formal meanings. In this chapter we de-
scribe one approach that gives the phrase a precise interpretation.

The work on P-complete algorithms began with Anderson [12]
and was continued by Greenlaw [133, 135]. Much of the discussion
contained in this chapter is taken from these references.

That a problem is P -complete is evidence it is unlikely to have
small space sequential solutions, or unlikely to have fast parallel so-
lutions using a polynomial amount of hardware. Of course, being
P -complete also means that the problem does have a polynomial
time algorithm. For many P -complete decision problems, this algo-
rithm appears explicitly or implicitly in the statement of the prob-
lem. For example, asking whether a vertex is in the lexicographically
first maximal clique is essentially asking whether the vertex is in the
maximal clique found by the obvious greedy algorithm — the same
greedy algorithm that shows the problem is in P . This specification
of a particular polynomial time algorithm in addition to the non-
algorithmic properties desired of a solution occurs in most of the

8.1. INTRODUCTION 95

search problems in Section A.3, many of the problems of a greedy
or lexicographically first nature, and numerous graph problems in
Section A.2. These P -completeness results say more about the dif-
ficulty of parallelizing the associated sequential algorithm than they
do about the intrinsic difficulty of the decision problem.

In many cases the particular sequential algorithm does not seem
to adapt well to parallelism. Yet it may be the case that a modified
version of the problem that avoids mentioning a sequential algo-
rithm does have a highly parallel solution. For example, consider
the Bin Packing Problem. In Problem A.4.7 Anderson, Mayr, and
Warmuth show that computing the first fit decreasing bin packing
is P -complete [17]. But they also show that there is an NC al-
gorithm for producing an alternative bin packing that achieves the
same performance as first fit. Its problem description specifies only
a performance bound, not an associated algorithm.

Sometimes the associated sequential algorithm can be efficiently
parallelized. In Problem A.3.5 a variant of breadth-first search that
is implemented on a stack is P -complete, whereas an alternative
implementation based on queues can be parallelized to run in NC
(Greenlaw [135]).

Thus, there are two ways in which we can interpret the fact that a
problem is P -complete. First, if the statement of the problem makes
no mention of an associated sequential algorithm, then it is reason-
able to say that the problem itself is inherently sequential. Second,
if the statement of the problem involves an associated sequential al-
gorithm, then it is more appropriate to say that it is the algorithm
that is inherently sequential.

The second situation indicates that we need a more sophisticated
way to compare the relative parallel complexities of sequential algo-
rithms than just making a statement about the decision problems
underlying the algorithms. Anderson took the first step towards this
by proposing the following definition of a P -complete algorithm.

Definition 8.1.1 (Anderson [12]) An algorithm A for a search
problem is P -complete if the problem of computing the solution
found by A is P-complete.

Suppose one were given a graph G and wanted to compute a
spanning tree of G. One algorithm for computing a spanning tree
could be P -complete, whereas another algorithm might find a dif-
ferent spanning tree and run in NC . It is conceivable that the two
algorithms could in fact find the same tree yet have different parallel

96 CHAPTER 8. P -COMPLETE ALGORITHMS

complexities.
Anderson observed that a shortcoming of his definition is its

failure to directly tie in with the internal computations of algo-
rithms [12]. He suggests including a trace of the algorithm as part of
the result it computes as a way to incorporate the internal compu-
tations. Greenlaw then proposed a model whose focus is directly on
algorithms [133]. In the next section we summarize the description
of the model.

8.2 Inherently Sequential Algorithms

A model to satisfy the issues raised above needs to incorporate
enough detail to permit classification of algorithms with respect to
their parallel complexities. As Anderson pointed out, the intermedi-
ate values that algorithms compute can be used to distinguish their
parallel complexities. Thus, the model should be capable of captur-
ing a trace of the algorithm. The base model chosen in [133] to do
this was the random access machine (RAM). The idea is to assign a
value to each step of an algorithm. Then by examining the sequence
of values an algorithm generates on a given input, one can classify
the algorithm’s parallel complexity.

We begin with some preliminaries and terminology taken from
Greenlaw [133]. A RAM algorithm is a RAM program whose state-
ments are numbered sequentially. Corresponding to each RAM algo-
rithm statement, there is an associated value. The value associated
with each statement is simply the valuation of the left hand side
of the statement. The instruction is assumed to have already been
executed. Sample values for a couple instructions are shown in Ta-
ble 8.1. A full table is given in [133]. An explanation of the notation
used is presented below. The notation is based on that given in Aho,
Hopcroft, and Ullman [7].

In the table c(i) denotes the contents of register i. As is custom-
ary register 0 of the RAM serves as the accumulator. This is the
register where all computation is performed. v(a) denotes the value
of operand a as follows:

v(= i) = i, v(i) = c(i), v(∗i) = c(c(i)).

Two values are associated with indirect addressing instructions. The
second value determines which cell was read or written. Correspond-
ing to each step of a RAM algorithm executed, there is an associated

8.2. INHERENTLY SEQUENTIAL ALGORITHMS 97

value generated. Each statement generates as many values as the
number of times it is executed.

Instruction Associated Value

LOAD a v(c(0))
STORE ∗i v(c(i)); v(c(c(i)))
ADD a v(c(0))
WRITE a v(a)
HALT —

Table 8.1: Sample RAM Instructions and Their Associated Value(s).

The following definition illustrates how a function is associated
with a particular RAM algorithm.

Definition 8.2.1 Given any RAM algorithm A over an alphabet
Σ with statements numbered sequentially starting from 1, the RAM
flow function fA : Σ∗×N→ (N×N)∗ corresponding to A is defined
to be

fA(x1 · · ·xn, t) = v1, v2, . . . , vt

where the vi’s represent the ordered pairs consisting of statement
numbers and value(s) pairs associated with the execution of t state-
ments of A on input x1 · · ·xn.

Let x = x1 · · ·xn. For all algorithms halting on all inputs, define
fA(x) as fA(x, T (n)), where T (n) denotes the maximum running
time of algorithm A on inputs of length n. The length of the flow
function for algorithm A on input x, denoted |fA(x)|, is related to the
running time of A. In Definition 8.2.1 statement numbers of A and
the values generated by each statement are represented by integers
using any reasonable encoding scheme. Thus, if the logarithmic cost
model is assumed, |fA(x)| is no more than three times the running
time of A on x.

The flow function plays an important role in classifying an al-
gorithm with respect to its parallel complexity as illustrated by the
following definition.

98 CHAPTER 8. P -COMPLETE ALGORITHMS

Definition 8.2.2 Let A be a RAM algorithm with flow function fA.
A RAM algorithm A is inherently sequential if the language
LA = {x#i#j | bit i of fA(x) = j} associated with its flow function
is P-complete.

For an algorithm to be considered inherently sequential, the flow
function must be at least as difficult to compute as a P -complete
problem. Furthermore, under this definition, Theorem 8.2.3 shows
that any polynomial time algorithm computing the solution to a
P -complete problem is indeed inherently sequential.

Theorem 8.2.3 If polynomial time RAM algorithm A decides a P-
complete language L, then A is inherently sequential.

Proof. The proof is left as an exercise for the reader. 2

8.3 Applications of the Model

A few results illustrating the use of the model are presented in
this section. The first example involves biconnectivity. It is easy
to see that the ordered depth-first search algorithm, which is the
standard depth-first search algorithm that is based on fixed or-
dered adjacency lists, is inherently sequential in the sense defined
above. To prove it apply Theorem 8.2.3 and the result in Prob-
lem A.3.3. From this observation, it follows that an algorithm for
biconnected components based on the ordered depth-first search al-
gorithm is inherently sequential. This is in contrast to the fact that
there is a well known parallel algorithm for computing the bicon-
nected components of a graph that runs in time O(log n) time us-
ing n2 processors on a CRCW-PRAM (Tarjan and Vishkin [350,
351]). The two algorithms described above have the same output
but one is inherently sequential and the other is in NC . The role of
the model in this case is that it highlights the individual steps of the
algorithms. This allows us to compare their parallel complexities in
a meaningful way.

There are some search problems for which one algorithm may find
a solution to the problem in NC , whereas another approach might be
inherently sequential. Usually, the solutions computed by the algo-
rithms are different. Such problems are interesting since it is usually
not important which specific solution is found. Thus, finding an al-
ternative to an inherently sequential algorithm can be very useful.
An example of such a problem involves maximal paths. The problem

8.3. APPLICATIONS OF THE MODEL 99

of computing a lexicographically first maximal path is P -complete
(Anderson and Mayr [16]). It follows directly from Theorem 8.2.3
and this result that the greedy algorithm to compute such a path
is inherently sequential. It is known that a different approach can
be taken to obtain a maximal path in RNC . See Problem B.9.4 for
additional details and references.

We present one final example involving Gaussian elimination and
simply note that there are numerous other examples. If Gaussian
elimination with partial pivoting is used to solve a system of equa-
tions, the process will be inherently sequential since this problem is
P -complete (Vavasis [361]). By using another approach, a solution
to the system can be found in NC . Once again this illustrates the
idea that the intermediate values an algorithm computes and not
just its final answer are important in determining the algorithm’s
parallel complexity. See Problem A.8.4, Gaussian Elimination with
Partial Pivoting.

Results such as these strongly suggest that inherently sequen-
tial algorithms will not be amenable to automatic parallelization by
compilers even though the problems they solve may in fact have NC
solutions. This is due to the fact that compilers are not sophisticated
enough to discover the alternative parallel approach. Proving that
an algorithm is inherently sequential is perhaps a first step toward
showing that a problem is not likely to be parallelizable, or at least
toward showing a different algorithmic approach needs to be found
for the problem. An example of a problem for which this approach
was taken is Fill Slots (Problem A.8.25).

Chapter 9

Two Other Notions of
P -Completeness

9.1 Strong P -Completeness

The usual conventions of algorithm analysis express the complexity
of finding a solution in terms of the length of the problem input.
This will generally make the complexity sensitive to the encoding
scheme used to describe problem instances. As an extreme example,
the complexity of factoring a positive integer encoded in binary is
quite different from that of factoring a number encoded in unary, or
encoded as a product of prime factors. Realistic complexity analysis
assumes that the encoding conventions for a problem are reasonable,
that is, they do not make it trivial to do something for which there
is evidence of difficulty (see Section 3.2).

This sensitivity to encodings is particularly significant for number
problems. In such problems, the numerical values of the parameters
of a problem instance are much larger than the size of the problem
description. For example, a description of size O(n3) can represent a
network of n vertices and n2 edges, with edge capacities of size O(2n).
Thus, the flows in the network described by problem instance I can
be exponentially larger than the size of I. The following definition
captures this concept.

Definition 9.1.1 For any instance I of a problem, let Max(I) de-
note the maximum magnitude of all numbers in I. For any encoding
scheme for the problem, let |I| denote the length of the encoding of
the instance. A problem is a number problem if and only if there

9.1. STRONG P -COMPLETENESS 101

exists an encoding scheme for the problem such that there does not
exist a polynomial p such that for any instance I, Max(I) ≤ p(|I|).

A typical characteristic of a number problem is that when binary
encodings of parameters in an instance I are replaced with unary
encodings, the size of the encoding increases exponentially. Often,
the unary encoded version is large enough to permit the problem to
be solved efficiently in terms of the input length.

Definition 9.1.2 An algorithm (with its associated encoding
scheme) that solves a problem is called a pseudo-NC algorithm
if and only if there is a two variable polynomial p and a single vari-
able polynomial q such that every instance I of the problem can be
solved in parallel time p(log(|I|), log(Max(I))), and processors q(|I|).

The key feature of a pseudo-NC algorithm is that its execution
time is sensitive to the size of the numbers in the problem instance.
For example, Helmbold and Mayr show that General List Scheduling,
Problem A.4.8, has a pseudo-NC algorithm [154].

One can also have a notion similar to pseudo-NC expressed in
terms of the size of the numbers in the output, which can be ap-
plied to problems where the run time of the sequential algorithm
is polynomial in the size of the result. For example, if one knows
that the lexicographically first maximal independent set of a graph
has size at most (log n)k then there is an NC k+1 algorithm that will
find it — simply run the obvious greedy algorithm in parallel (see
Figure 7.1.1) for (log n)k steps (at a cost of O(log n) per step). Sim-
ilarly, if the maximum flow in a network is at most (log n)k then the
standard augmenting path algorithm converges in at most (log n)k

iterations. At (log n)2 cost per iteration, such a bounded flow can
be determined in NC k+2.

If a problem is not a number problem, then under all encodings,
all numbers in any instance I are polynomially bounded in terms
of |I|, and so can be efficiently encoded in unary. This means that
any pseudo-NC algorithm for the problem is also an NC algorithm.
Thus, the following observation is in direct analogy with the case for
NP -completeness theory.

Observation 9.1.3 If a problem is P-complete and it is not a num-
ber problem, then the problem cannot be solved by a pseudo-NC al-
gorithm, unless NC equals P.

The P -completeness proof for a decision problem may involve
a reduction in which the numbers generated have magnitudes that

102 CHAPTER 9. TWO OTHER NOTIONS OF P -COMPLETENESS

are exponential in the original problem size. If such large numbers
are unlikely to occur in the common problem instances, one can
argue the particular proof of P -completeness is rather weak evidence
that the problem is hard in practice. A reduction using only small
numbers would provide a more convincing argument that even the
common cases of the problem are difficult.

In fact, the restriction to small numbers for some problems makes
their solutions easier in parallel. For example, General List Schedul-
ing (Problem A.4.8) is P -complete, but when the job times are re-
stricted to small integers, Helmbold and Mayr give an NC algorithm
for the problem [154].

These considerations give rise to the notion of strong P-
completeness (Anderson [12]) analogous to that of strong NP -
completeness (Garey and Johnson [113]).

Definition 9.1.4 A decision problem is P -complete in the
strong sense (alternatively, strongly P -complete) if and only if
the problem is P-complete, and there exists a polynomial p such that
the problem remains P-complete even when restricted to instances I
that satisfy Max(I) ≤ p(|I|).

The remarks presented in Section 3.3.2 pertaining to the type of
reducibility employed also apply here.

An example of a strongly P -complete problem is Linear Inequali-
ties (Problem A.4.1) — a variation on Linear Programming (Problem
A.4.3). Linear Inequalities remains P -complete even when the coef-
ficients are restricted to being ±1 (Stephen A. Cook, Personal Com-
munication, 1982). Other problems that are strongly P -complete
are Gaussian Elimination with Partial Pivoting (Problem A.8.4) and
First Fit Decreasing Bin Packing (Problem A.4.7). It is not known
if Maximum Flow (Problem A.4.4) is strongly P -complete.

Problems that do not involve numbers are automatically strongly
P -complete. For example, the Circuit Value Problem is strongly P -
complete. Thus, the notion of strong P -completeness is useful for
differentiating only among number problems.

Observation 9.1.5 If a decision problem is P-complete in the
strong sense, then the problem cannot be solved by a pseudo-NC
algorithm, unless NC equals P.

9.2. STRICT P -COMPLETENESS 103

9.2 Strict P -Completeness

This section describes very recent material. We have tried to cover
the main results regarding strict P -completeness theory but have
omitted numerous technical details from our presentation.

Let L be a language that can be solved sequentially in time t(n).
We say that L has parallel speedup s(n) if and only if there is a
parallel algorithm (on any reasonable model) for L that takes time
t(n)/s(n) for some function s(n). We say that L has polynomial
speedup if L has parallel speedup s(n) and there exists an ε > 0 such
that s(n) = Ω(nε).

The existence of P -complete problems means that it is unlikely
that every problem with sequential time t(n) will have a parallel
speedup of t(n)/(log n)k for some constant k. But even if such a
dramatic speedup is impossible, any polynomial speedup could be
useful. For example, a parallel speedup of

√

t(n) using a feasible
number of processors is a dramatic improvement for any problem in
practice.

Kruskal, Rudolph, and Snir [223], and Vitter and Simons [366]
observed that limited polynomial speedup was possible for a num-
ber of problems. For example, the second set of authors considered
and exhibited speedups for non-sparse versions of the Circuit Value
Problem, Depth-first Search, Path Systems, and Unification. See
Problems A.1.3, A.3.3, A.6.8, and A.6.9 for additional remarks. The
first set of authors introduced the class SP , defined on page 253, of
semi-efficient parallel time algorithms that have polynomial speedup.

Is some polynomial speedup possible for every problem in P?
Condon introduced the notion of strict P-complete to identify those
problems that exhibit some parallel speedup, and for which any fur-
ther improvement in performance would imply that all problems in
P possessed polynomial speedup [58]. If one believes that there are
problems in P that do not have polynomial speedup, then strict P -
complete problems have polynomial lower bounds on their parallel
performance.

The definition of strict P -complete is somewhat technical, and
requires the following notions. First, since the problems we are con-
sidering do not have speedups sufficient to produce NC solutions, we
can smooth out differences between parallel models of computation
by dropping any powers of log n and preserving only the dominant
polynomial terms of running times. This is expressed with the “soft

104 CHAPTER 9. TWO OTHER NOTIONS OF P -COMPLETENESS

Oh” notation, ˜O, defined below.

Definition 9.2.1 Let f and g be two functions whose domains are
the natural numbers and whose ranges are the positive real numbers.
g(n) = ˜O(f(n)) (or more precisely, g(n) ∈ ˜O(f(n))) if and only if
there exist constants c > 0, k > 0, and n0 ∈ N such that g(n) ≤
c(log n)kf(n) for all natural numbers n ≥ n0.

Secondly, the reductions we use require the following properties.
A reduction f is honest if and only if there exist constants c and
k such that for all x, |f(x)| ≥ c|x|1/k. A function f is eventually
nondecreasing if and only if there exists an n0, such that for all
m ≥ n ≥ n0, we have f(m) ≥ f(n). Every eventually nondecreasing
polynomial function has the following useful upper and lower bound
property (see (Condon [58]) for a proof).

Lemma 9.2.2 Let t be an eventually nondecreasing function such
that t(n) = Ω(n) and t(n) = nO(1). For all δ > 0 there is a rational
number σ and a natural number n0 such that

1. t(n) ≤ nσ for n ≥ n0, and

2. nσ = O(t(n)nδ).

The key idea of strict P -completeness is to find problems that are
not only P -complete, but that have the additional property that they
simulate P in a way that preserves polynomial speedup. That is, if
a problem is strict P -complete then any further polynomial speedup
in performance for its parallel solution implies that all problems in P
have polynomial speedup. Since most any Turing machine program
has polynomial speedup on a PRAM (or a RAM for that matter),
for the notion of strict P -complete to be useful the model in which
sequential time is stated must be comparable to the single processor
instance of the model in which parallel time is stated. For this rea-
son, the sequential time complexity of strict P -complete problems is
stated in terms of RAM algorithms.

The definition below captures the following idea. Suppose that
there is an NC many-one reduction f of language L′ to language L.
This means that any NC solution to L results in an NC solution to
L′. But it also means that any parallel solution, say of time T (n) for
L results in a parallel solution for L′. What is the resulting parallel
time for L′? Testing if x ∈ L′ requires performing the reduction and
then testing if f(x) ∈ L. The testing takes time T (|f(x)|). Because
|f(x)| could be quite large, it is possible that the parallel time for L′

9.2. STRICT P -COMPLETENESS 105

obtained via reduction f is worse than the sequential time of L′.
What is the worst parallel running time for L such that solving L′

in parallel via the reduction is no worse than solving L′ sequentially?
For example, suppose that L was in parallel time T (n), and that
reduction f had |f(x)| = |x|4. Then L′ would be in parallel time
T ′(n) = T (n4). If L′ was in sequential time t′(n) = n2 then T (n)
must be at most O(

√
n) in order for the parallel time T ′(n) of L′ to

be no worse than the sequential time t′(n).

Definition 9.2.3 A language L is at most T (n)-P -complete if
and only if for every language L′ ∈ P , for every sequential RAM
running time t′(n) for L′ with t′(n) = Ω(n) and t′(n) eventually
nondecreasing, and for every ε > 0 there exists an honest many-one
NC reduction f from L′ to L such that for all x,

T (|f(x)|) = O(t′(|x|) |x|ε).

The definition contains a number of technical considerations, of
which the most important is |x|ε to mask any polylogarithmic factors
in T (n).

To say that language L with sequential running time t′(n) is at
most T (n)-P -complete says that the parallel time for a language L′

reducible to L is ˜O(t′(n)) so long as L is in parallel time ˜O(T (n)).
When L has a known parallel running time, we have the following
result.

Definition 9.2.4 A language L is strict T (n)-P -complete if and
only if it is at most T (n)-P-complete and L has parallel running time
˜O(T (n)).

The fundamental strict P -complete problem is that of solving a
square version of SAM2CVP (Problem A.1.6).

Definition 9.2.5 Square Circuit Value Problem (SquareCVP)
Given: An encoding α of a synchronous, alternating, monotone,
fanin 2, fanout 2 Boolean circuit α; inputs x1, . . . , xn; and a desig-
nated output y. The circuit has the additional restriction that it is
square. That is, the number of gates at every level equals depth(α).
Problem: Is output y of α true on input x1, . . . , xn?

Condon shows that square circuits can efficiently simulate RAM
computations as stated in the theorem below [58]. The theorem
requires the technical notion of time constructibility. A function
t(n) is time constructible in NC if and only if the value of t(n) can
be computed in NC .

106 CHAPTER 9. TWO OTHER NOTIONS OF P -COMPLETENESS

Theorem 9.2.6 Any RAM that runs in time t(n) = Ω(n) can be
simulated by a family of square circuits of depth ˜O(t(n)). Further-
more, for any specific RAM and input, if t(n) is time constructible
in NC then the corresponding circuit can be constructed in NC.

The careful reader will notice the reasons for the various technical
considerations in the definition of strict P -complete.

Theorem 9.2.7 The Square Circuit Value Problem is strict
√

n-P-
complete.

Proof. It is easy to see that a size n square circuit can be evaluated
in parallel time (and processors) ˜O(

√
n).

Let L′ be a language in P and let t′(n) = Ω(n) be a sequential
running time for L′, with t′ eventually nondecreasing. Let M ′ be a
RAM that accepts any x in L′ in time t′(|x|). Let T (n) =

√
n for all

n.
For any ε > 0 we need to show that there is an honest many-

one NC reduction f from L′ to SquareCVP, such that T (|f(x)|) =
O(t′(|x|) |x|ε). From Lemma 9.2.2, with δ = ε/2, there is a rational
number σ and a natural number n0 such that

t′(n) ≤ nσ for n ≥ n0, (9.1)

and

nσ = O(t′(n)nε/2). (9.2)

Since nσ is computable in NC , and t′(n) = Ω(n) implies nσ = Ω(n),
we can apply Theorem 9.2.6 to machine M ′ running on input x, and
obtain a square circuit of depth ˜O(|x|σ). For inputs x with |x| ≥ n0,
this circuit correctly decides membership of x ∈ L′.

Let f be the function that, given x, produces the corresponding
square circuit. |f(x)| is order the size of this circuit, and so |f(x)| =
˜O(|x|2σ) = O(|x|2σ+ε). By Equation 9.1 and the lower bound on
t′(n), we get that for some c, |f(x)| ≥ c|x| and so f is honest. By
Equation 9.2 we get |f(x)| = O(t′(|x|)2 |x|2ε).

Thus, T (|f(x)|) = O(t′(|x|) |x|ε) as required. 2

The only other known example of a strict P -complete problem
is the Finite Horizon Markov Decision Process (FHMDP, Problem
A.8.1). On the assumption that the finite horizon time T satisfies
T = Θ(m), where m is the number of states, Condon shows that
FHDMP is strict n1/3-P -complete [58].

9.2. STRICT P -COMPLETENESS 107

Problems that are not known to be strict P -complete, but that
are at most

√
n-P -complete are the Synchronous, Alternating, Mono-

tone Circuit Value Problem with fanin and fanout two restrictions
(Problem A.1.6), Lexicographically First Maximal Independent Set
(Problem A.2.1), Lexicographically First Depth-first Search Order-
ing (Problem A.3.3), Stack Breadth-first Search (Problem A.3.5),
First Fit Decreasing Bin Packing (Problem A.4.7), and Unification
(Problem A.6.9) [58].

The Lexicographically First Maximal Clique (Problem A.2.2) is
an example of a problem for which there is an ˜O(

√
n) parallel algo-

rithm, but the problem is only known to be at most n1/4-P -complete
[58].

Chapter 10

Approximating
P -Complete Problems

10.1 Introduction

Suppose that finding the solution to a problem is P -complete. It is
natural to ask if it is any easier to obtain an approximate solution.
For decision problems this might mean considering the correspond-
ing combinatorial optimization problem. That is, a problem in which
we try to minimize or maximize a given quantity. As one might
expect from the theory of NP -completeness, the answer is both yes
(for example in the case of Bin Packing, Problem A.4.7) and no (for
example in the case of the Lexicographically First Maximal Indepen-
dent Set Size Problem, see Lemma 10.2.2.).

There are several motivations for developing good NC approx-
imation algorithms. First, in all likelihood P -complete problems
cannot be solved fast in parallel. Therefore, it may be useful to
approximate them quickly in parallel. Second, problems that are
P -complete but that can be approximated well seem to be special
boundary cases. Perhaps by examining these types of problems more
closely we can improve our understanding of parallelism. Third, it is
important to build a theoretical foundation for studying and classify-
ing additional approximation problems. Finally, it may be possible
to speed up sequential approximation algorithms, of NP -complete
problems, using fast parallel approximations.

Our goal in this section is to develop the basic theory of par-
allel approximation algorithms. We begin by showing that certain
P -complete problems are not amenable to NC approximation algo-

10.2. APPROXIMATING LFMIS IS HARD 109

rithms. Later we present examples of P -complete problems that can
be approximated well in parallel.

10.2 Approximating LFMIS Is Hard

We start by considering the Lexicographically First Maximal Inde-
pendent Set Problem, introduced in Definition 7.1.1, and proven
P -complete in Problem A.2.1. As defined, LFMIS it is not directly
amenable to approximation. We can phrase the problem in terms of
computing the size of the independent set.

Definition 10.2.1 Lexicographically First Maximal Independent
Set Size (LFMISsize)
Given: An undirected graph G = (V, E) with an ordering on the
vertices and an integer k.
Problem: Is the size of the lexicographically first maximal indepen-
dent set of G less than or equal to k?

The following lemma shows that computing just the size of the
lexicographically first maximal independent set is P -complete.

Lemma 10.2.2 (Greenlaw, Hoover, and Ruzzo, This Work) The
Lexicographically First Maximal Independent Set Size Problem is P-
complete under ≤NC1

m reductions.

Proof. We reduce LFMIS to LFMISsize. Let (G, v) be an instance
of LFMIS. Assume G has vertices numbered 1, . . . , n. Form a new
graph G′ by adding to G a set of n + 1 new vertices W = {n +
1, . . . , 2n+1}, each adjacent only to v. Output the pair (G′, n). Let
the size of the lexicographically first maximal independent set in G
(G′) be s (s′, respectively). Then, s′ will be either s or s + n + 1,
with the former holding if and only if v is in the lexicographically first
maximal independent set of G. Thus, v is in the lexicographically
first maximal independent set of G if and only if s′ is less than or
equal to n. It is evident that the reduction is NC 1 computable. 2

Given this result it is natural to ask, “Is there an NC algorithm
for approximating the size of the LFMIS?”

Consider an approximation algorithm that given a graph G hav-
ing a LFMIS of size So, computes an estimate Se of So. One might
hope to approximate So by an estimate Se that is at worst a poly-
nomial over or under estimate of So. That is, εS1/k

o ≤ Se ≤ Sl
o/δ

110 CHAPTER 10. APPROXIMATING P -COMPLETE PROBLEMS

for appropriate constants ε, k, l, and δ. Note that one could imag-
ine requiring the approximation algorithm to also deliver a solution
that achieved the estimate. Of course, this makes sense only if one
is underestimating a maximization problem — while one could pro-
duce a lexicographically first independent set that is smaller that
the maximal, finding one that is larger is impossible. Even in this
very general setting, no such approximation algorithm is possible for
LFMISsize, unless NC equals P .

Theorem 10.2.3 (Greenlaw, Hoover, and Ruzzo, This Work) Let
So be the size of the lexicographically first maximal independent set of
a graph G = (V, E). Then, unless NC equals P, for all ε, δ > 0 and
k, l ≥ 1, there is no NC approximation algorithm that will compute
an estimate Se of So such that

εS1/k
o ≤ Se ≤ Sl

o/δ.

Proof. We modify the construction given in the proof of
Lemma 10.2.2. There an independent set W was added to G pro-
ducing a new graph G′. In G′ the lexicographically first maximal
independent set, I ′, is smaller than or equal to |V | if and only if the
lexicographically first maximal independent set I of G contains a
designated vertex v; otherwise, |I ′| is greater than |W |. Independent
set W was chosen so that |W | is greater than |G|, thereby producing
a separation that can be used to determine the answer to the LFMIS
instance (G, v).

We do the same here except using a larger W . For given ε, δ > 0
and k, l ≥ 1, construct W so that it has integer size greater than
|G|lk/(εδ)k. Next add W to G as in Lemma 10.2.2 to form G′. Note,
the size of W is only polynomially larger than the size of G.

Let So = |I ′|. Let Se be any integer obeying the bounds given in
the statement of the theorem. If v ∈ I, then So is less than or equal
to |G|, and so Se ≤ Sl

o/δ ≤ |G|l/δ. On the other hand, if v 6∈ I, then
So is greater than |W |, and so Se ≥ εS1/k

o > ε|W |1/k > |G|l/δ. Thus,
v ∈ I if Se is less than or equal to |G|l/δ, and v 6∈ I if Se is greater
than |G|l/δ. Consequently, approximating So is P -hard. 2

Reductions like the one above can frequently be scaled in such
a way to defeat any polynomial time approximation algorithm. Ad-
ditional problems for which there are no NC approximation algo-
rithms, whose P -completeness proofs are based on a scaling pro-
cess, are Unit Resolution (Problem A.6.1), Generability (Problem

10.3. APPROXIMATION SCHEMES 111

A.6.7), Path Systems (Problem A.6.8), and the Circuit Value Prob-
lem (Serna [326], Serna and Spirakis [328]).

Other problems exhibit a threshold type behavior. Consider a
maximization problem where we need to compute the maximum pos-
sible size of a quantity. There are problems for which existence of an
NC algorithm that approximates the maximum to within a factor
of 1/2 or better implies NC equals P , whereas for any factor less
than 1/2, NC algorithms exist for solving these problems. Exam-
ples of problems possessing this behavior are High Degree Subgraph
(see Problem A.2.7) and High Connectivity Subgraph (see Problem
A.2.8).

These kinds of algorithms give rise to approximation schemes
that generate a class of algorithms, each one in NC . Again we can
make an analogy to the case for NP -completeness.

10.3 Approximation Schemes

Suppose that one is given a combinatorial optimization problem in
which one must maximize or minimize some quantity. For example,
deliver a flow that is maximum, or a schedule that is of minimum
length. An approximation scheme takes an instance of the optimiza-
tion problem and delivers a candidate solution that is near optimal.
To measure the performance of the optimization scheme, one takes
the ratio of the performance of the candidate solution to the optimal
one. We formalize this notion below by adapting the definitions of
Garey and Johnson [113] to our framework.

Definition 10.3.1 Suppose that some approximation algorithm A
on instance I of a minimization (maximization) problem deliv-
ers a candidate solution with value A(I). Let Opt(I) denote the
value of the optimal solution. Then the performance ratio of
A on I is given by RA(I) = A(I)/Opt(I) (respectively, RA(I) =
Opt(I)/A(I)). The absolute performance ratio for approxima-
tion algorithm A is given by

RA = infimum {r ≥ 1 | RA(I) ≤ r for all instances I}.

Definition 10.3.2 Let Π be a problem. An algorithm A with inputs
ε > 0 and I ∈ Π is an approximation scheme for Π if and only if
it delivers a candidate solution on instance I ∈ Π with performance
ratio RAε(I) ≤ 1 + ε. Algorithm A is an NC approximation

112 CHAPTER 10. APPROXIMATING P -COMPLETE PROBLEMS

scheme if and only if for each fixed ε > 0 A runs in parallel time
(log(|I|))O(1) and processors |I|O(1).

Note, in the definition both ε and I are inputs to algorithm A,
and in general the time and processor bounds for A depend on both
the value of ε and the size of instance I. In an NC approximation
scheme, the parameter ε is fixed, so that the resource requirements
depend only on |I|. An NC approximation scheme could be expo-
nential in 1/ε. If it behaves nicely in 1/ε then we have a fully NC
approximation scheme.

Definition 10.3.3 Let Π be a problem. An algorithm A with inputs
ε > 0 and I ∈ Π is a fully NC approximation scheme for Π if
and only if there is a two variable polynomial p and a two variable
polynomial q such that a candidate solution A(I) to instance I with
RA(I) ≤ 1 + ε can be computed in parallel time p(log(|I|), log(1/ε))
and processors q(|I|, log(1/ε)).

An example of a problem with a fully NC approximation scheme
is Bin Packing, Problem A.4.7. Anderson, Mayr, and Warmuth
observe that a sequential approximation algorithm that achieves a
packing to within a factor of 1+ε for any ε > 0 can be converted into
an NC algorithm [17]. See also Mayr [254]. Another example is the
0− 1 Knapsack Problem. Mayr shows that given any ε > 0, a solu-
tion with profit at least 1−ε can be found in O(log n(log n+log 1/ε))
time using n3/ε2 processors on an EREW-PRAM [254]. Mayr also
shows that the Makespan Problem and a List Scheduling Problem
have fully NC approximation schemes [254].

Theorem 10.3.4 Let Π be an integer-valued combinatorial opti-
mization problem. If there exists a two variable polynomial p such
that all instances I of Π satisfy

Opt(I) < p(|I|, Max(I)),

then the existence of a fully NC approximation scheme for Π implies
the existence of a pseudo-NC algorithm for Π.

Proof. The proof is similar to that of Theorem 6.8 of Garey and
Johnson [113]. We translate their proof into our setting below.

Suppose A is a fully NC approximation scheme for Π and sup-
pose, without loss of generality, that Π is a maximization problem.
Let pA and qA be the two polynomials corresponding to A. Consider
a choice of

ε = 1/p(|I|,Max(I)).

10.3. APPROXIMATION SCHEMES 113

A computes a candidate solution A(I) for instance I in parallel time

pA(log(|I|), log(1/ε)) = pA(log(|I|), log(p(|I|,Max(I))))

which is
p1(log(|I|), log(Max(I)))

for an appropriate polynomial p1. A uses processors

qA(|I|, log(1/ε)) = qA(|I|, log(p(|I|, Max(I))))

which is q1(|I|) for an appropriate polynomial q1 since log(Max(I)) ≤
|I|. Since RA(I) ≤ 1 + ε, it follows that

Opt(I) ≤ (1 + ε)A(I).

Therefore,
Opt(I)−A(I) ≤ εA(I).

Since εA(I) ≤ εOpt(I) and by the original assumption Opt(I) < 1/ε,
we get

Opt(I)−A(I) ≤ εA(I) ≤ εOpt(I) < 1.

Since Π is integer-valued, this implies Opt(I) = A(I).
Combining this with the existence of the polynomials p1 and q1,

we see a pseudo-NC algorithm exists for Π. Its steps are to compute
ε quickly in parallel and then run Aε on input I. 2

The corollary stated below follows from Theorem 10.3.4 and Ob-
servation 9.1.3.

Corollary 10.3.5 Suppose that an integer-valued combinatorial op-
timization problem satisfies the hypothesis of Theorem 10.3.4. If the
problem is strongly P-complete, then it cannot be solved by a fully
NC approximation scheme, unless NC equals P.

Chapter 11

Closing Remarks

The previous chapters have laid out the history, foundations, and me-
chanics of the theory of P -completeness. We have shown that this
theory plays roughly the same role in the parallel complexity domain
as NP -completeness does in the sequential domain. Having devoted
much effort to establishing the notion of feasible highly parallel al-
gorithms and arguing that P -completeness captures the notions of
inherently sequential problems and algorithms, it is now appropriate
to temper our case a bit with some additional observations.

For some problems depending on the relevant input size, it may
not be worth the effort to search for a feasible highly parallel algo-
rithm assuming for example that you already have a

√
n time par-

allel algorithm. The following table shows the relationship between
square roots and logarithms for various input sizes. Of course, for
small input sizes the constants on the running times also play a ma-
jor role.

k n

1 4
2 65536
3 6.2 ∗ 108

4 1.3 ∗ 1013

5 4.9 ∗ 1017

Table 11.1: Values of k and n Such That
√

n ≥ (log n)k.

115

Although it is extremely risky to predict hardware trends, it
seems safe to say that massively parallel computers containing bil-
lions of processors are not “just around the corner” and although po-
tentially feasible, machines with millions of processors are not soon
to become commodity personal computers. Thus, highly parallel
algorithms will not be feasible if the processor requirements for an
input of size n are much greater than n2, and probably more like
n log n.

Even if you have sufficient numbers of processors for problems
that interest you, your algorithm may succumb to the tyranny of
asymptotics. For example, a parallel algorithm that uses

√
n time is

probably preferable to one that uses (log n)4 time, at least for values
of n less than 1013. As Table 11.1 illustrates, the only really practical
polylogarithmic parallel time algorithms are O((log n)2). Perhaps
the limit to feasible highly parallel algorithms are those that run in
(log n)2 time and use O(n2) processors.

However, the search for an NC algorithm often leads to new
insights into how a problem can be effectively parallelized. That
is, a problem frequently is found to exhibit unexpected parallelism
when the limits of its parallelism are pushed. Thus, the development
of feasible highly parallel algorithms can be viewed as a useful first
step toward practical parallel algorithm development. It forces one to
consider different methods for splitting up and recombining solutions
to subproblems and to consider alternative approaches to merely
parallelizing existing sequential algorithms.

So on balance, the theory of P -completeness is an extremely rich
and important one in terms of the foundations of parallel computa-
tion. Like any theory, it needs to be applied and interpreted cor-
rectly. Only as parallel computers become more widely available
will we see how widely the theory is applied in practice. The theory
has already helped to greatly increase our understanding of parallel
computing, guide algorithm designers, and suggest new approaches
to problem solving. Evidence for this follows in Appendices A and B
where we systematically categorize many of the known results. We
believe that the utility of the field will continue to grow rapidly as
it is at present.

In fact, the field has grown so rapidly in recent years that it has
been difficult for us to keep our problem lists up to date (and finish
this book). We would appreciate readers supplying us with references
and copies of papers for works we inadvertently omitted, and copies

116 CHAPTER 11. CLOSING REMARKS

of their new research papers on the subject as they become available.
Finally, the NC versus P question seems to be a very difficult

open problem. It appears that new mathematical proof techniques
will be required to solve it.

• • •

Having shown that the bandersnatch design problem is P -
complete, you begin your search for a sublinear time parallel al-
gorithm, secure in the knowledge of your continuing employment.

Part II:
A Compendium of

Problems

Introduction

The second part of this book is divided into two main appendices.
The intention is to provide a comprehensive list of P -complete prob-
lems and to provide an up to date list of open problems. Our other
goal is to provide lists of problems in the classes CC and RNC .

Appendix A contains a list of about 140 P -complete problems.
With variations on the problems counted, there are probably closer
to 500 entries in the list. The problems are classified into a dozen
different subject areas. The grouping is not precise but we have
tried to put related problems into the same category. The prob-
lems are ordered so that most of them are defined before they are
used in reductions. If this was not possible, because of the way the
categories were defined and ordered, then a cross-reference to the
problem’s definition is given. We often include cross-references to
similar problems.

Appendix B contains a list of about 30 open problems — prob-
lems not known to be in NC or P -complete. These problems are
split into seven different subject areas. Appendix B also lists about
15 problems in the classes CC and RNC .

Appendix C describes notation used throughout the book.
Appendix D groups together complexity class definitions.

Appendix A

P -Complete Problems

This appendix contains a compendium of P -complete problems. For
each entry we give a description of the problem and its input, provide
references to source papers showing the problem is P -complete, give
a hint illustrating the main idea of the completeness reduction, and
mention related versions of the problem. Often the remarks include
a variation of the problem that is known to be in NC . For many
problems other variations that are also P -complete are described.

Problems marked by (*) are P -hard but are not known to be in P .
Most of the problems marked by (*) are in FP . We make the distinc-
tions here between decision problems and search problems. (Note,
sometimes we use the word computation problem synonymously with
search problem.) Other problems are in P , although we usually omit
the proofs demonstrating this. Such proofs can usually be found in
the accompanying references to the problems.

Many of the problems given here were originally shown to be
P -complete with respect to logarithmic space reductions. Any log-
arithmic space computation is immediately in NC 2 by Borodin’s
simulation [40]. Thus, any problem logarithmic space complete for
P is also ≤NC2

m complete for P . In most cases the same reduction
can be done in NC1, that is, the problem is ≤NC1

m complete for P .
We have noted some exceptions to this below, but have not been
exhaustive.

A word of caution is in order regarding our proof hints. The
hints vary greatly in the amount of detail they provide. An “expert”
will be able to construct many of the P -completeness proofs directly
from our hints. In fact, for many problems we completely spellout
the reduction involved. For other problems it may not be possible

120 APPENDIX A. P -COMPLETE PROBLEMS

to deduce the entire reduction from our hint. For some very com-
plex reductions, we have often decided not to reproduce the entire
reduction here. Rather in such cases the reader should refer back to
the original paper or to one of the other references provided. Lastly,
a similar hint on two different problems might involve one simple
reduction and another extremely complex one.

The problems are divided into the following categories.

A.1 circuit complexity
A.2 graph theory
A.3 searching graphs
A.4 combinatorial optimization and flow
A.5 local optimality
A.6 logic
A.7 formal languages
A.8 algebraic
A.9 geometry
A.10 real analysis
A.11 games
A.12 miscellaneous

A complete list of all the P -complete and open problems can be
found in the Problem List on page 285. In addition, the index has
entries for each problem by name as well as by its acronym.

A.1. CIRCUIT COMPLEXITY 121

A.1 Circuit Complexity

The Circuit Value Problem (CVP) plays the same role in P -
completeness theory that the Satisfiability Problem does in NP -
completeness theory. In this section we present many variants of
CVP that are P -complete, and are particularly useful for proving
other problems are P -complete. See Chapter 6 for more details re-
garding CVP and Chapter 2 for an introduction to Boolean circuits.

A.1.1 Circuit Value Problem (CVP)

Given: An encoding α of a Boolean circuit α, inputs x1, . . . , xn,
and designated output y.
Problem: Is output y of α true on input x1, . . . , xn?
Reference: Ladner [225].
Hint: A proof is given in Chapter 6.
Remarks: For the two input basis of Boolean functions, it is known
that CVP is P -complete except when the basis consists solely of or,
consists solely of and, or consists of any or all of the following: xor,
equivalence, and not (Goldschlager and Parberry [127], Parberry
[281]).

A.1.2 Topologically Ordered Circuit Value Problem
(TopCVP)

Given: An encoding α of a Boolean circuit α, inputs x1, . . . , xn,
and designated output y with the additional assumption that the
vertices in the circuit are numbered and listed in topological order.
Problem: Is output y of α true on input x1, . . . , xn?
Reference: Folklore.
Hint: A proof is given in Theorem 6.2.1. Also, see the remarks
following the proof of Theorem 6.2.5.
Remarks: All of the reductions in Chapter 6 and this section pre-
serve topological ordering, so the restrictions of all of these variants
of the Circuit Value Problem to topologically ordered instances re-
main P -complete.

122 APPENDIX A. P -COMPLETE PROBLEMS

A.1.3 Monotone Circuit Value Problem (MCVP)

Given: An encoding α of a Boolean circuit α, inputs x1, . . . , xn,
and designated output y with the additional assumption that α is
monotone. That is, it is constructed solely of and and or gates.
Problem: Is output y of α true on input x1, . . . , xn?
Reference: Goldschlager [122].
Hint: Reduce the Circuit Value Problem to MCVP. A proof is given
in Section 6.2. Vitter and Simons give a

√
n time parallel algorithm

for the non-sparse version of the problem [366].

A.1.4 Alternating Monotone Fanin 2, Fanout 2 CVP
(AM2CVP)

Given: An encoding α of a monotone Boolean circuit α, inputs
x1, . . . , xn, and designated output y. On any path from an input to
an output the gates are required to alternate between or and and
gates. Inputs are required to be connected only to or gates, and
outputs must come directly from or gates. The circuit is restricted
to have fanout exactly two for inputs and internal gates, and to have
a distinguished or gate as output.
Problem: Is output y of α true on input x1, . . . , xn?
Reference: Folklore.
Hint: A proof is given in Section 6.2.
Remarks: Goldschlager, Shaw, and Staples gave a P -completeness
proof for Monotone, Fanout 2 CVP [128].

A.1.5 NAND Circuit Value Problem (NANDCVP)

Given: An encoding α of a Boolean circuit α, inputs x1, . . . , xn, and
designated output y. Circuit α is constructed only of nand gates
and is restricted to have fanout two for inputs and nand gates.
Problem: Is output y of α true on input x1, . . . , xn?
Reference: Folklore.
Hint: The reduction is from AM2CVP to NANDCVP. A proof is
given in Section 6.2.
Remarks: Any complete basis of gates suffices, by the obvious sim-
ulation of nand gates in the other basis. For example, nor gates
form a complete basis. NORCVP is defined analogously to NAND-
CVP. See Post for a characterization of complete bases [292]. See the

A.1. CIRCUIT COMPLEXITY 123

remarks for Problem A.1.1 for other bases, not necessarily complete,
for which the associated Circuit Value Problem is still complete.

A.1.6 Synchronous Alternating Monotone Fanout 2
CVP (SAM2CVP)

Given: An encoding α of a monotone Boolean circuit α, inputs
x1, . . . , xn, and designated output y. In addition to the restrictions
of Problem A.1.4, this version requires the circuit to be synchronous.
That is, each level in the circuit can receive its inputs only from gates
on the preceding level.
Problem: Is output y of α true on input x1, . . . , xn?
Reference: Greenlaw, Hoover, and Ruzzo, This Work.
Hint: A proof is given in Section 6.2. The reduction is from
AM2CVP, Problem A.1.4.

A.1.7 Planar Circuit Value Problem (PCVP)

Given: An encoding α of a planar Boolean circuit α, inputs
x1, . . . , xn, and designated output y. A planar circuit is one whose
graph can be drawn in the plane with no edges crossing.
Problem: Is output y of α true on input x1, . . . , xn?
Reference: Goldschlager [122].
Hint: Reduce Circuit Value, Problem A.1.1, to PCVP. Lay out
the circuit and use cross-over circuits to replace crossing lines with a
planar subcircuit. A planar xor circuit can be built from two each
of and, or, and not gates; a planar cross-over circuit can be built
from three planar xor circuits.

A m gate CVP instance is embedded in a m×m grid as follows.
Gate i will be in cell (i, i), with its value sent along a wire in the ith

row both to the left and to the right. Gate i’s inputs are delivered
to it through two wires in the ith column, with data flowing down
the wires from above and up from below. Let gate i’s inputs be the
outputs of gates j and k, and suppose j happens to be less than i.
In cell (j, i), which happens to be above (i, i) at the point where j’s
horizontal (rightgoing) output wire crosses i’s first (respectively, ver-
tical, downgoing) input wire, insert a two input, two output planar
subcircuit that discards the value entering from above and passes the
value entering from the left both to the right and down. The input

124 APPENDIX A. P -COMPLETE PROBLEMS

to i from k is treated similarly, with the obvious changes of orienta-
tion if k is greater than i. At all other wire crossings, insert a copy
of the planar cross-over circuit. Note that given i and j, the wiring
of cell (i, j) is easily determined based on whether i < j, i = j, or i
is an input to j, and so on. Hence, the reduction can be performed
in NC1 (even if the original circuit is not topologically sorted).
Remarks: It is easy to see that monotone planar cross-over net-
works do not exist, so the reduction above cannot be done in
the monotone case. In fact, the monotone version of PCVP is in
LOGCFL ⊆ NC 2 when all inputs appear on one face of the planar
embedding (Dymond and Cook [99, 100], Goldschlager [124], Mayr
[253]). The more general problem where inputs may appear any-
where is also in NC (Delcher and Kosaraju [87], Kosaraju [219]). A
complete characterization of all bases from which it is possible to
construct planar cross-over circuits is given in McColl [256].

A.1.8 Arithmetic Circuit Value Problem (*)
(ArithCVP)

Given: An encoding α of an arithmetic circuit α with dyadic oper-
ations +, −, and ∗, together with inputs x1, . . . , xn from a ring.
Problem: Does α on input x1, . . . , xn output 1?
Reference: (H. Venkateswaran, Personal Communication, 1983).
Hint: Reduce NANDCVP to ArithCVP as follows: true → 1,
false → 0, and ¬(u ∧ v) → 1− u ∗ v, where 0 denotes the additive
identity and 1 denotes the multiplicative identity of the ring.
Remarks: The problem is not necessarily in FP for infinite rings
like Z or Q, since intermediate values need not be of polynomial
length. It will be in FP for any finite ring, and remains P -hard in
any ring. It is also P -hard to decide whether all gates in an arith-
metic circuit over Z have “small” values, say values of a magnitude
2nO(1)

. Cucker and Torrecillas look at related problems [73]. The
problem is in NC for circuits of degree 2(log n)O(1)

, where the degree
of a vertex is one for inputs, and d1+d2 (max(d1, d2)) when the vertex
is a product (respectively, sum) of the values computed by two ver-
tices of degree d1 and d2 (Miller, Ramachandran, and Kaltofen [258],
Valiant et al. [358]).

A.1. CIRCUIT COMPLEXITY 125

A.1.9 Min-plus Circuit Value Problem
(MinPlusCVP)

Given: An encoding α of a (min, +) circuit α and rational inputs
x1, . . . , xn.
Problem: Does α on input x1, . . . , xn output a nonzero value?
Reference: (H. Venkateswaran, Personal Communication, 1983).
Hint: Reduce Monotone Circuit Value, Problem A.1.3, to Min-
PlusCVP as follows: true → 1, false → 0, u ∧ v → min(u, v), and
u ∨ v → min(1, u + v).
Remarks: The above reduction works in any ordered semi-group
with additive identity 0 and an element 1 such that 1 + 1 ≥ 1 > 0.
If there is a nonzero element 1 such that 1 + 1 = 0 (e.g. in Z2), then
reduce NANDCVP via ¬(u ∧ v) → 1 + min(u, v). In a well-ordered
semigroup where 0 is the minimum element, one or the other of these
cases holds. If the semigroup is infinite, the problem may not be in
P .

A.1.10 ε-Circuit Depth Ones (*) (εCDO)

Given: An encoding α of a Boolean circuit α, plus inputs x1, . . . , xn,
and a number ε ∈ (0, 1]. Let d denote the maximum depth that a
true value propagates to in α on the given input.
Problem: Find an integer d′ such that d ≥ d′ ≥ εd.
Reference: Kirousis and Spirakis [215].
Hint: This problem is stated as a computation problem. Thus, it is
technically not in P . The reduction showing the problem is P -hard
is from MCVP, Problem A.1.3. Given α it is easy to construct a
deeper circuit such that if we could approximate the depth of ones
in the new circuit, we could determine the output of α.
Remarks: The extension to α can be constructed to preserve
properties such as monotonicity, fan-out, alternation, and planarity
(Kirousis and Spirakis [215], Serna [327]).

A.1.11 ε-Circuit true Gates (*) (εCTG)

Given: An encoding α of a Boolean circuit α, plus inputs x1, . . . , xn,
and a number ε ∈ (0, 1]. Let t denote the number of gates in α that
evaluate to true.
Problem: Find an integer d such that bεtc ≤ d < t.
Reference: Serna [326, 327].
Hint: This problem is stated as a computation problem. Thus, it

126 APPENDIX A. P -COMPLETE PROBLEMS

is technically not in P . The reduction showing the problem P -hard
is from CVP [327]. Given α it is easy to construct a larger circuit
such that if we could approximate the output of the new circuit, we
could determine the output of α.
Remarks: The extension to α can be constructed to preserve prop-
erties such as monotonicity, fan-out, alternation, and planarity [327].

A.1.12 Inverting An NC Permutation (*)
(InvNC0Perm)

Given: An n-input, n-output NC0, see definition page 250, circuit
computing a bijective function f : {0, 1}n → {0, 1}n and y ∈ {0, 1}n.
Problem: Is the last bit of f−1(y) equal to 1?
Reference: H̊astad [149, Section 2.5], [150].
Hint: The reduction is from CVP, Problem A.1.1. This problem
is called straight-line program in [150]. Let α be an instance of
CVP, where x1, . . . , xn denote the inputs and bn+1, . . . , bm denote the
gates. Gate bm is the output gate. The notation bk(i1, i2) represents
the value of gate bk and indicates that gate bk receives its inputs
from the outputs of gates i1 and i2, where i1 and i2 are less than k.
From the circuit α, a permutation g is constructed from {0, 1}m to
{0, 1}m. Let z1, . . . , zm (collectively z) denote input bits for g and
g1, . . . , gm output bits. g is defined as follows:

1. gk(z) = zk, for k = 1, . . . , n, and

2. gk(z) = zk ⊕ bk(zik , zjk) for k = n + 1, . . . ,m.

It is not hard to see that the mth bit of g−1(x1, . . . , xn, 0, . . . , 0) is
the value of gate bm in α.
Remarks: The problem is not known to be in P in general, although
the family of permutations used to show P -hardness is polynomial
time invertible. See Boppana and Lagarias [39] for some additional
remarks about one-way functions.

A.1. CIRCUIT COMPLEXITY 127

A.1.13 Circuit Evaluation over Monoids (CEM)

Given: A finite monoid (M,⊕, 1) containing a nonsolvable group,
where M is a finite set, ⊕ is an associative binary operation on the
elements of M , and 1 acts as an identity element; an encoding α of
a circuit α, whose gates are of type ⊕, inputs x1, . . . , xn ∈ M , and
designated output y.
Problem: Does α evaluate to y on input x1, . . . , xn?
Reference: Beaudry, McKenzie, and Péladeau [28].
Hint: The reduction is from Circuit Value, Problem A.1.1.
Remarks: If M is solvable the same problem is in DET , the class of
problems NC1 Turing reducible to computing integer determinants,
see page 248. Also see Problems A.1.8 and A.1.9.

128 APPENDIX A. P -COMPLETE PROBLEMS

A.2 Graph Theory

A.2.1 Lexicographically First Maximal Independent
Set (LFMIS)

Given: An undirected graph G = (V,E) with an ordering on the
vertices and a designated vertex v.
Problem: Is vertex v in the lexicographically first maximal inde-
pendent set of G?
Reference: Cook [67].
Hint: A proof is given in Section 7.1.
Remarks: This is an instance of the Lexicographically First Max-
imal Subgraph for π, Problem A.2.16. LFMIS is P -complete for
bipartite or planar graphs restricted to degree at most three Miyano
[265]. Karp observed that the completeness of LFMIS implies that
determining the ith vertex chosen by any deterministic sequential
algorithm for either LFMIS or LFMC, Problem A.2.2, is also com-
plete [194]. Computing or approximating the size of the lexico-
graphically first maximal independent set is also P -complete; see
Section 10. Luby gave the first NC algorithm for finding a max-
imal independent set [198], subsequently improved by Luby [246],
by Alon, Babai, and Itai [10], and by Goldberg and Spencer [121].
These algorithms do not compute the lexicographically first maximal
independent set. Using a general result involving inference systems,
Miyano shows that when G is a forest LFMIS can be solved on
a CREW-PRAM in O(log |V |) time using a polynomial number of
processors [263].

A.2.2 Lexicographically First Maximal Clique
(LFMC)

Given: An undirected graph G = (V, E) with an ordering on the
vertices and a designated vertex v.
Problem: Is vertex v in the lexicographically first maximal clique
of G?
Reference: Cook [67].
Hint: Finding a maximal clique is equivalent to finding a maximal
independent set in the complement graph of G, see Problem A.2.1.
Stewart shows that Ordered Greedy Clique and Ordered Remaining

A.2. GRAPH THEORY 129

Clique are both P -complete [343]. These two decision problems are
based on heuristic greedy algorithms for computing cliques.

A.2.3 Alternating Graph Accessibility Problem
(AGAP)

Given: A directed graph G = (V, E), a partition V = A ∪B of the
vertices, and designated vertices s and t.
Problem: Is apath(s, t) true?, where apath is defined as follows.
Vertices in A are “universal,” those in B are “existential.” Such
a graph is called an alternating graph or an and/or graph. The
predicate apath(x, y) holds if and only if

1. x = y, or

2. x is existential and there is a z ∈ V with (x, z) ∈ E and
apath(z, y), or

3. x is universal and for all z ∈ V with (x, z) ∈ E, apath(z, y)
holds.

Reference: Chandra, Kozen, and Stockmeyer [49], Immerman [168,
169].
Hint: Reduce AM2CVP, Problem A.1.4, to AGAP. Create two ex-
istential vertices 0 and 1. Put edge (xi, 0) into E if input xi is 0, and
edge (xi, 1) into E if input xi is 1. and gates are universal vertices
and or gates are existential vertices. Inputs to a gate correspond to
children in the alternating graph. For output gate z of the circuit,
apath(z, 1) holds if and only if the output z is 1.
Remarks: The original proof simulated an alternating Turing ma-
chine (ATM) directly to show that AGAP was complete for ATM
logarithmic space [168]. Since ALOG = P [49], this showed AGAP
was P -complete too. When this problem is generalized to hierar-
chical graphs it remains in P , provided the graph is “breadth-first
ordered;” see Lengauer and Wagner [231]. The proof sketched above
also shows that the problem remains P -complete when the partition
(A,B) induces a bipartite graph. When restricted to only existential
vertices, the problem is equivalent to the Directed Graph Accessibil-
ity Problem, variously called “GAP” and “STCON,” and shown by
Savitch to be complete for NLOG [322]. Peterson (Gary Peterson,
Personal Communication, 1980’s) shows that the undirected version
of AGAP is also P -complete. When restricted to undirected graphs

130 APPENDIX A. P -COMPLETE PROBLEMS

with only existential vertices, this problem is equivalent to the Undi-
rected Graph Accessibility Problem, called “UGAP” or “USTCON,”
which is known to be complete for the special case of nondeter-
ministic logarithmic space known as symmetric logarithmic space or
SLOG (Lewis and Papadimitriou [233]). Yasuura shows a general-
ization of AGAP is P -complete via a reduction to Path Systems,
Problem A.6.8 [374]. He considers the graph reachability problem
on directed hypergraphs, graphs whose edges consist of a subset of
vertices and a single vertex.

A.2.4 Hierarchical Graph Accessibility Problem
(HGAP)

Given: A hierarchical graph G = (V, E), and two designated ver-
tices s and t. A hierarchical graph Γ = (G1, . . . , Gk) consists of k
subcells Gi, 1 ≤ i ≤ k. Each subcell is a graph that contains three
types of vertices called pins, inner vertices, and nonterminals. The
pins are the vertices through which the subcell can be connected to
from the outside. The inner vertices cannot be connected to from
the outside. The nonterminals stand for previously defined subcells.
A nonterminal inside Gi has a name and a type. The name is a
unique number or string. The type is a number from 1, . . . , i− 1. A
nonterminal v of type j stands for a copy of subcell Gj . The neigh-
bors of v are in an one-to-one correspondence with the pins of Gj
via a mapping that is specified as part of Γ.
Problem: Is there a path between s and t in the expansion graph
of G? An expansion graph is a hierarchical graph expanded. The
graph is expanded by expanding cell Gk recursively. To expand sub-
cell Gi expand its subcells G1, . . . , Gi−1 recursively and replace each
nonterminal of v of type j with a copy of the expansion of subcell
Gj .
Reference: Lengauer and Wagner [231].
Hint: The reduction is from Alternating Graph Accessibility, Prob-
lem A.2.3.
Remarks: Hierarchical versions of the following problems are also
P -complete: graph accessibility in undirected graphs, determining
whether a directed graph contains a cycle, and determining whether
a given graph is bipartite [231]. There are several other very re-
stricted versions of hierarchical graph problems that are P -complete.
See [231] for details.

A.2. GRAPH THEORY 131

A.2.5 Restricted Chromatic Alternating Graph
Accessibility Problem (RCAGAP)

Given: An alternating graph G = (V, E), two natural numbers k
and m (where k ≤ m ≤ log |V |), a coloring c : E → {1, . . . ,m},
and two vertices s and t. Note that the coloring is an unrestricted
assignment of colors to the edges. It may assign the same color to
several edges incident to a common vertex. See Problem A.2.3 for
the definition of an alternating graph.
Problem: Are there k different colors i1, . . . , ik ∈ {1, . . . , m} such
that apath(s, t) holds in the subgraph of G induced by the edges with
colors i1, . . . , ik? See Problem A.2.3 for the definition of apath.
Reference: Lengauer and Wagner [231].
Hint: There is a trivial reduction from Alternating Graph Accessi-
bility, Problem A.2.3. Membership of RCAGAP in P follows from
membership of AGAP in P , since there are at most 2k ≤ |V | possible
sets of colors to try.
Remarks: The problem remains P -complete if the vertices are re-
stricted to being breadth-first ordered [231]. When generalized to
hierarchical graphs, the problem becomes NP -complete [231].

A.2.6 Lexicographically First ∆ + 1 Vertex Coloring
(LFDVC)

Given: An undirected graph G = (V, E) with ∆ equal to the maxi-
mum degree of any vertex in V , an ordering v1, . . . , vn on the vertices
of V , a designated color c, and a vertex v.
Problem: Is vertex v colored with color c in the lexicographically
least coloring of the vertices of G? A coloring is an assignment of
colors to the vertices such that no adjacent vertices receive the same
color. The coloring uses at most ∆ + 1 colors. If ci is the color of
vi, where ci ∈ {1, . . . , ∆ + 1}, then each coloring corresponds to a
(∆ + 1)-ary number, and the least coloring is well-defined.
Reference: (Michael Luby, Personal Communication, 1984), Luby
[246].
Hint: Computing the lexicographically least coloring is easily done
in polynomial time by examining each vertex in order and coloring
it with the smallest available color. To show completeness, reduce
NANDCVP, Problem A.1.5, to LFDVC. The coloring will corre-
spond to evaluating the circuit in topological order. Let v1, . . . , vn
be the gates of a circuit α and assume the gates are numbered in

132 APPENDIX A. P -COMPLETE PROBLEMS

topological order. Each gate in the circuit will be represented by
four vertices in G, with the order on the vertices induced from the
order of the gates. Consider a nand gate, vi ← ¬(vj , vk). Introduce
three new vertices v′i, v′j , and v′k; where v′j and v′k appear after vj ,
and vk and v′i appear after all these, but before vi, in the topological
ordering. The gate is then represented by the edges (vj , v′j), (vk, v′k),
(v′j , v

′
i), (v′k, v

′
i), and (v′i, vi). One final fix is necessary. To keep the

degree down to three, a fanout tree may be required on the output
of each gate. The resulting graph can be colored with only three
colors in the order {T, F, X} (even though four might be necessary
for a different ordering).
Remarks: The problem of ∆ − 1 coloring is NP -complete (Garey
and Johnson [113]). For graphs that are not an odd cycle or com-
plete, a ∆ coloring can be found in polynomial time (Brook’s The-
orem, see Brooks [47] or, for example, Bondy and Murty [37]).
However, this is not necessarily the lexicographically first color-
ing. ∆ + 1 vertex coloring is NC1 reducible to finding a maximal
independent set (Michael Luby, Personal Communication, 1984),
but the maximal independent set algorithm (Karp and Wigder-
son [198]) does not produce the lexicographically first maximal in-
dependent set. It is possible to color a graph with ∆ colors in
NC , although again the coloring produced is not the lexicograph-
ically first (Hajnal and Szemerédi [146], Karchmer and Naor [187],
Karloff [189]). Chlebus et al. show that for tree structured graphs
LFDVC can be solved in NC [55]. There are also NC algo-
rithms for five coloring planar graphs (Boyar and Karloff [45],
Naor [272]). Karloff and Shmoys give NC algorithms for edge color-
ing problems [191]. In particular, they show that multigraphs can be
edge colored with 3d∆/2e colors on a COMMON CRCW-PRAM us-
ing O((log(∆|V |))3) time and ∆|V | processors. For the same model
and multigraphs with ∆ equal to three, they use four colors, and
O(log |V |) time and |V |+ |E| processors. Again on the same model
for simple graphs using ∆ + 1 colors, Karloff and Shmoys obtain a
∆O(1)(log |V |)O(1) time, |V |O(1) processor algorithm. This results in
an NC algorithm for polylogarithmic ∆. See also Problem B.9.3.

A.2.7 High Degree Subgraph (HDS)

Given: An undirected graph G = (V, E) and an integer k.
Problem: Does G contain a vertex induced subgraph with mini-
mum degree at least k?

A.2. GRAPH THEORY 133

Reference: Anderson and Mayr [14].
Hint: Reduce AM2CVP, Problem A.1.4, to HDS. The proof illus-
trated here is for k equals three, although it can be generalized to any
fixed k greater than or equal to three. A true input k1 connected to
gate i is represented by a gadget with five vertices k1, v1, v2, v3, and
k′1. The edges in the gadget are (v1, k1), (v1, k′1), (v1, v2), (v2, k′1),
(v2, v3), (v3, k1), and (v3, k′1). k′1 is connected to a vertex in the gad-
get for gate i as described below. A false input is represented by
a single vertex. An and gate i with inputs l1 and l2, and outputs
l′1 and l′2 is represented by a fourteen vertex gadget. The gadget is
composed of two of the gadgets used to represent true inputs and
an additional four vertices. l′1 and l′2 label the vertices corresponding
to k′1 in the true input gadget. w1 and w2 label the positions cor-
responding to k1 in their respective copy of the true input gadget.
The four additional vertices are labeled l1, l2, w3, and w4. l1, l2,
and w3 are connected into a three clique. w4 is connected to w1, w2,
and w3. Inputs to gate i are connected to l1 and l2, and the outputs
l′1 and l′2 are connected to the appropriate input positions of other
gates. The representation of an or gate is very similar to the and
gadget; omitting w3 and connecting l1 and l2 directly to w4. Finally,
there is a binary tree that has as its leaves the vertices correspond-
ing to the k1’s of the true inputs and has the vertex corresponding
to the output vertex of the circuit as its root. The computation of
a HDS of degree three proceeds on this new graph so that HDS is
nonempty if and only if the output of the circuit is true.
Remarks: Although not stated as a lexicographically first problem,
the HDS in a graph is unique. Hence, this is another instance of the
Lexicographically First Maximal Subgraph for π, Problem A.2.16.
There is an NC algorithm computing a HDS for k equals two. Let
K(G) denote the largest k such that there is an induced subgraph of
G with minimum degree k. For fixed 0 ≤ c ≤ 1, consider finding an
approximation d such that K(G) ≥ d ≥ cK(G). For any c less than
1/2 there is an NC algorithm for finding d, and for any c greater than
1/2 the problem of finding d is P -complete [14]. The complemen-
tary Low Degree Subgraph Problem, see Problem B.1.5, has also been
studied and for several natural decision problems it is NP -complete
(Greenlaw [134]). Decision problems based on ordered vertex re-
moval relating to subgraph computations are also P -complete [134].
A special case of HDS is the Color Index Problem (Vishwanathan
and Sridhar [365]): given an undirected graph G = (V, E), is the

134 APPENDIX A. P -COMPLETE PROBLEMS

color index of G less than or equal to four? The color index is the
maximum over all subgraphs H, of G, of the minimum degree of H.
Asking if the color index is less than or equal to four is complemen-
tary to asking if there are any high degree subgraphs of order five.
The original reduction for Color Index is from Ordered Low Degree
Vertex Removal, Problem A.2.11. See remarks for Problem A.2.6.

A.2.8 High Connectivity Subgraph (HCS)

Given: An undirected graph G = (V,E) and an integer k.
Problem: Does G contain a vertex induced subgraph of vertex
(edge) connectivity at least k?
Reference: Kirousis, Serna, and Spirakis [214], Serna [326].
Hint: The reduction is from Monotone Circuit Value, Problem
A.1.3, and is similar to that used to prove Problem A.2.7, the High
Degree Subgraph Problem, is P -complete.
Remarks: Approximation algorithms for this problem exhibit a
threshold type behavior. Below a certain value on the absolute per-
formance ratio the problem remains P -complete for fixed k, and
above that ratio there are NC approximation algorithms for the
problem (Serna and Spirakis [328]). Specifically, let o be the maxi-
mum size of a k-vertex connected induced subgraph of G. Then for
0 ≤ c ≤ 1/4 it is possible to find, in NC , a vertex induced subgraph
of size greater than or equal to co, but for 1/4 < c ≤ 1 this is not
possible, unless NC equals P . For edge connectivity, the threshold
is c equal to 1/2. Khuller and Schieber present an algorithm for an
ARBITRARY CRCW-PRAM that given an undirected graph G and
an integer k tests whether G is k-vertex connected [209]. If G is not
k-vertex connected, they obtain a set of at most k−1 vertices whose
removal disconnects G. Their algorithm runs in O(k2 log n) time
and uses k(n + k2)C(n,m) processors, where C(n,m) is the number
of ARBITRARY CRCW-PRAM processors required to compute the
connected components of an n-vertex, m-edge graph in logarithmic
time. For polylogarithmic k, this is an NC algorithm.

A.2.9 Reliable Connectivity for Failures of Incoming
Edges (RCIN)

Given: A directed acyclic graph G = (V, E), and two distinguished
vertices s and t. Additionally, a function f that assigns a nonnega-
tive integer to every vertex v ∈ V such that f(v) is less than or equal

A.2. GRAPH THEORY 135

to the indegree of v. A choice of failed edges for a vertex v is denoted
F (v). It consists of a set of incoming edges to v of cardinality less
than or equal to f(v).
Problem: Is there a directed path between s and t consisting of
edges that are not in

⋃

v∈V F (v)?
Reference: Kavadias, Kirousis, and Spirakis [205].
Hint: The reduction is from Monotone Circuit Value, Problem
A.1.3. The idea is to consider the circuit as a directed acyclic graph.
Inputs are represented by vertices and all edges are directed towards
the output gate, which will be t. A vertex s is introduced that is
connected to all true inputs. f has value 0 for all vertices except
those corresponding to and gates for which it has value 1. The out-
put of the circuit instance is true if and only if s remains connected
to t for any set of failure edges.
Remarks: The general problem in which the input graph is not re-
quired to be a directed acyclic graph is co-NP -complete [205]. Kava-
dias, Kirousis, and Spirakis point out that the apparent reduction in
complexity of RCIN is not due to the restriction to directed acyclic
graphs but because of allowing only failures of in-edges [205]. They
also show that approximating RCIN is P -complete. They define
another problem called Feasible Connectivity in which every vertex
causes at least f(v) edges to fail. The question then is whether there
exists at least one failure pattern in which there is a s to t path.
This problem is in NC [205]. Kirousis and Spirakis define another
problem called εReliably Long Path [215]. In this problem exactly
one of the arcs leading into a vertex fails; the goal is to compute
the maximum number k such that the directed acyclic graph has a
path from the source vertex of length at least k with probability one.
They show that this problem is P -complete [215].

A.2.10 Ordered High Degree Vertex Removal
(OHDVR)

Given: An undirected graph G = (V,E) with a numbering on the
vertices in V , and two designated vertices u and v.
Problem: Is there an elimination order on V , v1, . . . , vn, satisfying
the properties that u is eliminated before v and for 1 ≤ i ≤ n, vi
is the lowest numbered vertex of maximum degree in the (i − 1)-st
remaining subgraph of G? An elimination order is a sequence of ver-
tices ordered as they and their corresponding edges are to be deleted
from the graph.

136 APPENDIX A. P -COMPLETE PROBLEMS

Reference: Greenlaw [134].
Hint: The reduction is from NANDCVP, Problem A.1.5, with fanin
and fanout restrictions to two. The circuit is transformed directly
into a graph. The vertices in the graph are ordered so that gates
evaluating to false in the circuit are deleted first in the instance of
OHDVR. A special vertex of degree four is added and its removal or-
der is compared with that of the vertex corresponding to the output
gate of the circuit.

A.2.11 Ordered Low Degree Vertex Removal
(OLDVR)

Given: An undirected graph G = (V, E) with a numbering on the
vertices in V , and two designated vertices u and v.
Problem: Is there an elimination order on V , v1, . . . , vn, satisfying
the properties that u is eliminated before v and for 1 ≤ i ≤ n, vi
is the lowest numbered vertex of minimum degree in the (i − 1)-st
remaining subgraph of G?
Reference: Vishwanathan and Sridhar [365], Greenlaw [134].
Hint: This is the complementary problem to Problem A.2.10.
Remarks: The problem defined in [365] is more restricted than the
one presented here. Their graphs are also required to have the prop-
erty that u appears before v in some minimum elimination sequence
if and only if u appears before v in all minimum degree elimination
sequences.

A.2.12 Ordered Vertices Remaining (OVR)

Given: An undirected graph G = (V,E) with a numbering on the
vertices in V , a designated vertex u, and an integer k.
Problem: Is there an elimination order on V , v1, . . . , vn, satisfying
the properties that u = vj for some j < (n− k) and for 1 ≤ i ≤ n, vi
is the lowest numbered vertex of maximum degree in the (i − 1)-st
remaining subgraph of G?
Reference: Greenlaw [134].
Hint: The reduction is from Ordered High Degree Vertex Removal,
Problem A.2.10.
Remarks: The Ordered Low Degree Subgraph Membership Problem
is also P -complete [134]. The problem here is to determine whether
a designated vertex is in a remaining subgraph when all vertices in
that remaining subgraph have small degree.

A.2. GRAPH THEORY 137

A.2.13 Neighborhood Removal (NR)

Given: An undirected graph G = (V,E) with a numbering on the
vertices in V , and two designated vertices u and v.
Problem: Is vertex u removed before vertex v when the neighbor-
hood removal algorithm is run on G? The neighborhood removal
algorithm processes maximum degree vertices in the remaining sub-
graph of G that have the lowest vertex numbers. It iterates through
such vertices, deleting them as well as their neighborhoods from the
remaining subgraph.
Reference: Greenlaw [133].
Hint: The reduction is from Ordered High Degree Vertex Removal,
Problem A.2.10.
Remarks: The neighborhood removal algorithm (or a slight variant
of it) is used as a subroutine in Wigderson’s heuristic algorithm for
the Graph Coloring Problem [372] and also in a heuristic algorithm
for the Minimum Vertex Cover Problem (Lingas [240]). In light of
the fact that NR is P -complete, it is unlikely that heuristic algo-
rithms using the neighborhood removal algorithm as a subroutine
will parallelize well.

A.2.14 Greedy Dominating Set (GDS)

Given: An undirected graph G = (V, E) with a numbering on the
vertices in V and a designated vertex u.
Problem: Is vertex u in the dominating set formed by the execution
of the greedy dominating set algorithm? A dominating set V ′ is a
subset of V such that for all v ∈ V −V ′ there exists a vertex w ∈ V ′

such that {v, w} ∈ E. w is said to cover v. The greedy dominating set
algorithm builds up a dominating set by placing the least numbered
vertex that covers the most vertices in the dominating set. This
procedure is repeated until all vertices are covered.
Reference: Stewart [342].
Hint: The reduction is from Ordered High Degree Vertex Removal,
Problem A.2.10.
Remarks: This greedy heuristic is used to find “small” dominating
sets. It is well known that the general version of the problem called
Dominating Set is NP -complete (Garey and Johnson [113]).

138 APPENDIX A. P -COMPLETE PROBLEMS

A.2.15 Nearest Neighbor Traveling Salesman
Heuristic (NNTSH)

Given: A finite set C = {C1, . . . , Cn} of cities, and a distance ma-
trix D with entries (dij) that are positive integers (1 ≤ i, j ≤ n), and
two distinguished vertices s and l.
Problem: Does the nearest neighbor tour starting at s visit l as the
last vertex before completing the tour at s? The nearest neighbor
tour is a greedy heuristic that always chooses the nearest unvisited
vertex as the next vertex on the tour.
Reference: Kindervater, Lenstra, and Shmoys [212].
Hint: Reduce NNTSH to NANDCVP, Problem A.1.5. Without
loss of generality, assume the gates are numbered in topological
order. Gate k with inputs i1 and i2, and outputs o1 and o2 is
replaced by the gadget described below. The gadget has vertices
A, i1, i′1, i2, i′2, o′1, o1, o2, o′2, and B. Let the triple (x, y, z)
mean the distance between x and y is d. The triples in the gad-
get are (A,B, 3k + 2), (A, i1, 3k), (A, i2, 3k + 1), (i1, i′1, 0), (i2, i′2, 0),
(i′1, o

′
1, 3k + 1), (i′2, o

′
1, 3k), (o′1, o1, 0), (o1, o2, 3k), (o2, o′2, 0), and

(o′2, B, 3k). Vertex B of gate k is connected to vertex A of gate
k+1. The distances between vertices that have been left unspecified
are assumed to be very large. The edges between “i” vertices and
those between “o” vertices represent inputs and outputs respectively.
An edge included (not included) in the tour represents a true (re-
spectively, false) value. true circuit inputs are “chained” together
and the tour begins at the first true input. By inserting a new
vertex C before vertex B in the last gadget, and connecting B and
C to the first true input in the input chain, the tour constructed
by the NNTSH is such that B (C) is visited last if and only if the
circuit evaluates to true (respectively, false).
Remarks: The nearest merger, nearest insertion, cheapest inser-
tion, and farthest insertion heuristics are all P -complete [212]. The
double minimum spanning tree and nearest addition heuristics are in
NC [212]. See also Problem A.5.9.

A.2.16 Lexicographically First Maximal Subgraph
for π (LFMS(π))

Given: An undirected graph G = (V, E) with an ordering on V ,
a designated vertex v, and a polynomial time testable, nontrivial,
hereditary property π. A property is nontrivial if there are infinitely

A.2. GRAPH THEORY 139

many graphs that satisfy the property and at least one graph that
does not. A property π is hereditary on induced subgraphs if when-
ever G satisfies π, so do all vertex induced subgraphs.
Problem: Is v in the lexicographically first maximal subgraph H
of G that satisfies π?
Reference: Miyano [263, 265].
Hint: Given a property π that is nontrivial and hereditary, Ram-
sey’s theorem implies that either π is satisfied by all cliques or by
all independent sets of vertices. This observation combined with
the facts that the Lexicographically First Maximal Clique, Problem
A.2.2, and the Lexicographically First Maximal Independent Set,
Problem A.2.1, are P -complete are used to show LFMS(π) is P -
complete.
Remarks: The following are examples of properties that meet
the criteria stated in the problem: bipartite, chordal, clique, com-
parability graph, edge graph, forest, independent set, outerpla-
nar, and planar. Not all problems involving a lexicographically
first solution are P -complete. For example, the Lexicographically
First Topological Order Problem is complete for NLOG (Shoudai
[331]) and the Lexicographic Low Degree Subgraph Membership
Problem is NP -complete (Greenlaw [134]). For additional remarks
relating to this problem see Chapter 7 and also Miyano [263,
266].

A.2.17 Minimum Feedback Vertex Set (MFVS)

Given: A directed graph G = (V,E) that is cyclically reducible
(defined below) and a designated vertex v.
Problem: Is v contained in the minimum feedback set of G that is
computed by the algorithm given by Wang, Lloyd, and Soffa [371]?
Reference: Bovet, De Agostino, and Petreschi [44].
Hint: We review some terminology from [371]. A vertex z of G is
deadlocked if there is a directed path in G from z to a vertex y that
lies on a directed cycle. The associated graph of vertex x with respect
to G, A(G, x), consists of vertex x and all vertices of G that are not
deadlocked if x is removed from G. A directed graph is cyclically
reducible if and only if there exists a sequence of vertices (y1, . . . , yk)
such that each of the graphs A(Gi−1, yi) is cyclic, where G0 = G and
Gi = Gi−1 −A(Gi, yi), for 1 ≤ i ≤ k.

A set is called a feedback vertex set if it contains at least one
vertex from every cycle (Karp [193]). It is minimum if no other

140 APPENDIX A. P -COMPLETE PROBLEMS

feedback vertex set has fewer elements. Wang, Lloyd, and Soffa gave
a polynomial time algorithm for computing feedback sets in cyclically
reducible graphs [371]. Thus, MFVS is in P . The reduction is from
Monotone Circuit Value, Problem A.1.3. Let (g1, . . . , gk) denote an
instance α of MCVP including inputs, where gk is the output gate.
From α a graph G is constructed as follows:

1. associate vertices g′i and g′′i with each gi,

2. for each input gi, if gi is true (false) add a loop edge to g′i
(respectively, g′′i),

3. for each and gate g with inputs i and j add edges (g′, i′′),
(i′′, j′′), (j′′, g′), (g′′, i′), (i′, g′′), (g′′, j′), and (j′, g′′) to G,

4. for each or gate g with inputs i and j add edges (g′′, i′), (i′, j′),
(j′, g′′), (g′, i′′), (i′′, g′), (g′, j′′), and (j′′, g′) to G,

5. add edges (g′k, g
′′
k) and (g′′k , g′k).

It is easy to see that G is cyclically reducible. Set v equal to g′k to
complete the reduction.
Remarks: The question of whether a general graph has a feedback
vertex set of size k is NP -complete (Karp [193]). Bovet, De Agostino,
and Petreschi give an algorithm for finding a minimum feedback set
in cyclically reducible graphs that requires O(k(log n)2) time and
O(n4) processors on a CREW-PRAM, where k denotes the size of
the minimum feedback set. Greenlaw proved that a related problem,
the Lexicographically First Maximal Acyclic Subgraph Problem, is P -
complete [136, 137]. Ramachandran proved that finding a minimum
weight feedback vertex set in a reducible flow graph with arbitrary
weights is P -complete [296, 297]. She also proved the following four
problems are NC equivalent: finding a minimum feedback arc set
in an unweighted reducible flow graph, finding a minimum weight
feedback arc set in a reducible flow graph with unary weights on
the arcs, finding a minimum weight feedback vertex set in a re-
ducible flow graph with unary weights on the vertices, and find-
ing a minimum cut in a flow network with unary capacities [296,
297].

A.2.18 Edge Maximal Acyclic Subgraph (EMAS)

Given: A directed graph G = (V, E) with an ordering on the edges
and a designated edge e.
Problem: Is e contained in the edge maximal acyclic subgraph?

A.2. GRAPH THEORY 141

Reference: Greenlaw [136].
Hint: The edge maximal acyclic subgraph is defined to be the sub-
graph computed by an algorithm that builds up the acyclic subgraph
by processing edges in order. It adds an edge to the subgraph if its in-
clusion does not introduce a cycle. The reduction is from NORCVP,
see Problem A.1.5. A gadget is designed that replaces each gate in
the circuit. A gadget for gate g with inputs i1 and i2, and outputs o1
and o2 has three vertices g(top), g(mid), and g(bot). The edges in
the gadget are (g(top),i1(mid)), (g(top),i2(mid)), (g(mid),i1(bot)),
(g(mid),i2(bot)), (g(bot),o2(top)), (g(top),g(mid)), (g(mid),g(bot)),
(g(bot),o1(top)), and (g(bot),g(top)). The first five edges are up-
warding pointing edges and are ordered first. The last four edges
are ordered within the gadget as listed. true input i to gate g is
represented by a vertex with an edge to g(top). false input i to
gate g is represented by two vertices forming a cycle with g(top).
The edges are ordered so that the edge leading into g(top) is not put
in the set the algorithm constructs. The edges of the output gate
are “grounded.” One of the edges leaving gout(bot) is used as the
designated edge e.
Remarks: The decision problem “Is the edge maximal subgraph of
size k?” is also P -complete [136]. The Feedback Arc Set Problem
(Karp [193]) is an equivalent formulation of the Maximum Acyclic
Subgraph Problem. Approximation algorithms for this problem are
important because there are very few classes of graphs for which the
problem is known to be in P (Berger and Shor [32]). These ver-
sions are both NP -complete (Garey and Johnson [113]). Greenlaw
proves decision problems based on several other natural approxima-
tion algorithms for this problem are P -complete [136, 137]. There are
other reasonable approximation algorithms that are in NC , see [136,
137]. Berger presented an NC approximation algorithm that, as-
suming the input graph does not contain two-cycles, generates a
subgraph containing more than half the arcs [31]. Ramachandran,
Ramachandran proved that finding a minimum weight feedback arc
set in a reducible flow graph with arbitrary weights on the arcs is
P -complete [296, 297]. Also see Problem A.2.17.

A.2.19 General Graph Closure (GGC)

Given: An undirected graph G = (V,E), a subset E′ ⊆ V ×V with
E′ ∩ E = Ø, and a designated edge e = (u, v) ∈ E′.
Problem: Is e in the general closure G(G,E′) of G? That is, the

142 APPENDIX A. P -COMPLETE PROBLEMS

graph obtained from G by repeatedly joining nonadjacent pairs of
vertices u and v whose degree sum is at least |V | and such that
(u, v) ∈ E′. The edges in E′ are called admissible edges.
Reference: Khuller [208].
Hint: An O(n3) algorithm solving the problem is given in [208].
The reduction is from Monotone Circuit Value, Problem A.1.3. The
idea is to replace gates in the circuit by gadgets. We will describe
only the gadgets for inputs and and gates. The gadgets for or gates
are similar. A true (false) value is associated with the output
vertex of a gadget if its degree has increased by the addition of an
admissible edge (respectively, remained the same). The gadget is
constructed so that values do not propagate back up through the
circuit. N will denote the total number of vertices contained in all
the gadgets. An additional N vertices are added and connected so as
to double the degrees of the vertices in the construction of the graph
containing gadgets. The total degree of the graph constructed is 2N .
A true input is represented by two vertices with an admissible edge
between them and the degree of each vertex is N . A false input is
represented similarly except on the output side the vertex has degree
N − 1. The gadget representing an and gate αk consists of thirteen
vertices. We describe the upper left part first. It consists of five
vertices. We will call the vertices 1, 2, 3, 4, and 5. Vertex 1 has
a connection from one of αk’s inputs. Vertices 1 and 5 have degree
N − 1 and vertices 2, 3, and 4 have degree N . The admissible edges
are (1, 2), (1, 3), (1, 4), (2, 5), (3, 5), and (4, 5). The upper right part
of the gadget is similar with vertices 6−10 playing the roles of 1−5.
Vertices 5 and 10 are connected to vertex 11 via admissible edges.
Vertex 11 has degree N − 2. Vertex 11 is connected to the outputs
of the gadget. These are vertices 12 and 13. They both are of degree
N . The gadgets are connected in the obvious manner. The circuit
evaluates to true if and only if the admissible edge (11, 13) of the
gadget corresponding to the output gate is added to G.
Remarks: The complexity of the General Graph Closure Problem
in which E′ = V × V − E is open, see Problem B.1.4.

A.2.20 Generating Random Matchings (GRM)

Given: A bipartite graph G = (V1, V2, E) with |V1| = |V2| = n
and a designated edge {u, v}. Let Mn(G) denote the set of perfect
matchings in G and Mn−1(G) denote the set of near perfect match-
ings, that is, matchings of size n − 1. Broder [46] and Jerrum and

A.2. GRAPH THEORY 143

Sinclair [173] give probabilistic algorithms for generating elements
in Mn(G) ∪ Mn−1(G). We call these algorithms Broder’s algorithm
and Jerrum and Sinclair’s algorithm.
Problem: (1) Is {u, v} in the matching generated by Broder’s al-
gorithm?
Problem: (2) Is {u, v} in the matching generated by Jerrum and
Sinclair’s algorithm?
Reference: Teng [352].
Hint: Both of these problems are P -complete [352]. The reductions
are from Lexicographically First Maximal Independent Set, Problem
A.2.1.
Remarks: These algorithms are important for approximating the
permanent. Also, see Problems B.9.7 and B.9.8 for some related
open problems.

A.2.21 Lexicographically First Maximal k-cycle Free
Edge Induced Subgraph (LFEdge)

Given: An undirected graph G = (V,E) with an ordering on the
edges in E and a designated edge e ∈ E.
Problem: Is e in the lexicographically first maximal k-cycle free
edge induced subgraph of G? The lexicographically first maximal
k-cycle free edge induced subgraph of G is the graph formed by pro-
cessing each edge in E in order and adding it to the subgraph being
built if it does not form a cycle of size k.
Reference: Miyano [264, 265].
Hint: The reductions (for different values of k) are from several
variants of Circuit Value, Problem A.1.1.
Remarks: Miyano proves the problem is P -complete for several dif-
ferent fixed values of k. For k = 3, 4, 5, 6, or greater than or equal to
7 and G of maximum degree 6, 4, 4, 3, or 3, respectively, the problem
is P -complete. For G a planar graph, and k = 4, 5, 6, or greater than
or equal to 7 and G of maximum degree 5, 4, 4, or 3, respectively, the
problem is P -complete. For G a general graph, and k = 3 or 4 and G
of maximum degree 4 or 3, respectively, the problem is in NC 2 [264,
265]. See Problems A.2.17 and A.2.18 for results with a similar fla-
vor. It is also interesting to contrast the results for the edge induced
subgraph problem with those for the vertex induced subgraph prob-
lem, see Problem A.2.16. Also see Problem B.1.8 for related open
questions. Lastly, note that for k = 1 this problem becomes Lexico-
graphically First Maximal Matching, Problem B.8.2; it is in CC .

144 APPENDIX A. P -COMPLETE PROBLEMS

A.3 Searching Graphs

A.3.1 Lexicographically First Maximal Path (LFMP)

Given: An undirected graph G = (V, E) with a numbering on the
vertices, and two designated vertices s and t.
Problem: Is vertex t on the lexicographically first maximal path in
G beginning at s? A maximal path is a path that cannot be extended
because any attempt at extending it will result in an encounter with
a vertex that is already on the path. The lexicographically first max-
imal path is the maximal path that would appear first in the “alpha-
betical” listing of all paths from s, where the alphabetizing is done
with respect to the vertex numbers.
Reference: Anderson and Mayr [16].
Hint: The reduction is from a version of CVP consisting of not and
or gates, see Problem A.1.1. The key idea is the construction of a
subgraph called a latch. A latch consists of six vertices connected in
a rectangular fashion. The latches are hooked together and labeled
in a clever manner. A latch that has been traversed (not traversed)
in the construction of the lexicographically first maximal path indi-
cates a true (respectively, false) value for the corresponding gate.
Vertex t is a special vertex in a latch corresponding to the output
gate.
Remarks: LFMP remains P -complete when restricted to planar
graphs with maximum degree three. If the maximum degree of any
vertex in G is at most ∆, there is an algorithm that can find a maxi-
mal path in O(∆(log n)3) time using n2 processors [16]. There is also
an NC algorithm for finding a maximal path in planar graphs [16].
The complexity of the general problem of finding a maximal path is
open [16], although Anderson shows it to be in RNC [13]. See Prob-
lem B.9.4.

A.3.2 Maximal Vertex Disjoint Paths (PATHS)

Given: An undirected graph G = (V, E), a subset U of V , an inte-
ger k, and a designated vertex v.
Problem: Is vertex v on the kth path found when constructing
paths greedily from vertices in U? The paths are formed by taking
lexicographically first paths from vertices in U . The set is maximal

A.3. SEARCHING GRAPHS 145

in the sense that no more paths joining vertices in U can be added.
Reference: Anderson [12].
Hint: The reduction is from a restricted version of CVP [12]. The
result holds for layered directed acyclic graphs, and thus, the com-
plexity of the problem is not due to the construction of the lexico-
graphically first paths, see Problem A.3.1.
Remarks: The construction of maximal sets of vertex disjoint paths
is important for developing fast, parallel, randomized algorithms for
depth-first search (Aggarwal and Anderson [5], Aggarwal, Anderson,
and Kao [6]). See Problems B.9.2 and B.9.5.

A.3.3 Lexicographically First Depth-first Search
Ordering (LFDFS)

Given: An undirected graph G = (V, E) with fixed ordered adja-
cency lists, and two designated vertices u and v.
Problem: Is vertex u visited before vertex v in the depth-first search
of G induced by the order of the adjacency lists?
Reference: Reif [300].
Hint: Follows easily from Problem A.3.1, since the leftmost path in
the lexicographically first depth-first search tree is the lexicographi-
cally first maximal path (Anderson [12]). Reif gives a direct reduc-
tion from NORCVP, see Problem A.1.5, to LFDFS, taking advantage
of the fixed order by which the adjacency lists are examined [300].
We present the directed case from which the undirected case is easily
derived. Without loss of generality, assume gates are numbered in
topological order. The gadget described below replaces nor gate i
having inputs i1 and i2, and outputs to gates j1 and j2. The gadget
has eight vertices enter(i), in(i, i1), in(i, i2), s(i), out(i, 1), out(i, 2),
t(i), and exit(i). Let the triple (x, y, z) denote a directed edge (x, y)
with y appearing zth on x’s adjacency list. The gadget has triples

• (enter(i), in(i, i1), 1), (in(i, i1), in(i, i2), 2), (in(i, i2), s(i), 2),

• (s(i), out(i, 1), 1), (out(i, 1), s(i), 1), (out(i, 1), in(j1, i), 2),

• (out(i, 2), out(i, 1), 1), (out(i, 2), in(j2, i), 2), (t(i), out(i, 2), 1),

• (enter(i), t(i), 2), (t(i), exit(i), 2), (s(i), exit(i), 2), and

• (exit(i), enter(i + 1), 1).

Additionally, (in(j1, i), out(i, 2), 1) and (in(j2, i), t(i), 1) are triples
connected to the gadget. true inputs are “chained” together. The

146 APPENDIX A. P -COMPLETE PROBLEMS

lexicographic first DFS of the graph constructed visits vertex s(n),
where n corresponds to the output gate, before (after) t(n) if and
only if the circuit evaluates to true (respectively, false).
Remarks: The directed case can be reduced to the undirected case
easily. The reduction is dependent on the adjacency lists fixing the
order in which the adjacent vertices are examined. The problem re-
mains open if this constraint is relaxed. For example, the problem re-
mains open for graphs presented with all adjacency lists sorted in or-
der of increasing vertex number. The problem remains P -complete if
the input graph is given with a fixed vertex numbering and the search
order is based on this numbering rather than the fixed ordered adja-
cency lists ([12], Greenlaw [133]). Anderson showed that computing
just the first branch of the lexicographically first DFS tree, called the
lexicographically first maximal path, is P -complete [12], see Problem
A.3.1. Computing the LFDFS tree in planar graphs is P -complete as
well [12]. However, Planar Directed Depth-first Search is in NC (Kao
[186]). The depth-first search tree constructed in [186] is not the lex-
icographically first. Hagerup shows that a depth-first search tree can
be constructed in a planar graph on a PRIORITY CRCW-PRAM
using O(log n) time and n3 processors [145]. In RNC , it is possible to
find some depth-first vertex numbering and the depth-first spanning
tree corresponding to it; see Problem B.9.2. Computing a depth-first
vertex numbering for planar graphs is in NC (He and Yesha [152],
Smith [334]). Computing the lexicographically first depth-first num-
bering for directed acyclic graphs is in NC (de la Torre and Kruskal
[85, 86], Greenlaw [135], Zhang [379]). Determining whether a di-
rected spanning tree of a general graph has a valid DFS numbering is
in NC (Schevon and Vitter [325]). Vitter and Simons give a

√
n time

parallel algorithm for the non-sparse version of the problem [366].
Computing a LFDFS in a tree structured or outerplanar graph is in
NC (Chlebus et al. [55]).

A.3.4 Breadth-depth Search (BDS)

Given: An undirected graph G = (V, E) with a numbering on the
vertices, and two designated vertices u and v.
Problem: Is vertex u visited before vertex v in the breadth-depth
first search of G induced by the vertex numbering? A breadth-depth
first search (Horowitz and Sahni [163]) starts at a vertex s and visits
all children of s pushing them on a stack as the search proceeds.

A.3. SEARCHING GRAPHS 147

After all of s’s children have been visited, the search continues with
the vertex on the top of the stack playing the role of s.
Reference: Greenlaw [139].
Hint: The proof sketched below is from (Richard J. Anderson, Per-
sonal Communication, 1988). Reduce LFDFS, Problem A.3.3, to
BDS. Insert a new vertex between every pair of connected vertices
in the original graph. Suppose in the original graph corresponding
to the circuit that vertex ui has neighbors v1, . . . , vk and that these
vertices are listed in the order they would be selected in from ui.
Let c1, . . . , ck be the vertices inserted by the reduction between (ui
and v1), . . ., (ui and vk), respectively. The ci’s are assigned numbers
so that in increasing order they are listed as ck, . . . , c1. The ver-
tex numbers assigned to these vertices are specified to “reverse” the
breadth-depth search in the new levels. In this way the depth-first
search order of the original graph can be maintained. Vertex u is
visited before vertex v in an instance of LFDFS if and only if the
vertex corresponding to u is visited before the vertex corresponding
to v in the constructed instance of BDS.
Remarks: A reduction from NORCVP is presented in [133] for
both undirected and directed graphs. Several other reductions for
the problem are described in detail in [139].

A.3.5 Stack Breadth-first Search (SBFS)

Given: An undirected graph G = (V, E) with a numbering on the
vertices, and two designated vertices u and v.
Problem: Is vertex u visited before vertex v in the stack breadth-
first search of G induced by the vertex numbering? A stack breadth-
first search is a breadth-first search that is implemented using a
stack. The vertices most recently visited on a new level are searched
from first at the next level.
Reference: Greenlaw [133, 135].
Hint: The reduction is from SAM2CVP, Problem A.1.6, to SBFS.
Sort the input vertices and assign false inputs lower numbers than
true inputs. In increasing order let f1, . . . , fk, t1, . . . , tm denote the
ordering induced by this numbering. A new vertex e1 is introduced
and given a number between fk and t1. For each gate a vertex is
introduced and its connections in the circuit are maintained in the
graph being constructed. A start vertex s is added and connected
to all inputs. Additionally, a new chain of vertices starting from s is
added. The vertices in this chain are s, e1, e2, . . . , ed, where d denotes

148 APPENDIX A. P -COMPLETE PROBLEMS

the depth of the circuit. The search order specified by stack breadth-
first search is such that vertex el for l odd (even) corresponding to an
or (respectively, and) level in the instance of SAM2CVP is visited
before vertex v if and only if the gate corresponding to vertex v
evaluates to false (respectively, true) in the circuit.
Remarks: The Lexicographic Breadth-first Search Problem, which
has a natural implementation on a queue, is defined as follows: given
a graph G with fixed ordered adjacency lists, is vertex u visited before
vertex v in the breadth-first search of G induced by the order of the
adjacency lists? This problem is in NC (de la Torre and Kruskal [85,
86], Greenlaw [133]).

A.3.6 Alternating Breadth-first Search (ABFS)

Given: An undirected graph G = (V, E) with E partitioned into
two sets M and U , a designated vertex v, and a designated start
vertex s.
Problem: Does vertex v get visited along an edge from the set
M during an alternating breadth-first search of G? An alternating
breadth-first search, which has applications in some matching algo-
rithms, is a breadth-first search in which only edges in the set U
(M) can be followed in going from even (respectively, odd) to odd
(respectively, even) levels.
Reference: Anderson [12], Greenlaw, Hoover, and Ruzzo, This
Work.
Hint: Anderson’s proof was from a version of CVP composed of
or and not gates (Richard J. Anderson, Personal Communication,
1988). The new reduction we present is from NANDCVP, Problem
A.1.5. Let t1, . . . , tk denote true inputs, f1, . . . , fl denote false in-
puts, and g1, . . . , gm denote nand gates. A new vertex s is created
from where the search will originate. For each ti, 1 ≤ i ≤ k, two
new vertices t′i and t′′i are introduced; for each fi, 1 ≤ i ≤ l, a new
vertex f ′i is introduced; and for each gi, 1 ≤ i ≤ m, a vertex vi is
introduced. f ′i is connected to s by an edge in U and to vj , where j
is such that f ′i was input to gate gj , by an edge in M . t′′i is connected
to s by an edge in U , t′′i is connected to t′i by an edge in M , and t′i is
connected to vj , where j is such that t′i was input to gate gj . If gate
gi has outputs to gates gj and gh, then (vi, vj) and (vi, vh) are edges
in M . For each of these gates receiving inputs from gi there are two
additional vertices. For gj they are called vij and v′ij . (vi, vij) is
an edge in U , (vij , v′ij) is in M , and (v′ij , vj) is in U . For gate gh

A.3. SEARCHING GRAPHS 149

similar vertices and edges are added. The circuit evaluates to true
(false) if and only if the vertex corresponding to the output gate of
the circuit is visited along an edge in M (respectively, U).
Remarks: The matching constructed by the search is not neces-
sarily maximal. The problem of finding a maximum matching is in
RNC (Mulmuley, Vazirani, and Vazirani [271]). The problem of find-
ing a perfect matching is also in RNC (Karp, Upfal, and Wigderson
[196], [271]). See Problems B.9.7 and B.9.8.

150 APPENDIX A. P -COMPLETE PROBLEMS

A.4 Combinatorial Optimization

A.4.1 Linear Inequalities (LI)

Given: An integer n× d matrix A and an integer n× 1 vector b.
Problem: Is there a rational d× 1 vector x > 0 such that Ax ≤ b?
(It is not required to find such a x.) By x > 0 we mean all compo-
nents of x are nonnegative and at least one is nonzero.
Reference: (Stephen A. Cook, Personal Communication, 1982),
Khachian [207], Valiant [357].
Hint: LI is in P by [207]. Also see Karmarkar [192]. The following
reduction of CVP to LI is from (Stephen A. Cook, Personal Com-
munication, 1982).

1. If input xi is true (false) it is represented by the equation
xi = 1 (respectively, xi = 0).

2. A not gate with input u and output w, computing w ← ¬u is
represented by the inequalities w = 1− u and 0 ≤ w ≤ 1.

3. An and gate with inputs u and v computing w ← u ∧ v is
represented by the inequalities 0 ≤ w ≤ 1, w ≤ u, w ≤ v, and
u + v − 1 ≤ w.

4. An or gate is represented by the inequalities 0 ≤ w ≤ 1, u ≤ w,
v ≤ w, and w ≤ u + v.

Note, for any gate if the inputs are 0 or 1, the output will be 0 or
1. To determine the output z of the circuit, add the inequalities
required to force z = 1. If the system has a solution, the output is
true; otherwise, the output is false.
Remarks: Remains P -complete if entries in A and b are restricted
to {0, 1}. See also remarks for Problems A.4.2 and A.4.3.

A.4.2 Linear Equalities (LE)

Given: An integer n× d matrix A and an integer n× 1 vector b.
Problem: Is there a rational d× 1 vector x > 0 such that Ax = b?
By x > 0 we mean all components of x are nonnegative and at least
one is nonzero.
Reference: (Stephen A. Cook, Personal Communication, 1982),
Khachian [207], Valiant [357].
Hint: LE is NC1 reducible to LI since Ax ≤ b and −Ax ≤ −b if and

A.4. COMBINATORIAL OPTIMIZATION 151

only if Ax = b. Thus, LE is in P . For completeness an instance of
LI can be reduced to LE as follows. For each inequality in LI there
is a corresponding equality in LE with an additional “slack” variable
that is used to make the inequality into an equality.
Remarks: If LE is restricted so the coefficients of A and b are either
−1, 0, or 1, LE is still P -complete. This follows from the reduction
given by Itai [171]. The restricted version of LE is denoted [−1,1]
LE and is used in proving that Homologous Flow, Problem A.4.5,
is P -complete. Cucker and Torrecillas proved that the problem of
deciding whether a system of equations of degree d, for d greater
than or equal to two, is solvable by substitution is P -complete [73].

A.4.3 Linear Programming (*) (LP)

Given: An integer n × d matrix A, an integer n × 1 vector b, and
an integer 1× d vector c.
Problem: Find a rational d × 1 vector x such that Ax ≤ b and cx
is maximized.
Reference: Dobkin, Lipton, and Reiss [93], Dobkin and Reiss [94],
Khachian [207], Valiant [357].
Hint: Note that the problem is stated as a computation problem.
LP is technically not in P , but is in FP by [207]. Also see Karmarkar
[192]. Reduce LI to LP by picking any cost vector c, say c = ~0, and
checking whether the resulting linear program is feasible.
Remarks: The original reduction in [93] is from HORN, Problem
A.6.2, to LP. In [94], LP and LI are shown to be logarithmic space
equivalent by reducing LP to LI using rational binary search (Pa-
padimitriou [277], Reiss [304]) to find the value of the maximum and
a x that yields it. However, it is not clear how to perform this re-
duction in NC1. Since LP and LI are complete via NC1 reductions
though, there must be an NC1 reduction between the two prob-
lems. Although we know that LP and LI are NC1 equivalent, the
NC1 reduction between them is not an obvious one. Serna shows
it is P -complete to approximate a solution approximation, which re-
quires finding a x′ close to the optimal solution, and to approximate
a value approximation, which requires finding a x′ such that cx′ is
close to cx [327]. Megiddo gives a reduction of LP to Serna’s approx-
imate problem [257]. It is also P -hard to approximate cx to within
any constant fraction, even given a feasible solution x′ (Anne Con-
don, Personal Communication, 1991); reduction is from Discounted
Markov Decision Process, Problem A.8.2. See Lin-Kriz and Pan [237]

152 APPENDIX A. P -COMPLETE PROBLEMS

for some results on two variable linear programming. Dahlhaus ob-
serves that for d equal to 3 and values over the reals the problem
is P -complete, whereas for d equal to 2, the problem is in NC [75].
The reader is referred to [75] for additional details.

A.4.4 Maximum Flow (MaxFlow)

Given: A directed graph G = (V, E) with each edge e labeled by an
integer capacity c(e) ≥ 0, two distinguished vertices, source s and
sink t, and a value f .
Problem: Is there a feasible flow of value f , that is, is the value of
the maximum flow into the sink greater than or equal to f?
Reference: Goldschlager, Shaw, and Staples [128], Lengauer and
Wagner [231].
Hint: The first P -completeness proof for a decision problem derived
from Maximum Flow was for the problem of determining whether the
flow is odd or even [128]. We give this reduction. (The proof given
in [231] for the more natural threshold problem stated above is sim-
ilar.) The reduction is from AM2CVP, Problem A.1.4, to MaxFlow.
Gates vi and connections eij of α are associated with vertices v′i and
edges e′ij of G. G has additional vertices s and t, and an overflow
edge for each v′i. Each edge eij of α has a capacity and a flow as-
sociated with it. This capacity is 2i, and the flow is 2i if gate vi
is true and 0 otherwise. A vertex v′i with inputs v′j and v′k has a
maximum possible inflow of 2j + 2k, and outflow to other gates of
d2i (d is the outdegree of vi). The remaining flow is absorbed by the
overflow edge from v′i with capacity 2j +2k−d2i. This overflow edge
is directed toward t in case vi is an and gate and toward s in case
vi is an or gate. Thus, the vertices must be topologically ordered
with the output first and the inputs last, and the output gate must
be an or gate. Note that all edge capacities are even except the one
from v0 to t. Therefore, the maximum flow for G is odd if and only
if α outputs true.
Remarks: See Dinic [92] or Ford and Fulkerson [108] for basic def-
initions and polynomial time algorithms. This reduction produces
exponential edge capacities in G. In a network with edge capaci-
ties expressed in unary, computing the magnitude of the maximum
flow is in RNC 2 (Feather [103]) and a method for finding the flow
in RNC is also known (Karp, Upfal, and Wigderson [196]). If the
network is restricted to being acyclic, MaxFlow remains P -complete
(Ramachandran [295]). Flows in planar networks can be computed

A.4. COMBINATORIAL OPTIMIZATION 153

in NC (Johnson [174], Johnson and Venkatesan [175]). Two Com-
modity Flow (2CF) is defined similar to MaxFlow except there are
two sources and two sinks, and there are two separate flow functions
for the commodities. Since MaxFlow is a special case of 2CF and
2CF is in P by results of Itai [171] and Khachian [207], it follows
that 2CF is P -complete. Itai defined several other variants of 2CF
that are also P -complete. They are defined below. (l, u)-2CF is a
restricted form of 2CF in which there are lower and upper bounds on
the capacity of each edge. Selective (l, u)-2CF is defined to be a 2CF
with lower and upper bounds on the sum of the two flows on each
edge. Stein and Wein show that, although there is an RNC algo-
rithm to approximate maximum flow, approximating the minimum
cost maximum flow is P -complete [339].

A.4.5 Homologous Flow (HF)

Given: A directed graph G = (V,E) with each edge (v, w) labeled
by a lower and upper bound on flow capacity l(v, w), u(v, w) ≥ 0 and
two distinguished vertices, source s and sink t.
Problem: Is there a feasible flow in the network? A feasible flow
is one in which the flow assigned to each arc falls within the lower
and upper bounds for the arc. A homologous flow is a flow in which
pairs of edges are required to have the same flow.
Reference: Itai [171].
Hint: It follows that HF is in P by the results of [171] and
Khachian [207]. We describe the reduction given in [171] and note
that it is a logarithmic space reduction. The reduction is from
[−1,1] LE, see remarks for Problem A.4.2. Let

∑m
j=1 aijxj = bi,

for i = 1, . . . , n be an instance of [−1,1] LE. For σ ∈ {−1, 0, 1},
let J i

σ = {j | aij = σ}. Another formulation of the original equa-
tions is

∑

j∈Ji
1

xj −
∑

j∈Ji
−1

xj = bi, for i = 1, . . . , n. There are
n sections in the flow network constructed and each one has m + 5
vertices {vi

1, . . . , v
i
m, yi, zi, J i

−1, J
i
0, J

i
1}. For σ = −1, 0, 1, if j ∈ J i

0,
then add (vi

j , J
i
σ) as a nonrestricted edge, one with lower bound 0

and upper bound ∞, to the network. Add (J i
1, z

i) with lower and
upper capacities equal to bi. (J i

1, y
i) and (J i

−1, y
i) are homologous

nonrestricted edges. (J i
1, z

i) and (J i
1, y

i) are nonrestricted edges. An
additional vertex z0 is added as a source and zn is the sink. For
each j, (z0, v1

j), (z
1, v2

j), . . . , (z
n−1, vn

j) are pairwise nonrestricted ho-
mologous edges. Let f denote the flow. Given a solution x to the

154 APPENDIX A. P -COMPLETE PROBLEMS

equations, a feasible flow is xj = f(z0, v1
j) = · · · = f(zn−1, vn−1

j) and
given a feasible flow, it is easy to construct solution x.

A.4.6 Lexicographically First Blocking Flow (LFBF)

Given: A directed acyclic graph G = (V, E) represented by fixed or-
dered adjacency lists with each edge e labeled by a capacity c(e) ≥ 0,
and two distinguished vertices, source s and sink t.
Problem: Is the value of the lexicographically first blocking flow
odd? A blocking flow is a flow in which every path from s to t
has a saturated edge — an edge whose flow is equal to its capacity.
The lexicographically first blocking flow is the flow resulting from the
standard sequential depth-first search blocking flow algorithm.
Reference: Anderson and Mayr [15].
Hint: The reduction given in Maximum Flow, Problem A.4.4, can
be easily modified to show this problem is P -complete.
Remarks: The problem of finding the lexicographically first block-
ing flow in a three layered network is also P -complete. A three layered
network is one in which all source to sink paths have length three.
Cheriyan and Maheshwari also give an RNC algorithm for finding a
blocking flow in a three layered network [54], also see Problem B.9.1.
Goldberg and Tarjan give a parallel algorithm for finding a blocking
flow in an acyclic network [120]. Their algorithm runs in parallel
time O(n log n) and uses m processors on an EREW-PRAM, where
the network has n vertices and m edges.

A.4.7 First Fit Decreasing Bin Packing (FFDBP)

Given: A list of n items v1, . . . , vn, where each vi is rational number
between 0 and 1, and two distinguished indices i and b.
Problem: Is the ith item packed into the bth bin by the first fit
decreasing bin packing heuristic?
Reference: Anderson, Mayr, and Warmuth [17].
Hint: Reduce AM2CVP, Problem A.1.4, to FFDBP. Without
loss of generality, we can assume the gates β1, . . . , βn are num-
bered in topological order. The reduction transforms the sequence
β1, . . . , βn into a list of items and bins. Let δi = 1 − i/(n + 1) and
ε = 1/(5(n + 1)), and Ti (Fi) denote any item of size δi (respec-
tively, δi − 2ε). We describe how to construct the list of items and
bins. For and gate βi with outputs to gates βj and βk construct
bins of size δi, 2δi − 4ε, δi + δj − 3ε, and δi + δk − 4ε; and items of

A.4. COMBINATORIAL OPTIMIZATION 155

size δi, δi, δi − 2ε, δi − 2ε, δi − 3ε, and δi − 4ε. For an or gate βi
with outputs to gates βj and βk construct bins of size 2δi − 4ε, δi,
δi +δj−3ε, and δi + δk−4ε; and the same items as for the and gate.
The output gate βn is treated specially and has bins of size δn and
δn, and items of size δn, δn, δn− 2ε, and δn− 2ε. For gates receiving
a constant circuit input, a Ti (Fi) is removed if the gate receives a
false (respectively, true) input. The lists of bins are concatenated
in the order of their corresponding gate numbers and similarly for
the items. To get unit size bins let u1, . . . , uq be the non-increasing
list of item sizes and let b1, . . . , br be the list of variable bin sizes
as constructed above. Let B = max {bi} and C = (2r + 1)B. For
1 ≤ i ≤ 2r, set vi = C − iB − b, if i ≤ r and C − ib, otherwise.
Packing these 2r items into r bins of size C has the affect of leaving
bi space in the ith bin. By concatenating the “u” and “v” item lists
and normalizing the bin sizes, a first fit decreasing bin packing of
the items will place the item corresponding to the second Tn in βn’s
list into the last bin if and only if the circuit evaluates to true.
Remarks: The problem remains P -complete even if unary repre-
sentations are used for the numbers involved. This is one of the first
such problem where large numbers do not appear to be required
for P -completeness (in contrast see MaxFlow, Problem A.4.4). The
problem of determining if I is the packing produced by the best fit
decreasing algorithm is also P -complete [17]. In [17] there is an NC
algorithm that produces a packing within 11/9 of optimal. This is
the same performance as for first fit decreasing. Mayr also describes
NC approximation algorithms for bin packing [254].

A.4.8 General List Scheduling (GLS)

Given: An ordered list of n jobs {J1, . . . , Jn}, a positive integer
execution time T (Ji) for each job, and a non-preemptive schedule L.
The jobs are to be scheduled on two identical processors.
Problem: Is the final offset produced by the list scheduling algo-
rithm nonzero? The final offset is the difference in the total execu-
tion time of the two processors.
Reference: Helmbold and Mayr [154].
Hint: Reduce NORCVP, see Problem A.1.5, to GLS. Without
loss of generality, assume the gates in the instance of NORCVP are
numbered in reverse topological order. The input wires to gate i are
numbered 42i and 42i+1. The output wire of gate one, the overall
circuit output, is labeled four. Let Vi be the sum of the labels on the

156 APPENDIX A. P -COMPLETE PROBLEMS

output wires of gate i. For gate i, seventeen jobs are introduced with
the following execution times — one job at 2 ∗ 42i+1, fourteen jobs
at 42i/2, and two jobs at (42i + Vi)/2. The initial job has execution
time equal to the sum of the labels of all true input wires. The
remaining jobs are listed in descending order of gate number. The
final offset will be four (zero) if and only if the output gate i is true
(respectively, false).
Remarks: The problem is in NC if the job times are small, that is
nO(1). NC algorithms for scheduling problems with either intree or
outtree precedence constraints are known (Helmbold and Mayr [153,
154]). Also see Problem A.4.9 for additional scheduling results.
See Mayr [254] for NC approximation algorithms. Sunder and He
show that List Scheduling is P -complete [349]. The differences be-
tween List Scheduling and GLS are that all jobs have unit time and
the number of processors is an input to the problem. That is, it is
not fixed at two as in GLS. Sunder and He prove their result via a
reduction from Height-priority Schedule, Problem A.4.9. They also
show that List Scheduling is in NC if the precedence constraints are
an interval order. An interval order is a partial order G = (V,E),
where V is a set of intervals on the real line and ([l1, r1], [l2, r2]) ∈ E
if and only if r1 is less than l2. Their algorithm runs in O((log n)2)
time using n5 processors on a PRIORITY CRCW-PRAM. Another
version of the algorithm runs in O((log n)3) time using n4 processors
on the same model [349].

A.4.9 Height-priority Schedule (HPS)

Given: A directed, outforest G = (V, E) specifying the precedence
constraints among the |V | unit time tasks that are represented by
the vertices of G, a nondecreasing profile µ, a designated task j, and
a time slot t. To define terms we follow the discussion given in [95].
A graph is an outforest if every task has at most one incoming edge.
The profile µ is a function from N to N − {0}, where µ(i) denotes
the number of machines available at the ith time slot, that is, the
interval [i, i + 1). If a profile has only one value, m, then it is called
straight. A schedule s for a graph G and a profile µ is a function
from vertices of G onto an initial segment {0, . . . , l − 1} of N, such
that

1. |s−1(r)| ≤ µ(r), for all r in {0, . . . , l − 1} and

2. if y is a successor of x in G, then s(x) is less than s(y).

A.4. COMBINATORIAL OPTIMIZATION 157

l denotes the length of the schedule. A minimum length schedule is
called optimal. A schedule is greedy if the maximum number of tasks
is scheduled at every slot, that is, |s−1(k)| < µ(k) implies that every
y such that s(y) is greater than k is a successor of some vertex s in
s−1(k).

A priority q is a function from the set of tasks into N. A schedule
s is a q-priority schedule if vertices of higher priority are preferred
over vertices of lower priority. Among the vertices of the same pri-
ority ties are broken arbitrarily. A q-priority schedule also has the
property that s(x) greater than s(y) and q(x) greater than q(y) imply
that x is a successor of some vertex z with s(z) equal to s(y). Height
is typically used as a priority function. Vertices without successors
have a height of zero.

A profile is called nondecreasing if µ(k) ≤ µ(k + 1) for every slot
k.
Problem: Is task j scheduled in time slot t by the height-priority
schedule?
Reference: Dolev, Upfal, and Warmuth [95].
Hint: The reduction is from a variant of Topologically Ordered Cir-
cuit Value, Problem A.1.2.
Remarks: Dolev, Upfal, and Warmuth show several other prob-
lems are P -complete. We mention a few of them here. Consult [95]
for terms that are not defined here. Height-priority schedule for an
opposing forest and a straight line profile, height-priority schedule
for a level order and straight line profile, weight-priority (using only
three different weights) schedule for an outforest and a straight pro-
file, greedy schedule, and the lexicographically first schedule for an
outforest and a straight line profile are all P -complete [95]. When
the number of machines m is fixed and does not vary with time, and
when the precedence constraints are given by a collection of outtrees;
Dolev, Upfal, and Warmuth give EREW-PRAM algorithms for com-
puting optimal schedules. In the former case the algorithm runs in
O(log n) time using n2 processors and in the latter case the algo-
rithm runs in O((log n)2) time using n processors. Also see Problem
A.4.8 for additional scheduling results.

158 APPENDIX A. P -COMPLETE PROBLEMS

A.5 Local Optimality

A.5.1 MAXFLIP Verification (MAXFLIPV)

Given: An encoding α of a Boolean circuit α constructed of and,
or, and not gates, plus inputs x = x1, . . . , xn. The circuit’s m out-
put values y = y1, . . . , ym.
Problem: Is the circuit’s output a local maximum among the neigh-
bors of x when y is viewed as a binary number? The neighbors of
x are Boolean vectors of length n whose Hamming distance differs
from x by one. That is, they can be obtained from x by flipping one
bit.
Reference: Johnson, Papadimitriou, and Yannakakis [178].
Hint: The problem is easily seen to be in P . The reduction is from
Monotone Circuit Value, Problem A.1.3. Let α denote an instance of
MCVP with input x1, . . . , xn. Construct an instance of MAXFLIP
as follows. The new circuit is the same as α except for a modification
to the input. Add a “latch” input that is and’ed with each of α’s
inputs before they are fed into later gates of α. Set the latch input
to value 0. The output of the circuit constructed will be 0. The
input x1, . . . , xn, 0 will be locally optimal if and only if the output is
0 when the latch input is 1. This is true if and only if the output of
α on its input is 0.
Remarks: The complementary problem, called the FLIP Ver-
ification Problem, in which the output is minimized, is also P -
complete [178]. The general problems MAXFLIP and FLIP are
PLS -complete [178]. PLS stands for polynomially local search. The
class is defined in Section D.1. We note for most problems that are
PLS -complete the problem of verifying local optimality turned out
to be P -complete. However, Krentel shows that this is not always
the case [222].

A.5.2 Local Optimality Kernighan-Lin Verification
(LOKLV)

Given: An undirected graph G = (V,E) with unit weights on the
edges, and a partition of V into two equal size subsets A and B.
Problem: Is the cost of the partition, c(A,B), a local optimum
among the neighbors of the partition? The cost of the partition is

A.5. LOCAL OPTIMALITY 159

defined to be the sum of the costs of all edges going between the
sets A and B. We follow the presentation given by Johnson, Pa-
padimitriou, and Yannakakis to define the neighbors [178]. A swap
of partition (A,B) is a partition (C, D) such that (C, D) is obtained
from (A,B) by swapping one element of A with an element of B.
The swap (C, D) is a greedy swap if c(C, D)− c(A, B) is minimized
over all swaps of (A,B). If (C,D) is the lexicographically smallest
over all greedy swaps, then (C,D) is said to be the lexicographically
greedy swap of (A,B). A sequence of partitions (Ai, Bi), each ob-
tained by a swap from the preceding partition, is monotonic if the
differences Ai − A0 and Bi − B0 are monotonically increasing. A
partition (C,D) is a neighbor of (A,B) if it occurs in the unique
maximal monotonic sequence of lexicographic greedy swaps starting
with (A,B).
Reference: Johnson, Papadimitriou, and Yannakakis [178], Savage
and Wloka [319, 320].
Hint: Since the weights are one, the range of solution values is poly-
nomial and the problem is in P . The reduction presented in [320] is
from a variant of Monotone Circuit Value, Problem A.1.3.
Remarks: The reduction in [178] showed that the problem was P -
complete if the edge weights were encoded in unary. A problem called
Weak Local Optimum for Kernighan-Lin Verification in which the
neighborhoods are larger is also P -complete [178]. The general ver-
sions of these problems, Local Optimality Kernighan-Lin and Weak
Local Optimality Kernighan-Lin, in which the weights are encoded
in binary are both PLS -complete [178]. Schäffer and Yannakakis
deduce that a complete local search using Kernighan-Lin on graphs
with unit weights is P -complete [324]. Since the result in Problem
A.5.2 is for a single neighborhood, the result in [320] implies the one
in [324].

A.5.3 Unweighted, Not-all-equal Clauses, 3SAT
FLIP (*) (UNAE3SAT)

Given: A Boolean formula F in CNF with three positive literals
per clause.
Problem: Find a locally optimal assignment for F . An assignment
is locally optimal if it has maximum cost among its neighbors. The
cost of the assignment is the number of not-all-equals clauses that
are satisfied by the assignment; each clause has a weight of one. A

160 APPENDIX A. P -COMPLETE PROBLEMS

truth assignment satisfies a clause C under the not-all-equals crite-
rion if it is such that C has at least one true and one false literal.
The neighbors of an assignment s are assignments that can be ob-
tained from s by flipping the value of one variable.
Reference: Papadimitriou, Schäffer, and Yannakakis [278], Schäffer
and Yannakakis [324].
Hint: The problem is stated as a search problem and so is techni-
cally FP -complete. The reduction is from NORCVP, see Problem
A.1.5.
Remarks: The weighted version of the problem in which each clause
is given an integer weight coded in binary is PLS -complete [278,
324]. If the weights are encoded in unary, the problem is FP -
complete.

A.5.4 Unweighted Maximum Cut SWAP (*) (UMCS)

Given: An undirected graph G = (V,E).
Problem: Find a locally optimal subset of vertices. A subset is
locally optimal if it has maximum cost among its neighbors. The
cost is the sum of the number of edges leaving vertices in the subset;
each edge has a weight of one. A neighbor of a subset S is a set of
size |S| whose symmetric difference with S contains one vertex.
Reference: Papadimitriou, Schäffer, and Yannakakis [278], Schäffer
and Yannakakis [324].
Hint: The problem is stated as a search problem and so is tech-
nically FP -complete. The reduction is from UNAE3SAT, Problem
A.5.3.
Remarks: The weighted version of the problem in which each edge
is given an integer weight encoded in binary is PLS -complete [278,
324]. If the edge weights are encoded in unary, the problem is FP -
complete. The Different than Majority Labeling Problem is equiva-
lent to this problem [324]. A different than majority labeling of an
undirected graph G = (V, E) is a labeling of the vertices with either
0 or 1 such that each vertex is labeled differently than at least half
of its neighbors. Luby describes an NC algorithm for a related prob-
lem [247]. Sarnath and He show that a lexicographic version of the
problem is P -complete [316], see Problem A.5.8.

A.5. LOCAL OPTIMALITY 161

A.5.5 Unweighted Two Satisfiability FLIP (*)
(U2SATFLIP)

Given: A Boolean formula F in CNF with two literals per clause.
Problem: Find a locally optimal assignment for F . An assignment
is locally optimal if it has maximum cost among its neighbors. The
cost of the assignment is the number of clauses that are satisfied
by the assignment; each clause has a weight of one. The neighbors
of an assignment s are assignments that can be obtained from s by
flipping the value of one variable.
Reference: Papadimitriou, Schäffer, and Yannakakis [278], Schäffer
and Yannakakis [324].
Hint: The problem is stated as a search problem and so is techni-
cally FP -complete. The reduction is from UMCS, Problem A.5.4.
Remarks: The weighted version of the problem in which each edge
is given an integer weight encoded in binary is PLS -complete [278,
324]. If the edge weights are encoded in unary, the problem is FP -
complete.

A.5.6 Unweighted Graph Partitioning SWAP (*)
(UGPS)

Given: An undirected graph G = (V,E) with 2n vertices.
Problem: Find a locally optimal partition of V into two equal size
sets. The partition V1 and V2 is locally optimal if the number of
edges going between V1 and V2 a minimum among all neighbors of
the partition. A neighbor is a partition that can be obtained from
V1 and V2 by swapping one element of V1 with one element of V2.
Reference: Papadimitriou, Schäffer, and Yannakakis [278], Savage
and Wloka [319, 320], Schäffer and Yannakakis [324].
Hint: The problem is stated as a search problem and so is techni-
cally FP -complete. This problem is equivalent to UMCS, Problem
A.5.4 [324]. The reduction in [320] is from a variant of Monotone
Circuit Value, Problem A.1.3.
Remarks: The weighted version of the problem in which the weights
are encoded in binary is PLS -complete [278, 324]. If the weights
are encoded in unary, the problem is FP -complete (Johnson, Pa-
padimitriou, and Yannakakis [178]). Another problem the Fiduccia-
Mattheyses Heuristic Graph Partitioning SWAP (FM-Graph Parti-
tioning in [324]) is defined similarly to UGPS except for the neigh-

162 APPENDIX A. P -COMPLETE PROBLEMS

bors of a solution. The neighborhood of a solution may be ob-
tained by a sequence of up to |V | swaps following the Fiduccia-
Mattheyses heuristic (see [324]). FM-Graph Partitioning is also FP -
complete [320, 324]. In fact, a simpler local search problem in which
each partition has just one neighbor, the one obtained after the first
step of the Fiduccia-Mattheyses heuristic, is also FP -complete [320,
324]. This problem is called FM in [320] and FM-SWAP in [324].
In [320] they also show that a simulated annealing based on a SWAP
neighborhood and a “cooling schedule” is P -complete. Several addi-
tional results are presented proving other graph partitioning strate-
gies are P -hard. See [319, 320] for further details.

A.5.7 Stable Configuration in Connectionist Model
(*) (SCCM)

Given: An undirected graph G = (V,E) whose vertices and edges
have integer weights coded in unary, and a configuration C (see
definition below). The vertex (edge) weights are denoted wi (respec-
tively, wij). G is called a Connectionist Model and has associated
with it the following properties. Each vertex vi ∈ V has a state of
either 0 or 1 associated with it. (Some authors consider states of −1
and 1; it is known that this model is equivalent.) The state of vertex
vi is denoted si. A configuration refers to the vector of vertex states,
~s = (s1, . . . , s|V |). The influence function for vertex vi is defined as
follows:

Ii(~s) =
∑

vj∈V

wjisj + wi.

The state of a vertex vi is stable in a given configuration ~s if and
only if

1. Ii(~s) = 0, or

2. Ii(~s) > 0 and si = 1, or

3. Ii(~s) < 0 and si = 0.

A configuration is stable if the states of all vertices in the configura-
tion are stable. Stable configurations coincide with local maximum
with respect to the following “energy” function:

H(~s) =
1
2

∑

(vi,vj)∈E

wijsisj +
∑

vi∈V

wisi.

A.5. LOCAL OPTIMALITY 163

Problem: Find a stable configuration of the Connectionist Model
G.
Reference: Godbeer [119], Lipscomb [242], Papadimitriou,
Schäffer, and Yannakakis [278], Schäffer and Yannakakis [324].
Hint: Note that the problem as stated is a search problem. It is
in FP if the weights are encoded in unary. The reduction is from
LFMIS, Problem A.2.1 [119]. Additional reductions are given in [119]
and [324] for other versions of the problem.
Remarks: Many variants of this problem have been considered [119,
242, 324]. The complexity of the problem changes depending on the
types of values (positive, negative, or both positive and negative)
the weights are allowed to take on and depending on the encodings
of the weights. In [119] directed and undirected versions of the prob-
lem are considered. Versions of the problem that are NP -complete,
P -hard, and P -complete are given. For example, if the problem
is restricted to just positive weights, the Monotone Circuit Value
Problem can be reduced to it. Since this version is known to be in
P , it is P -complete. In [242] several variants of the general prob-
lem are presented that are P -hard. In [324] they consider a slight
variant of the problem and show that when it is restricted to edge
weights of only −1, it is P -complete. The version of this problem
in which the weights are encoded in binary is PLS -complete [278,
324]. DasGupta describes parallel complexity results for neural net-
works in [78]. He shows a deterministic recurrent neural network that
has at least one stable state can learn any P -complete language; he
gives conditions restricting the thresholds and weights that result in
neural networks capable only of learning languages in NC [78].

A.5.8 Lexicographically First Different Than
Majority Labeling (LFDTML)

Given: An undirected graph G = (V, E) with a numbering on the
vertices and a designated vertex v. A different than majority labeling
is a labeling of the vertices with either 0 or 1 such that each vertex
is labeled differently than at least half of its neighbors. A greedy
sequential algorithm for solving this problem begins by initially as-
signing the value 0 to each vertex. The algorithm iterates through
the vertices in order flipping a vertex’s label if it is not correctly
labeled. The flipping process is repeated until the overall labeling

164 APPENDIX A. P -COMPLETE PROBLEMS

is a different than majority labeling. The labeling produced by this
algorithm is called the lexicographically first different than majority
labeling.
Problem: Is vertex v labeled 1 in the lexicographically first differ-
ent than majority labeling?
Reference: Sarnath and He [316].
Hint: The reduction is from MCVP, Problem A.1.3.
Remarks: The parallel complexity of Different Than Majority
Labeling (DTML) was posed as an open question by Luby [246].
DTML was also discussed by Godbeer [119] and the problem was
reduced to a version of a connectionist model problem, see Problem
A.5.7. Schäffer and Yannakakis proved the problem to be equiva-
lent to Problem A.5.4 [324]. Therefore, the problem is P -complete.
Sarnath and He show that LFDTML remains P -complete when re-
stricted to planar graphs [316]. They also give another sequential
algorithm for the problem and state that a decision problem based
on this algorithm is also P -complete [316].

A.5.9 Traveling Salesman 2-Opt (*) (TS2Opt)

Given: A finite set C = {C1, . . . , Cn} of cities, and a distance
matrix D with entries (dij) that are positive integers (1 ≤ i, j ≤ n),
and an initial tour T0.
Problem: Find a sequence of tours T0, . . . , Tm such that Ti is the
result of a 2-opt of Ti−1, the cost of Ti is less than the cost of Ti−1,
and either Tm is a locally optimal tour or m ≥ n. A 2-opt refers
to a neighborhood transformation done on the tours, see Lin and
Kernighan [235].
Reference: Anderson [12].
Hint: The reduction is from a variant of Circuit Value, Problem
A.1.1.
Remarks: Also see Problem A.2.15.

A.5.10 Maximum Satisfiability Approximation
(MSA)

Given: A Boolean formula F with clauses c1, . . . , cm and variables
x1, . . . , xn, plus an integer l.
Problem: Does variable xl get assigned a value true by the
maximum satisfiability approximation algorithm? The algorithm is
sketched below. Its input is the same as for MSA.

A.5. LOCAL OPTIMALITY 165

begin
for i ← 1 to n do

for j ← 1 to m do
fT (i, j) ← the fraction of truth assignments for the

remaining variables of clause j that
satisfy clause j with xi set to true;

fF (i, j) ← 1− fT (i, j);
if

(

∑m
j=1 fT (i, j)

)

≥
(

∑m
j=1 fF (i, j)

)

then xi ← true
else xi ← false;

update the clauses;
end.

Reference: Bongiovanni, Crescenzi, and De Agostino [38].
Hint: The reduction is from a variant of Circuit Value, Problem
A.1.1, that consists of or and not gates.
Remarks: The algorithm specified above 1/2 approximates MSA.
The result shows that this sequential algorithm for approximating
Maximum Satisfiability is unlikely to be made feasibly highly paral-
lel.

A.5.11 Minimum Set Cover Approximation (MSCA)

Given: A finite set S, a collection C of subsets of S, a special subset
t of S, and an integer i.
Problem: Is t a subset of s′, where s′ is the ith set chosen by the
minimum set cover approximation algorithm? A set cover is a col-
lection of sets C ′ such that each element of S is contained in at
least one set from C ′. A minimum set cover is a set cover of small-
est cardinality. The minimum set cover approximation algorithm is
outlined below. Its input is the same as for MSCA.

begin
solution ← Ø; uncovered ← S;
while uncovered 6= Ø do

choose s′ a “remaining set” from C such that
|s′| is maximized;

solution ← solution ∪ index (s′);
uncovered ← uncovered − s′;
remove the elements of s′ from all remaining sets;

end.
Reference: Bongiovanni, Crescenzi, and De Agostino [38].
Hint: The reduction is from a variant of Circuit Value, Problem
A.1.1, that consists of or and not gates.

166 APPENDIX A. P -COMPLETE PROBLEMS

Remarks: The Minimum Set Cover Problem is NP -complete
(Garey and Johnson [113]). The algorithm specified above log ap-
proximates MSCA. The result shows that this sequential algorithm
for approximating Minimum Set Cover is unlikely to be made feasi-
bly highly parallel.

A.5.12 Two Layer Channel Router Column-swap
Heuristic (*) (COLUMNS)

Given: An initial solution R0 to a two layer channel routing problem
and a time bound t. The reader is referred to [321] for background
and definitions concerning routing problems.
Problem: Find the solution Rt obtained from R0 by applying a
local search algorithm for channel routing using the columns cost
function and the subtrack swap neighborhood. We provide defini-
tions as given in [321]. The columns cost function of a two layer
channel routing is the number of overlapping vertical segments. The
subtrack swap neighborhood of a channel routing solution is the set
of channel routings obtained by swapping a pair of horizontal wires.
Reference: Savage and Wloka [321].
Hint: The reduction is from a variant of Monotone Circuit Value,
Problem A.1.3.
Remarks: Savage and Wloka pose as open problems whether cer-
tain other routing heuristics are hard to parallelize [321]. They
present an O(log n) time, n processor EREW-PRAM algorithm for
two layer channel routing of VLSI designs in [318].

A.6. LOGIC 167

A.6 Logic

A.6.1 Unit Resolution (UNIT)

Given: A Boolean formula F in conjunctive normal form.
Problem: Can the empty clause 2 be deduced from F by unit
resolution? An unit is a clause with only one term. For example,
the unit resolvent of A∨B1∨· · ·∨Bm and the unit ¬A is B1∨· · ·∨Bm.
Reference: Jones and Laaser [181].
Hint: Jones and Laaser provide a polynomial time algorithm for
unit resolution [181]. To show B follows from the assumption A1 ∧
· · · ∧ Am, negate B, add it to the set of clauses, and derive the
empty clause. Reduce CVP to UNIT as described below. A gate in
the circuit vk ← vi ∧ vj is represented by the clauses of vk ⇔ vi ∧ vj .
That is, (¬vk∨vi)∧(¬vk∨vj)∧(vk∨¬vi∨¬vj). Similarly, vk ← vi∨vj
is represented by the clauses of vk ⇔ vi ∨ vj , and vk ← ¬vi is
represented by the clauses of vk ⇔ ¬vi.
Remarks: See Chang and Lee [52] for an introduction to mechanical
theorem proving. Under the appropriate definitions, it is known that
approximating this problem is also P -complete (Serna and Spirakis
[328]).

A.6.2 Horn Unit Resolution (HORN)

Given: A Horn formula F , that is, a conjunctive normal form
(CNF) formula with each clause a disjunction of literals having at
most one positive literal per clause.
Problem: Can the empty clause 2 be deduced from F by unit
resolution?
Reference: Dobkin, Lipton, and Reiss [93], Jones and Laaser [181].
Hint: Reduce an arbitrary Turing machine to a CNF formula as in
Cook [62]. All of the clauses are Horn clauses. Most clauses are of
the form ¬P a

i−1,t ∨ ¬P b
i,t ∨ ¬P c

i+1,t ∨ P f(a,b,c)
i,t+1 , where Pi, ta is true if

at time t tape cell i contains symbol a (or symbol (a, s) if the tape
head is over the cell and the Turing machine is in state s). The
function f(a, b, c) depends on the Turing machine. For cells i− 1, i,
and i+1 containing symbols a, b, and c the value of cell i at the next
time step is f(a, b, c). Alternatively, one can reduce CVP to HORN
as for UNIT, Problem A.6.1. The clauses for vk ← vi ∧ vj and for

168 APPENDIX A. P -COMPLETE PROBLEMS

vk ← ¬vi are already in Horn form. For vk ← vi ∨ vj the clauses of
vk ⇔ vi ∨ vj are not in Horn form, but replacing the or by an and
gate and associated not gates using DeMorgan’s laws results in a
set of Horn clauses.

A.6.3 Propositional Horn Clause Satisfiability
(PHCS)

Given: A set S of Horn clauses in the propositional calculus.
Problem: Is S satisfiable?
Reference: Kasif [202], Plaisted [290].
Hint: The reduction is straightforward from Alternating Graph Ac-
cessibility, Problem A.2.3.
Remarks: The problem remains P -complete when there are at most
three literals per clause [290]. Plaisted has shown that two prob-
lems involving proofs of restricted depth are also P -complete. They
are the Two Literal Horn Clause Unique Matching Problem and the
Three Literal Horn Clause Problem [290]. Kasif observes that PHCS
remains P -complete when the set of clauses is restricted so that im-
plications have at most two atoms on their right-hand side Kasif
[203].

A.6.4 Monadic Krom Satisfiability (MKS)

Given: A monadic Krom formula F . A Krom formula is a 2-CNF
formula. That is, a formula in CNF with at most two disjuncts
per clause. Let φ and ψ be predicate letters that may be preceded
by a negation. A conjunct of F is monadic if it is of the form
(φy1y1 ∨ ψy1y1).
Problem: Is F satisfiable?
Reference: Denenberg and Lewis [89].
Hint: An algorithm showing the problem is in P is given in [89]. The
reduction is from a Nonacceptance Problem for Pushdown Automata
(Denenberg [88], [89]); see Problem A.7.8.

A.6. LOGIC 169

A.6.5 Multivalued Dependency (MVD)

Given: A set Σ of multivalued dependencies and a multivalued
dependency σ. We follow the discussion presented by Denenberg
in [88] to define these concepts. Let U denote the set of all attributes
in the database and let X, Y , and Z denote sets of attributes. An
embedded multivalued dependency (EMVD) is an expression of the
form X →→ Y | Z, where X, Y , and Z are disjoint sets of attributes
in which Y and Z nonempty. A multivalued dependency (MVD) is
an EMVD in which Z is equal to U −XY . A set Σ of MVDs implies
a MVD σ if σ holds in every database in which every member of Σ
holds.
Problem: Does Σ imply σ?
Reference: Denenberg [88].
Hint: The reduction is from a variant of Horn Unit Resolution,
Problem A.6.2.

A.6.6 Relaxed Consistent Labeling (RCL)

Given: A relaxed consistent labeling problem G consisting of a set
of variables V = {v1, . . . , vn} and a set of labels L = {L1, . . . , Ln},
where Li consists of the possible labels for vi. A binary predicate
P , where Pij(x, y) = 1 if and only if the assignment of label x to
vi is compatible with the assignment of label y to vj . A designated
variable X and a designated label f .
Problem: Is there a valid assignment of the label f to X in G?
Reference: Kasif [202], Greenlaw, Hoover, and Ruzzo, This
Work.
Hint: The original reduction is from Propositional Horn Clause
Satisfiability, Problem A.6.3 [202]. The reduction we sketch is from
NANDCVP, Problem A.1.5. A variable is introduced for each circuit
input. The variable must have label 1 (0) if the circuit input is true
(respectively, false). We view each nand gate as being represented
by three variables. Consider nand gate k with inputs i and j, and
outputs s and t. The variables for k will be denoted k, Lk, and
Rk. The possible labels for a nand gate (variable k) are 0, 1, T , T ′,
and F . T and T ′ are used to denote true values, and F is used to
denote a false value. The possible labels for variables Lk and Rk
are 0 and 1. The constraints for variable k with its inputs are as
follows: Pik(0, 1) = 1, Pik(1, T) = 1, Pik(0, T ′) = 1, Pik(1, F) = 1,

170 APPENDIX A. P -COMPLETE PROBLEMS

Pjk(0, 1) = 1, Pjk(0, T) = 1, Pjk(1, T ′) = 1, and Pjk(1, F) = 1. The
constraints on Lk and Rk are the same. When k has any label l from
{1, T, T ′}, then PkLk(l, 1) = 1. When k has a label l from {0, F},
then PkLk(l, 0) = 1. All other possible labelings are not allowed.
The constraints involving nand gate s (t) use Lk (respectively, Rk).
Notice that since inputs have only one possible label, they must be
assigned this label. The remainder of the labeling is done so that
the circuit gets evaluated in a topological manner. Let o denote the
number of the output gate of the NANDCVP instance. There is a
valid assignment of label 1 to vertex Lo if and only if the output of
gate o is true.
Remarks: The General Consistent Labeling Problem is known to be
NP -complete. Kasif shows that several decision problems based on
arc consistency algorithms for solving constraint satisfaction prob-
lems are also P -complete [203, 204].

A.6.7 Generability (GEN)

Given: A finite set W , a binary operation • on W (presented as a
table), a subset V ⊆ W , and w ∈ W .
Problem: Is w contained in the smallest subset of W that contains
V and is closed under the operation •?
Reference: Jones and Laaser [181].
Hint: The reduction is from Unit Resolution, Problem A.6.1. Define
a • b to be the unit resolution of clauses a and b. Let W be all the
subclauses of a formula F in an instance of UNIT, and V be all of
its clauses. Let w be the empty clause.
Remarks: The problem remains P -complete if V is a singleton set
and • is commutative (Barrington and McKenzie [25], [181]). If • is
associative, GEN is complete for NLOG . The problem remains in P
even with more than one operation. In [25] an alternative reduction
is given from CVP showing that GEN is NC1-complete for P . The
complexities of several other versions of GEN are addressed in [25].
Under the appropriate definitions, it is known that approximating
this problem is also P -complete (Serna and Spirakis [328]). Simons
developed an O(n) time parallel algorithm for the problem in 1987,
where n = |W | (Roger A. Simons, Personal Communication, 1992).

A.6. LOGIC 171

A.6.8 Path Systems (PATH)

Given: A path system P = (X,R, S, T), where S ⊆ X, T ⊆ X, and
R ⊆ X ×X ×X.
Problem: Is there an admissible vertex in S? A vertex x is admis-
sible if and only if x ∈ T , or there exists admissible y, z ∈ X such
that (x, y, z) ∈ R.
Reference: Cook [64].
Hint: Jones and Laaser reduce Generability, Problem A.6.7, to
PATH by defining (x, y, z) ∈ R if and only if x = y • z [181].
Remarks: Cook defined path systems in [60]. This is the first
problem shown to be logarithmic space complete for P . The original
proof by Cook does a direct simulation of a Turing machine [64]. Un-
der the appropriate definitions, it is known that approximating this
problem is also P -complete (Serna and Spirakis [328]). Vitter and
Simons give a

√
n time parallel algorithm for the non-sparse version

of the problem [366].

A.6.9 Unification (UNIF)

Given: Two symbolic terms s and t. Each term is composed of
variables and function symbols. A substitution for x in a term u is
the replacement of all occurrences of a variable x in u by another
term v.
Problem: Is there a series of substitutions σ that unify s and t?
That is, gives σ(s) = σ(t). The two terms are called unifiable if such
a σ exists.
Reference: Dwork, Kanellakis, and Mitchell [96], Dwork, Kanel-
lakis, and Stockmeyer [97], Yasuura [375].
Hint: The reduction given in [96] is from Monotone Circuit Value,
Problem A.1.3. The reductions given in [97] are from NANDCVP,
Problem A.1.5. The reduction given in [375] begins with a variant
of the Circuit Value Problem and proceeds through another problem
on hypergraphs.
Remarks: Robinson defined unification in [305]. The reader is also
referred to Chang and Lee [52] for some basic discussion about me-
chanical theorem proving. The Unrestricted Unification Problem is
also P -complete [96]. Unrestricted unification is where substitutions
are allowed to map variables to infinite terms. It is convenient to rep-
resent terms as labeled directed acyclic graphs. A term is linear if no

172 APPENDIX A. P -COMPLETE PROBLEMS

variable appears more than once in it. The following two restricted
versions of unification are also both P -complete: (a) both terms are
linear, are represented by trees, and have all function symbols with
arity less than or equal to two; (b) both terms are represented by
trees, no variable appears in both terms, each variable appears at
most twice in some term, and all function symbols have arity less
than or equal to two [97]. A restricted problem called Term Matching
can be solved in NC [96]. A term s matches a term t if there exists a
substitution σ with σ(s) = t. Dwork, Kanellakis, and Mitchell used
randomization to reduce the processor bound given in [96]. On a
CREW-PRAM their algorithm runs in randomized time O((log n)2)
using M(n) processors, where M(n) denotes the complexity of an
n× n matrix multiplication [97]. Vitter and Simons give a

√
n time

parallel algorithm for Unification when the instances of the problem
are “dense” [366].

Kuper et al. give an NC algorithm for the problem of construct-
ing the most specific anti-unifier [224]. This is the dual problem of
unification. The most specific anti-unifier of m terms t1, . . . , tm is a
term tg such that

1. Each ti is an instance of tg.

2. tg is an instance of any term with property one above.

Their algorithm produces a most specific anti-unifier for m terms
of size O(n) on a CREW-PRAM in time O((log mn)2) using mn
processors [224].

A.6.10 Logical Query Program (LQP)

Given: An extended logic program P , and a ground clause C of the
form p(x) :— q1(y1), . . . , qk(yk). A ground clause is one in which all
arguments (e.g. x and yi above) are constants. An extended logic
program is a basic logic program plus an extensional data base in-
stance. A basic logic program is a finite set of rules. A rule is a
disjunction of literals having exactly one positive literal, called the
head. The negative literals in the clause are called subgoals. The
set of predicate symbols that appear only in subgoals is called the
Extensional Database, or EDB. An EDB fact is an EDB predicate
with constants as arguments. An EDB instance is a finite set of
EDB facts. C is a theorem of P if the head of C is derivable from
its subgoals in P .

A.6. LOGIC 173

Problem: Is C a theorem of P?
Reference: Ullman and Van Gelder [355].
Hint: Reduce Path Systems, Problem A.6.8, to LQP. Let
(X,R, S, T) be an instance of PATH. Without loss of generality,
assume S = {s}. Let t(Y) be an EDB relation specifying that ver-
tex Y is in T . Let r(U, V, W) be an EDB relation specifying that the
triple of vertices (U, V,W) is in R. The basic logic program consists
of the two rules a(Y) :— t(Y) and a(Y) :— r(Y, V, W), a(V), a(W).
The relation a models “admissibility” in the path system, so a(s) is
a theorem of P if and only if s is admissible in the path system.
Remarks: Remains P -complete even for very restricted programs.
In NC for programs with the “polynomial fringe property.” See [355]
for details. Afrati and Papadimitriou classify simple chain programs
according to their parallel complexities [4]. They show a certain sub-
class of simple chain programs are in NC and that all other simple
chain programs are P -complete. Afrati describes additional classes
of logic programs that can be solved in NC , and also provides suffi-
cient conditions for single rule programs to be P -complete [3]. The
reader is referred to [3] for definitions and further details. Numerous
open problems are described in [3] as well.

A.6.11 Left-linear Semi-unification (LLSU)

Given: A set of pairs of terms S = {(M1, N1), . . . , (Mk, Nk)} that
is left linear. We follow the discussion given in [155] for definitions.
A ranked alphabet A = (F, a) is a finite set F of function symbols
together with an arity function a that maps every element in F to
a natural number. A function symbol of arity 0 is called a constant.
The set of variables V is a denumerable infinite set that is disjoint
from F . The terms over A and V is the set T (A, V) consisting of all
strings generated by the grammar

M → x | c | f(M, . . . , M),

where f is a function symbol from A with arity k greater than 0, c
is a constant, x is any variable from V , and M appears k times as
an argument to f . Two terms M and N are equal, written M = N ,
if and only if they are identical as strings. A substitution σ is a
mapping from V to T (A, V) that is the identity on all but a finite
set of V . The set of variables on which σ is not the identity is the
domain of σ. Every substitution σ : V → T (A, V) can be extended

174 APPENDIX A. P -COMPLETE PROBLEMS

to σ : T (A, V) → T (A, V) by defining

σ(f(M1, . . . , Mk)) = f(σ(M1), . . . , σ(Mk)).

A term M subsumes N , written M ≤ N , if there is a substitution ρ
such that ρ(M) = N . Given S a substitution σ is a semi-unifier of
S if

σ(M1) ≤ σ(N1), . . . , σ(Mk) ≤ σ(Nk).

S is semi-unifiable if it has a semi-unifier.
Problem: Is S semi-unifiable?
Reference: Henglein [155].
Hint: The proof is adopted from the one given by Dwork, Kanel-
lakis, and Mitchell [96] to show Unification, Problem A.6.9, is P -
complete.
Remarks: Define kLLSU to be the problem of left-linear semi-
unifiability with exactly k term inequalities (same k as above)
and Monadic Semi-unification (MSU) to be the problem of semi-
unifiability for the alphabet A = (F, a), where a(f) is greater than
or equal to 1 for all f ∈ F and a(f) equals 1 for at least one f .
2LLSU and MSU are P -complete [155]. See Problem A.6.9 for re-
lated problems. Also see Problem B.3.2 for an open problem.

A.6.12 Mostowski Epimorphism (MostEpi)

Given: A well-founded relation (V,E) and x1, x2 ∈ V . Let f be
the Mostowski epimorphism of the relation. The reader is referred
to [74] for definitions.
Problem: Is f(x1) = f(x2)?
Reference: Dahlhaus [74].
Hint: The reduction is from Monotone Circuit Value, Problem
A.1.3.
Remarks: The result indicates that the programming language
SETL may not be well suited to parallelism [74]. See Problem B.3.1
for a related open problem.

A.6.13 Corporate Takeover Query (CTQ)

Given: A group of n companies C1, . . . , Cn and a partial relation
owns(Ci, Cj , S), where 1 ≤ i, j ≤ n, and two distinct integers k and
l. owns(Ci, Cj , S) indicates company Ci owns S% of company Cj ’s
stock.
Problem: Has company Ck bought company Cl? A company B has

A.6. LOGIC 175

bought company D whenever B controls more than 50% of D’s stock.
A company B controls itself, and also controls stock controlled by
any other company B has bought.
Reference: Consens and Mendelzon [59].
Hint: The reduction is from Path Systems, Problem A.6.8.
Remarks: Other query languages are considered in [59]. For nu-
merous of them, Consens and Mendelzon show any question that can
be posed in the language can be resolved in NC .

A.6.14 Incomplete Table Recovery (ITR)

Given: A collection F of functional dependencies on a finite at-
tribute set {A1, . . . , Am}, a matrix T = (Tij) for 0 ≤ i ≤ n and
1 ≤ j ≤ m called an incomplete table where T0j = Aj for 1 ≤ j ≤ m,
and the value of each Tij is either a nonnegative integer or the null
value ∗ for 1 ≤ i ≤ n and 1 ≤ j ≤ m. The reader is referred to [267]
for definitions regarding this problem.
Problem: Is T uniquely recoverable under F when the domain of
each attribute Aj is the set of nonnegative integers?
Reference: Miyano and Haraguchi [267], Miyano, Shiraishi, and
Shoudai [268].
Hint: The reduction is from Alternating Graph Accessibility, Prob-
lem A.2.3.

176 APPENDIX A. P -COMPLETE PROBLEMS

A.7 Formal Languages

A.7.1 Context-free Grammar Membership
(CFGmem)

Given: A context-free grammar G = (N, T, P, S) and a string
x ∈ T ∗.
Problem: Is x ∈ L(G)?
Reference: Jones and Laaser [181].
Hint: Reduce Generability, Problem A.6.7, to CFGmem. Let
(W, •, V, w) be an instance of GEN. Construct the grammar G =
(W, {a}, P, w), where P = {x → yz | y • z = x} ∪ {x → ε | x ∈ V }.
It follows that ε ∈ L(G) if and only if w is generated by V .
Remarks: Goldschlager remarks it is the presence of ε-productions
in the input grammar that make the membership question diffi-
cult [125]. Lewis, Stearns, and Hartmanis’ (log n)2 space algo-
rithm [234] and Ruzzo’s AC 1 (hence NC 2) algorithm [307] for
general context free language recognition can both be modified to
work with an ε-free grammar given as part of the input. For a
fixed grammar, unbounded fanin size O(n6) suffices [307]. Ryt-
ter shows context-free languages can be recognized on a cube con-
nected computer in O((log n)2) time using n6 processors [309]. He
also provides an O(log n) time n7 processor COMMON CRCW-
PRAM algorithm for the recognition of unambiguous context-free
languages [310]. Klein and Reif give an O(log n) time n3 proces-
sor CREW-PRAM algorithm for the recognition of deterministic
context-free languages [216]. Dymond and Ruzzo give a somewhat
simpler algorithm for this problem on the more restricted CROW-
PRAM [101]. Kaji et al. prove Parallel Multiple Context-free
Grammar Membership and Multiple Context-free Grammar Mem-
bership, which are problems involving generalizations of context-
free grammars that are designed to model natural languages, are
P -complete [182].

A.7.2 Context-free Grammar Empty (CFGempty)

Given: A context-free grammar G = (N, T, P, S).
Problem: Is L(G) empty?
Reference: Jones and Laaser [181], Goldschlager [125].

A.7. FORMAL LANGUAGES 177

Hint: The reduction given in Problem A.7.1 suffices. The following
reduction of Monotone Circuit Value, Problem A.1.3, to CFGempty
(Martin Tompa, Personal Communication, 1991) is also of interest.
Given a circuit α construct the grammar G = (N, T, P, S) with non-
terminals N = {i | vi is a vertex in α}, terminals T = {a}, and start
symbol S = n, where vn is the output of α. Let ν(g) denote the
value of gate g. The productions in P are of the following form.

1. For input vi, i → a if ν(vi) is true,

2. i → jk if vi ← vj ∧ vk, and

3. i → j | k if vi ← vj ∨ vk.

Then ν(vi) is true if and only if i ∗⇒ γ, where γ ∈ {a}+.
Remarks: Note, this reduction and the one for CFGinf, Prob-
lem A.7.3, have no ε-productions yet remain complete. The original
proof of Jones and Laaser reduced Generability, Problem A.6.7, to
CFGempty. Their proof used the reduction for CFGmem, Problem
A.7.1, and instead checked if L(G) is empty [181].

A.7.3 Context-free Grammar Infinite (CFGinf)

Given: A context-free grammar G = (N, T, P, S).
Problem: Is L(G) infinite?
Reference: Goldschlager [125], Jones and Laaser [181].
Hint: Use a grammar similar to G in the proof for CFGempty,
Problem A.7.2, except production i → a is replaced by i → x, and
the productions x → a and x → ax are also added.

A.7.4 Context-free Grammar ε-Membership
(CFGεmem)

Given: A context-free grammar G = (N, T, P, S).
Problem: Is ε ∈ L(G)?
Reference: Goldschlager [125], Jones and Laaser [181].
Hint: Use a grammar similar to G in the proof for CFGempty,
Problem A.7.2, except production i → a is replaced by i → ε.

178 APPENDIX A. P -COMPLETE PROBLEMS

A.7.5 Forward Deterministic Growing Context-
sensitive Grammar Membership (CSGmem)

Given: A forward deterministic growing context-sensitive grammar
G = (N, T, P, S) and a string x ∈ T ∗. A context-sensitive grammar
is growing if for each production α → β ∈ P , where α, β ∈ (N ∪T)∗,
|α| is less than |β|. A context-sensitive grammar is forward determin-
istic if whenever there are derivations of a sentential form u, u ⇒ v
and u ⇒ v′, then v equals v′.
Problem: Is x ∈ L(G)?
Reference: Sang Cho and Huynh [312].
Hint: The techniques used for the P -completeness proofs sketched
in Problems A.7.1, A.7.2, A.7.3, and A.7.4 do not seem to apply to
this problem because they involve grammars that are not forward
deterministic and are not growing. The reduction given in [312] is
from a version of Generic Machine Simulation, Problem A.12.1.
Remarks: The proof yields as a straightforward corollary that
Nondeterministic Growing Context-sensitive Grammar Membership
is NP -complete [312].

A.7.6 Straight-line Program Membership (SLPmem)

Given: A straight-line program over alphabet Σ, |Σ| ≥ 1, with op-
erations taken from Φ = Σ ∪ {{ε}, Ø,∪, ·}, and a string x.
Problem: Is x a member of the set constructed by the program?
The set constructed by the program, when the last instruction in-
volves ∪ or ·, is the set computed by the final instruction.
Reference: Goodrich [129], Greenlaw, Hoover, and Ruzzo, This
Work.
Hint: By noting there is a logarithmic space alternating Turing ma-
chine that “parses” x relative to the program, the problem is easily
seen to be in P . Reduce Monotone Circuit Value, Problem A.1.3, to
SLPmem by the following: true → {ε}, false → Ø, and → ·, or
→ ∪, and x → ε.
Remarks: The original reduction was from Generability, Problem
A.6.7. Remains in P if ∩ is allowed. The analogous membership
question for regular languages presented as regular expressions or
nondeterministic finite automata is complete for NLOG .

A.7. FORMAL LANGUAGES 179

A.7.7 Straight-line Program Nonempty
(SLPnonempty)

Given: A straight-line program over alphabet Σ, |Σ| ≥ 1, with op-
erations taken from Φ = Σ ∪ {{ε}, Ø,∪, ·}, and a string x.
Problem: Is the set constructed by the program nonempty? See
Problem A.7.6 for definition.
Reference: Goodrich [129].
Hint: Same as Problem A.7.6.
Remarks: With ∩ added, SLPnonempty becomes complete for non-
deterministic exponential time [129].

A.7.8 Two-way DPDA Acceptance (2DPDA)

Given: A two-way deterministic pushdown automaton M =
(Q,Σ,Γ, δ, q0, Z0, F) and a string x.
Problem: Is x accepted by M?
Reference: Cook [61], Galil [111, 112], Ladner [225].
Hint: See, for example, Hopcroft and Ullman [162] for a defi-
nition of 2DPDAs. Cook gives a direct simulation of a polyno-
mial time Turing machine by a logarithmic space auxiliary push-
down automaton [61]. Galil shows the existence of a P -complete
language accepted by a 2DPDA, in effect showing that the loga-
rithmic space work tape is not crucial to Cook’s simulation [111,
112]. (See also Sudborough [348] for a general reduction of auxiliary
PDAs to ordinary PDAs.) Ladner gives a much more direct proof
by observing that a suitably encoded version of CVP is solvable by a
2DPDA, basically by doing a depth-first search of the circuit, using
the stack for backtracking [225].
Remarks: Remains in P when generalized to nondeterministic
and/or logarithmic space auxiliary PDAs [61]. When restricted to
one-way PDAs, or other polynomial time PDAs, even with a logarith-
mic space work tape, the problem is in NC ; specifically, it is complete
for LOGDCFL in the deterministic case, and for LOGCFL = SAC 1

in the nondeterministic case.

A.7.9 Labeled GAP (LGAP)

Given: A fixed context free language L over alphabet Σ, a directed
graph G = (V,E) with edges labeled by strings in Σ∗, and two ver-
tices s and t.
Problem: Is there a path from s to t such that the concatenation

180 APPENDIX A. P -COMPLETE PROBLEMS

of its edge labels is in L?
Reference: Ruzzo [306], Greenlaw, Hoover, and Ruzzo, This
Work.
Hint: Reduce Two-way DPDA Acceptance, Problem A.7.8, to
LGAP. Let M = (Q,Σ′,Γ, δ, q0, Z0, F) be a two-way DPDA (see
Hopcroft and Ullman [162] for details) and let x ∈ Σ′ be an input
string. Without loss of generality, the PDA has a unique final state
qf and accepts with empty stack with its head at the right end of
the input. Let Σ = Γ ∪ {Z | Z ∈ Γ}. Let V be the set containing
the special vertex s, together with all “surface configurations” of the
PDA, that is, Q× {1, . . . , |x|}. There is an edge from 〈p, i〉 to 〈q, j〉
labeled α ∈ Σ∗ if and only if when reading xi the PDA has a move
from p to q that moves its input head j − i ∈ {−1, 0, 1} cells to the
right, pops Z ∈ Γ, and pushes β ∈ Γ∗, where α = Zβ. Addition-
ally, there is an edge from the special vertex s to the initial surface
configuration 〈q0, 1〉 labeled Z0 (the initial stack symbol). The des-
ignated vertex t is 〈qf , |x|〉. Finally, L is the semi-Dyck language
D|Γ| on |Γ| letters (Harrison [147, Section 10.4]), that is, L is the
language generated by the context-free grammar with productions
{S → aSaS | a ∈ Γ} ∪ {S → ε}.
Remarks: Remains P -complete when L is D2. An equivalent state-
ment is that it is P -complete to decide, given a deterministic finite
state automaton M , whether D2 ∩ L(M) = Ø. If G is acyclic, the
problem is complete for SAC 1 = LOGCFL [306].

A.7.10 Strong Bisimilarity in Transition Systems
(SBTS)

Given: An encoding of a finite labeled transition system N , and
two designated states p and q. A finite labeled transition system is
a triple M = 〈Q,Σ, T 〉, where Q is a finite set of states, Σ is a finite
alphabet, and T ⊆ Q × Σ × Q is the set of transitions. A relation
S ⊆ Q × Q is a strong bisimulation of M if (s1, s2) ∈ S implies for
all x ∈ Σ that

1. whenever (s1, x, t1) ∈ T , then for some state t2, (s2, x, t2) ∈ T
and (t1, t2) ∈ S; and

2. whenever (s2, x, t2) ∈ T , then for some state t1, (s1, x, t1) ∈ T
and (t1, t2) ∈ S.

The strong bisimulation relation is defined as the union of all strong
bisimulations of M .

A.7. FORMAL LANGUAGES 181

Problem: Are p and q strongly bisimilar? That is, is (p, q) in the
strong bisimulation relation of N?
Reference: Àlvarez et al. [11], Balcázar, Gabarró, and Sántha
[23].
Hint: The reduction is from SAM2CVP, Problem A.1.6. The key
idea in the reduction is to modify the instance of SAM2CVP so that
each and gate receives at least one true input and each or gate
receives at least one false input. Call this the input property. The
construction that accomplishes this is called an alternating pattern.
It consists of alternating levels of two or gates and two and gates
with unbounded fan-out. On or (and) levels in the alternating pat-
tern one gate receives inputs of true and false (respectively, same)
while the other receives false (respectively, true). The outputs of
these gates are sent to gates on the next level to achieve the input
property. The depth of the alternating pattern is the same as the
circuit depth. The transition network consists of the modified circuit
with all edges directed from the circuit output to the inputs. The
vertices in this graph correspond to states. Each transition, which
is represented by an edge, is assigned the same character from Σ. In
fact, the alphabet can consist of a single character. p can be chosen
as the state corresponding to the output gate of the circuit and q can
be chosen as the true or gate in the last layer of the alternating
pattern. The circuit will evaluate to true if and only if p and q are
strongly bisimilar.
Remarks: Notice that in the construction given above the transi-
tion system is nondeterministic. It is an open question whether the
problem remains P -complete in the deterministic case [23], see Prob-
lem B.4.1. Observation Equivalence and Observation Congruence
are two related problems that are both shown P -complete in [23].
Zhang and Smolka implement parallel algorithms for equivalence
checking [378].

A.7.11 Propagating Set Systems (PSS)

Given: Let S be a set, and So and Sf elements of S. A set system
consists of a finite set of productions PS of the form X → Y , where
X and Y are subsets of S. A set B ⊆ S derives in one step a set

182 APPENDIX A. P -COMPLETE PROBLEMS

C ⊆ S, written B ⇒ C, if and only if

C =
⋃

X → Y ∈ PS , X ⊆ B
Y.

∗⇒ denotes the reflexive, transitive closure of ⇒. A propagating
set system is a set system such that for every element s ∈ S,
{s} → {s} ∈ PS .
Problem: Does So

∗⇒ S′ such that S′ ∩ Sf 6= Ø?
Reference: Monti and Roncato [269].
Hint: The reduction given in [269] is from a variant of Generic Ma-
chine Simulation, Problem A.12.1.
Remarks: The general version of the problem is PSPACE -
complete.

A.7.12 Cellular Tree Automaton Acceptance (*)
(CTAA)

Given: A sublinear time bounded cellular tree automaton (CTA)
M and an input string x. See Ibarra, Jiang, and Chang [165] for the
definition.
Problem: Does M accept x?
Reference: Ibarra, Jiang, and Chang [165].
Hint: A trellis automaton can accept a P -complete language (Ibarra
and Kim [166]). This in turn can be simulated by a linear iterative
array that in turn can be simulated by a cellular tree automaton.
See [165] and [166] for definitions and further details.
Remarks: A sublinear time one-way bounded CTA can also accept
a P -complete language [165]. In a one-way CTA, communication
between vertices is bottom-up. Every language accepted by an one-
way CTA can be accepted by a deterministic Turing machine in
(log n)2/ log log n space, where n is the size of the input [165].

A.7.13 Iterative Tree Array Acceptance (*) (ITAA)

Given: A real-time log n depth bounded iterative tree array M and
an input string x of length n. See Ibarra, Jiang, and Chang [165] for
definitions.
Problem: Does M accept x?
Reference: Ibarra, Jiang, and Chang [165].
Hint: Iterative tree arrays can simulate cellular tree automata.
Combining this with the result of Problem A.7.12, the proof fol-

A.7. FORMAL LANGUAGES 183

lows [165].
Remarks: Note that under the appropriate resource bounds cellu-
lar tree automata can simulate iterative tree arrays [165]. Also see
Problem A.7.12.

A.7.14 Relation Coarsest Set Partition (RCSP)

Given: A finite set S, an initial partition π0 of S, a designated set
S′ ⊆ S, and a set of binary relations R1, . . . , Rk on S.
Problem: Is S′ a member of the coarsest refinement π of π0 such
that for each pair of blocks B1 and B2 of π, and for each integer
i = 1, . . . , k either

B1 ⊆ PIi(B2) or B1 ∩ PIi(B2) = Ø,

where PIi(B2) is the pre-image set PIi(B2) = {x | there is a y ∈ B2
with x Ri y}.
Reference: Sang Cho and Huynh [313].
Hint: In [313], they observe that Kanellakis and Smolka [183]
showed the NC 1 equivalence of Relation Coarsest Set Partition to
a P -complete variant of Strong Bisimilarity in Transition Systems,
Problem A.7.10.
Remarks: Even if there is only a single relation, k equals one,
the problem is P -complete [313]. Sang Cho and Huynh give a log n
time, O(n2) processor CREW-PRAM algorithm for the single func-
tion Coarsest Set Partition Problem as well as a log n time, O(n3)
processor EREW-PRAM algorithm for the same problem [313]. See
also the remarks for Problems A.7.10 and B.4.1.

A.7.15 Iterated Shuffle (SHUF)

Given: A language L over a finite alphabet Σ described in terms
of the operators ·, ∗, ∪, ∩, ∆, and †; which denote concatenation,
Kleene star, union, intersection, shuffle, and iterated shuffle, respec-
tively; plus a designated word w ∈ Σ∗. The shuffle of two languages
L1 and L2, denoted L1∆L2, is

{x1y1x2y2 · · ·xmym | x1x2 · · ·xm ∈ L1, y1y2 · · · ym ∈ L2 and
xi, yi ∈ Σ∗ for i = 1, . . . , m}.

The iterated shuffle denoted L† is

{ε} ∪ L ∪ (L∆L) ∪ (L∆L∆L) ∪ · · · .

184 APPENDIX A. P -COMPLETE PROBLEMS

Problem: Is w ∈ L?
Reference: Shoudai [332].
Hint: Note, certain restrictions must be placed on L in order for this
problem to be in P . The reduction is from a variant of NORCVP,
see Problem A.1.5.
Remarks: It is known that there are two deterministic context-free
languages whose shuffle is NP -complete (Ogden, Riddle, and Rounds
[274]). Here the intersection operation is used to force the problem
into P [332].

A.8. ALGEBRA 185

A.8 Algebra

A.8.1 Finite Horizon Markov Decision Process
(FHMDP)

Given: A nonstationary Markov decision process M = (S, c, p)
and an integer T . Before defining the problem, we present some
background on Markov decision processes. The term finite horizon
refers to the time bound T . S is a finite set of states and contains
a designated initial state s0. Let st denote the current state of the
system for each time t = 1, 2, . . . Associated with each state s ∈ S
is a finite set of decisions Ds. A cost of c(s, i, t) is incurred at time
t by making decision i ∈ Dst . The next state s′ has probability
distribution given by p(s, s′, i, t). If c and p are independent of t,
then the process is said to be stationary. A policy δ is a mapping
that assigns to each time step t and each state s a decision δ(s, t).
A policy is stationary if δ is independent of time, and can then be
supplied as an input.
Problem: Is the minimum expected cost of

T
∑

t=0

c(st, δ(st, t), t)

over all policies δ equal to 0?
Reference: Papadimitriou and Tsitsiklis [279].
Hint: There is a polynomial time algorithm for the problem that
uses dynamic programming (Howard [164]). The reduction is from
Monotone Circuit Value, Problem A.1.3. Let c = ((ai, bi, ci), i =
1, . . . , k) denote an encoding of MCVP, where ai denotes gate type,
and bi and ci denote the numbers of gate i’s inputs. A stationary
Markov process M = (S, c, p) is constructed from the circuit instance
as follows. S has one state qi for each i, 1 ≤ i ≤ k. There is an addi-
tional state in S called q. If (ai, bi, ci) corresponds to a circuit input,
the corresponding state qi has a single decision 0 with p(qi, q, 0) = 1,
and cost c(qi, 0) = 1 (0) if ai is a false (respectively, true) input.
All other costs of this process are 0. There is one decision 0 for state
q and p(q, q, 0) = 1. If ai is an or gate, there are two decisions 0
and 1 from state qi. The associated probabilities are p(qi, qbi , 0) = 1
and p(qi, qci , 1) = 1. The associated costs are both 0. If ai is an and
gate, there are two decisions 0 and 1 from state qi. p(qi, qbi , 0) = 1/2
and p(qi, qci , 1) = 1/2 with associated costs 0. The initial state is k

186 APPENDIX A. P -COMPLETE PROBLEMS

corresponding to the output gate of the circuit. The time horizon T
is k. It is easy to verify that the expected cost of the process is 0 if
and only if the circuit evaluates to true.
Remarks: The reduction shows that the finite horizon stationary
version of the problem is P -hard. This problem is not known to be
in P . The deterministic version of the FHMDP, which requires that
p only has values 0 or 1, is in NC [279]. Note, this last result holds
for both the stationary and nonstationary versions of the problem.

A.8.2 Discounted Markov Decision Process (DMDP)

Given: A stationary Markov decision process M = (S, c, p) and
a real number β ∈ (0, 1). See Problem A.8.1 for definitions. This
problem is infinite horizon, that is, there is no time bound.
Problem: Is the minimum expected cost of

∞
∑

t=0

c(st, δ(st, t))βt

over all policies δ equal to 0?
Reference: Papadimitriou and Tsitsiklis [279].
Hint: The problem can be phrased as a linear programming prob-
lem and solved in polynomial time. The same construction as used
in Problem A.8.1 can be used to show this problem is P -complete.
Remarks: The Infinite Horizon, Discounted, Deterministic Prob-
lem is in NC [279]. The deterministic problem requires that p only
has values 0 or 1.

A.8.3 Average Cost Markov Decision Process
(ACMDP)

Given: A stationary Markov decision process M = (S, c, p). See
Problem A.8.1 for definitions. This problem is infinite horizon, that
is, there is no time bound.
Problem: Is the minimum expected cost of

lim
T→∞

(T
∑

i=0

c(st, δ(st, t))/T

)

over all policies δ equal to 0?
Reference: Papadimitriou and Tsitsiklis [279].

A.8. ALGEBRA 187

Hint: The problem can be phrased as a linear programming problem
and solved in polynomial time. The reduction is from a synchronous
variant of Monotone Circuit Value, see Problem A.1.6. The con-
struction is a modification to that given in Problem A.8.1. Instead
of having states corresponding to circuit inputs going to a new state
q, they have transitions to the initial state. The limit is 0 if and only
if the circuit instance evaluates to true.
Remarks: The Infinite Horizon, Average Cost, Deterministic Prob-
lem is in NC [279]. The deterministic problem requires that p only
has values 0 or 1.

A.8.4 Gaussian Elimination with Partial Pivoting
(GEPP)

Given: An n × n matrix A with entries over the rationals and an
integer l.
Problem: Is the pivot value for the lth column positive when Gaus-
sian elimination with partial pivoting is performed on A? Partial
pivoting is a technique used to obtain numerical stability in which
rows of the matrix are exchanged so that the largest value in a given
column can be used to perform the elimination.
Reference: Vavasis [361].
Hint: The standard Gaussian elimination algorithm requires O(n3)
operations. Since the size of the numbers involved can be bounded
by a polynomial in n (see [361]), the problem is in P . To show
completeness reduce NANDCVP, Problem A.1.5, to GEPP. With-
out loss of generality, assume the inputs and gates of the circuit are
numbered in topological order from 1 to G, where G numbers the
output gate. A 2G × 2G matrix A = (ai,j) is constructed from the
instance of NANDCVP. The entries of A are described below. A
true circuit input i contributes entry −3.9 in position a2i−1,i and
entry 0 in position a2i,i. For false input i or nand gate i, A has
entry −3.9 in position a2i−1,i and 4.0 in position a2i,i. If gate i is an
input to gate k, then A has entry 0 in position a2k−1,i and entry 1 in
position a2k,i. For 1 ≤ i ≤ G, A has entry a2i,G+i = 1. All unspeci-
fied matrix entries have value 0. The pivot value used in eliminating
column G is positive (negative) if and only if the circuit evaluates to
false (respectively, true).
Remarks: The reduction does not rely on large numbers; therefore,
it shows that the problem is strongly P -complete. Another decision

188 APPENDIX A. P -COMPLETE PROBLEMS

problem that is strongly complete for P based on Gaussian elimina-
tion with partial pivoting is as follows: given matrix A, and integers
i and j, is the pivot used to eliminate the jth column taken from the
initial ith row? Vavasis also shows that Gaussian elimination with
complete pivoting is P -complete. In complete pivoting both rows
and columns are interchanged so that the largest remaining matrix
entry can be used as a pivot. Complete pivoting is known to be nu-
merically stable. The reduction for complete pivoting does not show
the problem is strongly P -complete. This question is open. Some
additional references regarding the parallel complexities of this and
related problems are (Borodin, von zur Gathen, and Hopcroft [43],
Csanky [72], Ibarra, Moran, and Rosier [167], Mulmuley [270], and
Pan and Reif [276]). For further open questions see Problems B.5.2
and B.5.4.

A.8.5 Iterated Mod (IM)

Given: Integers a, b1, . . . , bn.
Problem: Is ((· · · ((a mod b1) mod b2) · · ·) mod bn) = 0?
Reference: Karloff and Ruzzo [190].
Hint: Reduce NANDCVP, Problem A.1.5, to IM. Without loss
of generality, assume the gates are numbered in reverse topological
order from G down to 1, where the output gate is numbered 1. Let
y1, . . . , yr denote the inputs and Yl ∈ {0, 1} denote the value of input
yl. The input wires to gate g are numbered 2g and 2g − 1. Let a be
a bit vector of length 2G + 1 whose jth bit is Yl if edge j is incident
from input yl, and 1 otherwise. Let Og represent the set of out-edge
labels from gate g. For 1 ≤ g ≤ G, we construct moduli b1, . . . , b2G
as follows:

b2g = 22g + 22g−1 +
∑

j∈Og

2j and b2g−1 = 22g−1.

The output gate in the NANDCVP instance has value 0 if and only
if

((· · · ((a mod b1) mod b2) · · ·) mod b2G) = 0.

In Lin [236] a direct simulation of a Turing machine by IM is given.
Remarks: The Polynomial Iterated Mod Problem is the problem in
which a(x), b1(x), . . . , bn(x) are univariate polynomials over a field
F and the question is to determine if

((· · · ((a(x) mod b1(x)) mod b2(x)) · · ·) mod bn(x)) = 0?

A.8. ALGEBRA 189

This problem is in NC [190]. The proof technique used to show IM is
P -complete can be modified to show the Superincreasing Knapsack
Problem is also P -complete [190]. The Superincreasing Knapsack
Problem is defined analogously to the Knapsack Problem (Garey
and Johnson [113]) with weights w1, . . . , wn, except for 2 ≤ i ≤ n,
wi >

∑i−1
j=1 wj . See Lin [236, 237] for additional work on IM. Mayr

describes a fully NC approximation scheme for the 0 − 1 Knapsack
Problem in [254].

A.8.6 Generalized Word Problem (GWP)

Given: Let S be a finite set and F be the free group generated by
S. Let S = {s, s−1 | s ∈ S}, where s−1 denotes the inverse of s. Let
S∗ denote the set of all finite words over S. Let U = {u1, . . . , um} ⊆
S∗, where m ∈ N and let x ∈ S∗.
Problem: Is x ∈ 〈U〉? That is, is x in the subgroup of F generated
by U?
Reference: Avenhaus and Madlener [19], Stewart [340].
Hint: Stewart reported an error in [19]. The reduction in [19] is
a generic one from a normal form Turing machine. However, it re-
duces a Turing machine computation to a version of GWP where
S is a countably infinite set [340]. Stewart shows using the Nielsen
reduction algorithm that this problem is still in P . Stewart calls this
P -complete problem the Generalized Word Problem for Countably-
generated Free Groups (GWPC). He shows that GWPC is logarith-
mic space reducible to GWP; thus, proving GWP is P -complete as
well [340].
Remarks: For a natural number k, GWPC(k) and GWPC(≤ k)
are the generalized word problems for finitely-generated subgroups
of countably-generated free groups where all words involved are
of length exactly k and at most k, respectively. Stewart shows
GWPC(k) and GWPC(≤ k) are P -complete for k greater than
two [341]. When k equals two the problems are complete for sym-
metric logarithmic space (SLOG). The Word Problem for a Free
Group is to decide whether x equals the empty word in F . This
problem is solvable in deterministic log space (Lipton and Zalcstein
[243]).

190 APPENDIX A. P -COMPLETE PROBLEMS

A.8.7 Subgroup Containment (SC)

Given: Let S be a finite set and F be the free group generated by S.
Let S = {s, s−1 | s ∈ S}, where s−1 denotes the inverse of s. Let S∗

denote the set of all finite words over S. Let U = {u1, . . . , um}, V =
{v1, . . . , vp} ⊆ S∗, where m, p ∈ N.
Problem: Is the group generated by U a subgroup of the group
generated by V ?
Reference: Avenhaus and Madlener [19].
Hint: A variant of the Nielsen reduction algorithm can be used to
show the problem is in P . The reduction is from Generalized Word,
Problem A.8.6. Observe that for any x ∈ S∗ and U ⊆ S∗, x ∈ 〈U〉 if
and only if 〈x〉 is a subgroup of 〈U〉.
Remarks: Since 〈U〉 is a subgroup of 〈V 〉 if and only if 〈U ∪ V 〉 is
normal in 〈V 〉, it follows that the Normal Subgroup Problem, which
is also in P , is P -complete. The problem of determining whether
〈U〉 is normal in 〈U, x〉 is also P -complete [19].

A.8.8 Subgroup Equality (SE)

Given: Let S be a finite set and F be the free group generated
by S. Let S = {s, s−1 | s ∈ S}, where s−1 denotes the in-
verse of s. Let S∗ denote the set of all finite words over S. Let
U = {u1, . . . , um}, V = {v1, . . . , vp} ⊆ S∗, where m, p ∈ N.
Problem: Is 〈U〉 = 〈V 〉?
Reference: Avenhaus and Madlener [19].
Hint: A variant of the Nielsen reduction algorithm can be used to
show the problem is in P . The reduction is from Subgroup Contain-
ment, Problem A.8.7. Observe 〈U〉 is a subgroup of 〈V 〉 if and only
if 〈U ∪ V 〉 = 〈V 〉.

A.8.9 Subgroup Finite Index (SFI)

Given: Let S be a finite set and F be the free group generated
by S. Let S = {s, s−1 | s ∈ S}, where s−1 denotes the in-
verse of s. Let S∗ denote the set of all finite words over S. Let
U = {u1, . . . , um}, V = {v1, . . . , vp} ⊆ S∗, where m, p ∈ N.
Problem: Is 〈U〉 a subgroup of 〈V 〉 with finite index in 〈V 〉? The
index of U in V is the number of distinct right cosets of U in V .
Reference: Avenhaus and Madlener [19].

A.8. ALGEBRA 191

Hint: A variant of the Nielsen reduction algorithm can be used to
show the problem is in P . The reduction is from Subgroup Contain-
ment, Problem A.8.7. Note, 〈U〉 is a subgroup of 〈V 〉 if and only if
〈U ∪ V 〉 has finite index in 〈V 〉. Let x ∈ S∗. The problem of deter-
mining whether 〈U〉 has finite index in 〈U, x〉 is also P -complete [19].

A.8.10 Group Independence (GI)

Given: Let S be a finite set and F be the free group generated by
S. Let S = {s, s−1 | s ∈ S}, where s−1 denotes the inverse of s. Let
S∗ denote the set of all finite words over S. Let U = {u1, . . . , um} ⊆
S∗, where m ∈ N.
Problem: Is U independent? That is, does each x ∈ 〈U〉 have a
unique freely reducible representation? A word w is freely reducible
if it contains no segment of the form ss−1 or s−1s.
Reference: Avenhaus and Madlener [19].
Hint: A variant of the Nielsen reduction algorithm can be used
to show the problem is in P . The reduction is from an arbitrary
polynomial time Turing machine [19].

A.8.11 Group Rank (GR)

Given: Let S be a finite set and F be the free group generated by
S. Let S = {s, s−1 | s ∈ S}, where s−1 denotes the inverse of s.
Let S∗ denote the set of all finite words over S. Let k ∈ N. Let
U = {u1, . . . , um} ⊆ S∗, where m ∈ N.
Problem: Does 〈U〉 have rank k? The rank is the number of ele-
ments in a minimal generating set.
Reference: Avenhaus and Madlener [19].
Hint: A variant of the Nielsen reduction algorithm can be used to
show the problem is in P . The reduction is from Group Indepen-
dence, Problem A.8.10. Observe U is independent if and only if 〈U〉
has rank the number of elements in U .

192 APPENDIX A. P -COMPLETE PROBLEMS

A.8.12 Group Isomorphism (SI)

Given: Let S be a finite set and F be the free group generated
by S. Let S = {s, s−1 | s ∈ S}, where s−1 denotes the in-
verse of s. Let S∗ denote the set of all finite words over S. Let
U = {u1, . . . , um}, V = {v1, . . . , vp} ⊆ S∗, where m, p ∈ N.
Problem: Is 〈U〉 isomorphic to 〈V 〉?
Reference: Avenhaus and Madlener [19].
Hint: A variant of the Nielsen reduction algorithm can be used to
show the problem is in P . The reduction is from Group Indepen-
dence, Problem A.8.10. U is independent if and only if 〈U〉 and
〈{s1, . . . , s|U |}〉 are isomorphic.

A.8.13 Group Induced Isomorphism (GII)

Given: Let S be a finite set and F be the free group generated
by S. Let S = {s, s−1 | s ∈ S}, where s−1 denotes the in-
verse of s. Let S∗ denote the set of all finite words over S. Let
U = {u1, . . . , um}, V = {v1, . . . , vp} ⊆ S∗, where m = p ∈ N.
Problem: Does the mapping φ defined by φ(ui) = vi for i =
1, . . . , m, induce an isomorphism from 〈U〉 to 〈V 〉?
Reference: Avenhaus and Madlener [19].
Hint: A variant of the Nielsen reduction algorithm can be used to
show the problem is in P . The reduction is from Group Indepen-
dence, Problem A.8.10. U is independent if and only if φ as defined
above induces an isomorphism from 〈U〉 to 〈{s1, . . . , s|U |}〉.

A.8.14 Intersection of Cosets (IC)

Given: Let S be a finite set and F be the free group generated by
S. Let S = {s, s−1 | s ∈ S}, where s−1 denotes the inverse of s.
Let S∗ denote the set of all finite words over S. Let x, y ∈ S∗. Let
U = {u1, . . . , um}, V = {v1, . . . , vp} ⊆ S∗, where m = p ∈ N.
Problem: Is 〈U〉x ∩ y〈V 〉 nonempty?
Reference: Avenhaus and Madlener [20].
Hint: A polynomial time algorithm for the problem is given in [20].
The reduction is from an arbitrary polynomial time Turing ma-
chine [20].
Remarks: The Intersection of Right Cosets Problem and the Inter-
section of Left Cosets Problem are subproblems of the Intersection

A.8. ALGEBRA 193

of Cosets Problems and they are both P -complete as well. For ex-
ample, the Right Coset Problem is P -complete since 〈U〉x ∩ 〈V 〉y is
nonempty if and only if 〈U〉xy−1∩e〈V 〉 is nonempty, where e denotes
the empty word.

A.8.15 Intersection of Subgroups (IS)

Given: Let S be a finite set and F be the free group generated by
S. Let S = {s, s−1 | s ∈ S}, where s−1 denotes the inverse of s.
Let S∗ denote the set of all finite words over S. Let e denote the
empty word. Let U = {u1, . . . , um}, V = {v1, . . . , vp} ⊆ S∗, where
m = p ∈ N.
Problem: Is 〈U〉 ∩ 〈V 〉 6= 〈e〉?
Reference: Avenhaus and Madlener [20].
Hint: A polynomial time algorithm for the problem is given in [20].
The reduction is straightforward from Intersection of Right Cosets,
see Problem A.8.14.

A.8.16 Group Coset Equality (GCE)

Given: Let S be a finite set and F be the free group generated by
S. Let S = {s, s−1 | s ∈ S}, where s−1 denotes the inverse of s.
Let S∗ denote the set of all finite words over S. Let x, y ∈ S∗. Let
U = {u1, . . . , um}, V = {v1, . . . , vp} ⊆ S∗, where m = p ∈ N.
Problem: Is 〈U〉x = y〈V 〉?
Reference: Avenhaus and Madlener [20].
Hint: A polynomial time algorithm for the problem is given
in [20]. The reduction is from Intersection of Subgroups, see Prob-
lem A.8.15.
Remarks: The following three decision problems are also P -
complete: Equality of Right Cosets — Does 〈U〉x = 〈V 〉y?, Equiva-
lence of Cosets — Are there x, y such that 〈U〉x = y〈V 〉?, and Equiv-
alence of Right Cosets — Are there x, y such that 〈U〉x = 〈V 〉y? [20].

194 APPENDIX A. P -COMPLETE PROBLEMS

A.8.17 Conjugate Subgroups (CS)

Given: Let S be a finite set and F be the free group generated
by S. Let S = {s, s−1 | s ∈ S}, where s−1 denotes the in-
verse of s. Let S∗ denote the set of all finite words over S. Let
U = {u1, . . . , um}, V = {v1, . . . , vp} ⊆ S∗, where m = p ∈ N.
Problem: Is there a x ∈ S∗ such that x−1〈U〉x = 〈V 〉?
Reference: Avenhaus and Madlener [20].
Hint: A polynomial time algorithm for the problem is given in [20].
The reduction is from Equivalence of Right Cosets, see Problem
A.8.16.
Remarks: The problem of determining whether x−1〈U〉x is a sub-
group of 〈V 〉 is also P -complete [20].

A.8.18 Uniform Word Problem for Finitely
Presented Algebras (UWPFPA)

Given: A finitely presented algebra A = (M, A, Γ) and a pair of
terms x and y. M is a finite set of symbols and A : M → N defines
the arity of each symbol. M is partitioned into two sets: G =
{a ∈ M | A(a) = 0} consists of generator symbols and O = {a ∈
M | A(a) > 0} consists of operator symbols. The set of terms over
M is the smallest subset of M∗ such that

1. all elements of G are terms, and

2. if θ is m-ary and x1, . . . xm are terms, then θ(x1, . . . , xm) is a
term.

Let τ denote the set of terms. Γ is a set of unordered pairs of terms
called axioms. ≡ is the smallest congruence relation on τ satisfying
the axioms of Γ.
Problem: Is x ≡ y?
Reference: Kozen [221].
Hint: A polynomial time algorithm for the problem is given in [221].
The reduction is from Monotone Circuit Value, Problem A.1.3. Let
B be an instance MCVP represented as a list of assignments to vari-
ables C1, . . . , Cn of the form Ci = 0, Ci = 1, Ci = Cj ∨ Ck, or
Ci = Cj ∧ Ck, where i > j, k. B is in MCVP provided value(Cn)
= 1, where n denotes the output gate of the circuit. The reduction
is as follows: G = {C1, . . . , Cn, 0, 1}, O = {∨,∧}, Γ = B ∪ {0 ∨ 0 ≡
0, 0∨1 ≡ 1, 1∨0 ≡ 1, 1∨1 ≡ 1, 0∧0 ≡ 0, 0∧1 ≡ 0, 1∧0 ≡ 0, 1∧1 ≡ 1}.

A.8. ALGEBRA 195

B is in MCVP if and only if Cn ≡ 1.

A.8.19 Finitely Presented Algebras Triviality (FPAT)

Given: A finitely presented algebra A = (M, A, Γ). See Problem
A.8.18 for definitions.
Problem: Is A trivial? That is, does A contain only one element?
Reference: Kozen [221].
Hint: A polynomial time algorithm for the problem is given in [221].
The reduction is from Monotone Circuit Value, Problem A.1.3.
Construct Γ as done in the proof hint for Problem A.8.18. Let
Γ′ = Γ ∪ {Cn ≡ 0}. Using notation from Problem A.8.18, it fol-
lows that B is an instance of MCVP if and only if Cn ≡ 1. That is,
if and only if 1 ≡Γ′ 0 if and only if τ/ ≡Γ′ is trivial.

A.8.20 Finitely Generated Subalgebra (FGS)

Given: A finitely presented algebra A = (M, A, Γ) and terms
x1, . . . , xn, y. Let [x] = {y ∈ τ | x ≡ y}. See the Uniform Word
Problem for Finitely Presented Algebras, Problem A.8.18, for defi-
nitions.
Problem: Is [y] contained in the subalgebra generated by
[x1], . . . , [xn]?
Reference: Kozen [221].
Hint: A polynomial time algorithm for the problem is given in [221].
This problem is a general formulation of Generability, Problem A.6.7,
and so it follows that it is also P -complete.

A.8.21 Finitely Presented Algebras Finiteness
(FPAF)

Given: A finitely presented algebra A = (M,A, Γ). See the Uniform
Word Problem for Finitely Presented Algebras, Problem A.8.18, for
definitions.
Problem: Is A finite?
Reference: Kozen [221].
Hint: A polynomial time algorithm for the problem is
given in [221]. The reduction is from Monotone Circuit
Value, Problem A.1.3, and is similar to that used in Prob-
lem A.8.19. The algebra constructed in that proof is modi-
fied as follows: add another generator b to G, and the axioms

196 APPENDIX A. P -COMPLETE PROBLEMS

{b ∧ b ≡ 0, b ∧ 0 ≡ 0, 0 ∧ b ≡ 0, b ∨ b ≡ 0, b ∨ 0 ≡ 0, 0 ∨ b ≡ 0} to
Γ′ to obtain Γ′′. Γ′′ is finite if Γ′ is trivial; otherwise, it is infinite.

A.8.22 Uniform Word Problem for Lattices (UWPL)

Given: Let E be a set of equations and e1 = e2 an equation. We
present some preliminary definitions before defining the problem. A
lattice is a set L with two binary operations {+, ·} that satisfy the
lattice axioms. Let x, y, z ∈ L. The lattice axioms are as follows:

1. associativity: (x ·y) ·z = x · (y ·z) and (x+y)+z = x+(y +z),

2. commutativity: x · y = y · x and x + y = y + x,

3. idempotence: x · x = x and x + x = x, and

4. absorption: x + (x · y) = x and x · (x + y) = x.

Let U be a countably infinite set of symbols. The set of terms over
U , W (U), is defined inductively as follows:

1. If α is in U , then α is in W (U).

2. If p and q are in W (U), then (p + q) and (p · q) are in W (U).

Let e1 and e2 be terms over U . An equation is a formula of the form
e1 = e2. A valuation for a given lattice L is a mapping µ : U → L.
The valuation is extended to W (U) by defining µ(p+q) = µ(p)+µ(q)
and µ(p·q) = µ(p)·µ(q). A lattice satisfies an equation e1 = e2 under
a valuation µ, denoted L |=µ e1 = e2, if and only if µ(e1) = µ(e2).
A lattice L satisfies a set of equations E, denoted L |=µ E, if and
only if L satisfies every member of E under µ. E implies e1 = e2,
denoted E |= e1 = e2, if and only if for every lattice L and valuation
µ such that L |=µ E, it follows that L |=µ e1 = e2.
Problem: Does E |= e1 = e2?
Reference: Cosmadakis [71].
Hint: A polynomial time algorithm for the problem is given
in [71]. The reduction is from the Implication Problem for Proposi-
tional Horn Clauses (Jones and Laaser [181]). See Problems A.6.1
and A.6.2. Let Σ be a set of propositional formulas of the form
xi ∧ xj ⇒ xk, where x1, x2, . . . are propositional variables. Let σ
be the formula x1 ∧ x2 ⇒ x3. The problem is to test if Σ implies
σ. Let φ represent the formula xj ∧ xj ⇒ xk. In the instance of
UWPL, we construct the equation εφ as follows: αi ·αj ·αk = αi ·αk.
Let EΣ = {εφ | φ ∈ Σ}. It follows that Σ implies σ if and only if
EΣ |= εσ.
Remarks: The problem remains P -complete if we use inequalities

A.8. ALGEBRA 197

instead of equations. Furthermore, the problem remains P -complete
when E = Ø and the terms are represented by directed acyclic graphs
instead of trees. However, if E = Ø and the terms are represented
as trees, the problem is in DLOG [71]. This problem is called the
Identity Problem for Lattices.

A.8.23 Lattice Generators (LG)

Given: Let L be a lattice. Let E be a set of equations and
e, g1, . . . , gn be terms over U . Let µ : U → L be a valuation (see
Problem A.8.22). We present some preliminary definitions first. Let
X ⊆ L. The sublattice generated by X is the smallest subset of L
that contains X and is closed under the operations of L. e is gen-
erated by g1, . . . , gn in L under µ, denoted L |=µ gen(e, g1, . . . , gn),
if and only if µ(e) is in the sublattice of L generated by the set
{µ(gi) | i = 1, . . . , n}. E implies that e is generated by g1, . . . , gn,
denoted E |= gen(g1, . . . , gn), if and only if for every lattice L and val-
uation µ such that L |=µ E, it follows that L |=µ gen(e, g1, . . . , gn).
Problem: Does E |= gen(e, g1, . . . , gn)?
Reference: Cosmadakis [71].
Hint: A polynomial time algorithm for the problem is given in [71].
The reduction is a continuation of the reduction used in Problem
A.8.22. Since EΣ |= εσ if and only if EΣ |= gen(α1 · α2 · α3, α1, α2),
it follows that GPL is also P -complete.
Remarks: The problem remains P -complete when E = Ø and the
terms are represented by directed acyclic graphs instead of trees.
However, if E = Ø and the terms are represented as trees the prob-
lem is in DLOG [71]. This problem is called the Generator Problem
for Free Lattices.

A.8.24 Boolean Recurrence Equation (BRE)

Given: A four-tuple (M,B, F, j), where M is a 1×n Boolean vector,
B is an n× n Boolean matrix, F is an n× 1 Boolean vector, and j
is an integer in the range 0 to n.
Problem: Is the first entry of M ∗ Yj a 1? Yj is defined recursively
as Y0 = F , Yk = B · Yk−1 for k ≥ 1. Y denotes the complement of
Y .
Reference: Bertoni et al. [34].
Hint: The reduction is from an alternating Turing machine that

198 APPENDIX A. P -COMPLETE PROBLEMS

uses O(log n) space.
Remarks: If 0 ≤ j ≤ (log n)k, then the problem is complete for
AC k [34]. That is, the class of problems accepted by alternating
Turing machines in O(log n) space and O((log n)k) alternations.

A.8.25 Fill Slots (FILL)

Given: A Boolean matrix M , and three integers i, j, and k.
Problem: Is a 1 in row k used to cover values in column i when j
is the highest row of the matrix that procedure Fill Slots is applied
to? The Fill Slots procedure basically processes rows of the matrix
from j downward. It looks for the first row r that does not contain
a 1. A 1 is inserted in that row while “covering” the column whose
bits if treated as an integer below r is largest (ties may be broken
arbitrarily). The bits that were covered are then zeroed. The pro-
cess is repeated until the bottom of the matrix is reached.
Reference: de la Torre, Greenlaw, and Schäffer [84].
Hint: The reduction is from a version of topologically ordered
Monotone Circuit Value, Problem A.1.3. We sketch it below. Let
α denote an instance of MCVP. The idea is to generate columns to
simulate each gate in α. Any unspecified matrix value is a 0. Each
gate is associated with a disjoint set of rows and columns. Each row
is associated with some gate; each column is associated with a gate,
except for the columns at the far left of the matrix which correspond
to circuit inputs. A true (false) input is denoted by a column with
a single 1 (respectively, all 0’s) in it. An and gate is associated with
four consecutive rows and three consecutive columns. The topolog-
ical ordering of the gates is translated into a left-to-right ordering
of the gadget columns and a top-to-bottom ordering of the gadget
rows.

The important part of the and gadget is depicted below. These
are the values that occupy the 4 × 3 submatrix of the rows and
columns associated with the and gate.

0 0 0
0 1 1
0 0 0
1 1 1

In the third column there are two additional 1’s below the four rows
shown — one (the other) in a row where the left (respectively, right)

A.8. ALGEBRA 199

output of the gate is input. The left (right) input to an AND gate is
“delivered” in a separate column to the first (respectively, third) row
of the gadget. The or gadget is similar and consists of the lower 3×2
left corner of the and gadget. Inputs to an OR gate are “delivered”
in separate columns to the second row of the gadget. Outputs of the
or gate are handled similar to the and. Assume the output gate G
of α is an or gate. In the instance of FILL i is the second column
of the gadget g corresponding to G, j is the first row of the overall
matrix constructed, and k is the middle row of g.
Remarks: The Fill Slots procedure is similar to one used in [84] to
prove that the Edge Ranking Problem is in P . The result suggests
that their algorithm may not parallelize well. FILL seems interesting
because it involves only Boolean values. Additional details can be
found in de la Torre, Greenlaw, and Schäffer [83]. Also, see Problem
B.1.2.

A.8.26 Multi-list Ranking (MLR)

Given: A set L = {l1, . . . , lq} of lists, where each list lj , 1 ≤ j ≤ q,
contains one or more integers; an integer e, which is an element of
some list; and a designated integer i.
Problem: Does element e receive a rank less than or equal to i?
The rank of each element is computed iteratively as follows: assign
a rank of one to all of the first elements of all lists; delete all occur-
rences of first elements from all lists; repeat this procedure on the
updated lists after incrementing the value of the rank. The proce-
dure is iterated as long as one list is nonempty.
Reference: Dessmark, Lingas, and Maheshwari [91].
Hint: The reduction is from Generic Machine Simulation, Problem
A.12.1.
Remarks: If there are only O((log n)k) lists, the problem can be
solved in SC k+1. The authors show that in this case the problem is
hard for the class SC k. For a variant of the problem with k lists,
each of size at most n, they provide an O(log n) time, nk+1 pro-
cessor CREW-PRAM algorithm. Several other restrictions of the
problem are considered and polylogarithmic time PRAM algorithms
are given for them. See [91] for further details. The original motiva-
tion for looking at this problem was to investigate the complexity of
Successive Convex Hulls, Problem A.9.5.

200 APPENDIX A. P -COMPLETE PROBLEMS

A.8.27 Aperiodic Monoid Membership Variety B2

(AMonMEMB)

Given: A set of total functions a1, . . . , ar and a designated func-
tion f , all from the set {1, 2, . . . , m} to itself, with the property
that 〈a1, . . . , ar〉 ∈ B2. 〈a1, . . . , ar〉 denotes the set of all functions
obtained by composing the functions ai with one another. B2 is a
restricted class of aperiodic monoids. The reader is referred to [29]
for definitions.
Problem: Does f belong to 〈a1, . . . , ar〉?
Reference: Beaudry, McKenzie, and Thérien [29].
Hint: The reduction is from a variant of Generability, Problem
A.6.7.
Remarks: The lattice of aperiodic monoid varieties is partitioned
in [29] into the following five sublattices: B1, B2, B3, B4, and B5.
The membership problem for varieties in B2 as described above is P -
complete. For varieties in B1 the problem is in AC 0; for B3 it is NP -
complete; for B4 it is NP -hard; for B5 it is PSPACE -complete [29].

A.9. GEOMETRY 201

A.9 Geometry

A.9.1 Plane Sweep Triangulation (PST)

Given: An n-vertex polygon Q that may contain holes, and a des-
ignated vertex u.
Problem: Is there a vertical edge connecting to u in the plane sweep
triangulation of Q? The plane sweep triangulation is the triangula-
tion produced by sweeping a horizontal line L from top to bottom.
When L encounters a vertex v of Q, each diagonal from v to another
vertex in Q, which does not cross a previously drawn diagonal, is
added to the triangulation.
Reference: Atallah, Callahan, and Goodrich [18].
Hint: It is easy to see that the plane sweep triangulation algo-
rithm runs in polynomial time. The reduction is from a variant of
Planar CVP, Problem A.1.7. The new version of PCVP consists of
not gates of fanout one, or gates of fanout one, routing gates, and
fanout gates that take one value and produce two copies of it. This
instance of PCVP is required to be laid out on a planar grid in a
special manner with alternating layers of routing and logic. The re-
duction involves constructing “geometric” gadgets for routing (left
and right shifts in the grid), “vertical” wires, fanout one or gates,
and not gates. The presence (absence) of a vertical edge in the tri-
angulation denotes a true (respectively, false) value. The vertex
u is a special “target” vertex in the output gate of the circuit. A
vertical line is connected to u in the triangulation if and only if the
circuit evaluates to true.
Remarks: The problem of finding some arbitrary triangulation is
in NC (Goodrich [130]). If the polygon Q is not allowed to have
holes, the complexity of the problem is open. In [18] they conjecture
that this restricted version is in NC .

A.9.2 3-Oriented Weighted Planar Partitioning
(3OWPP)

Given: A set of nonintersecting line segments s1, . . . , sn in the Eu-
clidean plane (R×R), a set of associated integer weights w1, . . . , wn,
and two designated segments r and t. The segments are 3-oriented
meaning that there are only three different possible slopes for the

202 APPENDIX A. P -COMPLETE PROBLEMS

segments.
Problem: Do segments r and t “touch” in the partitioning of
the plane constructed by extending segments in the order of their
weights? Segments are extended until they reach another segment
or a previous segment extension.
Reference: Atallah, Callahan, and Goodrich [18].
Hint: It is easy to see that the process of extending the segments
can be performed in polynomial time. The reduction is from the
same version of PCVP as used in Problem A.9.1. The gates of the
instance of PCVP are numbered in topological order. Gadgets are
constructed for routing and for logic. There are gadgets for right
and left shifts, fanout gates, or gates, not gates, and true inputs.
true values in the circuit are transmitted as vertical extensions of
segments. The most interesting gadget is the one for the not gate
and we describe this. The gadgets for the other constructs all involve
only two different sloped segments, whereas to simulate not gates
three different slopes are required.

The instance of PCVP is laid out on a grid. We consider a not
gate numbered i that receives its input on channel j and has its
output on channel k. A blocking segment is one that is used to pre-
vent the extension of another line segment and whose weight is very
large. These segments do not play an active role in simulating the
gate. The not gadget consists of six blocking segments and three
additional segments — called “one,” “two,” and “three” indicating
their relative weights. That is, segment one is processed first within
the gadget, followed by two, and then three. Segment two is a hor-
izontal segment whose potential extension spans channels j and k,
and is blocked on both ends. Two lies directly to the left of channel
j. Segment three is a vertical segment on channel k blocked “above”
segment two but with the possibility of being extended downward
across two’s extension. Channel j, the input to not gate i, is blocked
above segment two. Segment one has a slope of −1 and its potential
extension is blocked at both ends. Segment one lies completely to
the left of channel j. Its rightward extension would cross channel j
as well as segment two’s extension. We now describe how this gadget
simulates a not gate. If the input to gate i is true (false), then
the vertical segment on channel j has (respectively, has not) been
extended to where it is blocked. This prevents (allows) segment one
from being extended across segment two. Thus, segment two can be
(respectively, cannot be) extended toward the right across channel k.

A.9. GEOMETRY 203

This prevents (allows) segment three from being extended across seg-
ment two’s extension indicating a false (respectively, true) value
for the output of the gate. The assignments of weights and the con-
struction of all gadgets can be accomplished in logarithmic space.
Segment r is the vertical segment corresponding to the output wire
of the circuit. Segment t is a special output “pad.” r will touch t
when extended if and only if the circuit evaluates to true.
Remarks: The complexity of the 2-oriented version of the problem
is open [18]. In [18] they remark that the problem has been reduced
to an instance of Monotone Circuit Value, Problem A.1.3, that has
a very restricted topology, although not planar. Thus, it is open
whether or not this version of the problem is in NC .

A.9.3 Visibility Layers (VL)

Given: A set of n nonintersecting line segments in the Euclidean
plane and a designated segment s.
Problem: Is the label assigned to segment s by the visibility lay-
ering process congruent to one mod three? The visibility layering
process is repeatedly to compute and delete the upper envelope of
the remaining set of segments and label those segments with the
current depth. The upper envelope consists of those segments visible
from the point (0,+∞). A segment is visible from a point p if a ray
cast from p can hit the segment before hitting any other segment.
Reference: Atallah, Callahan, and Goodrich [18], Hershberger
[156].
Hint: The visibility layering process can be performed in polyno-
mial time [156]. The reduction presented in [156] is from Monotone
Circuit Value, Problem A.1.3. We sketch this reduction. The gates
in the instance of MCVP are assumed to be numbered in topologi-
cal order. A grid is constructed that consists of V + 1 rows and E
columns, where V (E) is the number of vertices (respectively, edges)
in the directed acyclic graph corresponding to the circuit. Gadgets
are constructed for and and or gates. Gadgets consist of horizontal
line segments of varying lengths. The gadget for and gate k with
inputs i and j (i < j), and outputs l and m (l < m) consists of three
horizontal segments situated in row k of the grid. One segment spans
column i, one segment spans column j, and another segment spans
from column i through column m. The gadget for or gate k with
inputs i and j (i < j), and outputs l and m (l < m) consists of

204 APPENDIX A. P -COMPLETE PROBLEMS

three horizontal segments situated in row k of the grid. One seg-
ment spans column j, one segment spans columns i through j, and
another segment spans columns j through m. If an input associated
with a given column is true (false), a horizontal segment is put
(respectively, is not put) in to span that column in row 0. “Deepen-
ers,” which are horizontal line segments spanning single columns of
the grid, are used to make sure gate input values arrive at the “right
time” and also to make sure that once a gate has been evaluated its
outputs affect only the desired gates. Segment s is the third hori-
zontal segment in the gadget of the output gate. The output of the
circuit is true if and only if segment s has a label whose value is
congruent to one mod three.
Remarks: The reduction given in [18] is similar and is also from
a variant of MCVP. The main difference is in the way fanout is
treated. The version of MCVP used in [18] consists of crossing
fanout gates, single output and gates, and single output or gates.
An instance consists of alternate routing and logic layers. Gadgets
are constructed for the three types of gates and a similar decision
problem to the one in [156] is posed to determine the output of the
circuit. If the length of all segments is required to be the same, the
complexity of the problem is not known [18]. In [18] they conjecture
that this version of the problem is in NC .

A.9.4 Point Location on A Convex Hull (PHULL)

Given: An integer d, a set S of n points in Qd, and a designated
point p ∈ Qd.
Problem: Is p on the convex hull of S?
Reference: Long and Warmuth [245].
Hint: The reduction is from Monotone Circuit Value, Problem
A.1.3 [245].
Remarks: The result shows that Successive Convex Hulls, Problem
A.9.5, for arbitrary dimension d is P -complete. See Problem A.9.5.
The convex hull of n points in the Euclidean plane can be computed
optimally on an EREW-PRAM in O(log n) time using n processors
(see Dessmark, Lingas, and Maheshwari [91]).

A.9. GEOMETRY 205

A.9.5 Successive Convex Hulls (SCH)

Given: A set S of n points in the Euclidean plane, an integer k,
and a designated point p ∈ R× R.
Problem: Is p in the kth remaining convex hull that is formed by
repeatedly finding and removing convex hulls from S?
Reference: Dessmark, Lingas, and Maheshwari [91].
Hint: Chazelle shows the problem is in P [53]. The reduction is
from Multi-list Ranking, Problem A.8.26.
Remarks: See Problem A.9.4 for a closely related question.

206 APPENDIX A. P -COMPLETE PROBLEMS

A.10 Real Analysis

A.10.1 Real Analogue to CVP (*) (RealCVP)

Given: A feasible real function V defined on (−∞, +∞). A real
function f is feasible if, given a sufficiently accurate fixed-point bi-
nary approximation to x ∈ [−2n, 2n], a fixed-point binary approxi-
mation to f(x) with absolute error less than 2−n, can be computed
in time nO(1). Sufficiently accurate means that the error in approx-
imating the input x is less than 2−nO(1)

. This fixes the number of
input bits. The continuity of f limits its range; thus, it fixes the
number of output bits. Both are polynomial in n.
Problem: Compute V (x) with absolute error less than 2−n.
Reference: Hoover [159, 158].
Hint: The reduction is from Circuit Value, Problem A.1.1. The
function V computes the continuous analog of the circuit value func-
tion by mapping circuit descriptions, along with their possible inputs,
onto the real line. To evaluate the circuit α on input x do the fol-
lowing: treat the encoding α as an integer, the bits x as an n-bit
fixed-point binary fraction, and add the two. The value of V (α.x) is
then a rational number that encodes the values of the gates of α on
the input x. To make V continuous between these evaluation points,
V is simply linearly interpolated.
Remarks: The same function yields a family of FP -complete poly-
nomials {pn} computable by feasible-size-magnitude circuits. A +,
−, × arithmetic circuit family is feasible-size-magnitude if the nth

member is polynomial size and its output over the interval [−2n, +2n]
can be computed without generating any intermediate values with
magnitude exceeding 2nO(1)

.

A.10.2 Fixed Points of Contraction Mappings (*)
(FPCM)

Given: An NC real function C that behaves as a contractor on
some interval I contained in (−∞,+∞). The endpoints of I are
specified as integers. A real function f is in NC if an approximation
to f(x) with absolute error less than 2−n, for x ∈ [−2n, +2n], can
be computed in NC (with the same input/output conventions as for
RealCVP, Problem A.10.1).

A.10. REAL ANALYSIS 207

Problem: Compute the fixed point of C in I with absolute error
less than 2−n.
Reference: Hoover [159].
Hint: The reduction is from Circuit Value, Problem A.1.1. The
same basic technique as for RealCVP is used but the function C
evaluates the circuit level by level, thus converging to a fixed point
that encodes the final state of the circuit. Finding the fixed point
is in FP since each iteration of the contraction mapping reduces the
width of the interval by some constant factor.
Remarks: This provides an argument that fast numerical methods
based on fixed points probably have to use contraction maps with
better than linear rates of convergence, such as Newton’s method.

A.10.3 Inverting An Injective Real Function (*)
(IIRF)

Given: An NC real function f defined on [0, 1]. The function is in-
creasing and has the property that f(0) < 0 < f(1). Thus, there is a
unique root x0 such that f(x0) = 0. A real function f is in NC if an
approximation to f(x) with error less than 2−n, for x ∈ [−2n,+2n],
can be computed in NC .
Problem: Compute x0 with error less than 2−n.
Reference: Ko [218].
Hint: Map intermediate configurations of a logarithmic space de-
terministic Turing machine onto the real line.
Remarks: This problem was expressed originally in terms of log-
arithmic space computability and reductions — if f is logarithmic
space computable then f−1(0) is not logarithmic space computable,
unless DLOG equals P . The problem remains hard even if f is
required to be differentiable.

208 APPENDIX A. P -COMPLETE PROBLEMS

A.11 Games

A.11.1 Two Player Game (GAME)

Given: A two player game G = (P1, P2, W0, s, M) defined by P1 ∩
P2 = Ø,W0 ⊆ P1 ∪ P2, s ∈ P1, and M ⊆ P1 × P2 ∪ P2 × P1. Pi is
the set of positions in which it is player i’s turn to move. W0 is the
set of immediate winning positions (defined below) for player one,
and s is the starting position. M is the set of allowable moves; if
(p, q) ∈ M and p ∈ P1 (or P2) then player one (respectively, or two)
may move from position p to position q in a single step. A position
x is winning for player one if and only if x ∈ W0, or x ∈ P1 and
(x, y) ∈ M for some winning position y, or x ∈ P2 and y is winning
for every move (x, y) in M .
Problem: Is s a winning position for the first player?
Reference: Jones and Laaser [181], Greenlaw, Hoover, and Ruzzo,
This Work.
Hint: Reduce AM2CVP, Problem A.1.4, to GAME. or gates in the
circuit correspond to winning positions for player one; and gates to
winning positions for player two. W0 is the set of all inputs having
value true and s is the output. s is winning if and only if the output
of the circuit is true.
Remarks: The original reduction by Jones and Laaser was from
Generability, Problem A.6.7, to GAME [181]. Given W , •, V , and
w construct the game G = (W,W×W,V, w, M), where the allowable
moves are given by

M = {(p, (q, r)) | q • r = p} ∪ {((p, q), p) | p, q ∈ W} ∪ {((p, q), q) |
p, q ∈ W}.

Player one attempts to prove that a vertex p is generated by V . One
does this by exhibiting two elements q and r, also claimed to be
generated by V , such that p = q • r. Player two attempts to exhibit
an element of the pair that is not generated by V . Since GAME is
an instance of and/or Graph Solvability, it follows that determining
whether an and/or graph has a solution is also P -complete (Kasif
[202]).

A.11. GAMES 209

A.11.2 Cat and Mouse (CM)

Given: A directed graph G = (V,E) with three distinguished ver-
tices c, m, and g.
Problem: Does the mouse have a winning strategy in the game?
The game is played as follows. The cat starts on vertex c, the mouse
on vertex m, and g represents the goal vertex. The cat and mouse
alternate moves with the mouse moving first. Each move consists of
following a directed edge in the graph. Either player has the option
to pass by remaining on the same vertex. The cat is not allowed to
occupy the goal vertex. The mouse wins if it reaches the goal vertex
without being caught. The cat wins if the mouse and cat occupy the
same vertex.
Reference: Chandra and Stockmeyer [50], (Larry J. Stockmeyer,
Personal Communication, 1984).
Hint: The reduction is from a logarithmic space alternating Turing
machine M . Assume that M starts in an existential configuration
I, has a unique accepting configuration A that is existential, and
each existential (universal) configuration has exactly two immediate
successors, both of which are universal (respectively, existential). A
directed graph is constructed with the number of vertices in the
graph proportional to the number of configurations of M . We illus-
trate only how existential configurations can be simulated and do not
account for the cat or mouse being able to pass on a move. There are
two copies of each configuration C, denoted C and C ′, in the graph
we construct. The graph has additional vertices as well. Consider an
existential configuration X of M with its two succeeding universal
configurations Y and Z. Assume that the cat is on X, the mouse is
on X ′ and it is the mouse’s turn to move. X is directly connected
to Y and Z, whereas X ′ is connected to two intermediate vertices
Y1 and Z1. Y (Z) is connected to Y2 (respectively, Z2). Y1 (Z1) is
connected to both Y ′ and Y2 (respectively, Z ′ and Z2). Both Y2 and
Z2 are connected to g. The mouse simulates an existential move of
M by moving to either Y1 or Z1. If the mouse moves to Y1 (Z1), then
the cat must move to Y (respectively, Z). Otherwise, the mouse’s
next move can be to Y2 (respectively, Z2) and from there onto g un-
contested. From Y1 (Z1) the mouse must move to Y ′ (respectively,
Z ′) and a universal move is ready to be simulated. The simulation
of universal moves is fairly similar with the cat moving first. The
game starts with the cat on I and the mouse on I ′. There is an edge
from A′ to g. M will accept its input if and only if the mouse has a

210 APPENDIX A. P -COMPLETE PROBLEMS

winning strategy.

A.11.3 Acyclic Geography Game (AGG)

Given: An acyclic directed graph G = (V,E). We describe the
game as it is presented in Chandra and Tompa [51]. The Acyclic
Geography Game is played on G by two players. A configuration of
the game is a vertex u ∈ V . Players take turns choosing an edge
(u, v) ∈ G, thereby changing the game configuration from u to v.
The initial configuration is u = 1. The first player with no move left
loses.
Problem: Does player one have a winning strategy on G?
Reference: Chandra and Tompa [51].
Hint: The reduction is from Monotone Circuit Value, Problem
A.1.3.
Remarks: Chandra and Tompa show that a depth constrained ver-
sion of the Geography Game, called SHORTGEOG, is complete for
AC 1 [51].

A.11.4 Longcake (LONGCAKE)

Given: Two players H and V , a token, and a m×n Boolean matrix
M . We first describe how the game is played. Initially, the token is
placed on position m11 of M , it is H’s turn to move, and the current
submatrix is M . The term current submatrix denotes the portion of
M that the game is currently being played on. H’s turn consists of
moving the token horizontally within the current submatrix to some
entry mij = 1. At this point, either all columns to the left of j or all
columns to the right of j are removed from the current submatrix,
depending on which causes fewer columns to be removed. Note that
the token occupies a corner of the current submatrix again. V ’s turn
is similar except V moves vertically and rows are removed. The first
player with no moves left loses.
Problem: Does H have a winning strategy on M?
Reference: Chandra and Tompa [51].
Hint: The reduction is from the Acyclic Geography Game, Problem
A.11.3.
Remarks: The game Shortcake is the same as Longcake except the
larger portion of the current submatrix is thrown away. Shortcake
is complete for AC 1 [51]. Another variant of these games called
Semicake is complete for LOGCFL = SAC 1 [51].

A.11. GAMES 211

A.11.5 Game of Life (LIFE)

Given: An initial configuration of the Game of Life, a time bound
T expressed in unary, and a designated cell c of the grid. The Game
of Life is played on an infinite grid. Cells, squares on the grid,
are either live or dead. Each cell has eight neighbors. An initial
configuration specifies that certain cells are live at the beginning of
the game. The rules of the game are as follows:

1. A cell that is dead at time t becomes live at time t+1 if it had
exactly three live neighbors at time t.

2. A cell dies at time t+1 unless it had two or three live neighbors
at time t.

Problem: Is cell c live at time T?
Reference: Berlekamp, Conway, and Guy [33, pages 817–850],
Greenlaw, Hoover, and Ruzzo, This Work.
Hint: Berlekamp, Conway, and Guy sketch a reduction that the
Game of Life is capable of universal computation. We translated
this result into the statement of a P -complete problem. Since the
time bound is expressed in unary, the decision problem can be an-
swered in polynomial time. The reduction given in [33] is from CVP,
Problem A.1.1. The key to the reduction is to use Life forms such as
glider guns, gliders, and eaters to simulate not, or, and and gates.
Inputs are represented by glider streams that can be thinned, redi-
rected, and copied. Suppose A represents a stream of gliders. The
stream can be complemented by using a glider gun to cause a van-
ishing reaction. That is, gliders shot from the glider gun collide with
those in the stream and disappear. If there is not a glider present in
A at a particular point to collide with, then the glider shot from the
gun proceeds to the output stream. Thus, performing the function
of a not gate. An or (and) gate of fanout one can be built from
two (respectively, one) glider gun(s) and an eater. Glider streams
can be copied using glider guns and eaters. The cell c will be live
at time T if and only if the output gate of the circuit evaluates to
true. Additional details of the reduction are given in [33].
Remarks: The Game of Life is an example of a two dimensional
cellular automata, see Problem A.12.3. It is not known whether a
one dimensional version of the Game of Life can simulate a Turing
machine. See Problem A.12.3 for more details about one dimensional
cellular automata.

212 APPENDIX A. P -COMPLETE PROBLEMS

A.11.6 Zero-sum Bimatrix Game (ZSBG)

Given: Two m×n matrices A and B that have integer entries, and
a designated natural number k, 1 ≤ k ≤ m. The game involves two
players. Simultaneously, player one chooses a row i and player two
chooses a column j. The result of these choices is that player one
(two) receives aij (respectively, bij) points. A strategy i of player one
dominates a strategy i′ of player one if aij ≥ ai′j for j = 1, . . . , n.
A strategy j of player two dominates a strategy j′ of player two
if bij ≥ bij′ for i = 1, . . . ,m. It is easy to see that all dominated
strategies can be removed from both one and two’s matrix without
affecting the outcome of the game. A reduced game is one in which
all dominated strategies have been eliminated. The game is zero-sum
if A+B = O, where O denotes the m×n matrix with all 0 entries.
Problem: Is row k of matrix A deleted in the reduced game? In
a bimatrix game the reduced game is unique up to row and column
permutations (Knuth, Papadimitriou, and Tsitsiklis [217]); thus, the
elimination order will not affect the answer to this question.
Reference: Knuth, Papadimitriou, and Tsitsiklis [217].
Hint: In [217] they give a polynomial time algorithm for the general
problem, that is, the game is not required to be a zero-sum game.
The reduction proving completeness is from a variant of Monotone
Circuit Value, Problem A.1.3. The variant requires that and gates
have only or gates as inputs, or gates are allowed everything expect
inputs from other or gates, the output of the circuit come from an
and gate, no two or gates have the same inputs, and the fanout
of circuit inputs is one. This variant is similar to Problem A.1.4
and is obviously P -complete. Let α be an instance of this restricted
version of MCVP. The reduction involves constructing a matrix A.
Matrix B equals −A. Therefore, the game is zero-sum. Let n denote
the number of or gates in α and m the number of inputs plus and
gates. A will be a (m + 1) × (m + n) matrix. The first m rows of
A correspond to circuit inputs and and gates. The first n columns
correspond to or gates. k will be chosen as the row corresponding
to the output and gate. The description of A’s entries is broken into
three parts. A left submatrix, A’s last row, and the remaining right
submatrix of size m×m.

We first describe the submatrix entries aij , 1 ≤ i ≤ m and 1 ≤
j ≤ m.

1. aij = 3 if row i corresponds to an and gate that receives an
input from the or gate represented by column j.

A.11. GAMES 213

2. aij = −3 if row i corresponds to an input of the or gate rep-
resented by column j.

3. aij = 2 if row i corresponds to a false input that is not input
to the or gate represented by column j.

4. All aij not falling into one of these categories are given a 0
entry.

The last row of matrix A is all 1’s.
The entries ai,n+j , for i, j = 1, . . . , m are as follows:

1. −3 if i = j,

2. 2 if i 6= j and i is a false circuit input, and

3. −1 otherwise.

The entries of A are constructed so that a row or column of A
is eliminated if and only if it corresponded to a gate or input in the
circuit that was true.

A.11.7 Two-person Pebble Game Fixed Rank
(PEBBLE)

Given: A fixed rank pebble game. We present the definitions given
by Kasai, Adachi, and Iwata in [201]. A pebble game is a four tuple
G = (X,R, S, t) with the following properties.

1. X is a finite set of vertices.

2. R ⊆ {(x, y, z) | x, y, z ∈ X,x 6= y, y 6= z, z 6= x} is called the
set of rules. For A,B ⊆ X, we write A ` B if (x, y, z) ∈ R,
x, y ∈ A, z 6∈ A, and B = (A−{x})∪{z}. The move A ` B is

made by the rule (x, y, z). The symbol
∗
` denotes the reflexive

and transitive closure of `.

3. S is a subset of X.

4. t ∈ X is the terminal vertex.
A pebble game has fixed rank if the number of vertices in S is fixed.
In a two-person pebble game two players P1 and P2 alternate moving
pebbles with P1 moving first. The winner is the first player who can
pebble t or who can force the other player into a no move situation.
Problem: Does player P1 have a winning strategy?
Reference: Kasai, Adachi, and Iwata [201].

214 APPENDIX A. P -COMPLETE PROBLEMS

Hint: The reduction is from a logarithmic space bounded alternat-
ing Turing machine.
Remarks: A pebble game is solvable if there exists A ⊆ X such that

S
∗
` A and t ∈ A. The one-person pebble game, which is to determine

if the game is solvable, of fixed ranked is NLOG-complete [201]. For
questions with a similar flavor see Problems A.11.1 and A.11.2. For
additional remarks about pebbling see Section 5.4.

A.12. MISCELLANEOUS 215

A.12 Miscellaneous

A.12.1 Generic Machine Simulation Problem
(GMSP)

Given: A string x, a description M of a Turing machine M , and
an integer t coded in unary. (To be precise, the input is the string
x#M#t, where # is a delimiter character not otherwise present in
the string.)
Problem: Does M accept x within t steps?
Reference: Folklore.
Hint: A proof is given in Chapter 4.
Remarks: Buss and Goldsmith show a variant of this problem is
complete with respect to quasilinear time reductions for NmPl, a
subclass of P . See [48] for the appropriate definitions. They also
show variants of Problems A.1.2 and A.7.2 are complete in this set-
ting.

A.12.2 General Deadlock Detection (GDD)

Given: A multigraph D = (V, E) with V = π ∪ ρ, where π =
{p1, . . . , pn} is the set of process vertices and ρ = {r1, . . . , rm} is the
set of resource vertices; and a set T = {t1, . . . , tm}, where ti denotes
the number of units of ri. The bipartite multigraph D represents the
state of the system. The edges in V are of the form (pi, rj) denoting
a request of process pi for resource rj or of the form (rj , pi) denoting
an allocation of resource rj to process pi.
Problem: Is D a deadlock state? A deadlock state is one in which
there is a nontrivial subset of the processes that cannot change state
and will never change state in the future.
Reference: Spirakis [337].
Hint: The reduction is from Monotone Circuit Value, Problem
A.1.3. Let α = (α1, . . . , αn) denote an instance of MCVP. There
will be one process pi associated with each αi and one additional
special process p0. The representation of gates is as follows:

1. If αi is an input with a false (true) value, the edge (pi, rf i)
(respectively, (rti, pi)) is in D. The rf i’s (rti’s) denote single
unit resource vertices representing false (respectively, true).

216 APPENDIX A. P -COMPLETE PROBLEMS

2. Suppose αi1 = αi2 = αj and αk, where j, k < i1, i2 (the
and gate has fanout two). Then edges (pi1 , ri1j), (pi1 , ri1k),
(ri1j , pj), and (ri1k, pk) are added to D for αi1 , and edges
(pi2 , ri2j), (pi2 , ri2k), (ri2j , pj), and (ri2k, pk) are added to D
for αi2 . The resource vertices are all single unit resources.

3. Suppose αi1 = αi2 = αj or αk, where j, k < i1, i2 (the
or gate has fanout two). Then edges (pi1 , ri1jk), (ri1jk, pj),
and (ri1jk, pk) are added to D for αi1 , and edges (pi2 , ri2jk),
(ri2jk, pj), and (ri2jk, pk) are added to D for αi2 . The resource
vertices are two unit resources.

The subscripts on the resource vertices are used only to uniquely
identify the vertices and do not have any other meaning associated
with them. Edges are also added for the special process p0 as follows:
for 1 ≤ i ≤ n add (rf i, p0) and (p0, rti), and for 1 ≤ j, k ≤ n − 1
add (p0, rnj) and (p0, rnjk). The graph D is not in a deadlock state
if and only if αn is true.
Remarks: Note that in the reduction the maximum number of units
of any resource is two. The problem is in NC if ti equals 1 for all
i [337]. That is, if there is only one unit of each resource. If the
system states are expedient, the resource allocator satisfies them as
soon as possible, and at most one request can be connected to any
process at a given time, then the problem is in NC [337].

A.12.3 One Dimensional Cellular Automata (CA)

Given: An initial configuration of a one dimensional cellular au-
tomata, a time bound T expressed in unary, a state q, and a des-
ignated cell c of the bi-infinite lattice. Each square of the one di-
mensional bi-infinite lattice is called a site. Each site may take on a
finite set of values from an alphabet Σ, where |Σ| = k. The range r
of each site denotes the number of neighbors to each side of the site
that can directly influence it. The variables at each site, denoted
σi, take on values based on a local transition rule φ : Σ2r+1 → Σ,
where σi(t+1) = φ(σi−r(t), σi−r+1(t), . . . , σi+r(t)). Thus, for a value
of r equal to one, the value of σi at time t + 1 is determined by
φ(σi−1(t), σi(t), σi+1(t)), that is, the values of its two neighbors and
itself at time t.
Problem: Is cell c in state q at time T?
Reference: Lindgren and Nordahl [239], Smith [333], Albert and

A.12. MISCELLANEOUS 217

Culik [8], Greenlaw, Hoover, and Ruzzo, This Work.
Hint: It is well known that one dimensional cellular automata are
capable of universal computation. We translated this result into a
P -complete decision problem. Since the time bound is expressed in
unary, the problem is in P . The reduction is based on the direct
simulation of an arbitrary Turing machine. The idea is to have most
of the sites in the cellular automata “asleep.” Some site holds the
Turing machine’s state; its position in the lattice reflects the Turing
machine’s tape head position. The site simulates one move, awak-
ens its left or right neighbor as appropriate, passes the new state as
appropriate, and puts itself to sleep. Cell c of the automata will be
in state q at time T if and only if the Turing machine accepts its
input.
Remarks: Lindgren and Nordahl [239] construct a universal one
dimensional cellular automata from the four tape symbol and seven
state universal Turing machine of Minsky [262]. For r = 1 (r = 2)
implying a three (respectively, five) neighbor rule, their construc-
tion requires seven (respectively, four) states. Both of these results
require periodic background. Using a uniform background, their
constructions require nine (five) states for the three (respectively,
five) neighbor rule.

A.12.4 Fluid Invasion (FLUID)

Given: A graph G = (V, E), a source s and a sink s′, a distinguished
vertex u, a time t, nonnegative real conductances kij for each edge
{i, j}, and nonnegative real capacities φl for each vertex l ∈ V .
Problem: Is vertex u filled by the invading fluid at time t accord-
ing to the fluid invasion algorithm? Informally, the fluid invasion
algorithm proceeds by adding vertices to the cluster one at a time
depending on when they fill up with the fluid being inserted at the
source s. The cluster consists of those vertices that have been filled
by the invading fluid. The evolution of the fluid configuration is
governed by Darcy’s law. The reader is referred to Machta [249] for
additional details of the fluid model.
Reference: Machta [249].
Hint: The reduction is from NORCVP, see Problem A.1.5. A gad-
get is constructed to simulate the circuit in which a vertex in the
gadget fills with fluid if and only if the corresponding gate in the cir-
cuit evaluates to true. One of the key ideas in the reduction is that
fluid can be blocked from preceding along a particular path P1 even

218 APPENDIX A. P -COMPLETE PROBLEMS

after it has “started down” P1. In terms of the circuit instance this
means values can be kept from propagating forward in the circuit.
Remarks: Fluid Invasion remains P -complete when G is restricted
to being a l× l two dimensional lattice in which s (s′) is connected to
all sites on one face (respectively, the opposite face) of the lattice and
with all of the conductances equal to one [249]. The proof that this
restricted version is P -complete is complicated and does not seem
to follow easily from the result for FLUID. Additional schemes de-
signed to model pattern formation processes are studied from a com-
putational complexity point of view in Greenlaw and Machta [142,
141]. There they provide NC algorithms to compute percolation
clusters for three different models — invasion percolation, invasion
percolation with trapping, and ordinary percolation.

A.12.5 Eden Growth (EG)

Given: An undirected graph G = (V, E) in which each vertex in V
has an O(|V |) fixed length, label sequence of m distinct numbers from
{1, . . . ,m}, a designated source vertex s, and a designated vertex t.
Problem: Is vertex t added to the Eden cluster formed on G? The
initial cluster consists of vertex s. At each step i, 1 ≤ i ≤ m, the
vertex adjacent to the current cluster, whose ith label is smallest, is
added to the cluster.
Reference: (Jonathan Machta and Raymond Greenlaw, Personal
Communication, 1993).
Hint: Topological ordered NORCVP, see Problem A.1.5, is reduced
to a directed space-time version of Eden growth. This version is then
converted to an instance of Eden growth as stated in the problem
definition.
Remarks: Eden growth is a process that is used for studying tumor
growth. See Machta and Greenlaw [250] for additional information
about the parallel complexity of Eden growth and related growth
models.

A.12.6 Lempel-Ziv Data Compression (LZDC)

Given: Two binary strings: s and t.
Problem: Is string t added to the dictionary when string s is en-
coded using the LZ2 coding algorithm? The LZ2 algorithm reads
string s from left to right. The dictionary is initially empty. When a
prefix of the unparsed portion of s is not in the dictionary, the prefix

A.12. MISCELLANEOUS 219

is added to the dictionary. All but the last character of the prefix
are compressed by replacing them with a pointer to the dictionary.
Reference: De Agostino [79].
Hint: The reduction is from a variant of Circuit Value, Problem
A.1.1, that consists of or and not gates.
Remarks: De Agostino also shows that two standard variations
of the algorithm yield P -complete problems. They are the next
character heuristic and the first character heuristic. Both are
proved P -complete by reductions from the same version of CVP [79].
De Agostino and Storer show that if given in advance a dictionary
containing n strings under the appropriate assumptions, they can
compute the optimal compression in O(log n) time using n2 proces-
sors on a CREW-PRAM or alternatively in O((log n)2) time using
n processors [80]. They show the techniques can be generalized to
the sliding window method. For such an approach De Agostino and
Storer obtain an O(log n) time algorithm using n3 processors again
on the CREW-PRAM.

A.12.7 Greedy Alphabet Reducing (GAR)

Given: A finite alphabet Σ = {a1, . . . , an} with n greater than two,
two sets P, N ⊆ Σ∗ with P ∩ N = Ø, and a positive integer k less
than or equal to n.
Problem: Is the size of the alphabet Γ obtained by the greedy al-
phabet reducing algorithm less than k? The greedy alphabet reducing
algorithm is given below.

begin
Γ ← Σ;
ψ(a) ← a for each a ∈ Σ;
repeat

for each (a, b) ∈ Γ× Γ with a 6= b
let ϕa→b be a mapping obtained by letting ψ(σ) = b,

for all σ ∈ Σ with ψ(σ) = a;
choose ϕa→b satisfying ϕ̃a→b(P) ∩ ϕ̃a→b(N) = Ø and

minimizing |ϕ̃a→b(P) ∪ ϕ̃a→b(N)|;
(Note, ϕ̃a→b denotes the natural homomorphism associated with
ϕa→b.)

remove a from Γ;
until no more replacements are found;

end.
Reference: Shimozono and Miyano [330].

220 APPENDIX A. P -COMPLETE PROBLEMS

Hint: The reduction is from NANDCVP, Problem A.1.5.
Remarks: Shimozono and Miyano also show that the general Al-
phabet Indexing Problem is NP -complete, and the Alphabet Indexing
Local Search Problem in the weighted case is PLS -complete and in
the unweighted case is P -complete [330].

A.12.8 Network Simulation (NetSim)

Given: A fully connected undirected network with N vertices, a
capacity C(i, j) for each link {i, j} (counted in “trunks”), a list of
tuples specifying call arrival and holding times, and a designated call
c.
Problem: During the simulation of the network (see Greenberg,
Lubachevsky, and Wang [132] for details) is call c blocked?
Reference: Greenberg, Lubachevsky, and Wang [132].
Hint: The reduction is from Monotone Circuit Value, Problem
A.1.3.
Remarks: They also prove that multirate simulation, in which a
call may require more than one trunk on each link on its route, is
P -complete even for N equal to two. See Problem B.8.7 for a related
question.

Appendix B

Open Problems

This appendix contains a list of open problems. Many of these open
questions are stated as search problems to be as general as possible.
The goal is to classify each problem with respect to its computa-
tional complexity by, for example, finding an NC algorithm or a
P -completeness proof for the problem.

For each question, we specify references indicating (to the best
of our knowledge) who first examined the parallel complexity of the
problem. The references also provide a good starting point for be-
ginning research on a given problem. The remarks provided explain
what is known about other versions of the problem. They often give
additional references.

The problems listed are divided into the following categories.

B.1 graph theory
B.2 combinatorial optimization and flow
B.3 logic
B.4 formal languages
B.5 algebraic
B.6 geometry
B.7 real analysis

The open problem list is followed by a list of problems in the
complexity class CC and by a list of problems in RNC . These classes
are related to P and NC in the following ways:

CC ⊆ P and NC ⊆ RNC

but, thus far, CC is incomparable with either NC or RNC , and
RNC is incomparable with P . That is, the classes cannot be related

222 APPENDIX B. OPEN PROBLEMS

using the ⊆ relation.
We conclude our remarks about open problems in this section

by noting that to our knowledge none of the four remaining open
problems in (Garey and Johnson [113]) are known to be P -hard. The
problems are as follows: Graph Isomorphism [OPEN1] (see remarks
for Problems B.1.1 and B.9.9), Precedence Constrained 3-Processor
Scheduling [OPEN8] (see remarks for Problems A.4.8 and A.4.9),
Composite Number [OPEN11], and Minimum Length Triangulation
[OPEN12] [113].

B.1. GRAPH THEORY 223

B.1 Graph Theory

B.1.1 Bounded Degree Graph Isomorphism (BDGI)

Given: Two undirected graphs G = (V, E) and H = (V ′, E′). The
vertices in G and H have maximum degree at most k, a constant
independent of the sizes of G and H.
Problem: Are G and H isomorphic? G = (V, E) and H = (V ′, E′)
are isomorphic if and only if there are two bijections f : V → V ′ and
g : E → E′ such that for every edge e = {u, v} ∈ E, {f(u), f(v)} =
g(e) ∈ E′.
Reference: Furst, Hopcroft, and Luks [110].
Remarks: Luks showed the problem is in P [110]. Without the
degree bound, the problem is in NP but not known to be in P , nor
is it known to be either P -hard or NP -complete. Lindell shows that
the Tree Isomorphism Problem is in NC ; see remarks for Problem
B.9.9. Subtree Isomorphism is in RNC (Gibbons et al. [118], Lingas
and Karpinski [241]). See Problem B.9.9 for additional details.

B.1.2 Edge Ranking (ER)

Given: A tree T = (V, E).
Problem: Find an optimal edge ranking of T . An edge ranking of
a tree is a labeling of the edges using positive integers such that the
path between two edges with the same label contains an intermediate
edge with a higher label. An edge ranking is optimal if the highest
label used is as small as possible.
Reference: de la Torre, Greenlaw, and Schäffer [84].
Remarks: This problem was proved to be in P in [84]. They give
a NC approximation algorithm for the problem that finds an edge
ranking within a factor of two of optimal. An NC algorithm for
constant degree trees is also given in [84]. A similar problem called
the Node Ranking Problem for trees in which the vertices are labeled,
instead of the edges, was proved to be in NC (de la Torre and Green-
law [81], de la Torre, Greenlaw, and Przytycka [82]). See Problem
A.8.25 for a related P -complete problem. Karloff and Shmoys give
NC algorithms for several versions of edge ranking multigraphs [191],
a problem having a similar flavor. See Problems A.2.6 and B.9.3 for
a description of their results.

224 APPENDIX B. OPEN PROBLEMS

B.1.3 Edge-weighted Matching (EWM)

Given: An undirected graph G = (V, E) with positive integer
weights on the edges.
Problem: Find a matching of maximum weight. A matching is a
subset of edges E′ ⊆ E such that no two edges in E′ share a common
endpoint.
Reference: Karp, Upfal, and Wigderson [196].
Remarks: EWM is in RNC if all weights are polynomially
bounded [196]. Even in this restricted case, the problem is not known
to be in NC . Define rank(e) to be the position of edge e’s weight
in the sorted list of edge weights, where the sorting is done in in-
creasing order. Lexicographically First Maximal Matching, Problem
B.8.2 (and hence all of CC), is NC reducible to EWM, by assigning
weight 2rank(e) to edge e.

B.1.4 Graph Closure (GC)

Given: An undirected graph G = (V, E) and a designated edge
e = {u, v}.
Problem: Is e in the closure of G? That is, the graph obtained
from G by repeatedly joining nonadjacent pairs of vertices u and v
whose degree sum is at least |V |.1
Reference: Khuller [208].
Remarks: With the following modification, the problem becomes
P -complete (see Problem A.2.19): add a set of designated edges E′

such that only vertices whose degree sum is at least |V | and whose
corresponding edge is in E′ may be added to the closure [208].

B.1.5 Low Degree Subgraph (LDS)

Given: An undirected graph G = (V, E) and an integer k.
Problem: Find a maximal induced subgraph with maximum degree
at most k.
Reference: Godbeer [119], Greenlaw [134].
Remarks: The Maximal Independent Set Problem is a LDS with k
equal to zero, see Problem A.2.1. Godbeer shows that LDS can be

1Angelo Monti very recently solved this problem by proving it is P-complete
(Sergio De Agostino, Personal Communication, 1994).

B.1. GRAPH THEORY 225

viewed as a Connectionist Model problem in which edge weights have
value −1 [119], see Problem A.5.7. Two decision problems based on
low degree subgraph computations are proved NP -complete in [134].

B.1.6 Maximal Independent Set Hypergraph (MISH)

Given: A hypergraph H = (V, E), where the elements in E are
subsets (called hyperedges) of V .
Problem: Find a maximal independent set I. A set I ⊆ V is inde-
pendent if for all e ∈ E there is at least one v ∈ e such that v 6∈ I.
An independent set I is maximal if for every v ∈ V − I, I ∪ {v} is
not independent.
Reference: Beame and Luby [27].
Remarks: If the edges are two element sets (“dimension two”), the
problem becomes the Maximal Independent Set Problem, which is
known to be in NC , see Problem A.2.1. Beame and Luby give an
RNC algorithm for dimension O(1). Kelsen cites a personal com-
munication to Beame indicating that Beame and Luby’s analysis in
fact only holds for dimension three [206]. Beame and Luby also
give an algorithm for the general problem that is conjectured to be
RNC . Kelsen shows this algorithm is in RNC for constant dimen-
sion [206]. Dahlhaus, Karpinski, and Kelsen give an NC algorithm
for dimension three [77]. Let n denote the number of vertices in the
hypergraph and m the number of edges. Their algorithm runs in
O((log n)4) time and uses n + m processors on an EREW-PRAM.

B.1.7 Restricted Lexicographically First Maximal
Independent Set (RLFMIS)

Given: An undirected, planar, bipartite graph G = (V,E) with a
numbering on the vertices in V .
Problem: Find the lexicographically first maximal independent
set.
Reference: Miyano [265].
Remarks: See Problem A.2.1. Finding the lexicographically first
maximal subgraph of maximum degree one in planar, bipartite
graphs of degree at most three is P -complete [265].

226 APPENDIX B. OPEN PROBLEMS

B.1.8 Lexicographically First Maximal Three-cycle
Free Edge Induced Subgraph (LF3Edge)

Given: An undirected graph G = (V, E) with an ordering on the
edges in E and having a maximum degree of five or less.
Problem: Compute the lexicographically first maximal three-cycle
free edge induced subgraph of G. That is, the lexicographically first
maximal edge induced subgraph that does not contain any cycles of
size three or more.
Reference: Miyano [264, 265].
Remarks: Numerous variants of this problem are P -complete. See
Problem A.2.21 for a description of several of them. LF3Edge is in
NC 2 when the degree restriction on G is four. For planar graphs, the
complexity of the problem is also open. That is, there is no known
degree restriction for LF3Edge that makes the problem P -complete
nor is it clear when the problem is in NC [264]

B.2 Combinatorial Optimization

B.2.1 Optimal Two Variable Integer Linear
Programming (Opt2ILP)

Given: A linear system of inequalities Ax ≤ b over Z, where A is an
n× 2 matrix and b is an n× 1 vector, and an ordered pair u ∈ Z2.
Problem: Find a 2 × 1 vector x, with xT ∈ Z2 (T denotes trans-
pose), such that Ax ≤ b and ux is a maximum.
Reference: Deng [90], Shallcross, Pan, and Lin-Kriz [329].
Remarks: This problem is NC -equivalent to the problem of com-
puting the remainders produced by the Euclidean algorithm, see
Problem B.5.1, [90, 329]. Shallcross, Pan, and Lin-Kriz illustrate
reductions among problems NC -equivalent to this and related prob-
lems [329]. See [90] and the remarks for Problems B.2.2 and B.5.1
as well.

B.2.2 Two Variable Linear Programming (TVLP)

Given: A linear system of inequalities Ax ≤ b over Q, where each
row of A has at most two nonzero elements. A is an n × d matrix
and b is an n× 1 vector.

B.3. LOGIC 227

Problem: Find a feasible solution if one exists.
Reference: Lueker, Megiddo, and Ramachandran [248].
Remarks: There is a polylogarithmic algorithm that uses n(log n)O(1)

processors on a CREW-PRAM [248]. See also Problems A.4.1, A.4.2,
A.4.3, and B.2.1.

B.3 Logic

B.3.1 Canonical Labeling Well-founded Extensional
Relation (CLWER)

Given: A well-founded relation (V, E). The reader is referred to [74]
for definitions.
Problem: Compute a canonical labeling of the relation.
Reference: Dahlhaus [74].
Remarks: See Problem A.6.12 for a related P -complete problem.

B.3.2 One Left-linear Semi-unification (1LLSU)

Given: A set of pairs of terms S = {(M1, N1), . . . , (Mk, Nk)} that
is left linear. See Problem A.6.11 for definitions.
Problem: Is S semi-unifiable?
Reference: Henglein [155].
Remarks: 2LLSU is P -complete [155]; see Problem A.6.11. Hen-
glein conjectures that 1LLSU is P -complete [155].

B.4 Formal Languages

B.4.1 Strong Bisimilarity in Deterministic
Transition Systems (SBDTS)

Given: An encoding of a finite labeled deterministic transition sys-
tem N , and two designated states p and q. A finite labeled transition
system is a triple M = 〈Q, Σ, T 〉, where Q is a finite set of states,
Σ is a finite alphabet, and T ⊆ Q × Σ ×Q is the set of transitions.
The system is deterministic if for each a ∈ Σ and q′ ∈ Q there is a
unique triple in T , (q′, a, p′), where p′ ∈ Q. A relation S ⊆ Q×Q is
a strong bisimulation of M if (s1, s2) ∈ S implies for all x ∈ Σ that

228 APPENDIX B. OPEN PROBLEMS

1. whenever (s1, x, t1) ∈ T , then for some state t2, (s2, x, t2) ∈ T
and (t1, t2) ∈ S; and

2. whenever (s2, x, t2) ∈ T , then for some state t1, (s1, x, t1) ∈ T
and (t1, t2) ∈ S.

The strong bisimulation relation is defined as the union of all strong
bisimulations of M .
Problem: Are p and q strongly bisimilar? That is, is (p, q) in the
strong bisimulation relation of N?
Reference: Àlvarez et al. [11], Balcázar, Gabarró, and Sántha
[23].
Remarks: The problem is P -complete if the system is allowed to
be nondeterministic [23], see Problem A.7.10. The complexity of the
problem is also open if states are restricted to have indegree one [23].

B.4.2 Witness for Unambiguous Finite Automata
(LFWITNESS)

Given: Let M = (Q,Σ, δ, s, F) be an unambiguous finite automaton
and n an integer encoded in unary. A finite automaton is unambigu-
ous if all strings accepted by the machine have a unique accepting
computation.
Problem: Find the lexicographically first witness string for M .
The lexicographically first witness string is the lexicographically first
string that “witnesses” the inequality L(M) ∩ Σ≤n 6= Σ≤n, where
L(M) denotes the language accepted by M and Σ≤n denotes all
strings over Σ of length less than or equal to n.
Reference: Sang Cho and Huynh [314].
Remarks: In [314] the problem is proved to be in P . For determin-
istic finite automata the problem is NC1-complete for NLOG [314].
See [314] for other results regarding related problems.

B.5. ALGEBRA 229

B.5 Algebra

B.5.1 Extended Euclidean Algorithm
(ExtendedGCD)

Given: Two n-bit positive integers a and b.
Problem: Compute integers s and t such that as + bt = gcd(a, b).
Reference: Borodin, von zur Gathen, and Hopcroft [43].
Remarks: The analogous problem for nth degree polynomials is
in NC [43]. Deng shows several other problems are NC -equivalent
to a closely related problem [90]. Two of these are expanding the
continued fraction of the ratio of two integers and computing the
sequence of convergents of two integers. See also Shallcross, Pan,
and Lin-Kriz [329] and remarks following Problem B.2.1.

B.5.2 Gaussian Elimination with Partial Pivoting
over Finite Fields (GEPPFF)

Given: An n × n matrix A with entries over a finite field and an
integer l.
Problem: What is the smallest row index in the lth column that
is nonzero when Gaussian elimination with partial pivoting is per-
formed on A?
Reference: (Allan Borodin, Personal Communication, 1991).
Remarks: Vavasis shows the analogous problem for unrestricted
fields is P -complete [361], see Problem A.8.4.

B.5.3 Integer Greatest Common Divisor
(IntegerGCD)

Given: Two n-bit positive integers a and b.
Problem: Compute the greatest common divisor (gcd) of a and b,
denoted gcd(a, b).
Reference: von zur Gathen [368].
Remarks: For nth degree polynomials p, q ∈ Q[x], comput-
ing gcd(p, q) is in NC 2 via an NC1 reduction to Determinant
(Cook and Sethi [69], Borodin, Cook, and Pippenger [42]). In-
tegerGCD is NC1 reducible to Short Vectors Dimension 2, Prob-
lem B.7.2 [368]. Kannan, Miller, and Rudolph give a sublinear

230 APPENDIX B. OPEN PROBLEMS

CRCW-PRAM algorithm for computing the gcd of two n-bit in-
tegers [184]. Their algorithm requires O(n log log n/ log n) time and
n2(log n)2 processors. Chor and Goldreich give a CRCW-PRAM
algorithm for the same problem with time bound O(n/ log n) and
processor bound n1+ε, for any positive constant ε [56]. Soren-
son presents an algorithm called the k-ary gcd algorithm [335,
336] whose sequential version is practical and whose parallel ver-
sion has bounds that match those given in [56]. Also see (Deng
[90], Lin-Kriz and Pan [237], Shallcross, Pan, and Lin-Kriz [329]) for
additional research on IntegerGCD and related problems.

B.5.4 LU Decomposition (LUD)

Given: An n× n matrix A with entries over the rationals.
Problem: Find a numerically stable LU decomposition of A.
Reference: (Allan Borodin, Personal Communication, 1991).
Remarks: Vavasis shows that the LU decomposition arising from
Gaussian elimination with partial pivoting is P -complete [361], see
Problem A.8.4. The problem here is to find another method for
constructing a LU decomposition in NC . This question is important
because one often solves the same system of equations multiple times.
Having the LU decomposition means the solution for different vectors
can easily be obtained via back substitution.

B.5.5 Modular Inversion (ModInverse)

Given: An n-bit prime p and an n-bit positive integer a, such that
p does not divide a.
Problem: Compute b such that ab mod p = 1.
Reference: Tompa [354].
Remarks: ModInverse is reducible to ExtendedGCD, Problem
B.5.1. The reduction is to compute s and t such that as + pt =
gcd(a, p) = 1. ModInverse is also reducible to ModPower, Prob-
lem B.5.6, even restricted to prime moduli. The idea is to compute
ap−2 mod p and apply Fermat’s Little Theorem. Zeugmann consid-
ers a slight variant of the problem where p is replaced by a smooth
modulus [377]. A number is smooth if all its prime factors are small.
In this case Zeugmann gives a logarithmic space uniform Boolean
family of circuits that solve the problem in O(log n log log n) depth

B.5. ALGEBRA 231

and nO(1) size. Zeugmann gives analogous results for polynomials
over finite fields [376].

B.5.6 Modular Powering (ModPower)

Given: Positive n-bit integers a, b, and c.
Problem: Compute ab mod c.
Reference: Cook [67].
Remarks: The complexity of the problem is open even for finding a
single bit of the desired output. The problem is in NC for smooth c,
that is, for c having only small prime factors (von zur Gathen [369]).
Zeugmann improves on the circuit depth required to solve this prob-
lem in [377]. He presents logarithmic space uniform Boolean circuits
of depth O(log n log log n) and polynomial size. Similar results for
polynomials are given in [376]. Zeugmann also considers the prob-
lem of taking discrete roots and shows that for smooth modulus
this problem can be solved using logarithmic space uniform Boolean
circuits of depth O(log n log log n) and polynomial size [377]. In the
special case when c is a prime (the antithesis of smooth), the problem
is open. ModInverse, Problem B.5.5, is reducible to this restricted
case. The analogous problems when a and c are nth degree polyno-
mials over a finite field of small characteristic, Modular Polynomial
Exponentiation and Polynomial Exponentiation, are in NC 2 (Fich
and Tompa [106]). They are open for finite fields having large (su-
perpolynomial) characteristic. Note that ModPower can be reduced
to the polynomial version with exponential characteristic simply by
considering degree 0 polynomials.

B.5.7 Relative Primeness (RelPrime)

Given: Two n-bit positive integers a and b.
Problem: Are a and b relatively prime?
Reference: Tompa [354].
Remarks: This problem is a special case of IntegerGCD, Problem
B.5.3.

232 APPENDIX B. OPEN PROBLEMS

B.5.8 Sylow Subgroups (SylowSub)

Given: A group G.
Problem: Find the Sylow subgroups of G.
Reference: Babai, Seres, and Luks [21].
Remarks: The problem is known to be in P (Kantor [185]), how-
ever, the NC question is open even for solvable groups [21]. For a
permutation group G, testing membership in G, finding the order of
G, finding the center of G, and finding a composition series of G are
all known to be in NC [21]. Babai, Seres, and Luks present several
other open questions involving group theory [21].

B.6 Geometry

B.6.1 Limited Reflection Ray Tracing (LRRT)

Given: A set of n flat mirrors of lengths l1, . . . , ln, their placements
at rational points in the plane, a source point S, the trajectory of a
single beam emitted from S, and a designated mirror M .
Problem: Is M hit by the beam emitted from S within n reflec-
tions? At the mirrors, the angle of incident of the beam equals the
angle of reflection.
Reference: Greenlaw, Hoover, and Ruzzo, This Work.
Remarks: The General Ray Tracing Problem is to determine if a
mirror is ever hit by the beam. When the mirrors are points, that
is have no length, the general problem is in NC (Pilar de la Torre
and Raymond Greenlaw, Personal Communication, 1990). In two
or more dimensions, the general problem is in PSPACE (Reif, Ty-
gar, and Yoshida [303]). In three dimensions, with mirrors placed
at rational points, the general problem is PSPACE -hard [303]. The
general problem is open for all mirrors of a fixed size as well. See [303]
for a detailed discussion.

B.6.2 Restricted Plane Sweep Triangulation
(SWEEP)

Given: An n-vertex polygon P without holes.
Problem: Find the triangulation computed by the plane sweep tri-
angulation algorithm. See Problem A.9.1 for a description of the

B.6. GEOMETRY 233

algorithm.
Reference: Atallah, Callahan, and Goodrich [18].
Remarks: The problem of finding some arbitrary triangulation is
in NC (Goodrich [130]). If the polygon is allowed to have holes, the
problem is P -complete [18]. See Problem A.9.1.

B.6.3 2-Oriented Weighted Planar Partitioning
(2OWPP)

Given: A set of nonintersecting segments s1, . . . , sn in the Euclidean
plane, a set of associated integer weights w1, . . . , wn, and two desig-
nated segments r and t. The segments are 2-oriented meaning that
there are only two different possible slopes for the segments.
Problem: Do segments r and t “touch” in the partitioning of
the plane constructed by extending segments in the order of their
weights? Segments are extended until they reach another segment
or a previous segment extension.
Reference: Atallah, Callahan, and Goodrich [18].
Remarks: The 3-oriented version, Problem A.9.2, in which three
different slopes are allowed, is P -complete [18].

B.6.4 Unit Length Visibility Layers (ULVL)

Given: A set of n unit length, horizontal, nonintersecting line seg-
ments in the Euclidean plane, a designated segment s, and an integer
d.
Problem: Is the label assigned to segment s by the visibility layer-
ing process d? The visibility layering process is repeatedly to com-
pute and delete the upper envelope of the remaining set of segments
and label those segments with the current depth. The upper enve-
lope consists of those segments visible from the point (0, +∞).
Reference: Atallah, Callahan, and Goodrich [18].
Remarks: The problem is P -complete if the restriction on unit
lengths is removed [18]. See Problem A.9.3.

234 APPENDIX B. OPEN PROBLEMS

B.7 Real Analysis

B.7.1 Short Vectors (SV)

Given: Input vectors a1, . . . , an ∈ Zn that are linearly independent
over Q.
Problem: Find a nonzero vector x in the Z-module (or “lattice”)
M =

∑

aiZ ⊆ Zn such that ‖x‖ ≤ 2(n−1)/2‖y‖ for all y ∈ M −
{

~0
}

,

where ‖y‖ =
(∑

y2
i
)1/2 is the L2 norm.

Reference: von zur Gathen [368].
Remarks: Lenstra, Lenstra, and Lovász show that the problem is in
P [232]. IntegerGCD, Problem B.5.3, is NC1 reducible to SV [368].
For additional remarks about related problems, see Bachem and
Kannan [22].

B.7.2 Short Vectors Dimension 2 (SV2)

Given: Input vectors a1, a2 ∈ Z2 that are linearly independent over
Q, and a rational number c ≥ 1.
Problem: Find a nonzero vector x such that ‖x‖ ≤ c‖y‖ for all
y ∈ M −

{

~0
}

.
Reference: von zur Gathen [368].
Remarks: IntegerGCD, Problem B.5.3, is NC1 reducible to
SV2 [368]. For additional remarks about related problems, see
Bachem and Kannan [22].

B.7.3 Polynomial Root Approximation (PRA)

Given: An nth degree polynomial p ∈ Z[x], and an integer µ.
Problem: For each (real or complex) root zi, 1 ≤ 1 ≤ n, of p, an
approximation z̃i such that |zi − z̃i| < 2−µ.
Reference: Ben-Or et al. [30].
Remarks: If all the roots are real, the problem is in NC [30].

B.8. CC 235

B.7.4 Univariate Polynomial Factorization over Q
(UPFQ)

Given: An nth degree polynomial p ∈ Q[x].
Problem: Compute the factorization of p over Q.
Reference: von zur Gathen [368].
Remarks: UPFQ is NC1 reducible to Short Vectors, Problem
B.7.1 [368].

B.8 CC

Several researchers (including Anderson, Cook, Gupta, Mayr, and
Subramanian) suggested looking at the complexity of the Compara-
tor Circuit Value Problem, or CCVP, Problem B.8.1. This problem is
defined below, Problem B.8.1. CC is defined as the class of problems
NC many-one reducible to CCVP (Mayr and Subramanian [255]).
Problems in this section are all equivalent to, that is, NC many-one
interreducible with CCVP.

While the evidence is less compelling than that for RNC prob-
lems (see Section B.9), it is generally considered unlikely that these
problems are P -complete, because of the lack of fanout in comparator
circuits. On the other hand, no fast parallel algorithms are known
for them, with the partial exception of

√
n(log n)O(1) algorithms for

CCVP and some related problems. Such algorithms were indepen-
dently discovered by Danny Soroker (unpublished) and by Mayr and
Subramanian [255]. Richard J. Anderson (also unpublished) has im-
proved the algorithms so as to use only

√
n processors. Mayr and

Subramanian note that these algorithms are P -complete, in the sense
of Chapter 8.

It is known that NLOG ⊆ CC ⊆ P [255]. At present NC and
CC are incomparable as are RNC and CC . That is, the classes
cannot be related using the ⊆ relation.

The majority of the results described in this appendix come from
Mayr and Subramanian [255]. See also (Feder [104], Ramachandran
and Wang [298], Subramanian [346, 347]) for more research on CC .

236 APPENDIX B. OPEN PROBLEMS

B.8.1 Comparator Circuit Value Problem (CCVP)

Given: An encoding α of a circuit α composed of comparator gates,
plus inputs x1, . . . , xn, and a designated output y. A comparator gate
outputs the minimum of its two inputs on its first output wire and
outputs the maximum of its two inputs on its second output wire.
The gate is further restricted so that each output has fanout at most
one.
Problem: Is output y of α true on input x1, . . . , xn?
Reference: (Stephen A. Cook, Personal Communication, 1982),
Mayr and Subramanian [255].
Remarks: Cook shows that CCVP is NC equivalent to computing
the lexicographically first maximal matching in a bipartite graph.
Mayr and Subramanian show that this matching problem is NC
equivalent to Stable Marriage, Problem B.8.3 [255]. Sairam, Vit-
ter, and Tamassia address the “incremental” complexity of CCVP
in [311].

B.8.2 Lexicographically First Maximal Matching
(LFMM)

Given: An undirected graph G = (V, E) with an ordering on its
edges and a distinguished edge e ∈ E.
Problem: Is e in the lexicographically first maximal matching of
G? A matching is maximal if it cannot be extended.
Reference: (Stephen A. Cook, Personal Communication, 1982),
Mayr and Subramanian [255].
Remarks: LFMM is NC equivalent to Comparator Circuit Value,
Problem B.8.1 [255]. This problem resembles Lexicographically First
Maximal Independent Set, Problem A.2.1, that is P -complete. A
P -completeness proof for LFMM would imply that Edge-weighted
Matching, Problem B.1.3, is also P -complete.

B.8.3 Stable Marriage (SM)

Given: A set of n men and a set of n women. For each person a
ranking of the opposite sex according to their preference for a mar-
riage partner. Note that a preference list does not need to include
a ranking for every member of the opposite sex. This problem is
sometimes called the Stable Roommates Problem.
Problem: Does the given instance of the problem have a set of mar-
riages that is stable? The set is stable (or a set of stable marriages)

B.8. CC 237

if there is no unmatched pair {m,w} such that both m and w prefer
each other to their current partners.
Reference: Mayr and Subramanian [255], Pólya, Tarjan, and
Woods [291].
Remarks: See, for example, Gibbons [116] or [291] for background
on SM. If the preference lists are complete, the problem always
has a solution [291]. SM is NC equivalent to Comparator Circuit
Value, Problem B.8.1 [255]. Several variations of SM are also known
to be equivalent to CCVP. For example, the Male-optimal Stable
Marriage Problem in which there is a designated couple {m,w} and
the question asked is whether man m is married to woman w in the
male-optimal stable marriage? [255]. The male-optimal stable mar-
riage is the one formed by the algorithm given in [291]. It finds a
matching in which no man could do any better in a stable marriage.
Several other versions of SM are discussed in Problems B.8.4, B.8.5,
and B.8.6.

B.8.4 Stable Marriage Fixed Pair (SMFP)

Given: A set of n men and a set of n women, for each person a
ranking of the opposite sex according to their preference for a mar-
riage partner, and a designated couple Alice and Bob.
Problem: Are Alice and Bob a fixed pair for the given instance of
the problem? That is, is it the case that Alice and Bob are married
to each other in every stable marriage?
Reference: Mayr and Subramanian [255], Subramanian [346].
Remarks: The reduction is from Comparator Circuit Value, Prob-
lem B.8.1 [346].

B.8.5 Stable Marriage Stable Pair (SMSP)

Given: A set of n men and a set of n women, for each person a
ranking of the opposite sex according to their preference for a mar-
riage partner, and a designated couple Alice and Bob.
Problem: Are Alice and Bob a stable pair for the given instance of
the problem? That is, is it the case that Alice and Bob are married
to each other in some stable marriage?
Reference: Mayr and Subramanian [255], Subramanian [346].
Remarks: The reduction is from Comparator Circuit Value, Prob-
lem B.8.1 [346].

238 APPENDIX B. OPEN PROBLEMS

B.8.6 Stable Marriage Minimum Regret (SMMR)

Given: A set of n men and a set of n women, for each person
a ranking of the opposite sex according to their preference for a
marriage partner, and an integer k, 1 ≤ k ≤ n.
Problem: Is there a stable marriage in which every person has
regret at most k? The regret of a person in a stable marriage is the
position of her mate on her preference list.
Reference: Mayr and Subramanian [255], Subramanian [346].
Remarks: The goal in this problem is to minimize the maximum
regret of any person. The reduction is from Comparator Circuit
Value, Problem B.8.1 [346].

B.8.7 Telephone Connection (TC)

Given: A telephone line with a fixed channel capacity k, an integer
l, and a sequence of calls (s1, f1), . . . , (sn, fn), where si (fi) denotes
the starting (respectively, finishing) time of the ith call. The ith call
can be serviced at time si if the number of calls being served at that
time is less than k. If the call cannot be served, it is discarded.
When a call is completed, a channel is freed up.
Problem: Is the lth call serviced?
Reference: Ramachandran and Wang [298].
Remarks: TC is NC equivalent to Comparator Circuit
Value, Problem B.8.1 [298]. Ramachandran and Wang give an
O(min(

√
n, k) log n) time EREW-PRAM algorithm that uses n pro-

cessors for solving TC [298]. Also see Problem A.12.8.

B.9. RNC 239

B.9 RNC

The problems in this appendix are all known to be in RNC or FRNC ,
but not known to be in NC or FNC . A proof that any of them
is P -complete would be almost as unexpected as a proof that NC
equals P . Of course, NC ⊆ RNC but RNC and P are at present
incomparable. That is, the classes cannot be related using the ⊆
relation. See Section 3.2.3 for more discussion of these issues. Here
we use RNC (NC) to represent both RNC and FRNC (respectively,
NC and FNC) depending on context.

B.9.1 Blocking Flow in a Three Layered Network
(BF3)

Given: A three layered network G = (V, E) with each edge labeled
with a capacity ci ≥ 0, and two distinguished vertices, source s and
sink t. A three layered network is one in which all source to sink
paths have length three.
Problem: Find a blocking flow. A blocking flow is a flow in which
every path from s to t has a saturated edge — an edge whose flow is
equal to its capacity.
Reference: Cheriyan and Maheshwari [54].
Remarks: The problem is in RNC [54]. The problem of finding the
lexicographically first blocking flow in a three layered network is P -
complete (Anderson and Mayr [15]). See Problem A.4.6. The prob-
lem of finding a blocking flow in an acyclic network is also open [120].
In this case Goldberg and Tarjan give an EREW-PRAM algorithm
that uses O(n log n) time and m processors for an n-vertex, m-edge
network [120].

B.9.2 Directed or Undirected Depth-first Search
(DFS)

Given: A graph G = (V,E) and a vertex s.
Problem: Construct the depth-first search numbering of G starting
from vertex s.
Reference: Aggarwal and Anderson [5], Aggarwal, Anderson, and
Kao [6].
Remarks: RNC algorithms are now known for both the undi-

240 APPENDIX B. OPEN PROBLEMS

rected [5] and directed [6] cases, subsuming earlier RNC results for
planar graphs (Smith [334]). For directed acyclic graphs, DFS is in
NC (de la Torre and Kruskal [85, 86], Greenlaw [135]).

B.9.3 Edge Coloring (EC)

Given: An undirected graph G = (V, E) with ∆ equal to the max-
imum degree of any vertex in V .
Problem: Find an edge coloring of G that uses less than or equal
to ∆ + 1 colors. An edge coloring is an assignment of colors to the
edges such that no incident edges receive the same color.
Reference: Karloff and Shmoys [191].
Remarks: An NC algorithm is known for polylogarithmic ∆ [191].
Karloff and Shmoys give an RNC algorithm on the COMMON
CRCW-PRAM that uses ∆ + 20 ∗∆1/2+ε colors with running time
(log |V |)O(1) and processors |V |O(1), where the running time is for a
fixed ε > 0 and the processor bound is independent of ε. Also see
Problems A.2.6 and B.1.2.

B.9.4 Maximal Path (MP)

Given: An undirected graph G = (V, E) with a numbering on the
vertices in V and a designated vertex r.
Problem: Find a maximal path originating from r. That is, a path
that cannot be extended without encountering a vertex already on
the path.
Reference: Anderson and Mayr [16], Anderson [13].
Remarks: Anderson shows that the problem of computing a max-
imal path is in RNC [13]. Lexicographically First Maximal Path,
Problem A.3.1, is P -complete even when restricted to planar graphs
with maximum degree three. If the maximum degree of any vertex
in G is at most ∆, there is an algorithm that can find a maximal
path in O(∆(log n)3) time using n2 processors [16]. There is also an
NC algorithm for finding a maximal path in planar graphs [16].

B.9. RNC 241

B.9.5 Maximum Disjoint Paths (MDP)

Given: An undirected graph G = (V, E) and a set of vertices
U ⊆ V .
Problem: Find a maximum cardinality set of nontrivial vertex dis-
joint paths that have their endpoints in U .
Reference: Anderson [12].
Remarks: MDP is first reduced to a bidirectional flow problem that
is in turn reduced to a matching problem [12]. See Problem A.3.2.

B.9.6 0-1 Maximum Flow (0-1 MaxFlow)

Given: A directed graph G = (V, E) with each edge labeled in
unary with a capacity ci ≥ 0, and two distinguished vertices, source
s and sink t.
Problem: Find a maximum flow.
Reference: Feather [103], Karp, Upfal, and Wigderson [196].
Remarks: Feather shows the problem of finding the value of the
maximum flow to be in RNC [103]. Karp, Upfal, and Wigderson
show how to construct a maximum flow, also in RNC [196]. Both
problems remain in RNC when capacities are polynomially bounded.
Both are P -complete when capacities are arbitrary, see Problem
A.4.4. Karpinski and Wagner show that when G is given by its vertex
multiplicity graph representation the Unary Network Flow Problem
becomes P -complete [200].

B.9.7 Maximum Matching (MM)

Given: An undirected graph G = (V, E).
Problem: Find a maximum matching of G. The concept of match-
ing is defined in Problem B.1.3. A matching is maximum if no match-
ing of larger cardinality exists.
Reference: Feather [103], Karp, Upfal, and Wigderson [196],
Mulmuley, Vazirani, and Vazirani [271].
Remarks: Feather shows that the problem of finding the size of
a maximum matching is in RNC [103]. Karp, Upfal, and Wigder-
son gave the first RNC algorithm for finding the maximum match-
ing [196]. A more efficient algorithm was given by Mulmuley,
Vazirani, and Vazirani [271]. Karloff shows how any RNC algo-
rithm for matching can be made errorless [188]. Maximum Edge-

242 APPENDIX B. OPEN PROBLEMS

weighted Matching for unary edge weights and Maximum Vertex-
weighted Matching for binary vertex weights are also known to be in
RNC [196, 271].

B.9.8 Perfect Matching Existence (PME)

Given: An undirected graph G = (V, E).
Problem: Does G have a perfect matching? A perfect matching is a
matching where each vertex is incident to one edge in the matching.
Reference: Karp, Upfal, and Wigderson [196], Mulmuley, Vazirani,
and Vazirani [271].
Remarks: See remarks for Problem B.9.7. PME seems to be
the simplest of the matching problems not known to be in NC .
Dahlhaus, Hajnal, and Karpinski show that a perfect matching can
be found in a “dense” graph in NC 2 [76]. Karpinski and Wagner
show that when G is given by its vertex multiplicity graph repre-
sentation the problem becomes P -complete [200]. Using such suc-
cinct graph representations they are also able to show that the Per-
fect Bipartite Matching Problem is P -complete [200]. Grigoriev and
Karpinski show that if the permanent of G is polynomially bounded,
one can decide whether G has a perfect matching in NC 2. They
show how to construct such a matching in NC 3 [143]. See Grigoriev,
Karpinski, and Singer [144] and Karpinski [199] for additional related
work. Osiakwan and Akl designed an EREW-PRAM algorithm for
solving the Maximum Weight Perfect Matching Problem for com-
plete weighted graphs. Their algorithm runs in O(n3/p + n2 log n)
time for p ≤ n, where n is the number of vertices in the graph and
p is the number of processors [275].

B.9.9 Subtree Isomorphism (STI)

Given: Two unrooted trees T = (V, E) and T ′ = (V ′, E′).
Problem: Is T isomorphic to a subtree of T ′? See Problem B.1.1
for the definition of isomorphism.
Reference: Gibbons et al. [118], Lingas and Karpinski [241].
Remarks: RNC 3 algorithms for the problem were developed in-
dependently in [118, 241]. Each uses randomization solely to solve
a number of Bipartite Matching Problems, see Problem B.9.8. Lin-
dell shows that the problem of determining whether two unrooted

B.9. RNC 243

trees are isomorphic, namely the Tree Isomorphism Problem, can be
solved in DLOG ; therefore, on an EREW-PRAM in log n time using
nO(1) processors [238].

Appendix C

Notation

In this appendix we describe the notation used throughout the book.
For standard concepts we do not present a definition here but simply
explain our notation. Items not defined in the book but that are
perhaps less familiar are defined here. For concepts that are defined
in the book, we reference the page on which the concept is defined.

RAM Random access machine.

PRAM Parallel random access machine.

R The set of real numbers.

Q The set of rational numbers.

Z The set of integers.

Z2 The integers mod 2.

N The set of natural numbers.

dxe The least integer not less than x.

bxc The greatest integer not exceeding x.

log n The maximum of 1 and dlog2 ne. (Note, sometimes we in-
clude d e for emphasis.)

|x| The length of string x or the absolute value of number x.

‖x‖ The L2 norm of vector x. That is,
(∑

x2
i
)1/2.

|S| The cardinality of set S.

(x, y) The ordered pair consisting of x and y. If x and y are
vertices in a graph, this pair is often the directed edge from
x to y.

∨ The or function.

245

∧ The and function.

⊕ Exclusive or, also denoted xor.

ε The empty string.

Σ A finite alphabet.

Σ∗ All finite strings over the alphabet Σ.

Σ≤n All strings over the alphabet Σ of length less than or equal
to n.

≡ Is equivalent to.

· Concatenation of strings or concatenation of languages (de-
pending on context).

O(f(n)) The set of functions of growth rate order f(n). Let f and
g be two functions whose domains are the natural numbers
and whose ranges are the positive real numbers. g(n) =
O(f(n)) (or more precisely, g(n) ∈ O(f(n))) if and only if
there exist constants c > 0 and n0 ∈ N such that g(n) ≤
cf(n) for all natural numbers n ≥ n0. For example g(n) =
O(1) means that g(n) is bounded above by some constant.
The following three items are special cases of this. (See
Graham, Knuth, and Patashnik for a general discussion of
asymptotic notation [131].)

nO(1) The set of polynomially bounded functions. f(n) = nO(1)

means that f is bounded above by some polynomial.

f(n)O(1) The set of functions that are polynomial in f(n); equiva-
lently

f(n)O(1) =
⋃

k≥0

f(n)k.

(log n)O(1) A polylogarithmic bounded function; the set of functions
that are polynomial in log n; equivalently

f(n)O(1) =
⋃

k≥0

(log n)k.

Ω(f(n)) The set of functions whose growth rate is at least order
f(n). Let f and g be two functions whose domains are
the natural numbers and whose ranges are the positive real
numbers. g(n) = Ω(f(n)) if and only if there exist con-
stants c > 0 and n0 ∈ N such that g(n) ≥ cf(n) for all
natural numbers n ≥ n0.

246 APPENDIX C. NOTATION

o(f(n)) Functions growing asymptotically slower than f(n). Let
f and g be two functions whose domains are the natural
numbers and whose ranges are the positive real numbers.
g(n) = o(f(n)) if and only if

lim
n→∞

g(n)
f(n)

= 0.

ω(f(n)) Functions growing asymptotically faster than f(n). Let
f and g be two functions whose domains are the natural
numbers and whose ranges are the positive real numbers.
g(n) = ω(f(n)) if and only if

lim
n→∞

g(n)
f(n)

= ∞.

˜O(f(n)) The set of functions of growth rate order (log n)kf(n). Let
f and g be two functions whose domains are the natural
numbers and whose ranges are the positive real numbers.
g(n) = ˜O(f(n)) (or more precisely, g(n) ∈ ˜O(f(n))) if and
only if there exist constants c > 0, k > 0, and n0 ∈ N such
that g(n) ≤ c(log n)kf(n) for all natural numbers n ≥ n0.

≤m Many-one reducibility, see page 47.

≤NC
m NC many-one reducibility, see page 47.

≤NCk

m NC k many-one reducibility (for k ≥ 1), see page 47.

≤log
m Many-one logarithmic space reducibility, see page 54.

≤T Turing reducibility, see page 50.

≤NC
T NC Turing reducibility for PRAM, see page 50.

≤NC
T NC Turing reducibility for circuits, see page 53.

≤NCk

T NC k Turing reducibility for circuits (for k ≥ 1), see page 53.

Appendix D

Complexity Classes

In this appendix we provide a list of the complexity classes mentioned
in the book. When appropriate, we present the “name” of the class.
For those classes that are formally defined in the book, we give a page
reference to the definition. Other classes that are mentioned but not
defined in the text are defined here. Often a class can be defined
in terms of several different models; we present just one definition.
After listing the classes, we provide a brief section exhibiting some
of the relationships among the classes. An excellent reference for
complexity class definitions, alternative definitions, and for a broader
view of how all the classes interrelate is Johnson [177].

D.1 Definitions

In what follows n denotes the size of the input.

• AC k

– The class AC k, for each k ≥ 0, is the set of all languages
L, such that L is recognized by a uniform, unbounded
fanin, circuit family {αn} with size(αn) = nO(1) and
depth(αn) = O((log n)k).

– The type of uniformity usually applied in the definition
is logarithmic space uniformity, except for AC 0 which is
usually defined with DLOGTIME uniformity. That is,
the circuit description can be computed by a random ac-
cess deterministic Turing machine in O(log n) time.

248 APPENDIX D. COMPLEXITY CLASSES

• AC

– The class AC =
⋃

k ≥ 0 AC k.

• ALOG

– Alternating logarithmic space, sometimes denoted
ASPACE (log n).

– The class ALOG is the set of all languages L that are
decidable by alternating Turing machines whose space is
bounded by O(log n).

• CC

– Comparator Circuit Value.

– The class CC is the set of all languages L that are log-
arithmic space reducible to Comparator Circuit Value,
Problem B.8.1.

• DET

– Determinant

– The class DET is the set of all languages that are NC1

Turing reducible to the Integer Determinant Problem.
The Integer Determinant Problem is the problem of com-
puting the determinant of an n × n matrix having n-bit
integer entries.

• DLOG

– Deterministic logarithmic space, sometimes denoted
DSPACE (log n) or DL.

– The class DLOG is the set of all languages L that are
decidable by deterministic Turing machines whose space
is bounded by O(log n).

• DLOGTIME

– Deterministic logarithmic time.

– The class DLOGTIME is the set of all languages L that
are decidable by random access deterministic Turing ma-
chines in time O(log n).

D.1. DEFINITIONS 249

• FNC k

– The class FNC k, for each k ≥ 1, is the set of all functions
F , such that F is computable by a uniform, bounded
fanin, circuit family {αn} with size(αn) = nO(1) and
depth(αn) = O((log n)k).

– The type of uniformity usually applied in the definition
is logarithmic space uniformity, except for FNC 1 where
DLOGTIME uniformity is appropriate.

• FNC

– Function NC .

– The class FNC =
⋃

k ≥ 1 FNC k.

• FP

– Function P .

– The class FP is the set of all functions F that are com-
putable in sequential time nO(1).

• FRNC k

– The class FRNC k, for each k ≥ 1, is the set of all func-
tions F , such that F is computable by a uniform prob-
abilistic circuit family {αn} with size(αn) = nO(1) and
depth(αn) = O((log n)k) and having error probability at
most 1/4.

– The type of uniformity usually applied in the definition
is logarithmic space uniformity, except for FRNC 1 where
DLOGTIME uniformity is appropriate.

• FRNC

– Function RNC .

– The class FRNC =
⋃

k ≥ 1 FRNC k.

• LOGCFL

– The class LOGCFL is the set of all languages L that are
logarithmic space reducible to a context-free language.

250 APPENDIX D. COMPLEXITY CLASSES

• LOGDCFL

– The class LOGDCFL is the set of all languages L that are
logarithmic space reducible to a deterministic context-free
language.

• NC k

– NC k (for k ≥ 1), see definition on page 45.

• NC1

– NC one, see definition on page 45.

• NC0

– NC zero

– The class NC0 is the set of all languages L such that L
is recognized by a DLOGTIME uniform Boolean circuit
family {αn} with size(αn) = nO(1) and depth(αn) =
O(1).

• NC

– Nick’s Class, see definitions on pages 44 and 45.

• NLOG

– Nondeterministic logarithmic space, sometimes denoted
NSPACE (log n) or NL.

– The class NLOG is the set of all languages L that are de-
cidable by nondeterministic Turing machines whose space
is bounded by O(log n).

• NP

– Nondeterministic polynomial time.

– The class NP is the set of all languages L that are decid-
able by a nondeterministic Turing machine in time nO(1).

• #P

– Number P , or sharp P .

D.1. DEFINITIONS 251

– We present the definition given in Johnson [177]. A count-
ing Turing machine (CTM) is a nondeterministic Turing
machine whose output on a given input string is the num-
ber of accepting computations for that input.

– The class #P is the set of all functions F that are com-
putable by CTMs that run in polynomial time.

• P

– Polynomial time, see definition page 44.

• PH

– Polynomial time hierarchy.
Let ΣP

0 = P .

– The class ΣP
k+1, for k ≥ 0, is the set of all languages L

that are decidable in nondeterministic polynomial time
with an oracle to a problem in ΣP

k .

– The class PH =
⋃

k ≥ 0 ΣP
k .

• PLS

– Polynomial local search.

– The following definitions are taken from Schäffer and Yan-
nakakis [324]. A local search problem Ps is a computation
problem (search problem) such that each feasible solution
S to an instance x (the set of feasible solutions is de-
noted F(x), so S ∈ F(x)) has an integer measure µ(S, x).
µ(S, x) will be either maximized or minimized. Every so-
lution S ∈ F(x) also has a set of neighboring solutions
denoted N (S, x). A solution S is locally optimal if it does
not have a strictly better neighbor. That is, one with
larger (smaller) measure in the case of a maximization
(respectively, minimization) problem. The specification
of Ps includes a set of instances I. A local search problem
is given an input instance x ∈ I to find a locally optimal
solution.

– A local search problem Ps is in the class PLS of poly-
nomial local time search problems if the following three
polynomial time algorithms exist.

1. Algorithm A, on input x ∈ I, computes an initial
feasible solution belonging to F(x).

252 APPENDIX D. COMPLEXITY CLASSES

2. Algorithm M , on input x ∈ I and S ∈ F(x), com-
putes µ(S, x).

3. Algorithm C, on input x ∈ I and S ∈ F(x), either
determines that S is locally optimal or finds a better
solution in N (S, x).

• PSPACE

– Polynomial space.

– The class PSPACE is the set of all languages L that are
decidable by Turing machines whose space is bounded by
nO(1).

• RNC

– Random NC , see definition on page 46.

• SAC k

– The class SAC k, for each k ≥ 1, is the set of all lan-
guages L, such that L is decidable by a uniform circuit
family {αn} with size(αn) = nO(1) and depth(αn) =
O((log n)k), where or gates are allowed to have un-
bounded fanin and and gates are required to have
bounded fanin.

– The type of uniformity usually applied in the definition is
logarithmic space uniformity.

• SAC

– Semi-unbounded circuits.

– The class SAC =
⋃

k ≥ 1 SAC k.

• SC k

– The class SC k, for k ≥ 1, is the set of all languages
L that are decidable by deterministic Turing machines
whose space is bounded by O((log n)k) and whose time is
simultaneously bounded by nO(1).

• SC

– Steve’s Class.

– The class SC =
⋃

k ≥ 1 SC k.

D.1. DEFINITIONS 253

• SLOG

– Symmetric logarithmic space, sometimes denoted SL.

– The class SLOG is the set of all languages L that are de-
cidable by symmetric Turing machines whose space usage
on an input of length n is bounded by O(log n).

• SP

– Semi-efficient parallel time.

– The class SP consists of those problems whose sequential
running time t(n) can be improved to T (n) = t(n)ε, ε < 1,
using P (n) = t(n)O(1) processors.

254 APPENDIX D. COMPLEXITY CLASSES

D.2 Relationships Among Complexity
Classes

In this section we mention some of the relationships among the com-
plexity classes discussed in this book. (Note that we have abused
notation slightly to include relations between language classes like
AC and function classes like DET .)

SAC 0 ⊆ AC 0 ⊆ NC 1 ⊆ SAC 1 ⊆ AC 1 ⊆ · · · ⊆ NC k ⊆ SAC k ⊆ AC k

NC = SAC = AC ⊆ P

NC 1 ⊆ DLOG = SC 1 ⊆ SLOG ⊆ NLOG ⊆ LOGCFL = SAC 1

DLOG ⊆ LOGDCFL ⊆ LOGCFL

NLOG ⊆ DET ⊆ AC 1

LOGDCFL ⊆ SC 2 ⊆ SC 3 ⊆ · · · ⊆ SC ⊆ P

DLOG ⊆ SLOG ⊆ NLOG ⊆ ALOG = P

CC ⊆ P ⊆ NP = ΣP
1 ⊆ ΣP

2 ⊆ · · · ⊆ ΣP
k ⊆ PH ⊆ PSPACE

NP ⊆ #P ⊆ PSPACE

Bibliography

The numbers in parentheses at the end of each entry in the bib-
liography are the page numbers on which that item is referenced.

[1] K. R. Abrahamson, N. Dadoun, D. G. Kirkpatrick, and T. Przytycka.
A simple parallel tree contraction algorithm. Journal of Algorithms,
10(2):287–302, 1989. (66)

[2] K. R. Abrahamson, M. Fellows, and C. Wilson. Parallel self-
reducibility. In W. W. Koczkodaj, P. E. Lauer, and A. A. Toptsis,
editors, Proceedings of the Fourth International Conference on Com-
puting and Information, pages 67–70, Toronto, Ont., Canada, May
1992. IEEE. (40)

[3] F. Afrati. The parallel complexity of single rule logic programs. Dis-
crete Applied Mathematics, 40(2):107–126, 10 December 1992. (173)

[4] F. Afrati and C. H. Papadimitriou. The parallel complexity of simple
logic programs. Journal of the ACM, 40(4):891–916, September 1993.

(173)

[5] A. Aggarwal and R. J. Anderson. A Random NC algorithm for depth
first search. Combinatorica, 8(1):1–12, 1988. (145, 239, 240)

[6] A. Aggarwal, R. J. Anderson, and M.-Y. Kao. Parallel depth-first
search in general directed graphs. SIAM Journal on Computing,
19(2):397–409, April 1990. (145, 239, 240)

[7] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and
Analysis of Computer Algorithms. Addison-Wesley, revised edition,
1975. (96)

[8] J. Albert and K. Culik, II. A simple universal cellular automata and
its one-way totalistic versions. Complex Systems, 1(1):1–16, 1987.

(217)

[9] E. W. Allender. P -uniform circuit complexity. Journal of the ACM,
36(4):912–928, October 1989. (15, 32)

256 BIBLIOGRAPHY

[10] N. Alon, L. Babai, and A. Itai. A fast and simple randomized par-
allel algorithm for the maximal independent set problem. Journal of
Algorithms, 7(4):567–583, December 1986. (128)

[11] C. Àlvarez, J. L. Balcázar, J. Gabarró, and M. Sántha. Parallel com-
plexity in the design and analysis of concurrent systems. In E. Aarts,
J. van Leeuwen, and M. Rem, editors, PARLE ’91 Parallel Architec-
tures and Languages Europe: Volume I, volume 505 of Lecture Notes
in Computer Science, pages 288–303, Eindhoven, The Netherlands,
June 1991. Springer-Verlag. (181, 228)

[12] R. J. Anderson. The Complexity of Parallel Algorithms. PhD thesis,
Stanford University, 1985. Computer Science Department Technical
Report STAN-CS-86-1092. (89, 94–96, 102, 145, 146, 148, 164, 241)

[13] R. J. Anderson. A parallel algorithm for the maximal path problem.
Combinatorica, 7(4):315–326, 1987. (144, 240)

[14] R. J. Anderson and E. W. Mayr. A P -complete problem and ap-
proximations to it. Technical Report STAN-CS-84-1014, Stanford
University, 1984. (133)

[15] R. J. Anderson and E. W. Mayr. Parallelism and greedy algorithms.
In Advances in Computing Research, volume 4, pages 17–38. JAI
Press, 1987. (154, 239)

[16] R. J. Anderson and E. W. Mayr. Parallelism and the maximal path
problem. Information Processing Letters, 24(2):121–126, 1987.

(99, 144, 240)

[17] R. J. Anderson, E. W. Mayr, and M. K. Warmuth. Parallel approx-
imation algorithms for bin packing. Information and Computation,
82(3):262–277, September 1989. (93, 95, 112, 154, 155)

[18] M. J. Atallah, P. Callahan, and M. T. Goodrich. P -complete geo-
metric problems. In Proceedings of the 1990 ACM Symposium on
Parallel Algorithms and Architectures, pages 317–326, Crete, Greece,
July 1990. (201–204, 233)

[19] J. Avenhaus and K. Madlener. The Nielsen reduction and P -complete
problems in free groups. Theoretical Computer Science, 32(1,2):61–
76, 1984. (189–192)

[20] J. Avenhaus and K. Madlener. On the complexity of intersection and
conjugacy in free groups. Theoretical Computer Science, 32(3):279–
295, 1984. (192–194)

[21] L. Babai, S. Seres, and E. M. Luks. Permutation groups in NC . In
Proceedings of the Nineteenth Annual ACM Symposium on Theory
of Computing, pages 409–420, New York, NY, May 1987. (232)

BIBLIOGRAPHY 257

[22] A. Bachem and R. Kannan. Lattices and the basis reduction algo-
rithm. Technical Report CMU-CS-84-112, Carnegie-Mellon Univer-
sity, Dept. of Computer Science, 1984. (234)

[23] J. L. Balcázar, J. Gabarró, and M. Sántha. Deciding bisimilarity
is P -complete. Formal Aspects of Computing, 4(6A):638–648, 1992.

(181, 228)

[24] D. A. M. Barrington, N. Immerman, and H. Straubing. On uniformity
within NC 1. Journal of Computer and System Sciences, 41(3):274–
306, December 1990. (15, 32, 33)

[25] D. A. M. Barrington and P. McKenzie. Oracle branching programs
and logspace versus P . Information and Computation, 95(1):96–115,
November 1991. (170)

[26] P. W. Beame, S. A. Cook, and H. J. Hoover. Log depth circuits
for division and related problems. SIAM Journal on Computing,
15(4):994–1003, November 1986. (32, 53)

[27] P. W. Beame and M. Luby. Parallel search for maximal indepen-
dence given minimal dependence. In Proceedings of the First Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 212–218, San
Francisco, CA, January 1990. ACM. (225)

[28] M. Beaudry, P. McKenzie, and P. Péladeau. Circuits with monoidal
gates. In Finkel et al. [107], pages 555–565. (127)

[29] M. Beaudry, P. McKenzie, and D. Thérien. The membership problem
in aperiodic transformation monoids. Journal of the ACM, 39(3):599–
616, July 1992. (200)

[30] M. Ben-Or, E. Feig, D. C. Kozen, and P. Tiwari. A fast parallel
algorithm for determining all roots of a polynomial with real roots.
SIAM Journal on Computing, 17(6):1081–1092, December 1988.

(234)

[31] B. Berger. The fourth moment method. In Proceedings of the Second
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 373–
383, San Francisco, CA, January 1991. ACM. (141)

[32] B. Berger and P. W. Shor. Approximation algorithms for the maxi-
mum acyclic subgraph problem. In Proceedings of the First Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 236–243, San
Francisco, CA, January 1990. ACM. (141)

[33] E. R. Berlekamp, J. H. Conway, and R. K. Guy. Winning Ways for
Your Mathematical Plays, volume 2: Games in Particular. Academic
Press, 1982. (211)

258 BIBLIOGRAPHY

[34] A. Bertoni, M. C. Bollina, G. Mauri, and N. Sabadini. On charac-
terizing classes of efficiently parallelizable problems. In P. Bertolazzi
and F. Luccio, editors, VLSI: Algorithms and Architectures, Pro-
ceedings of the International Workshop on Parallel Computing and
VLSI, pages 13–26, Amalfi, Italy, May 1984 (published 1985). North-
Holland. (197, 198)

[35] G. E. Blelloch. Scans as primitive parallel operations. In Interna-
tional Conference on Parallel Processing, pages 355–362, 1987. (64)

[36] G. E. Blelloch. Prefix sums and their applications. In Reif [302],
chapter 1, pages 35–60. (64)

[37] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications.
MacMillan, 1976. Revised paperback edition, 1977. (132)

[38] G. Bongiovanni, P. Crescenzi, and S. De Agostino. Two P -complete
approximation algorithms. Manuscript, submitted 1993. (165)

[39] R. B. Boppana and J. C. Lagarias. One way functions and circuit
complexity. In A. L. Selman, editor, Structure in Complexity The-
ory, volume 223 of Lecture Notes in Computer Science, pages 51–66,
Berkeley, CA, June 1986. Springer-Verlag. (126)

[40] A. Borodin. On relating time and space to size and depth. SIAM
Journal on Computing, 6(4):733–744, December 1977.

(15, 16, 19, 27, 31, 54, 64, 67, 68, 119)

[41] A. Borodin. Structured vs. general models in computational com-
plexity. L’Enseignement Mathématique, XXVIII(3-4):171–190, July-
December 1982. Also in [244, pages 47–65]. (61)

[42] A. Borodin, S. A. Cook, and N. J. Pippenger. Parallel computation
for well-endowed rings and space-bounded probabilistic machines. In-
formation and Control, 58(1-3):113–136, 1983. (229)

[43] A. Borodin, J. von zur Gathen, and J. E. Hopcroft. Fast parallel
matrix and GCD computations. Information and Control, 52(3):241–
256, 1982. (188, 229)

[44] D. P. Bovet, S. De Agostino, and R. Petreschi. Parallelism and
the feedback vertex set problem. Information Processing Letters,
28(2):81–85, June 1988. (139, 140)

[45] J. F. Boyar and H. J. Karloff. Coloring planar graphs in parallel.
Journal of Algorithms, 8(4):470–479, 1987. (132)

[46] A. Z. Broder. How hard is it to marry at random? (On the approxi-
mation of the permanent). In Proceedings of the Eighteenth Annual
ACM Symposium on Theory of Computing, pages 50–58, Berkeley,
CA, May 1986. Errata: Proceedings of the Twentieth Annual ACM
Symposium on Theory of Computing, page 551, Chicago, IL, May
1988. (142, 143)

BIBLIOGRAPHY 259

[47] R. L. Brooks. On coloring the nodes of a network. Proceedings of the
Cambridge Philosophical Society, 37:194–197, 1941. (132)

[48] J. F. Buss and J. Goldsmith. Nondeterminism within P . In C. Chof-
frut and M. Jantzen, editors, STACS 91: 8th Annual Symposium
on Theoretical Aspects of Computer Science, volume 480 of Lec-
ture Notes in Computer Science, pages 348–359, Hamburg, Germany,
February 1991. Springer-Verlag. (215)

[49] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation.
Journal of the ACM, 28(1):114–133, January 1981. (19, 32, 66, 129)

[50] A. K. Chandra and L. J. Stockmeyer. Alternation. In 17th An-
nual Symposium on Foundations of Computer Science, pages 98–108,
Houston, TX, October 1976. IEEE. Preliminary Version.

(15, 68, 209)

[51] A. K. Chandra and M. Tompa. The complexity of short two-person
games. Discrete Applied Mathematics, 29(1):21–33, November 1990.

(210)

[52] C. L. Chang and R. C. T. Lee. Symbolic Logic and Mechanical The-
orem Proving. Academic Press, 1973. (167, 171)

[53] B. Chazelle. On the convex layers of a planar set. IEEE Transactions
on Information Theory, IT-31(4):509–517, 1985. (205)

[54] J. Cheriyan and S. N. Maheshwari. The parallel complexity of finding
a blocking flow in a 3-layer network. Information Processing Letters,
31(3):157–161, 1989. (154, 239)

[55] B. Chlebus, K. Diks, W. Rytter, and T. Szymacha. Parallel com-
plexity of lexicographically first problems for tree-structured graphs.
In A. Kreczmar and G. Mirkowska, editors, Mathematical Foun-
dations of Computer Science 1989: Proceedings, 14th Symposium,
volume 379 of Lecture Notes in Computer Science, pages 185–
195, Pora̧bka-Kozubnik, Poland, August-September 1989. Springer-
Verlag. (132, 146)

[56] B. Chor and O. Goldreich. An improved parallel algorithm for integer
GCD. Algorithmica, 5:1–10, 1990. (230)

[57] R. Cole and U. Vishkin. The accelerated centroid decomposition tech-
nique for optimal tree evaluation in logarithmic time. Algorithmica,
3(3):329–346, 1988. (66)

[58] A. Condon. A theory of strict P -completeness. In A. Finkel and
M. Jantzen, editors, STACS 92: 9th Annual Symposium on Theo-
retical Aspects of Computer Science, volume 577 of Lecture Notes
in Computer Science, pages 33–44, Cachan, France, February 1992.
Springer-Verlag. (103–107)

260 BIBLIOGRAPHY

[59] M. P. Consens and A. O. Mendelzon. Low complexity aggregation in
GraphLog and Datalog. In S. Abiteboul and P. C. Kanellakis, edi-
tors, ICDT ’90. Third International Conference on Database Theory
Proceedings, volume 470 of Lecture Notes in Computer Science, pages
379–394, Paris, France, 12-14 December 1990. Springer-Verlag. (175)

[60] S. A. Cook. Path systems and language recognition. In Conference
Record of Second Annual ACM Symposium on Theory of Computing,
pages 70–72, Northampton, MA, May 1970. (171)

[61] S. A. Cook. Characterizations of pushdown machines in terms of
time-bounded computers. Journal of the ACM, 18(1):4–18, January
1971. (66, 179)

[62] S. A. Cook. The complexity of theorem proving procedures. In
Conference Record of Third Annual ACM Symposium on Theory of
Computing, pages 151–158, Shaker Heights, OH, May 1971. (75, 167)

[63] S. A. Cook. An observation on time-storage trade off. In Conference
Record of Fifth Annual ACM Symposium on Theory of Computing,
pages 29–33, Austin, TX, April-May 1973. (13, 14)

[64] S. A. Cook. An observation on time-storage trade off. Journal of
Computer and System Sciences, 9(3):308–316, December 1974.

(14, 54, 171)

[65] S. A. Cook. Deterministic CFL’s are accepted simultaneously in
polynomial time and log squared space. In Conference Record of the
Eleventh Annual ACM Symposium on Theory of Computing, pages
338–345, Atlanta, GA, April-May 1979. See also [367]. (15, 32, 67)

[66] S. A. Cook. Towards a complexity theory of synchronous parallel
computation. L’Enseignement Mathématique, XXVII(1–2):99–124,
January-June 1981. Also in [244, pages 75–100]. (21)

[67] S. A. Cook. A taxonomy of problems with fast parallel algorithms.
Information and Control, 64(1–3):2–22, January/February/March
1985. (53, 78, 88, 89, 92, 128, 231)

[68] S. A. Cook and P. W. Dymond. Parallel pointer machines. Compu-
tational Complexity, 3(1):19–30, 1993. (19)

[69] S. A. Cook and R. Sethi. Storage requirements for deterministic
polynomial time recognizable languages. Journal of Computer and
System Sciences, 13(1):25–37, 1976. (69, 229)

[70] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to
Algorithms. MIT Press, 1990. (71)

[71] S. S. Cosmadakis. The word and generator problems for lattices.
Information and Computation, 77(3):192–217, 1988. (196, 197)

BIBLIOGRAPHY 261

[72] L. Csanky. Fast parallel matrix inversion algorithms. SIAM Journal
on Computing, 5(4):618–623, 1976. (188)

[73] F. Cucker and A. Torrecillas. Two P -complete problems in the theory
of the reals. Journal of Complexity, 8(4):454–466, December 1992.

(124, 151)

[74] E. Dahlhaus. Is SETL a suitable language for parallel programming
— a theoretical approach. In E. Börger, H. Kleine Büning, and
M. M. Richter, editors, CSL ’87: 1st Workshop on Computer Sci-
ence Logic, volume 329 of Lecture Notes in Computer Science, pages
56–63, Karlsruhe, West Germany, October 1987 (published 1988).
Springer-Verlag. (174, 227)

[75] E. Dahlhaus. The complexity of subtheories of the existential lin-
ear theory of reals. In E. Börger, H. Kleine Büning, and M. M.
Richter, editors, CSL ’89: 3rd Workshop on Computer Science
Logic, volume 440 of Lecture Notes in Computer Science, pages 76–
89, Kaiserslautern, FRG, October 1989 (published 1990). Springer-
Verlag. (152)

[76] E. Dahlhaus, P. Hajnal, and M. Karpinski. Optimal parallel algo-
rithm for the Hamiltonian cycle problem on dense graphs. In 29th
Annual Symposium on Foundations of Computer Science, pages 186–
193, White Plains, NY, October 1988. IEEE. (242)

[77] E. Dahlhaus, M. Karpinski, and P. Kelsen. An efficient parallel algo-
rithm for computing a maximal independent set in a hypergraph of
dimension 3. Information Processing Letters, 42(6):309–313, 24 July
1992. (225)

[78] B. DasGupta. Learning capabilities of recurrent neural networks. In
Proceedings SOUTHEASTCON ’92, volume 2, pages 822–823, Birm-
ingham, AL, 12-15 April 1992. IEEE. (163)

[79] S. De Agostino. P -complete problems in data compression. Theoret-
ical Computer Science, 127:181–186, 1994. (219)

[80] S. De Agostino and J. A. Storer. Parallel algorithms for optimal
compression using dictionaries with the prefix property. In J. A.
Storer and M. Cohn, editors, Data Compression Conference, pages
52–61, Snowbird, UT, March 1992. IEEE. (219)

[81] P. de la Torre and R. Greenlaw. Super critical tree numbering and
optimal tree ranking are in NC . In Proceedings of the Third IEEE
Symposium on Parallel and Distributed Processing, pages 767–773,
Dallas, TX, December 1991. IEEE. (223)

[82] P. de la Torre, R. Greenlaw, and T. Przytycka. Optimal tree ranking
is in NC . Parallel Processing Letters, 2(1):31–41, March 1992. (223)

262 BIBLIOGRAPHY

[83] P. de la Torre, R. Greenlaw, and A. A. Schäffer. Optimal edge ranking
of trees in polynomial time. Technical Report 92-10, University of
New Hampshire, 1992. To appear, Algorithmica. (199)

[84] P. de la Torre, R. Greenlaw, and A. A. Schäffer. Optimal edge rank-
ing of trees in polynomial time. In Proceedings of the Fourth An-
nual ACM-SIAM Symposium on Discrete Algorithms, pages 138–144,
Austin, TX, January 1993. ACM. (198, 199, 223)

[85] P. de la Torre and C. P. Kruskal. Fast parallel algorithms for all
sources lexicographic search and path finding problems. Technical
Report Technical Report CS-TR 2283, University of Maryland, 1989.
To appear, Journal of Algorithms. (146, 148, 240)

[86] P. de la Torre and C. P. Kruskal. Fast and efficient parallel algorithms
for single source lexicographic depth-first search, breadth-first search
and topological-first search. In International Conference on Parallel
Processing, volume 20, pages III–286–III–287, 1991. (146, 148, 240)

[87] A. L. Delcher and S. R. Kosaraju. An NC algorithm for evaluating
monotone planar circuits. Manuscript, 1991. (124)

[88] L. Denenberg. Computational Complexity of Logical Problems. PhD
thesis, Harvard University, 1984. (168, 169)

[89] L. Denenberg and H. R. Lewis. The complexity of the satisfia-
bility problem for Krom formulas. Theoretical Computer Science,
30(3):319–341, 1984. (168)

[90] X. Deng. On the parallel complexity of integer programming. In
Proceedings of the 1989 ACM Symposium on Parallel Algorithms and
Architectures, pages 110–116, Santa Fe, NM, June 1989.

(226, 229, 230)

[91] A. Dessmark, A. Lingas, and A. Maheshwari. Multi-list ranking:
complexity and applications. In Finkel et al. [107], pages 306–316.

(199, 204, 205)

[92] E. A. Dinic. Algorithm for solution of a problem of maximum flow in
a network with power estimation. Soviet Math. Doklady, 11(5):1277–
1280, 1970. (152)

[93] D. P. Dobkin, R. J. Lipton, and S. P. Reiss. Linear programming
is log-space hard for P . Information Processing Letters, 8(2):96–97,
February 1979. (151, 167)

[94] D. P. Dobkin and S. P. Reiss. The complexity of linear programming.
Theoretical Computer Science, 11(1):1–18, 1980. (151)

[95] D. Dolev, E. Upfal, and M. K. Warmuth. The parallel complexity
of scheduling with precedence constraints. Journal of Parallel and
Distributed Computing, 3(4):553–576, 1986. (156, 157)

BIBLIOGRAPHY 263

[96] C. Dwork, P. C. Kanellakis, and J. C. Mitchell. On the sequential
nature of unification. Journal of Logic Programming, 1(1):35–50,
1984. (171, 172, 174)

[97] C. Dwork, P. C. Kanellakis, and L. J. Stockmeyer. Parallel algorithms
for term matching. SIAM Journal on Computing, 17(4):711–731,
August 1988. (171, 172)

[98] P. W. Dymond. Simultaneous Resource Bounds and Parallel Compu-
tation. PhD thesis, University of Toronto, August 1980. Department
of Computer Science Technical Report 145/80. (19)

[99] P. W. Dymond and S. A. Cook. Hardware complexity and par-
allel computation. In 21st Annual Symposium on Foundations of
Computer Science, pages 360–372, Syracuse, NY, October 1980.
IEEE. (19, 68, 124)

[100] P. W. Dymond and S. A. Cook. Complexity theory of parallel time
and hardware. Information and Computation, 80(3):205–226, March
1989. (19, 68, 124)

[101] P. W. Dymond and W. L. Ruzzo. Parallel random access machines
with owned global memory and deterministic context-free language
recognition. In L. Kott, editor, Automata, Languages, and Pro-
gramming: 13th International Colloquium, volume 226 of Lecture
Notes in Computer Science, pages 95–104, Rennes, France, July 1986.
Springer-Verlag. (24, 176)

[102] P. W. Dymond and M. Tompa. Speedups of deterministic machines
by synchronous parallel machines. Journal of Computer and System
Sciences, 30(2):149–161, April 1985. (63, 69)

[103] T. Feather. The parallel complexity of some flow and matching prob-
lems. Master’s thesis, University of Toronto, 1984. Department of
Computer Science Technical Report 174/84. (152, 241)

[104] T. Feder. A new fixed point approach to stable networks and stable
marriages. Journal of Computer and System Sciences, 45(2):233–284,
October 1992. (235)

[105] F. E. Fich. The complexity of computation on the parallel random
access machine. In Reif [302], chapter 20, pages 843–899. (17, 21, 24)

[106] F. E. Fich and M. Tompa. The parallel complexity of exponentiating
polynomials over finite fields. Journal of the ACM, 35(3):651–667,
July 1988. (231)

[107] A. Finkel, P. Enjalbert, and K. W. Wagner, editors. STACS 93: 10th
Annual Symposium on Theoretical Aspects of Computer Science, vol-
ume 665 of Lecture Notes in Computer Science, Wurzburg, Germany,
February 1993. Springer-Verlag. (257, 262, 279, 282)

264 BIBLIOGRAPHY

[108] L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton
University Press, 1962. (152)

[109] S. Fortune and J. C. Wyllie. Parallelism in random access ma-
chines. In Conference Record of the Tenth Annual ACM Sympo-
sium on Theory of Computing, pages 114–118, San Diego, CA, May
1978. (19, 22–24)

[110] M. L. Furst, J. E. Hopcroft, and E. M. Luks. Polynomial time algo-
rithms for permutation groups. In 21st Annual Symposium on Foun-
dations of Computer Science, pages 36–41, Syracuse, NY, October
1980. IEEE. (223)

[111] Z. Galil. Two way deterministic pushdown automaton languages and
some open problems in the theory of computation. In 15th Annual
Symposium on Switching and Automata Theory, pages 170–177, 1974.
Published in journal form as [112]. (14, 179)

[112] Z. Galil. Some open problems in the theory of computation as ques-
tions about two-way deterministic pushdown automaton languages.
Mathematical Systems Theory, 10(3):211–228, 1977. (14, 179, 264)

[113] M. R. Garey and D. S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman and Com-
pany, 1979. (x, 8, 47, 102, 111, 112, 132, 137, 141, 166, 189, 222)

[114] H. Gazit, G. L. Miller, and S.-H. Teng. Optimal tree contraction in
the EREW model. In Tewksbury et al. [353], pages 139–156. (66)

[115] M. Geréb-Graus, R. Paturi, and E. Szemerédi. There are no P -
complete families of symmetric Boolean functions. Information Pro-
cessing Letters, 30(1):47–49, 16 January 1989. (16)

[116] A. M. Gibbons. Algorithmic Graph Theory. Cambridge University
Press, 1985. (237)

[117] A. M. Gibbons and W. Rytter. Efficient Parallel Algorithms. Cam-
bridge University Press, 1988. (16)

[118] P. B. Gibbons, R. M. Karp, G. L. Miller, and D. Soroker. Sub-
tree isomorphism is in Random NC . Discrete Applied Mathematics,
29(1):35–62, November 1990. (223, 242)

[119] G. Godbeer. The computational complexity of the stable configura-
tion problem for connectionist models. Master’s thesis, University of
Toronto, 1987. (163, 164, 224, 225)

[120] A. V. Goldberg and R. E. Tarjan. A parallel algorithm for finding a
blocking flow in an acyclic network. Information Processing Letters,
31(5):265–271, 12 June 1989. (154, 239)

BIBLIOGRAPHY 265

[121] M. Goldberg and T. Spencer. A new parallel algorithm for the
maximal independent set problem. SIAM Journal on Computing,
18(2):419–427, April 1989. (128)

[122] L. M. Goldschlager. The monotone and planar circuit value problems
are log space complete for P . SIGACT News, 9(2):25–29, Summer
1977. (14, 79, 122, 123)

[123] L. M. Goldschlager. Synchronous Parallel Computation. PhD thesis,
University of Toronto, December 1977. Computer Science Depart-
ment Technical Report 114. (15)

[124] L. M. Goldschlager. A space efficient algorithm for the monotone pla-
nar circuit value problem. Information Processing Letters, 10(1):25–
27, 1980. (124)

[125] L. M. Goldschlager. ε-productions in context-free grammars. Acta
Informatica, 16(3):303–308, 1981. (176, 177)

[126] L. M. Goldschlager. A universal interconnection pattern for parallel
computers. Journal of the ACM, 29(4):1073–1086, October 1982.

(15, 19, 22–24, 33, 68)

[127] L. M. Goldschlager and I. Parberry. On the construction of paral-
lel computers from various bases of Boolean functions. Theoretical
Computer Science, 43(1):43–58, 1986. (121)

[128] L. M. Goldschlager, R. A. Shaw, and J. Staples. The maximum flow
problem is log space complete for P . Theoretical Computer Science,
21(1):105–111, October 1982. (16, 122, 152)

[129] G. B. Goodrich. The Complexity of Finite Languages. PhD thesis,
University of Washington, 1983. (178, 179)

[130] M. T. Goodrich. Triangulating a polygon in parallel. Journal of
Algorithms, 10(3):327–351, 1989. (201, 233)

[131] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Math-
ematics: A Foundation for Computer Science. Addison-Wesley,
1989. (245)

[132] A. G. Greenberg, B. D. Lubachevsky, and L.-C. Wang. Experience
in massively parallel discrete event simulation. In Proceedings of
the 1993 ACM Symposium on Parallel Algorithms and Architectures,
pages 193–202, Velen, Germany, June 1993. (220)

[133] R. Greenlaw. The Complexity of Parallel Computations: Inherently
Sequential Algorithms and P-Complete Problems. PhD thesis, Uni-
versity of Washington, December 1988. Department of Computer
Science Technical Report 88–12–01. (94, 96, 137, 146–148)

266 BIBLIOGRAPHY

[134] R. Greenlaw. Ordered vertex removal and subgraph problems. Jour-
nal of Computer and System Sciences, 39(3):323–342, December
1989. (133, 136, 139, 224, 225)

[135] R. Greenlaw. A model classifying algorithms as inherently sequential
with applications to graph searching. Information and Computation,
97(2):133–149, April 1992. (94, 95, 146, 147, 240)

[136] R. Greenlaw. The parallel complexity of approximation algorithms
for the maximum acyclic subgraph problem. Mathematical Systems
Theory, 25(3):161–175, 1992. (140, 141)

[137] R. Greenlaw. Towards understanding the effective parallelization of
sequential algorithms. In R. Baeza-Yates and U. Manber, editors,
Computer Science: Research and Applications, chapter 30, pages
395–406. Plenum Press, 1992. (140, 141)

[138] R. Greenlaw. Polynomial completeness and parallel computation. In
Reif [302], chapter 21, pages 901–953. (17)

[139] R. Greenlaw. Breadth-depth search is P -complete. Parallel Process-
ing Letters, 3(3):209–222, 1993. (147)

[140] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to Parallel
Computation: P-Completeness Theory . Computing Science Series,
editor Z. Galil. Oxford University Press, 1995. This Work.

(84, 109, 110, 123, 148, 169, 178, 180, 208, 211, 217, 232)

[141] R. Greenlaw and J. Machta. The parallel complexity of algorithms for
pattern formation models. In Canada/France Conference on Parallel
Computing, volume 805 of Lecture Notes in Computer Science, pages
23–34, Montreal, Canada, May 1994. Springer-Verlag. (218)

[142] R. Greenlaw and J. Machta. The parallel complexity of Eden growth,
solid-on-solid growth and ballistic deposition. In Second European
Symposium on Algorithms, volume 855 of Lecture Notes in Computer
Science, pages 436–447, Utrecht, The Netherlands, September 1994.
Springer-Verlag. (218)

[143] D. Y. Grigoriev and M. Karpinski. The matching problem for bi-
partite graphs with polynomially bounded permanents is in NC . In
28th Annual Symposium on Foundations of Computer Science, pages
166–172, Los Angeles, CA, October 1987. IEEE. (242)

[144] D. Y. Grigoriev, M. Karpinski, and M. F. Singer. Fast parallel algo-
rithms for sparse multivariate polynomial interpolation over finite
fields. SIAM Journal on Computing, 19(6):1059–1063, December
1990. (242)

[145] T. Hagerup. Planar depth-first search in O(log n) parallel time. SIAM
Journal on Computing, 19(4):678–704, August 1990. (146)

BIBLIOGRAPHY 267

[146] P. Hajnal and E. Szemerédi. Brooks coloring in parallel. SIAM
Journal on Discrete Mathematics, 3(1):74–80, 1990. (132)

[147] M. A. Harrison. Introduction to Formal Language Theory. Addison
Wesley, 1979. (180)

[148] J. Hartmanis, P. M. Lewis, II, and R. E. Stearns. Hierarchies of
memory limited computations. In Conference Record on Switching
Circuit Theory and Logical Design, pages 179–190, Ann Arbor, MI,
1965. (70)

[149] J. H̊astad. Computational Limitations of Small-Depth Circuits. MIT
Press, 1987. ACM Doctoral Dissertation Award Series (1986). (126)

[150] J. H̊astad. One-way permutations in NC 0. Information Processing
Letters, 26(3):153–155, 23 November 1987. (126)

[151] X. He. Efficient parallel algorithms for solving some tree problems.
In Proceedings, Twenty-Fourth Annual Allerton Conference on Com-
munication, Control and Computing, pages 777–786, Monticello, IL,
September 1986. (66)

[152] X. He and Y. Yesha. A nearly optimal parallel algorithm for con-
structing depth first spanning trees in planar graphs. SIAM Journal
on Computing, 17(3):486–491, 1988. (146)

[153] D. Helmbold and E. W. Mayr. Perfect graphs and parallel algorithms.
In International Conference on Parallel Processing, pages 853–860.
IEEE, 1986. (156)

[154] D. Helmbold and E. W. Mayr. Fast scheduling algorithms on parallel
computers. In Advances in Computing Research, volume 4, pages 39–
68. JAI Press, 1987. (101, 102, 155, 156)

[155] F. Henglein. Fast left-linear semi-unification. In S. G. Akl, F. Fiala,
and W. W. Koczkodaj, editors, Advances in Computing and Infor-
mation – ICCI ’90, volume 468 of Lecture Notes in Computer Sci-
ence, pages 82–91, Niagara Falls, Ont., Canada, May 1990. Springer-
Verlag. (173, 174, 227)

[156] J. Hershberger. Upper envelope onion peeling. Computational
Geometry: Theory and Applications, 2(2):93–110, October 1992.

(203, 204)

[157] J.-W. Hong. Similarity and duality in computation. Information and
Control, 62(1):109–128, 1984. (67)

[158] H. J. Hoover. Feasible real functions and arithmetic circuits. SIAM
Journal on Computing, 19(1):182–204, February 1990. (206)

[159] H. J. Hoover. Real functions, contraction mappings, and P -
completeness. Information and Computation, 93(2):333–349, August
1991. (206, 207)

268 BIBLIOGRAPHY

[160] H. J. Hoover, M. M. Klawe, and N. J. Pippenger. Bounding fan-
out in logical networks. Journal of the ACM, 31(1):13–18, January
1984. (29)

[161] J. E. Hopcroft and J. D. Ullman. Formal Languages and their Rela-
tion to Automata. Addison-Wesley, 1969. (58)

[162] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 1979. (58, 179, 180)

[163] E. Horowitz and S. Sahni. Fundamentals of Computer Algorithms.
Computer Science Press, 1978. (146)

[164] R. A. Howard. Dynamic Programming and Markov Processes. MIT
Press, 1960. (185)

[165] O. H. Ibarra, T. Jiang, and J. H. Chang. On iterative and cellular
tree arrays. Journal of Computer and System Sciences, 38(3):452–
473, June 1989. (182, 183)

[166] O. H. Ibarra and S. M. Kim. Characterizations and computational
complexity of systolic trellis automata. Theoretical Computer Sci-
ence, 29(1,2):123–153, 1984. (182)

[167] O. H. Ibarra, S. Moran, and L. E. Rosier. A note on the parallel
complexity of computing the rank of order n matrices. Information
Processing Letters, 11(4-5):162, 12 December 1980. (188)

[168] N. Immerman. Number of quantifiers is better than number of tape
cells. Journal of Computer and System Sciences, 22(3):384–406,
1981. (129)

[169] N. Immerman. Languages that capture complexity classes. SIAM
Journal on Computing, 16(4):760–778, 1987. (129)

[170] Institute for New Generation Computer Technology (ICOT), ed-
itor. Fifth Generation Computer Systems 1988: Proceedings of
the International Conference on Fifth Generation Computer Sys-
tems 1988, Tokyo, Japan, November-December 1988. OHMSHA,
LTD./Springer-Verlag. (275)

[171] A. Itai. Two–commodity flow. Journal of the ACM, 25(4):596–611,
1978. (151, 153)

[172] J. JáJá. An Introduction to Parallel Algorithms. Addison-Wesley,
1992. (17)

[173] M. Jerrum and A. Sinclair. Conductance and the rapid mixing prop-
erty for Markov chains: The approximation of the permanent re-
solved. In Proceedings of the Twentieth Annual ACM Symposium on
Theory of Computing, pages 235–244, Chicago, IL, May 1988. (143)

BIBLIOGRAPHY 269

[174] D. B. Johnson. Parallel algorithms for minimum cuts and maximum
flows in planar networks. Journal of the ACM, 34(4):950–967, 1987.

(153)

[175] D. B. Johnson and S. M. Venkatesan. Parallel algorithms for mini-
mum cuts and maximum flows in planar networks (preliminary ver-
sion). In 23rd Annual Symposium on Foundations of Computer Sci-
ence, pages 244–254, Chicago, IL, November 1982. IEEE. (153)

[176] D. S. Johnson. The NP -completeness column: An ongoing guide
(7th). Journal of Algorithms, 4(2):189–203, 1983. (21)

[177] D. S. Johnson. A catalog of complexity classes. In van Leeuwen [360],
chapter 2, pages 67–161. (14, 17, 51, 247, 251)

[178] D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis. How easy
is local search? Journal of Computer and System Sciences, 37(1):79–
100, 1988. (158, 159, 161)

[179] N. D. Jones. Space-bounded reducibility among combinatorial
problems. Journal of Computer and System Sciences, 11:68–85,
1975. (14)

[180] N. D. Jones and W. T. Laaser. Complete problems for deterministic
polynomial time. In Conference Record of Sixth Annual ACM Sympo-
sium on Theory of Computing, pages 40–46, Seattle, WA, April-May
1974. (14)

[181] N. D. Jones and W. T. Laaser. Complete problems for deterministic
polynomial time. Theoretical Computer Science, 3(1):105–117, 1976.

(14, 54, 167, 170, 171, 176, 177, 196, 208)

[182] Y. Kaji, R. Nakanishi, H. Seki, and T. Kasami. The universal recog-
nition problems for parallel multiple context-free grammars and for
their subclasses. IEICE Transactions on Information and Systems,
E75-D(4):499–508, July 1992. (176)

[183] P. C. Kanellakis and S. A. Smolka. CCS expressions, finite state
processes, and three problems of equivalence. Information and Com-
putation, 86(1):43–68, May 1990. (183)

[184] R. Kannan, G. L. Miller, and L. Rudolph. Sublinear parallel al-
gorithm for computing the greatest common divisor of two integers.
SIAM Journal on Computing, 16(1):7–16, February 1987. (229, 230)

[185] W. M. Kantor. Sylow’s theorem in polynomial time. Journal of
Computer and System Sciences, 30(3):359–394, 1985. (232)

[186] M.-Y. Kao. All graphs have cycle separators and planar directed
depth-first search is in DNC . In Reif [301], pages 53–63. (146)

[187] M. Karchmer and J. Naor. A fast parallel algorithm to color a graph
with ∆ colors. Journal of Algorithms, 9(1):83–91, 1988. (132)

270 BIBLIOGRAPHY

[188] H. J. Karloff. A Las Vegas RNC algorithm for maximum matching.
Combinatorica, 6(4):387–391, 1986. (241)

[189] H. J. Karloff. An NC algorithm for Brooks’ Theorem. Theoretical
Computer Science, 68(1):89–103, 16 October 1989. (132)

[190] H. J. Karloff and W. L. Ruzzo. The iterated mod problem. Informa-
tion and Computation, 80(3):193–204, March 1989. (188, 189)

[191] H. J. Karloff and D. B. Shmoys. Efficient parallel algorithms for edge
coloring problems. Journal of Algorithms, 8(1):39–52, 1987.

(132, 223, 240)

[192] N. Karmarkar. A new polynomial-time algorithm for linear program-
ming. Combinatorica, 4(4):373–395, 1984. (150, 151)

[193] R. M. Karp. Reducibility among combinatorial problems. In R. E.
Miller and J. W. Thatcher, editors, Complexity of Computer Compu-
tations, pages 85–104. Plenum Press, New York, 1972. (47, 139–141)

[194] R. M. Karp. Talk at the University of Toronto, 1984. (128)

[195] R. M. Karp and V. Ramachandran. Parallel algorithms for shared-
memory machines. In van Leeuwen [360], chapter 17, pages 869–
941. (17, 21, 33, 36, 62, 66, 80, 93)

[196] R. M. Karp, E. Upfal, and A. Wigderson. Constructing a perfect
matching is in Random NC . Combinatorica, 6(1):35–48, 1986.

(149, 152, 224, 241, 242)

[197] R. M. Karp, E. Upfal, and A. Wigderson. The complexity of parallel
search. Journal of Computer and System Sciences, 36(2):225–253,
April 1988. (40, 91, 93)

[198] R. M. Karp and A. Wigderson. A fast parallel algorithm for the
maximal independent set problem. Journal of the ACM, 32(4):762–
773, 1985. (128, 132)

[199] M. Karpinski. Boolean circuit complexity of algebraic interpolation
problems. In E. Börger, H. Kleine Büning, and M. M. Richter, ed-
itors, CSL ’88: 2nd Workshop on Computer Science Logic, volume
385 of Lecture Notes in Computer Science, pages 138–147. Springer-
Verlag, Duisburg, Germany, October 1988. (242)

[200] M. Karpinski and K. W. Wagner. The computational complexity of
graph problems with succinct multigraph representation. Zeitschrift
für Operations Research, 32(3):201–211, 1988. (241, 242)

[201] T. Kasai, A. Adachi, and S. Iwata. Classes of pebble games and
complete problems. SIAM Journal on Computing, 8(4):574–586,
1979. (213, 214)

BIBLIOGRAPHY 271

[202] S. Kasif. On the parallel complexity of some constraint satisfaction
problems. In Proceedings, AAAI-86: Fifth National Conference on
Artificial Intelligence, pages 349–353, Philadelphia, PA, August 1986.
American Association for Artificial Intelligence. (168, 169, 208)

[203] S. Kasif. On the parallel complexity of discrete relaxation in con-
straint satisfaction networks. Artificial Intelligence, 3(45):275–286,
October 1990. (168, 170)

[204] S. Kasif. Analysis of local consistency in parallel constraint satisfac-
tion networks. In Symposium: Constraint-Based Reasoning, Spring
Symposium Series, pages 154–163. AAAI, March 1991. (Extended
Abstract). (170)

[205] D. Kavadias, L. M. Kirousis, and P. G. Spirakis. The complexity
of the reliable connectivity problem. Information Processing Letters,
39(5):245–252, 13 September 1991. (135)

[206] P. Kelsen. On computing a maximal independent set in a hypergraph
of constant dimension in parallel. In Proceedings of the Twenty-
Fourth Annual ACM Symposium on Theory of Computing, pages
339–369, Victoria, B.C., Canada, May 1992. (225)

[207] L. G. Khachian. A polynomial time algorithm for linear program-
ming. Doklady Akademii Nauk SSSR, n.s., 244(5):1093–1096, 1979.
English translation in Soviet Math. Dokl. 20, 191–194.

(150, 151, 153)

[208] S. Khuller. On computing graph closures. Information Processing
Letters, 31(5):249–255, 12 June 1989. (142, 224)

[209] S. Khuller and B. Schieber. Efficient parallel algorithms for testing k-
connectivity and finding disjoint s−t paths in graphs. SIAM Journal
on Computing, 20(2):352–375, April 1991. (134)

[210] G. A. P. Kindervater and J. K. Lenstra. An introduction to paral-
lelism in combinatorial optimization. In J. van Leeuwen and J. K.
Lenstra, editors, Parallel Computers and Computation, volume 9 of
CWI Syllabus, pages 163–184. Center for Mathematics and Computer
Science, Amsterdam, The Netherlands, 1985. (17)

[211] G. A. P. Kindervater and J. K. Lenstra. Parallel algorithms. In
M. O’hEigeartaigh, J. K. Lenstra, and A. H. G. Rinnooy Kan, editors,
Combinatorial Optimization: Annotated Bibliographies, chapter 8,
pages 106–128. John Wiley & Sons, Chichester, 1985. (17, 21)

[212] G. A. P. Kindervater, J. K. Lenstra, and D. B. Shmoys. The parallel
complexity of TSP heuristics. Journal of Algorithms, 10(2):249–270,
June 1989. (138)

272 BIBLIOGRAPHY

[213] G. A. P. Kindervater and H. W. J. M. Trienekens. Experiments with
parallel algorithms for combinatorial problems. Technical Report
8550/A, Erasmus University Rotterdam, Econometric Inst., 1985.

(17)

[214] L. M. Kirousis, M. J. Serna, and P. G. Spirakis. The parallel complex-
ity of the connected subgraph problem. SIAM Journal on Computing,
22(3):573–586, June 1993. (134)

[215] L. M. Kirousis and P. G. Spirakis. Probabilistic log-space reductions
and problems probabilistically hard for P . In R. Karlsson and A. Lin-
gas, editors, SWAT88. 1st Scandanavian Workshop on Algorithm
Theory, volume 318 of Lecture Notes in Computer Science, pages
163–175, Halmstad, Sweden, July 1988. Springer-Verlag. (125, 135)

[216] P. N. Klein and J. H. Reif. Parallel time O(log n) acceptance of
deterministic CFLs on an exclusive-write P-RAM. SIAM Journal on
Computing, 17(3):463–485, June 1988. (176)

[217] D. E. Knuth, C. H. Papadimitriou, and J. N. Tsitsiklis. A note on
strategy elimination in bimatrix games. Operations Research Letters,
7(3):103–107, June 1988. (212)

[218] K.-I. Ko. Binary search for roots of real functions. In S. R.
Buss and P. J. Scott, editors, Feasible Mathematics, pages 239–
257, A Mathematical Sciences Institute Workshop, Ithaca, NY, 1990.
Birkhäuser. (207)

[219] S. R. Kosaraju. On the parallel evaluation of classes of circuits.
In K. V. Nori and C. E. Veni Madhavan, editors, Foundations of
Software Technology and Theoretical Computer Science, Tenth Con-
ference, volume 472 of Lecture Notes in Computer Science, pages
232–237, Bangalore, India, December 1990. Springer-Verlag. (124)

[220] S. R. Kosaraju and A. L. Delcher. Optimal parallel evaluation of
tree-structured computations by raking. In Reif [301], pages 101–
110. (Extended Abstract). (66)

[221] D. C. Kozen. Complexity of finitely presented algebras. In Con-
ference Record of the Ninth Annual ACM Symposium on Theory of
Computing, pages 164–177, Boulder, CO, May 1977. (194, 195)

[222] M. W. Krentel. On finding and verifying locally optimal solutions.
SIAM Journal on Computing, 19(4):742–749, August 1990. (158)

[223] C. P. Kruskal, L. Rudolph, and M. Snir. The power of parallel prefix
computation. In International Conference on Parallel Processing,
pages 180–185, 1985. (64, 103)

[224] G. M. Kuper, K. W. McAloon, K. V. Palem, and K. J. Perry. A note
on the parallel complexity of anti-unification. Journal of Automated
Reasoning, 9(3):381–389, 1992. (172)

BIBLIOGRAPHY 273

[225] R. E. Ladner. The circuit value problem is log space complete for P .
SIGACT News, 7(1):18–20, January 1975.

(14, 18, 59, 60, 72, 121, 179)

[226] R. E. Ladner and M. J. Fischer. Parallel prefix computation. Journal
of the ACM, 27(4):831–838, October 1980. (35, 64)

[227] E. L. Lawler. Combinatorial Optimization: Networks and Matroids.
Holt, Rinehart and Winston, New York, 1976. (92)

[228] F. T. Leighton. Introduction to Parallel Algorithms and Architec-
tures: Arrays, Trees, Hypercubes. Morgan Kaufmann, 1992.

(6, 17, 19, 21)

[229] T. Lengauer. VLSI theory. In van Leeuwen [360], chapter 16, pages
837–868. (27)

[230] T. Lengauer and R. E. Tarjan. Asymptotically tight bounds on time-
space trade-offs in a pebble game. Journal of the ACM, 29(4):1087–
1130, October 1982. (69)

[231] T. Lengauer and K. W. Wagner. The binary network flow problem is
logspace complete for P . Theoretical Computer Science, 75(3):357–
363, 1 October 1990. (129–131, 152)

[232] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polyno-
mials with rational coefficients. Mathematische Annalen, 261(4):515–
534, December 1982. (234)

[233] H. R. Lewis and C. H. Papadimitriou. Symmetric space-bounded
computation. Theoretical Computer Science, 19(2):161–187, August
1982. (130)

[234] P. M. Lewis, II, R. E. Stearns, and J. Hartmanis. Memory bounds for
recognition of context-free and context-sensitive languages. In Pro-
ceedings of the Sixth Annual Symposium on Switching Circuit Theory
and Logic Design, pages 191–202. IEEE, 1965. (176)

[235] S. Lin and B. W. Kernighan. An effective heuristic algorithm for
the traveling salesman problem. Operations Research, 21(1):498–516,
January-February 1973. (164)

[236] Y. Lin. Parallel Computational Methods in Integer Linear Program-
ming. PhD thesis, The City University of New York, 1991. (188, 189)

[237] Y. Lin-Kriz and V. Pan. On parallel complexity of integer linear
programming, GCD and the iterated mod function. In Proceedings
of the Third Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 124–137, Orlando, FL, January 1992. (151, 189, 230)

[238] S. Lindell. A logspace algorithm for tree canonization. In Pro-
ceedings of the Twenty-Fourth Annual ACM Symposium on The-
ory of Computing, pages 400–404, Victoria, B.C., Canada, May
1992. (223, 242, 243)

274 BIBLIOGRAPHY

[239] K. Lindgren and M. G. Nordahl. Universal computation in simple
one-dimensional cellular automata. Complex Systems, 4(3):299–318,
1990. (216, 217)

[240] A. Lingas. A note on a parallel heuristic for minimum vertex cover.
Bulletin of the European Association for Theoretical Computer Sci-
ence, 42:174–177, October 1990. (137)

[241] A. Lingas and M. Karpinski. Subtree isomorphism is NC reducible to
bipartite perfect matching. Information Processing Letters, 30(1):27–
32, 16 January 1989. (223, 242)

[242] J. Lipscomb. On the computational complexity of finding a connec-
tionist model’s stable state vectors. Master’s thesis, University of
Toronto, 1987. (163)

[243] R. J. Lipton and Y. Zalcstein. Word problems solvable in log space.
Journal of the ACM, 24(3):522–526, 1977. (189)

[244] Logic and Algorithmic, An International Symposium Held in Honor
of Ernst Specker, Zürich, February 5–11, 1980. Monographie No. 30
de L’Enseignement Mathématique, Université de Genève, 1982.

(258, 260, 283)

[245] P. M. Long and M. K. Warmuth. Composite geometric con-
cepts and polynomial predictability. Information and Computation,
113(2):230–252, September 1994. (204)

[246] M. Luby. A simple parallel algorithm for the maximal independent
set problem. SIAM Journal on Computing, 15(4):1036–1053, 1986.

(93, 128, 131, 164)

[247] M. Luby. Removing randomness in parallel computation without a
processor penalty. In 29th Annual Symposium on Foundations of
Computer Science, pages 162–173, White Plains, NY, October 1988.
IEEE. (160)

[248] G. S. Lueker, N. Megiddo, and V. Ramachandran. Linear program-
ming with two variables per inequality in poly-log time. SIAM Jour-
nal on Computing, 19(6):1000–1010, December 1990. (227)

[249] J. Machta. The computational complexity of pattern formation.
Journal of Statistical Physics, 70(3-4):949–966, February 1993.

(217, 218)

[250] J. Machta and R. Greenlaw. The parallel complexity of growth
models. Technical Report TR 94-05, University of New Hampshire,
1994. (218)

[251] L. Mak. Are parallel machines always faster than sequential ma-
chines? Submitted for publication, August 1993. (63)

BIBLIOGRAPHY 275

[252] L. Mak. Parallelism always helps. Submitted for publication, August
1993. (63)

[253] E. W. Mayr. The dynamic tree expression problem. In Tewksbury
et al. [353], pages 157–179. (66, 124)

[254] E. W. Mayr. Parallel approximation algorithms. In Institute for
New Generation Computer Technology (ICOT) [170], pages 542–551
(Volume 2). (112, 155, 156, 189)

[255] E. W. Mayr and A. Subramanian. The complexity of circuit value
and network stability. Journal of Computer and System Sciences,
44(2):302–323, April 1992. (235–238)

[256] W. F. McColl. Planar crossovers. IEEE Transactions on Computers,
C-30(3):223–225, 1981. (124)

[257] N. Megiddo. A note on approximate linear programming. Informa-
tion Processing Letters, 42(1):53, 27 April 1992. (151)

[258] G. L. Miller, V. Ramachandran, and E. Kaltofen. Efficient parallel
evaluation of straight-line code and arithmetic circuits. SIAM Jour-
nal on Computing, 17(4):687–695, August 1988. (124)

[259] G. L. Miller and J. H. Reif. Parallel tree contraction and its ap-
plications. In 26th Annual Symposium on Foundations of Computer
Science, pages 478–489, Portland, OR, October 1985. IEEE. (66)

[260] G. L. Miller and J. H. Reif. Parallel tree contraction, Part 1: Fun-
damentals. In S. Micali, editor, Advances in Computing Research,
Volume 5: Randomness and Computation, pages 47–72. JAI Press
Inc., Greenwich, CT, 1989. Series Editor, F. P. Preparata. (66)

[261] G. L. Miller and J. H. Reif. Parallel tree contraction, Part 2: Further
applications. SIAM Journal on Computing, 20(6):1128–1147, 1991.

(66)

[262] M. Minsky. Computation: Finite and Infinite Machines. Prentice
Hall, 1967. (217)

[263] S. Miyano. Parallel complexity and P -complete problems. In Insti-
tute for New Generation Computer Technology (ICOT) [170], pages
532–541 (Volume 2). (128, 139)

[264] S. Miyano. A parallelizable lexicographically first maximal edge-
induced subgraph problem. Information Processing Letters, 27(2):75–
78, 29 February 1988. (143, 226)

[265] S. Miyano. The lexicographically first maximal subgraph problems:
P -completeness and NC algorithms. Mathematical Systems Theory,
22(1):47–73, 1989. (91, 128, 139, 143, 225, 226)

276 BIBLIOGRAPHY

[266] S. Miyano. Systematized approaches to the complexity of subgraph
problems. Journal of Information Processing, 13(4):442–448, 1990.

(139)

[267] S. Miyano and M. Haraguchi. The computational complexity of in-
complete table recovery. Research Report 100, Kyushu University
Research Institute of Fundamental Information Science, September
1982. (175)

[268] S. Miyano, S. Shiraishi, and T. Shoudai. A list of P -complete prob-
lems. Technical Report RIFIS-TR-CS-17, Kyushu University 33, Re-
search Institute of Fundamental Information Science, 1989. Revised,
December 29, 1990. 68 pages. (17, 175)

[269] A. Monti and A. Roncato. On the complexity of some reachability
problems. In M. Bonuccelli, P. Crescenzi, and R. Petreschi, editors,
Algorithms and Complexity: Second Italian Conference, CIAC ’94,
volume 778 of Lecture Notes in Computer Science, pages 192–202,
Rome, Italy, February 1994. Springer-Verlag. (182)

[270] K. Mulmuley. A fast parallel algorithm to compute the rank of a
matrix over an arbitrary field. Combinatorica, 7(1):101–104, 1987.

(188)

[271] K. Mulmuley, U. V. Vazirani, and V. V. Vazirani. Matching is as
easy as matrix inversion. Combinatorica, 7(1):105–113, 1987.

(149, 241, 242)

[272] J. Naor. A fast parallel coloring of planar graphs with five colors.
Information Processing Letters, 25(1):51–53, 20 April 1987. (132)

[273] Y. P. Ofman. On the algorithmic complexity of discrete functions.
Soviet Physics Doklady, 7(7):589–591, 1963. (64)

[274] W. F. Ogden, W. E. Riddle, and W. C. Rounds. Complexity of
expressions allowing concurrency. In Conference Record of the Fifth
Annual ACM Symposium on Principles of Programming Languages,
pages 185–194, Tucson, AZ, January 1978. (184)

[275] C. N. K. Osiakwan and S. G. Akl. The maximum weight perfect
matching problem for complete weighted graphs is in PC . In Pro-
ceedings of the Second IEEE Symposium on Parallel and Distributed
Processing, pages 880–887, Dallas, TX, December 1990. IEEE. (242)

[276] V. Pan and J. H. Reif. Fast and efficient parallel solution of
dense linear systems. Computers and Mathematics with Applications,
17(11):1481–1491, 1989. (188)

[277] C. H. Papadimitriou. Efficient search for rationals. Information Pro-
cessing Letters, 8(1):1–4, 1978. (151)

BIBLIOGRAPHY 277

[278] C. H. Papadimitriou, A. A. Schäffer, and M. Yannakakis. On the
complexity of local search. In Proceedings of the Twenty-Second An-
nual ACM Symposium on Theory of Computing, pages 438–445, Bal-
timore, MD, May 1990. (Extended Abstract). (160, 161, 163)

[279] C. H. Papadimitriou and J. N. Tsitsiklis. The complexity of Markov
decision processes. Mathematics of Operations Research, 12(3):441–
450, 1987. (185–187)

[280] I. Parberry. Parallel speedup of sequential machines: A defense of the
parallel computation thesis. SIGACT News, 18(1):54–67, Summer
1986. (68)

[281] I. Parberry. Parallel Complexity Theory. Research Notes in Theoret-
ical Computer Science. Pitman/Wiley, 1987. (63, 68, 121)

[282] M. S. Paterson and L. G. Valiant. Circuit size is nonlinear in depth.
Theoretical Computer Science, 2(3):397–400, 1976. (63)

[283] W. J. Paul, R. E. Tarjan, and J. R. Celoni. Space bounds for a
game on graphs. Mathematical Systems Theory, 10(3):239–251, 1977.
Correction, ibid. 11(1):85, 1977. (69)

[284] N. J. Pippenger. Fast simulation of combinational logic networks by
machines without random-access storage. In Proceedings, Fifteenth
Annual Allerton Conference on Communication, Control and Com-
puting, pages 25–33, Monticello, IL, September 1977. (71)

[285] N. J. Pippenger. On simultaneous resource bounds. In 20th Annual
Symposium on Foundations of Computer Science, pages 307–311, San
Juan, Puerto Rico, October 1979. IEEE. (15, 33, 66, 67)

[286] N. J. Pippenger. Pebbling. In Proceedings of the Fifth IBM Sym-
posium on Mathematical Foundations of Computer Science. IBM
Japan, May 1980. (69)

[287] N. J. Pippenger. Pebbling with an auxiliary pushdown. Journal of
Computer and System Sciences, 23(2):151–165, October 1981. (69)

[288] N. J. Pippenger. Advances in pebbling. Research Report RJ3466,
IBM Research Division, Thomas J. Watson Research Center, York-
town Heights, NY, April 1982. (69)

[289] N. J. Pippenger and M. J. Fischer. Relations among complexity
measures. Journal of the ACM, 26(2):361–381, April 1979. (14, 67)

[290] D. A. Plaisted. Complete problems in the first-order predicate
calculus. Journal of Computer and System Sciences, 29(1):8–35,
1984. (168)

[291] G. Pólya, R. E. Tarjan, and D. R. Woods. Notes on Introductory
Combinatorics. Birkhäuser, Boston, 1983. (237)

278 BIBLIOGRAPHY

[292] E. L. Post. The Two-Valued Iterative Systems of Mathematical Logic.
Number 5 in Annals of Math. Studies. Princeton University Press,
1941. (122)

[293] V. R. Pratt and L. J. Stockmeyer. A characterization of the power
of vector machines. Journal of Computer and System Sciences,
12(2):198–221, April 1976. (19)

[294] S. Rajasekaran and J. H. Reif. Randomized parallel computation. In
Tewksbury et al. [353], pages 181–202. (93)

[295] V. Ramachandran. The complexity of minimum cut and maximum
flow problems in an acyclic network. Networks, 17(4):387–392, 1987.

(152)

[296] V. Ramachandran. Fast and processor-efficient parallel algorithms for
reducible flow graphs. Technical Report UILU-ENG-88-2257, ACT-
103, University of Illinois at Urbana-Champaign, 1988. (140, 141)

[297] V. Ramachandran. Fast parallel algorithms for reducible flow graphs.
In Tewksbury et al. [353], pages 117–138. (140, 141)

[298] V. Ramachandran and L.-C. Wang. Parallel algorithms and complex-
ity results for telephone link simulation. In Proceedings of the Third
IEEE Symposium on Parallel and Distributed Processing, pages 378–
385, Dallas, TX, December 1991. IEEE. (235, 238)

[299] J. H. Reif. On synchronous parallel computations with indepen-
dent probabilistic choice. SIAM Journal on Computing, 13(1):46–56,
February 1984. (63)

[300] J. H. Reif. Depth-first search is inherently sequential. Information
Processing Letters, 20(5):229–234, 12 June 1985. (16, 145)

[301] J. H. Reif, editor. VLSI Algorithms and Architectures, 3rd Aegean
Workshop on Computing, AWOC 88, volume 319 of Lecture Notes in
Computer Science, Corfu, Greece, June-July 1988. Springer-Verlag.

(269, 272)

[302] J. H. Reif, editor. Synthesis of Parallel Algorithms. Morgan Kauf-
mann, 1993. (17, 258, 263, 266)

[303] J. H. Reif, J. D. Tygar, and A. Yoshida. The computability and com-
plexity of optical beam tracing. In Proceedings 31st Annual Sympo-
sium on Foundations of Computer Science, pages 106–114, St. Louis,
MO, October 1990. IEEE. (232)

[304] S. P. Reiss. Rational search. Information Processing Letters, 8(2):87–
90, 1978. (151)

[305] J. A. Robinson. A machine oriented logic based on the resolution
principle. Journal of the ACM, 12(1):23–41, 1965. (171)

BIBLIOGRAPHY 279

[306] W. L. Ruzzo. Complete pushdown languages. Unpublished
manuscript, 1979. (180)

[307] W. L. Ruzzo. Tree-size bounded alternation. Journal of Computer
and System Sciences, 21(2):218–235, October 1980. (65, 176)

[308] W. L. Ruzzo. On uniform circuit complexity. Journal of Computer
and System Sciences, 22(3):365–383, June 1981.

(15, 29, 32, 33, 53, 65)

[309] W. Rytter. On the recognition of context-free languages. In
A. Skowron, editor, Computation Theory: Fifth Symposium, volume
208 of Lecture Notes in Computer Science, pages 318–325, Zaborów,
Poland, December 1984 (published 1985). Springer-Verlag. (176)

[310] W. Rytter. Parallel time O(log n) recognition of unambiguous
context-free languages. Information and Computation, 73(1):75–86,
1987. (176)

[311] S. Sairam, J. S. Vitter, and R. Tamassia. A complexity theoretic
approach to incremental computation. In Finkel et al. [107], pages
640–649. (236)

[312] Sang Cho and D. T. Huynh. The complexity of membership for deter-
ministic growing context-sensitive grammars. International Journal
of Computer Mathematics, 37(3-4):185–188, 1990. (178)

[313] Sang Cho and D. T. Huynh. The parallel complexity of coarsest set
partition problems. Information Processing Letters, 42(2):89–94, 11
May 1992. (183)

[314] Sang Cho and D. T. Huynh. The parallel complexity of finite-
state automata problems. Information and Computation, 97(1):1–22,
1992. (228)

[315] J. L. C. Sanz, editor. Opportunities and Constraints of Parallel Com-
puting. Springer-Verlag, 1989. Papers presented at a workshop, De-
cember 5–6, 1988, at the IBM Almaden Research Center, San Jose,
CA. (10)

[316] R. Sarnath and X. He. A P -complete graph partition problem.
Theoretical Computer Science, 76(2,3):343–351, 21 November 1990.

(160, 164)

[317] J. E. Savage. Computational work and time on finite machines. Jour-
nal of the ACM, 19(4):660–674, October 1972. (14, 67)

[318] J. E. Savage and M. G. Wloka. A parallel algorithm for channel
routing. In J. van Leeuwen, editor, Proceedings of the International
Workshop on Graph-Theoretic Concepts in Computer Science, vol-
ume 344 of Lecture Notes in Computer Science, pages 288–303, Am-
sterdam, Netherlands, June 1988 (published 1989). Springer-Verlag.

(166)

280 BIBLIOGRAPHY

[319] J. E. Savage and M. G. Wloka. On parallelizing graph-partitioning
heuristics. In M. S. Paterson, editor, Automata, Languages, and
Programming: 17th International Colloquium, volume 443 of Lecture
Notes in Computer Science, pages 476–489, Warwick University, Eng-
land, July 1990. Springer-Verlag. (159, 161, 162)

[320] J. E. Savage and M. G. Wloka. Parallelism in graph-partitioning.
Journal of Parallel and Distributed Computing, 13(3):257–272,
November 1991. (159, 161, 162)

[321] J. E. Savage and M. G. Wloka. The parallel complexity of minimizing
column conflicts. In N. Sherwani, editor, Proceedings of the Second
Great Lakes Symposium on VLSI, Design Automation of VLSI Sys-
tems in the 90’s, pages 30–34, Kalamazoo, MI, February 1992. IEEE.

(166)

[322] W. J. Savitch. Relationships between nondeterministic and determin-
istic tape complexities. Journal of Computer and System Sciences,
4(2):177–192, 1970. (65, 129)

[323] W. J. Savitch and M. J. Stimson. Time bounded random access
machines with parallel processing. Journal of the ACM, 26(1):103–
118, 1979. (19)

[324] A. A. Schäffer and M. Yannakakis. Simple local search problems
that are hard to solve. SIAM Journal on Computing, 20(1):56–87,
February 1991. (159–164, 251)

[325] C. A. Schevon and J. S. Vitter. A parallel algorithm for recogniz-
ing unordered depth-first search. Information Processing Letters,
28(2):105–110, 24 June 1988. (146)

[326] M. J. Serna. The Parallel Approximability of P-Complete Problems.
PhD thesis, Universitat Politecnica de Catalunya, Barcelona, 1990.

(111, 125, 134)

[327] M. J. Serna. Approximating linear programming is log-space com-
plete for P . Information Processing Letters, 37(4):233–236, 28 Febru-
ary 1991. (125, 126, 151)

[328] M. J. Serna and P. G. Spirakis. The approximability of problems
complete for P . In H. Djidjev, editor, Optimal Algorithms, Inter-
national Symposium Proceedings. Varna, Bulgaria., volume 401 of
Lecture Notes in Computer Science, pages 193–204. Springer-Verlag,
29 May–2 June 1989. (111, 134, 167, 170, 171)

[329] D. Shallcross, V. Pan, and Y. Lin-Kriz. The NC equivalence of planar
integer linear programming and Euclidean GCD. In Proceedings 34th
Annual Symposium on Foundations of Computer Science, pages 557–
564, Palo Alto, CA, November 1993. IEEE. (226, 229, 230)

BIBLIOGRAPHY 281

[330] S. Shimozono and S. Miyano. Complexity of finding alphabet index-
ing. Manuscript, 1994. (219, 220)

[331] T. Shoudai. The lexicographically first topological order problem is
NLOG-complete. Information Processing Letters, 33(3):121–124, 30
November 1989. (139)

[332] T. Shoudai. A P -complete language describable with iterated shuffle.
Information Processing Letters, 41(5):233–238, 3 April 1992. (184)

[333] A. R. Smith, III. Simple computation-universal cellular spaces. Jour-
nal of the ACM, 18(3):339–353, 1971. (216)

[334] J. R. Smith. Parallel algorithms for depth first searches I: Planar
graphs. SIAM Journal on Computing, 15(3):814–830, 1986.

(146, 240)

[335] J. Sorenson. The k-ary GCD algorithm. Technical Report 979, Uni-
versity of Wisconsin, Madison, WI, April 1991. (230)

[336] J. Sorenson. Two fast GCD algorithms. Manuscript, Department of
Mathematics and Computer Science, Bulter University, Indianapolis,
IN, January 1992. (230)

[337] P. G. Spirakis. The parallel complexity of deadlock detection. The-
oretical Computer Science, 52(1,2):155–163, 1987. (215, 216)

[338] P. G. Spirakis. Fast parallel algorithms and the complexity of paral-
lelism (basic issues and recent advances). In G. Wolf, T. Legendi, and
U. Schendel, editors, Parcella ’88. Fourth International Workshop
on Parallel Processing by Cellular Automata and Arrays Proceed-
ings, volume 342 of Lecture Notes in Computer Science, pages 177–
189, Berlin, East Germany, October 1988 (published 1989). Springer-
Verlag. (21)

[339] C. Stein and J. Wein. Approximating the minimum-cost maximum
flow is P -complete. Information Processing Letters, 42(6):315–319,
24 July 1992. (153)

[340] I. A. Stewart. Complete problems for symmetric logspace involv-
ing free groups. Information Processing Letters, 40(5):263–267, 13
December 1991. (189)

[341] I. A. Stewart. Refining known results on the generalized word prob-
lem for free groups. International Journal of Algebra and Computa-
tion, 2(2):221–236, June 1992. (189)

[342] I. A. Stewart. On parallelizing a greedy heuristic for finding small
dominant sets. BIT, 33(1):57–62, 1993. (137)

[343] I. A. Stewart. On two approximation algorithms for the clique prob-
lem. International Journal of Foundations of Computer Science,
4(2):117–133, 1993. (128, 129)

282 BIBLIOGRAPHY

[344] L. J. Stockmeyer and A. R. Meyer. Word problems requiring expo-
nential time. In Conference Record of Fifth Annual ACM Sympo-
sium on Theory of Computing, pages 1–9, Austin, TX, April-May
1973. (14)

[345] L. J. Stockmeyer and U. Vishkin. Simulation of parallel random
access machines by circuits. SIAM Journal on Computing, 13(2):409–
422, May 1984. (30, 36)

[346] A. Subramanian. A new approach to stable matching problems. Tech-
nical Report STAN-CS-89-1275, Stanford University, Department of
Computer Science, 1989. (235, 237, 238)

[347] A. Subramanian. The Computational Complexity of the Circuit Value
and Network Stability Problems. PhD thesis, Stanford University,
1990. Department of Computer Science Technical Report STAN-CS-
90-1311. (235)

[348] I. H. Sudborough. On the tape complexity of deterministic context-
free languages. Journal of the ACM, 25(3):405–414, 1978. (179)

[349] S. Sunder and X. He. Scheduling interval ordered tasks in parallel.
In Finkel et al. [107], pages 100–109. (156)

[350] R. E. Tarjan and U. Vishkin. Finding biconnected components and
computing tree functions in logarithmic parallel time. In 25th An-
nual Symposium on Foundations of Computer Science, pages 12–20,
Singer Island, FL, October 1984. IEEE. (98)

[351] R. E. Tarjan and U. Vishkin. An efficient parallel biconnectivity
algorithm. SIAM Journal on Computing, 14(4):862–874, November
1985. (98)

[352] S.-H. Teng. Matching randomly in parallel. Department of Com-
puter Science CMU-CS-89-149, Carnegie Mellon University, Pitts-
burgh, PA, 1989. (143)

[353] S. K. Tewksbury, B. W. Dickinson, and S. C. Schwartz, editors. Con-
current Computations: Algorithms, Architecture, and Technology.
Plenum Press, 1988. Proceedings of the 1987 Princeton Workshop on
Algorithm, Architecture and Technology issues for Models of Concur-
rent Computation, September 30 – October 1, 1987. (264, 275, 278)

[354] M. Tompa. Unpublished notes on NC reductions among problems in
RP, 1983. (230, 231)

[355] J. D. Ullman and A. Van Gelder. Parallel complexity of logical query
programs. Algorithmica, 3(1):5–42, 1988. (173)

[356] L. G. Valiant. Parallel computation. Technical Report TR-16-82,
Harvard, Center of Research in Computing Technology, April 1982.
Presented at the 7th IBM Symposium on Mathematical Foundations

BIBLIOGRAPHY 283

of Computer Science, Hakone, Kanagawa, Japan, May 24–26, 1982.
(88)

[357] L. G. Valiant. Reducibility by algebraic projections. L’Enseignement
Mathématique, XXVIII:253–268, 1982. Also in [244, pages 365–380].

(16, 150, 151)

[358] L. G. Valiant, S. Skyum, S. Berkowitz, and C. W. Rackoff. Fast par-
allel computation of polynomials using few processors. SIAM Journal
on Computing, 12(4):641–644, November 1983. (124)

[359] P. van Emde Boas. The second machine class: Models of parallelism.
In J. van Leeuwen and J. K. Lenstra, editors, Parallel Computers and
Computation, volume 9 of CWI Syllabus, pages 133–161. Center for
Mathematics and Computer Science, Amsterdam, The Netherlands,
1985. (21)

[360] J. van Leeuwen, editor. Handbook of Theoretical Computer Science,
volume A: Algorithms and Complexity. M.I.T. Press/Elsevier, 1990.

(17, 269, 270, 273)

[361] S. Vavasis. Gaussian elimination with pivoting is P -complete. SIAM
Journal on Discrete Mathematics, 2(3):413–423, 1989.

(99, 187, 188, 229, 230)

[362] H. Venkateswaran. Two dynamic programming algorithms for
which interpreted pebbling helps. Information and Computation,
92(2):237–252, 1991. (69)

[363] H. Venkateswaran and M. Tompa. A new pebble game that char-
acterizes parallel complexity classes. SIAM Journal on Computing,
18(3):533–549, June 1989. (69)

[364] U. Vishkin. Synchronous parallel computation — a survey. Preprint,
1983. Courant Institute, New York University. (21, 24)

[365] S. Vishwanathan and M. A. Sridhar. Some results on graph coloring
in parallel. In F. A. Briggs, editor, Proceedings of the 1988 Interna-
tional Conference on Parallel Processing, pages 299–303, volume 3,
University Park, PA, 15-19 August 1988. Pennsylvania State Univer-
sity. (133, 136)

[366] J. S. Vitter and R. A. Simons. New classes for parallel complexity:
A study of unification and other complete problems for P . IEEE
Transactions on Computers, TC-35:403–418, May 1986. Reprinted
in [370, pages 135–150]. (103, 122, 146, 171, 172)

[367] B. von Braunmühl, S. A. Cook, K. Mehlhorn, and R. Verbeek. The
recognition of deterministic CFL’s in small time and space. Informa-
tion and Control, 56(1-2):34–51, January/February 1983. (67, 260)

284 BIBLIOGRAPHY

[368] J. von zur Gathen. Parallel algorithms for algebraic problems. SIAM
Journal on Computing, 13(4):802–824, November 1984.

(229, 234, 235)

[369] J. von zur Gathen. Computing powers in parallel. SIAM Journal on
Computing, 16(5):930–945, October 1987. (231)

[370] B. Wah and G. J. Li, editors. Computers for Artificial Intelligence
Applications. IEEE Computer Society Press, Washington, DC, 1986.

(283)

[371] C.-C. Wang, E. L. Lloyd, and M. L. Soffa. Feedback vertex sets
and cyclically reducible graphs. Journal of the ACM, 32(2):296–313,
April 1985. (139, 140)

[372] A. Wigderson. Improving the performance guarantee for approximate
graph coloring. Journal of the ACM, 30(4):729–735, 1983. (137)

[373] R. Wilber. White pebbles help. Journal of Computer and System
Sciences, 36(2):108–124, April 1988. (69)

[374] H. Yasuura. The reachability problem on directed hypergraphs and
computational complexity. Yajima Lab. Research Report ER 83-
02, Department of Information Science, Kyoto University, November
1983. (130)

[375] H. Yasuura. On parallel computational complexity of unification.
In Institute for New Generation Computer Technology (ICOT), ed-
itor, Fifth Generation Computer Systems 1984: Proceedings of the
International Conference on Fifth Generation Computer Systems
1984, pages 235–243, Tokyo, Japan, November 1984. OHMSHA,
LTD./North-Holland. (171)

[376] T. Zeugmann. Computing large polynomial powers very fast in par-
allel. In B. Rovan, editor, Mathematical Foundations of Computer
Science 1990: Proceedings, 15th Symposium, volume 452 of Lecture
Notes in Computer Science, pages 538–545. Springer-Verlag, Banská
Bystrica, Czechoslovakia, August 1990. (231)

[377] T. Zeugmann. Highly parallel computations modulo a number having
only small prime factors. Information and Computation, 96(1):95–
114, 1992. (230, 231)

[378] S. Zhang and S. A. Smolka. Towards efficient parallelization of equiv-
alence checking algorithms. In Fifth International Conference on
Formal Description Techniques for Distributed Systems and Com-
munications Protocols — FORTE ’92, pages 121–135, Perros-Guirec,
France, October 1992 (published 1993). (181)

[379] Y. Zhang. Parallel Algorithms for Problems Involving Directed
Graphs. PhD thesis, Drexel University, 1986. (146)

Problem List

Here is a complete list of the P -complete and open problems given
in Appendices A and B, in order of appearance, with problem name
and page number. Problems are also listed alphabetically in the
Index by name and acronym.

A P -Complete Problems 119
A.1 Circuit Complexity 121

A.1.1 Circuit Value Problem (CVP) 121
A.1.2 Topologically Ordered Circuit Value Problem

(TopCVP) 121
A.1.3 Monotone Circuit Value Problem (MCVP) 122
A.1.4 Alternating Monotone Fanin 2, Fanout 2 CVP

(AM2CVP) 122
A.1.5 NAND Circuit Value Problem (NANDCVP) 122
A.1.6 Synchronous Alternating Monotone Fanout 2

CVP (SAM2CVP) 123
A.1.7 Planar Circuit Value Problem (PCVP) 123
A.1.8 Arithmetic Circuit Value Problem (*) (ArithCVP) 124
A.1.9 Min-plus Circuit Value Problem (MinPlusCVP) 125
A.1.10 ε-Circuit Depth Ones (*) (εCDO) 125
A.1.11 ε-Circuit true Gates (*) (εCTG) 125
A.1.12 Inverting An NC0 Permutation (*) (InvNC0Perm) 126
A.1.13 Circuit Evaluation over Monoids (CEM) 127

A.2 Graph Theory 128
A.2.1 Lexicographically First Maximal Independent

Set (LFMIS) 128
A.2.2 Lexicographically First Maximal Clique (LFMC) 128
A.2.3 Alternating Graph Accessibility Problem (AGAP) 129
A.2.4 Hierarchical Graph Accessibility Problem (HGAP) 130
A.2.5 Restricted Chromatic Alternating Graph

Accessibility Problem (RCAGAP) 131
A.2.6 Lexicographically First ∆ + 1 Vertex Coloring

(LFDVC) 131
A.2.7 High Degree Subgraph (HDS) 132

286 PROBLEM LIST

A.2.8 High Connectivity Subgraph (HCS) 134
A.2.9 Reliable Connectivity for Failures of Incoming

Edges (RCIN) 134
A.2.10 Ordered High Degree Vertex Removal (OHDVR) 135
A.2.11 Ordered Low Degree Vertex Removal (OLDVR) 136
A.2.12 Ordered Vertices Remaining (OVR) 136
A.2.13 Neighborhood Removal (NR) 137
A.2.14 Greedy Dominating Set (GDS) 137
A.2.15 Nearest Neighbor Traveling Salesman

Heuristic (NNTSH) 138
A.2.16 Lexicographically First Maximal Subgraph

for π (LFMS(π)) 138
A.2.17 Minimum Feedback Vertex Set (MFVS) 139
A.2.18 Edge Maximal Acyclic Subgraph (EMAS) 140
A.2.19 General Graph Closure (GGC) 141
A.2.20 Generating Random Matchings (GRM) 142
A.2.21 Lexicographically First Maximal k-cycle Free Edge

Induced Subgraph (LFEdge) 143
A.3 Searching Graphs 144

A.3.1 Lexicographically First Maximal Path (LFMP) 144
A.3.2 Maximal Vertex Disjoint Paths (PATHS) 144
A.3.3 Lexicographically First Depth-first Search Ordering

(LFDFS) 145
A.3.4 Breadth-depth Search (BDS) 146
A.3.5 Stack Breadth-first Search (SBFS) 147
A.3.6 Alternating Breadth-first Search (ABFS) 148

A.4 Combinatorial Optimization 150
A.4.1 Linear Inequalities (LI) 150
A.4.2 Linear Equalities (LE) 150
A.4.3 Linear Programming (*) (LP) 151
A.4.4 Maximum Flow (MaxFlow) 152
A.4.5 Homologous Flow (HF) 153
A.4.6 Lexicographically First Blocking Flow (LFBF) 154
A.4.7 First Fit Decreasing Bin Packing (FFDBP) 154
A.4.8 General List Scheduling (GLS) 155
A.4.9 Height-priority Schedule (HPS) 156

A.5 Local Optimality 158
A.5.1 MAXFLIP Verification (MAXFLIPV) 158
A.5.2 Local Optimality Kernighan-Lin Verification

(LOKLV) 158
A.5.3 Unweighted, Not-all-equal Clauses, 3SAT

FLIP (*) (UNAE3SAT) 159
A.5.4 Unweighted Maximum Cut SWAP (*) (UMCS) 160
A.5.5 Unweighted Two Satisfiability FLIP (*)

(U2SATFLIP) 161
A.5.6 Unweighted Graph Partitioning SWAP (*) (UGPS) 161

PROBLEM LIST 287

A.5.7 Stable Configuration in Connectionist Model
(*) (SCCM) 162

A.5.8 Lexicographically First Different Than
Majority Labeling (LFDTML) 163

A.5.9 Traveling Salesman 2-Opt (*) (TS2Opt) 164
A.5.10 Maximum Satisfiability Approximation (MSA) 164
A.5.11 Minimum Set Cover Approximation (MSCA) 165
A.5.12 Two Layer Channel Router Column-swap

Heuristic (*) (COLUMNS) 166
A.6 Logic 167

A.6.1 Unit Resolution (UNIT) 167
A.6.2 Horn Unit Resolution (HORN) 167
A.6.3 Propositional Horn Clause Satisfiability (PHCS) 168
A.6.4 Monadic Krom Satisfiability (MKS) 168
A.6.5 Multivalued Dependency (MVD) 169
A.6.6 Relaxed Consistent Labeling (RCL) 169
A.6.7 Generability (GEN) 170
A.6.8 Path Systems (PATH) 171
A.6.9 Unification (UNIF) 171
A.6.10 Logical Query Program (LQP) 172
A.6.11 Left-linear Semi-unification (LLSU) 173
A.6.12 Mostowski Epimorphism (MostEpi) 174
A.6.13 Corporate Takeover Query (CTQ) 174
A.6.14 Incomplete Table Recovery (ITR) 175

A.7 Formal Languages 176
A.7.1 Context-free Grammar Membership (CFGmem) 176
A.7.2 Context-free Grammar Empty (CFGempty) 176
A.7.3 Context-free Grammar Infinite (CFGinf) 177
A.7.4 Context-free Grammar ε-Membership (CFGεmem) 177
A.7.5 Forward Deterministic Growing Context-

sensitive Grammar Membership (CSGmem) 178
A.7.6 Straight-line Program Membership (SLPmem) 178
A.7.7 Straight-line Program Nonempty (SLPnonempty) 179
A.7.8 Two-way DPDA Acceptance (2DPDA) 179
A.7.9 Labeled GAP (LGAP) 179
A.7.10 Strong Bisimilarity in Transition Systems (SBTS) 180
A.7.11 Propagating Set Systems (PSS) 181
A.7.12 Cellular Tree Automaton Acceptance (*) (CTAA) 182
A.7.13 Iterative Tree Array Acceptance (*) (ITAA) 182
A.7.14 Relation Coarsest Set Partition (RCSP) 183
A.7.15 Iterated Shuffle (SHUF) 183

A.8 Algebra 185
A.8.1 Finite Horizon Markov Decision Process (FHMDP) 185
A.8.2 Discounted Markov Decision Process (DMDP) 186
A.8.3 Average Cost Markov Decision Process (ACMDP) 186
A.8.4 Gaussian Elimination with Partial Pivoting (GEPP) 187

288 PROBLEM LIST

A.8.5 Iterated Mod (IM) 188
A.8.6 Generalized Word Problem (GWP) 189
A.8.7 Subgroup Containment (SC) 190
A.8.8 Subgroup Equality (SE) 190
A.8.9 Subgroup Finite Index (SFI) 190
A.8.10 Group Independence (GI) 191
A.8.11 Group Rank (GR) 191
A.8.12 Group Isomorphism (SI) 192
A.8.13 Group Induced Isomorphism (GII) 192
A.8.14 Intersection of Cosets (IC) 192
A.8.15 Intersection of Subgroups (IS) 193
A.8.16 Group Coset Equality (GCE) 193
A.8.17 Conjugate Subgroups (CS) 194
A.8.18 Uniform Word Problem for Finitely

Presented Algebras (UWPFPA) 194
A.8.19 Finitely Presented Algebras Triviality (FPAT) 195
A.8.20 Finitely Generated Subalgebra (FGS) 195
A.8.21 Finitely Presented Algebras Finiteness (FPAF) 195
A.8.22 Uniform Word Problem for Lattices (UWPL) 196
A.8.23 Lattice Generators (LG) 197
A.8.24 Boolean Recurrence Equation (BRE) 197
A.8.25 Fill Slots (FILL) 198
A.8.26 Multi-list Ranking (MLR) 199
A.8.27 Aperiodic Monoid Membership Variety B2

(AMonMEMB) 200
A.9 Geometry 201

A.9.1 Plane Sweep Triangulation (PST) 201
A.9.2 3-Oriented Weighted Planar Partitioning (3OWPP) 201
A.9.3 Visibility Layers (VL) 203
A.9.4 Point Location on A Convex Hull (PHULL) 204
A.9.5 Successive Convex Hulls (SCH) 205

A.10 Real Analysis 206
A.10.1 Real Analogue to CVP (*) (RealCVP) 206
A.10.2 Fixed Points of Contraction Mappings (*) (FPCM) 206
A.10.3 Inverting An Injective Real Function (*) (IIRF) 207

A.11 Games 208
A.11.1 Two Player Game (GAME) 208
A.11.2 Cat and Mouse (CM) 209
A.11.3 Acyclic Geography Game (AGG) 210
A.11.4 Longcake (LONGCAKE) 210
A.11.5 Game of Life (LIFE) 211
A.11.6 Zero-sum Bimatrix Game (ZSBG) 212
A.11.7 Two-person Pebble Game Fixed Rank (PEBBLE) 213

A.12 Miscellaneous 215
A.12.1 Generic Machine Simulation Problem (GMSP) 215
A.12.2 General Deadlock Detection (GDD) 215

PROBLEM LIST 289

A.12.3 One Dimensional Cellular Automata (CA) 216
A.12.4 Fluid Invasion (FLUID) 217
A.12.5 Eden Growth (EG) 218
A.12.6 Lempel-Ziv Data Compression (LZDC) 218
A.12.7 Greedy Alphabet Reducing (GAR) 219
A.12.8 Network Simulation (NetSim) 220

B Open Problems 221
B.1 Graph Theory 223

B.1.1 Bounded Degree Graph Isomorphism (BDGI) 223
B.1.2 Edge Ranking (ER) 223
B.1.3 Edge-weighted Matching (EWM) 224
B.1.4 Graph Closure (GC) 224
B.1.5 Low Degree Subgraph (LDS) 224
B.1.6 Maximal Independent Set Hypergraph (MISH) 225
B.1.7 Restricted Lexicographically First Maximal

Independent Set (RLFMIS) 225
B.1.8 Lexicographically First Maximal Three-cycle

Free Edge Induced Subgraph (LF3Edge) 226
B.2 Combinatorial Optimization 226

B.2.1 Optimal Two Variable Integer Linear Programming
(Opt2ILP) 226

B.2.2 Two Variable Linear Programming (TVLP) 226
B.3 Logic 227

B.3.1 Canonical Labeling Well-founded Extensional
Relation (CLWER) 227

B.3.2 One Left-linear Semi-unification (1LLSU) 227
B.4 Formal Languages 227

B.4.1 Strong Bisimilarity in Deterministic
Transition Systems (SBDTS) 227

B.4.2 Witness for Unambiguous Finite Automata
(LFWITNESS) 228

B.5 Algebra 229
B.5.1 Extended Euclidean Algorithm (ExtendedGCD) 229
B.5.2 Gaussian Elimination with Partial Pivoting

over Finite Fields (GEPPFF) 229
B.5.3 Integer Greatest Common Divisor (IntegerGCD) 229
B.5.4 LU Decomposition (LUD) 230
B.5.5 Modular Inversion (ModInverse) 230
B.5.6 Modular Powering (ModPower) 231
B.5.7 Relative Primeness (RelPrime) 231
B.5.8 Sylow Subgroups (SylowSub) 232

B.6 Geometry 232
B.6.1 Limited Reflection Ray Tracing (LRRT) 232
B.6.2 Restricted Plane Sweep Triangulation (SWEEP) 232
B.6.3 2-Oriented Weighted Planar Partitioning (2OWPP) 233

290 PROBLEM LIST

B.6.4 Unit Length Visibility Layers (ULVL) 233
B.7 Real Analysis 234

B.7.1 Short Vectors (SV) 234
B.7.2 Short Vectors Dimension 2 (SV2) 234
B.7.3 Polynomial Root Approximation (PRA) 234
B.7.4 Univariate Polynomial Factorization over Q(UPFQ) 235

B.8 CC 235
B.8.1 Comparator Circuit Value Problem (CCVP) 236
B.8.2 Lexicographically First Maximal Matching (LFMM) 236
B.8.3 Stable Marriage (SM) 236
B.8.4 Stable Marriage Fixed Pair (SMFP) 237
B.8.5 Stable Marriage Stable Pair (SMSP) 237
B.8.6 Stable Marriage Minimum Regret (SMMR) 238
B.8.7 Telephone Connection (TC) 238

B.9 RNC 239
B.9.1 Blocking Flow in a Three Layered Network (BF3) 239
B.9.2 Directed or Undirected Depth-first Search (DFS) 239
B.9.3 Edge Coloring (EC) 240
B.9.4 Maximal Path (MP) 240
B.9.5 Maximum Disjoint Paths (MDP) 241
B.9.6 0-1 Maximum Flow (0-1 MaxFlow) 241
B.9.7 Maximum Matching (MM) 241
B.9.8 Perfect Matching Existence (PME) 242
B.9.9 Subtree Isomorphism (STI) 242

Index

This index contains entries for authors, concepts, and problems. Concept
entries are in lower case, problems are capitalized. Problems are indexed
in three ways. The first two forms indicate where the problem is defined in
Part II: indexed by full title, along with the problem number in parenthe-
ses; and indexed by acronym, also with the problem number in parentheses.
The third form, indexed by problem acronym only, gives the pages which
make a reference to the problem, either by use in a reduction or as related
information. See for example, 3OWPP and MVCP below.

(*) Marking of problems in FP , 119
Ω, 245
ω, 246
0-1 MaxFlow, 13

0-1 Maximum Flow (B.9.6), 241
0-1 Maximum Flow, 0-1 MaxFlow

(B.9.6), 241
1LLSU, 174

One Left-linear Semi-unification
(B.3.2), 227

2-Oriented Weighted Planar
Partitioning, 2OWPP (B.6.3),
233

2DPDA, 168, 180
Two-way DPDA Acceptance

(A.7.8), 179
2OWPP, 2-Oriented Weighted

Planar Partitioning (B.6.3),
233

3-Oriented Weighted Planar
Partitioning, 3OWPP (A.9.2),
201

3OWPP, 233
3-Oriented Weighted Planar

Partitioning (A.9.2), 201

A

ABFS, Alternating Breadth-first
Search (A.3.6), 148

Abrahamson, Karl R., 40, 66

absolute performance ratio, 111,
134

AC , 176, 198, 200, 210, 247, 248,
254

ACMDP, Average Cost Markov
Decision Process (A.8.3), 186

Acyclic Geography Game, AGG
(A.11.3), 210

Adachi, Akeo, 213, 214
addresses, authors’, xi
Afrati, Foto, 173
AGAP, 130, 131, 168, 175

Alternating Graph Accessibility
Problem (A.2.3), 129

AGG, 210
Acyclic Geography Game

(A.11.3), 210
Aggarwal, Alok, 145, 239, 240
Aho, Alfred V., 96
Akl, Selim G., 242
Albert, Jürgen, 217
algebra, finitely presented, 194, 195
algorithm

inherently sequential, 94
P-complete, 94

Allender, Eric W., 15, 32
ALOG, 129, 248, 254
Alon, Noga, 128
alphabet

greedy reducing, 220
indexing, 220

292 INDEX

indexing local search, 220
Alternating Breadth-first Search,

ABFS (A.3.6), 148
Alternating Graph Accessibility

Problem, AGAP (A.2.3), 129
alternating logarithmic space, 248
Alternating Monotone CVP, 77
Alternating Monotone Fanin 2,

Fanout 2 CVP , AM2CVP
(A.1.4), 122

alternating Turing machine, 33, 65,
129, 198

alternation, 77, 129, 198
Àlvarez, Carme, 181, 228
AM2CVP, 77, 123, 129, 133, 152,

154, 208, 212
Alternating Monotone Fanin 2,

Fanout 2 CVP (A.1.4), 122
AMCVP, 77
AMonMEMB, Aperiodic Monoid

Membership Variety B2

(A.8.27), 200
Anderson, Richard J., ix, 89, 93–96,

99, 102, 112, 133, 144–148,
154, 155, 164, 235, 239–241

Aperiodic Monoid Membership
Variety B2, AMonMEMB
(A.8.27), 200

aperiodic monoid, 200
approximation

maximum satisfiability, 164
minimum set cover, 165

approximation scheme
for Π, 111
fully NC, 112
NC , 112

arc consistency, 170
ArithCVP, Arithmetic Circuit

Value Problem (*) (A.1.8), 124
Arithmetic Circuit Value Problem

(*), ArithCVP (A.1.8), 124
arithmetic circuit, 124
ASPACE , 248
at most T (n)-P-complete, 105
Atallah, Mikhail J., 201–204, 233
ATM, 33, 65, 129, 198
automaton

auxiliary pushdown, 179
cellular, 216
cellular tree, 182

trellis, 182
two-way PDA, 179

Avenhaus, J., 189–194
Average Cost Markov Decision

Process, ACMDP (A.8.3), 186

B

Babai, László, 128, 232
Bachem, A., 234
Balcázar, José Luis, ix, 181, 228
bandersnatch, 3, 4, 6, 7, 116
Barrington, David A. Mix, ix, 15,

32, 33, 170
basketball, 87
BDGI, 242

Bounded Degree Graph
Isomorphism (B.1.1), 223

BDS, Breadth-depth Search
(A.3.4), 146

Beame, Paul W., ix, 32, 53, 225
Beaudry, Martin, 127, 200
Ben-Or, Michael, 234
Berger, Bonnie, 141
Berkowitz, S., 124
Berlekamp, Elwyn R., 211
Bertoni, A., 197, 198
BF3, 154

Blocking Flow in a Three
Layered Network (B.9.1), 239

big Oh, 245
big Omega, 245
bin packing, 155
bisimulation, 180

strong, 180, 227
Blelloch, Guy E., 64
Blocking Flow in a Three Layered

Network, BF3 (B.9.1), 239
Bollina, M. C., 197, 198
Bondy, J. A., 132
Bongiovanni, Giancarlo, 165
Boolean circuit, 27

family, 30
Boolean function, 27
Boolean Recurrence Equation,

BRE (A.8.24), 197
Boppana, Ravi B., 126
Borodin, Allan, 15, 16, 19, 27, 31,

32, 54, 61, 64, 67, 68, 119, 188,
229, 230

INDEX 293

Borodin’s simulation, 16, 54, 119
Bounded Degree Graph

Isomorphism, BDGI (B.1.1),
223

Bovet, Daniele P., 139, 140
Boyar, Joan F., 132
BRE, Boolean Recurrence

Equation (A.8.24), 197
Breadth-depth Search, BDS

(A.3.4), 146
Brisson, Erik, ix
Broder, Andrei Z., 142, 143
Broder’s algorithm, 143
Brooks, R. L., 132
Buss, Jonathan F., 215

C

CA, 211
One Dimensional Cellular

Automata (A.12.3), 216
cake, long, short, semi-, 210
Callahan, Paul, 201–204, 233
Canonical Labeling Well-founded

Extensional Relation, CLWER
(B.3.1), 227

Carroll, Lewis, 3
Cat and Mouse, CM (A.11.2), 209
categories, 120
CC , viii, 118, 143, 221, 224, 235,

248, 254
CCVP, 235–238, 248

Comparator Circuit Value
Problem (B.8.1), 236

cellular automata, one dimensional,
216

Cellular Tree Automaton
Acceptance (*), CTAA
(A.7.12), 182

Celoni, J. R., 69
CEM, Circuit Evaluation over

Monoids (A.1.13), 127
CFGempty, 177

Context-free Grammar Empty
(A.7.2), 176

CFGεmem, Context-free Grammar
ε-Membership (A.7.4), 177

CFGinf, 177
Context-free Grammar Infinite

(A.7.3), 177

CFGmem, 177
Context-free Grammar

Membership (A.7.1), 176
Chandra, Ashok K., 15, 19, 32, 66,

68, 129, 209, 210
Chang

C. L., 167, 171
Jik H., 182, 183

characteristic function, 43
Chazelle, Bernard, 205
cheapest insertion, 138
Cheriyan, J., 154, 239
Chlebus, Bogdan, 132, 146
Chor, Benny, 230
circuit, 27

comparator, 235
depth, 29
family, 30
fanin, fanout, 28, 29
feasible size-magnitude

arithmetic, 206
function computation, 28
function computed by, 30
gate, 27
input, 27
language accepted, 31
language recognized, 31
oracle, 52
output, 27
probabilistic, 46
size, 29
unbounded fanin, 30

Circuit Evaluation over Monoids,
CEM (A.1.13), 127

Circuit Value Problem, 18, 57, 59,
60, 71

CVP (A.1.1), 121
Square, 105

clauses, not-all-equals, 160
CLWER, 174

Canonical Labeling Well-founded
Extensional Relation (B.3.1),
227

CM, Cat and Mouse (A.11.2), 209
codings, 42
Cole, Richard, 66
Color Index Problem, 133

294 INDEX

coloring, 131
∆ + 1, 131
∆− 1, 131
edge, 240

COLUMNS, Two Layer Channel
Router Column-swap
Heuristic (*) (A.5.12), 166

communication, 20–22
Comparator Circuit Class, 235, 248
Comparator Circuit Value

Problem, CCVP (B.8.1), 236
comparator circuit, 235
comparator gate, 236
compatible, 51
complete basis, 122
composite number, 222
compression, 218, 219
computation problem, 119
Condon, Anne, ix, 103–107, 151
Conjugate Subgroups, CS (A.8.17),

194
Connectionist Model, 162, 225
connectivity, s-t, 67
Consens, Mariano P., 175
Context-free Grammar

ε-Membership, CFGεmem
(A.7.4), 177

Context-free Grammar Empty,
CFGempty (A.7.2), 176

Context-free Grammar Infinite,
CFGinf (A.7.3), 177

Context-free Grammar
Membership, CFGmem
(A.7.1), 176

Conway, John Horton, 211
Cook, Stephen A., ix, 13–15, 19,

21, 32, 53, 54, 66–69, 75, 78,
88, 89, 92, 102, 124, 128, 150,
167, 171, 179, 229, 231, 235,
236, 260

Cormen, Thomas H., 71
Corneil, Derek, ix
Corporate Takeover Query, CTQ

(A.6.13), 174
corrections, viii
Cosmadakis, S. S., 196, 197
counting Turing machine, 251
cover, minimum set, 165
Crescenzi, Pierluigi, 165
cross-over circuits, planar, 123

CS, Conjugate Subgroups (A.8.17),
194

Csanky, L., 188
CSGmem, Forward Deterministic

Growing Context- sensitive
Grammar Membership
(A.7.5), 178

CTAA, 182, 183
Cellular Tree Automaton

Acceptance (*) (A.7.12), 182
CTQ, Corporate Takeover Query

(A.6.13), 174
Cucker, Felipe, 124, 151
Culik, Karel, II, 217
CVP, 59, 123, 126, 127, 143, 144,

164, 165, 206, 207, 211, 219
Circuit Value Problem (A.1.1),

121

D

Dadoun, N., 66
Dahlhaus, Elias, 152, 174, 225, 227,

242
DasGupta, Bhaskar, 163
De Agostino, Sergio, ix, 139, 140,

165, 219, 224
de la Torre, Pilar, ix, 146, 148, 198,

199, 223, 232, 240
deadlock, 139, 215
decidable

parallel time, 44
sequential time, 44

decision tree algorithm, 91
definition, complexity classes, 247
Delcher, Arthur L., 66, 124
DeMorgan’s Laws, 83
Denenberg, Larry, ix, 168, 169
Deng, Xiaotie, 226, 229, 230
dependency

embedded multivalued (EMVD),
169

multivalued (MVD), 169
depth-first search tree, 145
Dessmark, Anders, 199, 204, 205
DET , 127, 248, 254
determinant, 127, 229, 248
DFS, 46, 146

Directed or Undirected
Depth-first Search (B.9.2), 239

INDEX 295

Dickinson, Bradley W., 264, 275,
278

different than majority labeling,
160

Diks, Krzysztof, 132, 146
Dinic, E. A., 152
Directed or Undirected Depth-first

Search, DFS (B.9.2), 239
Discounted Markov Decision

Process, DMDP (A.8.2), 186
divide and conquer, 4, 6
division, 53
DLOG, 197, 207, 243, 248, 254
DLOGTIME , 247–250
DMDP, 151

Discounted Markov Decision
Process (A.8.2), 186

Dobkin, David P., 151, 167
Dolev, Danny, 156, 157
Dominating Set Problem, 137
double minimum spanning tree, 138
double railed logic, 79
DSPACE , 248
Dwork, Cynthia, 171, 172, 174
Dymond, Patrick W., 19, 24, 63,

68, 69, 124, 176

E

EC, 132
Edge Coloring (B.9.3), 240

Eden cluster, 218
Eden Growth, EG (A.12.5), 218
Edge Coloring, EC (B.9.3), 240
Edge Maximal Acyclic Subgraph,

EMAS (A.2.18), 140
Edge Ranking, ER (B.1.2), 223
Edge Ranking Problem, 199
Edge-weighted Matching, EWM

(B.1.3), 224
EG, Eden Growth (A.12.5), 218
elimination order, 135, 136
Ellis, John, ix
EMAS, Edge Maximal Acyclic

Subgraph (A.2.18), 140
Enjalbert, Patrice, 257, 262, 279,

282
ε-Circuit Depth Ones (*), εCDO

(A.1.10), 125

ε-Circuit true Gates (*), εCTG
(A.1.11), 125

εCDO, ε-Circuit Depth Ones (*)
(A.1.10), 125

εCTG, ε-Circuit true Gates (*)
(A.1.11), 125

equivalent languages, 48
ER, 199

Edge Ranking (B.1.2), 223
error probability, 46
eventually nondecreasing, 104
EWM, 236, 241

Edge-weighted Matching (B.1.3),
224

existential, 129
exponentiation, 231
Extended Euclidean Algorithm,

ExtendedGCD (B.5.1), 229
ExtendedGCD, 226, 230

Extended Euclidean Algorithm
(B.5.1), 229

F

fanin, 28, 29
unbounded, 30, 63

fanout, 28, 29
farthest insertion, 138
feasible, 6, 10

highly parallel, 10
Feasible Connectivity, 135
Feather, T., 152, 241
Feder, Tomás, 235
Feedback Arc Set Problem, 141
feedback vertex set, 139
Feig, Ephraim, 234
Fellows, Michael, 40
FFDBP, 90, 93, 95, 102, 107, 108,

112
First Fit Decreasing Bin Packing

(A.4.7), 154
FGS, Finitely Generated

Subalgebra (A.8.20), 195
FHMDP, 106, 186, 187

Finite Horizon Markov Decision
Process (A.8.1), 185

Fich, Faith E., 17, 21, 24, 231
Fiduccia, C. M., 161
FILL, 99, 223

Fill Slots (A.8.25), 198

296 INDEX

Fill Slots, FILL (A.8.25), 198
Finite Horizon Markov Decision

Process, FHMDP (A.8.1), 185
Finitely Generated Subalgebra,

FGS (A.8.20), 195
Finitely Presented Algebras

Finiteness, FPAF (A.8.21),
195

Finitely Presented Algebras
Triviality, FPAT (A.8.19), 195

Finkel, Alain, 257, 262, 279, 282
First Fit Decreasing Bin Packing,

FFDBP (A.4.7), 154
first P-complete problem, 14, 171
Fischer, Michael J., 14, 35, 64, 67
Fixed Points of Contraction

Mappings (*), FPCM
(A.10.2), 206

FLIP Verification Problem, 158
flow

blocking, 154, 239
feasible, 152, 153
homologous, 153
lexicographically first blocking,

154
maximum, 38, 152, 241
two commodity, 153
unary maximum, 241

FLUID, Fluid Invasion (A.12.4),
217

Fluid Invasion, FLUID (A.12.4),
217

FNC , 44–48, 51, 52, 239, 249
Ford, L. R., 152
Fortune, Steven, 19, 22–24
Forward Deterministic Growing

Context- sensitive Grammar
Membership, CSGmem
(A.7.5), 178

FP , 44, 45, 47, 48, 51, 55, 91, 119,
124, 151, 160–163, 206, 207,
249

FP-complete, 55
Arithmetic Circuit Value

Problem, 124
Cellular Tree Automaton

Acceptance, 182
Fixed Points of Contraction

Mappings, 206
Inverting An Injective Real

Function, 207
Iterative Tree Array Acceptance,

182
Linear Programming, 151
Real Analogue to CVP, 206
Stable Configuration in

Connectionist Model, 162
Traveling Salesman 2-Opt, 164
Two Layer Channel Router

Column-swap Heuristic, 166
Unweighted Graph Partitioning

SWAP, 161
Unweighted Maximum Cut

SWAP, 160
Unweighted Two Satisfiability

FLIP, 161
Unweighted, Not-all-equal

Clauses, 3SAT FLIP, 159
FPAF, Finitely Presented Algebras

Finiteness (A.8.21), 195
FPAT, 195

Finitely Presented Algebras
Triviality (A.8.19), 195

FPCM, Fixed Points of
Contraction Mappings (*)
(A.10.2), 206

FRNC , 46, 239, 249
Fulkerson, D. R., 152
function

growth rate, 245
polylogarithmic bounded, 245
polynomially bounded, 245

function NC , 249
function P , 249
function P-complete, 55
function RNC , 249
Furst, Merrick L., 223

G

Gabarró, Joaquim, 181, 228
Galil, Zvi, 14, 179, 264
Game of Life, LIFE (A.11.5), 211
GAME, Two Player Game

(A.11.1), 208
game, zero-sum, 212
GAP, 129
GAR, Greedy Alphabet Reducing

(A.12.7), 219

INDEX 297

Garey, Michael R., x, 8, 47, 102,
111, 112, 132, 137, 141, 166,
189, 222

Gaussian Elimination with Partial
Pivoting over Finite Fields,
GEPPFF (B.5.2), 229

Gaussian Elimination with Partial
Pivoting, GEPP (A.8.4), 187

Gaussian elimination, 187, 229
Gazit, Hillel, 66
GC, 142

Graph Closure (B.1.4), 224
GCE, 194

Group Coset Equality (A.8.16),
193

GDD, General Deadlock Detection
(A.12.2), 215

GDS, Greedy Dominating Set
(A.2.14), 137

GEN, 111, 171, 176–178, 195, 200,
208

Generability (A.6.7), 170
Generability, GEN (A.6.7), 170
general closure, 141
General Deadlock Detection, GDD

(A.12.2), 215
General Graph Closure Problem,

142
General Graph Closure, GGC

(A.2.19), 141
General List Scheduling, GLS

(A.4.8), 155
Generalized Word Problem, GWP

(A.8.6), 189
Generating Random Matchings,

GRM (A.2.20), 142
Generic Machine Simulation

Problem, 18, 57–59, 62, 64, 70,
75, 178, 182, 189, 199, 215

GMSP (A.12.1), 215
geometry, 201
GEPP, 99, 102, 229, 230

Gaussian Elimination with
Partial Pivoting (A.8.4), 187

GEPPFF, Gaussian Elimination
with Partial Pivoting over
Finite Fields (B.5.2), 229

Geréb-Graus, Mihály, 16
GGC, 224

General Graph Closure (A.2.19),

141
GI, 191, 192

Group Independence (A.8.10),
191

Gibbons, Alan M., 16, 237
Gibbons, Phillip B., 223, 242
GII, Group Induced Isomorphism

(A.8.13), 192
glider gun, 211
GLS, 101, 102, 157

General List Scheduling (A.4.8),
155

GMSP, 58, 178, 182, 199
Generic Machine Simulation

Problem (A.12.1), 215
Godbeer, Gail, 163, 164, 224, 225
Goldberg, Andrew V., 154, 239
Goldberg, M., 128
Goldreich, Oded, 230
Goldschlager, Leslie M., 14–16, 19,

22–24, 33, 68, 79, 121–124,
152, 176, 177

Goldsmith, Judy, 215
Goodrich, Glen B., 178, 179
Goodrich, Michael T., 201–204, 233
GR, Group Rank (A.8.11), 191
Graham, Ronald L., 245
grammar

context-free, 176
context-sensitive, 178
forward deterministic, 178

graph
alternating, 129
closure of, 224
cyclically reducible, 139
expansion, 130
general closure of, 141
hereditary property, 91
hierarchical, 130
induced subgraph, 91
isomorphic, 223
nontrivial property, 91
outerplanar, 146
partitioning, 161
property, 91
tree structured, 132, 146

graph accessibility, 130
directed, 129
undirected, 130

Graph Closure, GC (B.1.4), 224

298 INDEX

Graph Coloring Problem, 137
graph solvability, 208
greatest common divisor, 229
Greedy Alphabet Reducing, GAR

(A.12.7), 219
Greedy Dominating Set, GDS

(A.2.14), 137
greedy method, 87
Greenberg, Albert G., 220
Greenlaw, Raymond, 17, 84, 94–96,

109, 110, 123, 133, 136, 137,
139–141, 146–148, 169, 178,
180, 198, 199, 208, 211, 217,
218, 223–225, 232, 240

Grigoriev, Dina Yu., 242
GRM, Generating Random

Matchings (A.2.20), 142
group

cosets, 192, 193
left cosets, 192, 193
normal subgroup, 190
right cosets, 191–193
word problem, 189

Group Coset Equality, GCE
(A.8.16), 193

Group Independence, GI (A.8.10),
191

Group Induced Isomorphism, GII
(A.8.13), 192

Group Isomorphism, SI (A.8.12),
192

Group Rank, GR (A.8.11), 191
Gupta, Arvind, ix, 235
Guy, Richard K., 211
GWP, 190

Generalized Word Problem
(A.8.6), 189

H

H̊astad, Johan, 126
Hagerup, Torben, 146
Hajnal, Péter, 132, 242
Halting Problem, 31
Hamming distance, 158
Haraguchi, Makoto, 175
Harrison, Michael A., 180
Hartmanis, Juris, 70, 176
HCS, 111

High Connectivity Subgraph
(A.2.8), 134

HDS, 111, 134
High Degree Subgraph (A.2.7),

132
He, Xin, 66, 146, 156, 160, 164
Height-priority Schedule, HPS

(A.4.9), 156
Helmbold, David, 101, 102, 155,

156
Henglein, Fritz, 173, 174, 227
hereditary, 90
hereditary graph property, 138
Hershberger, John, ix, 203, 204
HF, 151

Homologous Flow (A.4.5), 153
HGAP, Hierarchical Graph

Accessibility Problem (A.2.4),
130

Hierarchical Graph Accessibility
Problem, HGAP (A.2.4), 130

High Connectivity Subgraph, HCS
(A.2.8), 134

High Degree Subgraph, HDS
(A.2.7), 132

hints for problem proofs, 119
history, 13
Homologous Flow, HF (A.4.5), 153
Hong, Jia-Wei, 67
Hoover, H. James, 29, 32, 53, 84,

109, 110, 123, 148, 169, 178,
180, 206–208, 211, 217, 232

Hopcroft, John E., 58, 96, 179, 180,
188, 223, 229

HORN, 151, 169
Horn clause

implication problem, 196
three literal, 168
two literal unique matching, 168

Horn formula, 167
HORN, Horn Unit Resolution

(A.6.2), 167
Horn Unit Resolution, HORN

(A.6.2), 167
Horowitz, Ellis, 146
Howard, R. A., 185
HPS, 156

Height-priority Schedule (A.4.9),
156

Huynh, Dung T., 178, 183, 228

INDEX 299

hypergraphs, 130

I

Ibarra, Oscar H., 182, 183, 188
IC, 193

Intersection of Cosets (A.8.14),
192

IIRF, Inverting An Injective Real
Function (*) (A.10.3), 207

IM, Iterated Mod (A.8.5), 188
Immerman, Neil, 15, 32, 33, 129
Incomplete Table Recovery, ITR

(A.6.14), 175
independence oracle, 90
independence system, 90
independent set, 87, 90

maximal, 87
maximum, 87

inference system, 128
inherently sequential, 8, 10, 16, 87
inherently sequential algorithm, 94
Institute for New Generation

Computer Technology
(ICOT), 275

Integer Greatest Common Divisor,
IntegerGCD (B.5.3), 229

IntegerGCD, 231, 234
Integer Greatest Common

Divisor (B.5.3), 229
Intersection of Cosets, IC (A.8.14),

192
Intersection of Subgroups, IS

(A.8.15), 193
interval order, 156
Inverting An Injective Real

Function (*), IIRF (A.10.3),
207

Inverting An NC0 Permutation (*),
InvNC0Perm (A.1.12), 126

InvNC0Perm, Inverting An NC0

Permutation (*) (A.1.12), 126
IS, 193

Intersection of Subgroups
(A.8.15), 193

isomorphism
graph, 222, 223
subtree, 223, 242
tree, 223

ITAA, Iterative Tree Array
Acceptance (*) (A.7.13), 182

Itai, Alon, 128, 151, 153
Iterated Mod, IM (A.8.5), 188
iterated mod, polynomial, 188
iterated product, 53
Iterated Shuffle, SHUF (A.7.15),

183
Iterative Tree Array Acceptance

(*), ITAA (A.7.13), 182
ITR, Incomplete Table Recovery

(A.6.14), 175
Iwata, Shigeki, 213, 214

J

JáJá, Joseph, 17
Jerrum, Mark, 143
Jiang, Tao, 182, 183
Johnson, David S., x, 8, 14, 17, 21,

47, 51, 102, 111, 112, 132, 137,
141, 158, 159, 161, 166, 189,
222, 247, 251

Johnson, Donald B., 153
Jones, Neil D., 14, 54, 167, 170,

171, 176, 177, 196, 208

K

Kaji, Yuichi, 176
Kaltofen, Erich, 124
Kanellakis, Paris C., 171, 172, 174,

183
Kannan, Ravi, 229, 230, 234
Kantor, W. M., 232
Kao, Ming-Yang, 145, 146, 239, 240
Karchmer, Mauricio, 132
Karloff, Howard J., 132, 188, 189,

223, 240, 241
Karmarkar, N., 150, 151
Karp, Richard M., 17, 21, 33, 36,

40, 47, 62, 66, 80, 91, 93, 128,
132, 139–141, 149, 152, 223,
224, 241, 242

Karpinski, Marek, x, 223, 225, 241,
242

Kasai, Takumi, 213, 214
Kasami, Tadao, 176
Kasif, Simon, 168–170, 208
Kavadias, Dimitris, 135

300 INDEX

Kelsen, Pierre, 225
Kernighan, Brian W., 164
Kernighan-Lin Verification, 159
Khachian, L. G., 150, 151, 153
Khuller, Samir, 134, 142, 224
Kim, Sam M., 182
Kimbrel, Tracy, x
Kindervater, Gerard A. P., 17, 21,

138
Kirkpatrick, David G., 66
Kirousis, Lefteris M., 125, 134, 135
Klawe, Maria M., 29
Klein, Philip N., 176
knapsack

0− 1, 189
superincreasing, 189

Knuth, Donald E., 212, 245
Ko, Ker-I, 207
Kosaraju, S. Rao, 66, 124
Kozen, Dexter C., x, 19, 32, 66,

129, 194, 195, 234
Krentel, Mark W., 158
Krom formula, 168
Kruskal, Clyde P., 64, 103, 146,

148, 240
Kuper, G. M., 172

L

Laaser, William T., 14, 54, 167,
170, 171, 176, 177, 196, 208

Labeled GAP, LGAP (A.7.9), 179
labeling

different from majority, 160, 163
general consistent, 170

Ladner, Richard E., 14, 18, 35, 59,
60, 64, 72, 121, 179

Lagarias, J. C., 126
language, 42

2DPDA, 179
cellular tree automaton, 182
context-free, 176
context-sensitive, 178
iterated shuffle, 183
iterative tree array, 183
linear iterative array, 182
recognition, 43
semi-Dyck, 180
shuffle, 183
trellis automaton, 182

latch, 144
lattice, 196

aperiodic monoids variety, 200
generator problem for free, 197
identity problem, 197

Lattice Generators, LG (A.8.23),
197

Lawler, Eugene L., 92
LDS, 133

Low Degree Subgraph (B.1.5),
224

LE, 153
Linear Equalities (A.4.2), 150

Lee, Richard C. T., 167, 171
Left-linear Semi-unification, LLSU

(A.6.11), 173
Leighton, F. Thomson, 6, 17, 19, 21
Leiserson, Charles E., 71
Lempel-Ziv Data Compression,

LZDC (A.12.6), 218
Lengauer, Thomas, 27, 69,

129–131, 152
Lenstra, A. K., 234
Lenstra, H. W., Jr., 234
Lenstra, Jan K., 17, 21, 138
level function, 83
level in circuit, 77
Lewis, Harry R., 130, 168
Lewis, Philip M., II, 70, 176
lexicographically

first, 41
first maximal independent set,

89, 109, 128
ordered, 89

Lexicographically First
∆ + 1 Vertex Coloring , LFDVC

(A.2.6), 131
Blocking Flow, LFBF (A.4.6),

154
Depth-first Search Ordering,

LFDFS (A.3.3), 145
Different Than Majority

Labeling, LFDTML (A.5.8),
163

Maximal k-cycle Free Edge
Induced Subgraph, LFEdge
(A.2.21), 143

Maximal Acyclic Subgraph
Problem, 140

INDEX 301

Maximal Clique, LFMC (A.2.2),
128

Maximal Independent Set,
LFMIS (A.2.1), 128

Maximal Matching, LFMM
(B.8.2), 236

Maximal Path, LFMP (A.3.1),
144

Maximal Subgraph for π,
LFMS(π) (A.2.16), 138

Maximal Three-cycle Free Edge
Induced Subgraph, LF3Edge
(B.1.8), 226

LF3Edge, 143
Lexicographically First Maximal

Three-cycle Free Edge
Induced Subgraph (B.1.8), 226

LFBF, 239
Lexicographically First Blocking

Flow (A.4.6), 154
LFDFS, 90, 98, 107, 147

Lexicographically First
Depth-first Search Ordering
(A.3.3), 145

LFDTML, 160
Lexicographically First Different

Than Majority Labeling
(A.5.8), 163

LFDVC, 90, 93, 134
Lexicographically First ∆ + 1

Vertex Coloring (A.2.6), 131
LFEdge, 226

Lexicographically First Maximal
k-cycle Free Edge Induced
Subgraph (A.2.21), 143

LFMC, 88, 107, 128, 139
Lexicographically First Maximal

Clique (A.2.2), 128
LFMIS, 89, 107, 109, 128, 139, 143,

163, 224, 225, 236
Lexicographically First Maximal

Independent Set (A.2.1), 128
LFMM, 143, 224

Lexicographically First Maximal
Matching (B.8.2), 236

LFMP, 145, 146, 240
Lexicographically First Maximal

Path (A.3.1), 144
LFMS(π), 128, 133, 143

Lexicographically First Maximal

Subgraph for π (A.2.16), 138
problem, 91

LFWITNESS, Witness for
Unambiguous Finite
Automata (B.4.2), 228

LG, Lattice Generators (A.8.23),
197

LGAP, Labeled GAP (A.7.9), 179
LI, 102

Linear Inequalities (A.4.1), 150
Li, G. J., 283
LIFE, Game of Life (A.11.5), 211
Limited Reflection Ray Tracing,

LRRT (B.6.1), 232
Lin, S., 164
Lin, Y., 188, 189
Lin-Kriz, Yu, 151, 189, 226, 229,

230
Lindell, Steven, 223, 242, 243
Lindgren, Kristian, 216, 217
Linear Equalities, LE (A.4.2), 150
Linear Inequalities, LI (A.4.1), 150
linear iterative array, 182
Linear Programming (*), LP

(A.4.3), 151
linear programming, 150, 226
Lingas, Andrzej, 137, 199, 204, 205,

223, 242
Lipscomb, John, 163
Lipton, Richard J., 151, 167, 189
List Scheduling Problem, 112
little Oh, 246
little Omega, 246
Lloyd, Errol L., 139, 140
LLSU, 227

Left-linear Semi-unification
(A.6.11), 173

Local Optimality Kernighan-Lin
Verification , LOKLV (A.5.2),
158

local search problem, 251
logarithmic space

reduction, 14, 54, 119
uniformity, 32

LOGCFL, 124, 179, 180, 210, 249,
254

LOGDCFL, 179, 250, 254
logic program, 172
Logical Query Program, LQP

(A.6.10), 172

302 INDEX

LOKLV, 159
Local Optimality Kernighan-Lin

Verification (A.5.2), 158
Long, Philip M., 204
LONGCAKE, Longcake (A.11.4),

210
Longcake, LONGCAKE (A.11.4),

210
Longpré, Luc, x, 85
Lovász, László, 234
Low Degree Subgraph, LDS

(B.1.5), 224
lower bound, 11, 31
LP, 13, 102

Linear Programming (*) (A.4.3),
151

LQP, Logical Query Program
(A.6.10), 172

LRRT, Limited Reflection Ray
Tracing (B.6.1), 232

LU Decomposition, LUD (B.5.4),
230

Lubachevsky, Boris D., 220
Luby, Michael, x, 93, 128, 131, 132,

160, 164, 225
LUD, LU Decomposition (B.5.4),

230
Lueker, George S., 227
Luks, Eugene M., 223, 232
LZDC, Lempel-Ziv Data

Compression (A.12.6), 218

M

Machta, Jonathan, x, 217, 218
Madlener, K., 189–194
Maheshwari, Anil, 199, 204, 205
Maheshwari, S. N., 154, 239
Mak, Louis, 63
Makespan Problem, 112
Malton, Andrew, x
many-one reduction, 47
Markov process, 185, 186
matching, 224

bipartite, 242
edge-weighted, 224, 236
lexicographically first maximal

bipartite, 236
maximal, 149, 236
maximum, 149, 241

maximum edge-weighted, 242
maximum vertex-weighted, 242
perfect, 242
perfect bipartite, 242

matroids, 92
Mattheyses, R. M., 161
Mauri, G., 197, 198
Max(I), 100
MAXFLIP Verification,

MAXFLIPV (A.5.1), 158
MAXFLIPV, MAXFLIP

Verification (A.5.1), 158
MaxFlow, 13, 40, 102, 154, 155, 241

Maximum Flow (A.4.4), 152
maximal, 87
Maximal Independent Set

Hypergraph, MISH (B.1.6),
225

maximal independent set, 87
Maximal Path, MP (B.9.4), 240
Maximal Vertex Disjoint Paths,

PATHS (A.3.2), 144
Maximum Acyclic Subgraph

Problem, 141
Maximum Disjoint Paths, MDP

(B.9.5), 241
maximum flow

bit, 39
pattern, 41
threshold, 40
value, 38

Maximum Flow, MaxFlow (A.4.4),
152

maximum independent set, 87
Maximum Matching, MM (B.9.7),

241
Maximum Satisfiability

Approximation, MSA
(A.5.10), 164

Mayr, Ernst W., 66, 93, 95, 99,
101, 102, 112, 124, 133, 144,
154–156, 189, 235–240

McAloon, K. W., 172
McColl, William F., 124
McKenzie, Pierre, x, 127, 170, 200
MCVP, 76, 125, 134, 135, 140, 142,

158, 159, 161, 164, 166, 171,
174, 177, 178, 185, 194, 195,
198, 203, 204, 210, 212, 215,
220

INDEX 303

Monotone Circuit Value Problem
(A.1.3), 122

MDP, Maximum Disjoint Paths
(B.9.5), 241

Megiddo, Nimrod, 151, 227
Mehlhorn, Kurt, 67, 260
Mendelzon, Alberto O., 175
Meyer, Albert R., 14
MFVS, 141

Minimum Feedback Vertex Set
(A.2.17), 139

Miller, Gary L., 66, 124, 223, 229,
230, 242

Min-plus Circuit Value Problem,
MinPlusCVP (A.1.9), 125

Minimum Feedback Vertex Set,
MFVS (A.2.17), 139

Minimum Set Cover
Approximation, MSCA
(A.5.11), 165

Minimum Vertex Cover Problem,
137

minimum weight
feedback arc set, 141
feedback vertex set, 140

MinPlusCVP, Min-plus Circuit
Value Problem (A.1.9), 125

Minsky, Marvin, 217
MISH, Maximal Independent Set

Hypergraph (B.1.6), 225
Mitchell, John C., 171, 172, 174
Miyano, Satoru, x, 17, 91, 128, 139,

143, 175, 219, 220, 225, 226
MKS, Monadic Krom Satisfiability

(A.6.4), 168
MLR, 205

Multi-list Ranking (A.8.26), 199
MM, 13, 46, 242

Maximum Matching (B.9.7), 241
models, parallel, 19
ModInverse, 231

Modular Inversion (B.5.5), 230
ModPower, 230

Modular Powering (B.5.6), 231
Modular Inversion, ModInverse

(B.5.5), 230
Modular Powering, ModPower

(B.5.6), 231
Monadic Krom Satisfiability, MKS

(A.6.4), 168

monoid, finite, 127
monotone, 76, 122
Monotone Circuit Value Problem,

MCVP (A.1.3), 122
Monti, Angelo, 182, 224
Moran, Shlomo, 188
MostEpi, 227

Mostowski Epimorphism
(A.6.12), 174

Mostowski Epimorphism, MostEpi
(A.6.12), 174

MP, 99, 144
Maximal Path (B.9.4), 240

MSA, Maximum Satisfiability
Approximation (A.5.10), 164

MSCA, Minimum Set Cover
Approximation (A.5.11), 165

Mulmuley, Ketan, 149, 188, 241,
242

Multi-list Ranking, MLR (A.8.26),
199

multigraphs, 132
Multivalued Dependency, MVD

(A.6.5), 169
Murty, U. S. R., 132
MVD, Multivalued Dependency

(A.6.5), 169

N

Nakanishi, Ryuichi, 176
NAND Circuit Value Problem,

NANDCVP (A.1.5), 122
NANDCVP, 76, 131, 136, 138, 141,

145, 148, 155, 160, 169, 171,
184, 187, 188, 217, 218, 220

NAND Circuit Value Problem
(A.1.5), 122

Naor, Joseph, 132
NC , vii, 15, 26, 44, 61, 250

random, 46
algorithm, 80
many-one reducible, 47
Turing reducible, 50

NC0, 126, 250
NC1, 53, 58, 64, 75, 78–80, 83, 85,

89, 119, 124, 127, 132, 150,
151, 170, 228, 229, 234, 235,
248, 250

NCk, 45

304 INDEX

NCk Turing reducible, 53
nearest addition, insertion, merger,

138
Nearest Neighbor Traveling

Salesman Heuristic, NNTSH
(A.2.15), 138

nearest neighbor tour, 138
Neighborhood Removal, NR

(A.2.13), 137
NetSim, 238

Network Simulation (A.12.8),
220

Network Simulation, NetSim
(A.12.8), 220

neural network, 163
Newton’s method, 207
Nick’s Class or NC , 15, 67, 250
Nielsen reduction algorithm,

189–192
NLOG, 129, 139, 170, 178, 214,

228, 235, 250, 254
NNTSH, 164

Nearest Neighbor Traveling
Salesman Heuristic (A.2.15),
138

nondeterministic logarithmic space,
250

nonuniform, 31
Nordahl, Mats G., 216, 217
notation, 244
NP , x, 7, 8, 13, 16, 17, 47, 59, 70,

75, 76, 87, 101, 102, 108, 111,
114, 121, 131–133, 139–141,
166, 170, 178, 184, 200, 220,
223, 250, 254

NP-completeness, 17
NR, Neighborhood Removal

(A.2.13), 137
NSPACE , 250
number P , 250
number problem, 100

O

O, 245
˜O, 104, 246
o, 246
observation

congruence, 180, 181
equivalence, 180, 181

Ofman, Yu. P., 64
Ogden, William F., 184
Oh

big, 245
little, 246
soft, 246

OHDVR, 136, 137
Ordered High Degree Vertex

Removal (A.2.10), 135
OLDVR, 134

Ordered Low Degree Vertex
Removal (A.2.11), 136

One Dimensional Cellular
Automata, CA (A.12.3), 216

One Left-linear Semi-unification,
1LLSU (B.3.2), 227

open problems, Garey and
Johnson, 222

Opt2ILP, 229
Optimal Two Variable Integer

Linear Programming (B.2.1),
226

Optimal Two Variable Integer
Linear Programming,
Opt2ILP (B.2.1), 226

oracle, 49
circuit, 52
gate, 52
PRAM, 49

order of, 245
Ordered Greedy Clique, 128
Ordered High Degree Vertex

Removal, OHDVR (A.2.10),
135

Ordered Low Degree Subgraph
Membership Problem, 136

Ordered Low Degree Vertex
Removal, OLDVR (A.2.11),
136

Ordered Remaining Clique, 129
Ordered Vertices Remaining, OVR

(A.2.12), 136
Osiakwan, C. N. K., 242
OVR, Ordered Vertices Remaining

(A.2.12), 136

P

#P , 250, 251, 254
P , vii, 44, 61

INDEX 305

many-one reducible, 47
Turing reducible, 50

P-complete, 16
NC reducibility, 55
algorithm, 94, 95
in the strong sense, 102
under ≤NC1

m , 72
p-complete, 16
P-hard, 55, 119

ε-Circuit Depth Ones, 125
ε-Circuit true Gates, 125
Arithmetic Circuit Value

Problem, 124
function, 55
Inverting An NC0 Permutation,

126
language, 55
search problem, 56
Stable Configuration in

Connectionist Model, 162
NC reducibility, 55

P-uniformity, 32
Palem, K. V., 172
Pan, Victor, 151, 188, 189, 226,

229, 230
Papadimitriou, Christos H., x, 130,

151, 158–161, 163, 173,
185–187, 212

Parallel Computation Thesis, 15,
68

Parallel Random Access Machine
or PRAM, 21

parallel speedup, 103
Parberry, Ian, 63, 68, 121
partition, 158
partitioning

graph, 161
plane, 202, 233

Patashnik, Oren, 245
Paterson, Michael S., 63
PATH, 14, 111, 130, 173, 175

Path Systems (A.6.8), 171
path

lexicographically first maximal,
144

maximal, 144, 240
maximum disjoint, 241

Path Systems, PATH (A.6.8), 171
PATHS, 241

Maximal Vertex Disjoint Paths
(A.3.2), 144

Paturi, Ramamohan, 16
Paul, Wolfgang J., 69
PCVP, 201

Planar Circuit Value Problem
(A.1.7), 123

PEBBLE, Two-person Pebble
Game Fixed Rank (A.11.7),
213

pebbling, 68, 69, 213, 214
game, 213
one-person, 214
references, 69
two-person, 69, 213

Péladeau, Pierre, 127
percolation, 218
Perfect Matching Existence, PME

(B.9.8), 242
perfect matching, 142, 149
performance ratio, 111
permanent, 143, 242
Perry, K. J., 172
Peterson, Gary, 129
Petreschi, Rossella, 139, 140
PH , 70, 251, 254
PHCS, 169

Propositional Horn Clause
Satisfiability (A.6.3), 168

PHULL, 205
Point Location on A Convex

Hull (A.9.4), 204
Pippenger, Nicholas J., 14, 15, 29,

33, 66, 67, 69, 71, 229
pivoting

complete, 188
partial, 187, 229, 230

Plaisted, David A., 168
planar, 123
Planar Circuit Value Problem,

PCVP (A.1.7), 123
Planar Directed Depth-first Search,

146
Plane Sweep Triangulation, PST

(A.9.1), 201
PLS , 158–161, 163, 220, 251
PLS -complete, 158
PME, 242

Perfect Matching Existence
(B.9.8), 242

306 INDEX

Point Location on A Convex Hull,
PHULL (A.9.4), 204

Pólya, George, 237
polylogarithmic, 6
polynomial

local search, 251
number, 6
space, 252
speedup, 103
time hierarchy, 251

Polynomial Root Approximation,
PRA (B.7.3), 234

Post, Emil L., 122
powering, 53
PRA, Polynomial Root

Approximation (B.7.3), 234
PRAM, 22

addressing modes, 22
ARBITRARY, 24, 134
COMMON, 24, 132
CRCW, 24
CREW, 24
CROW, 24
EREW, 24
Fortune and Wyllie, 23
function computation, 26
input/output conventions, 25
instructions, 22
oracle, 49
PRIORITY, 24
processors, 25
resource bounds, 25
time, 25

Pratt, Vaughan R., 19
probabilistic circuit, 46
problem

decision, 38
function, 41
local search, 251
number, 100
search, 38

projections, 16
Propagating Set Systems, PSS

(A.7.11), 181
Propositional Horn Clause

Satisfiability, PHCS (A.6.3),
168

Przytycka, Teresa, x, 66, 223
pseudo-NC algorithm, 101

PSPACE , 70, 182, 200, 232, 252,
254

PSS, Propagating Set Systems
(A.7.11), 181

PST, 202, 232, 233
Plane Sweep Triangulation

(A.9.1), 201

Q

quasi-P-complete, 56

R

Rackoff, Charles W., 124
Rajasekaran, Sanguthevar, 93
RAM, 21, 96

algorithm, 96
flow function, 97

Ramachandran, Vijaya, 17, 21, 33,
36, 62, 66, 80, 93, 124, 140,
141, 152, 227, 235, 238

random access machine, 21, 96
random NC , 252
rank oracle, 92
RCAGAP, Restricted Chromatic

Alternating Graph
Accessibility Problem (A.2.5),
131

RCIN, Reliable Connectivity for
Failures of Incoming Edges
(A.2.9), 134

RCL, Relaxed Consistent Labeling
(A.6.6), 169

RCSP, Relation Coarsest Set
Partition (A.7.14), 183

Real Analogue to CVP (*),
RealCVP (A.10.1), 206

real analysis, 206
real function

feasible, 206
NC , 206, 207

RealCVP, 206
Real Analogue to CVP (*)

(A.10.1), 206
recurrence equation, 197
reduction, 11, 47, 48

honest, 104
logarithmic space, 54
many-one, 47

INDEX 307

notation, 246
quasilinear time, 215
resource bounded, 47
self-, 40
transitive, 48
Turing, 49, 50
NC many-one, 47
NC Turing, 50
NCk Turing, 53
P many-one, 47
P Turing, 50

Reif, John H., x, 16, 17, 63, 66, 93,
145, 176, 188, 232, 258, 263,
266, 269, 272

Reiss, Steven P., 151, 167
related works, 16
Relation Coarsest Set Partition,

RCSP (A.7.14), 183
relation, well-founded, 174, 227
Relative Primeness, RelPrime

(B.5.7), 231
Relaxed Consistent Labeling, RCL

(A.6.6), 169
Reliable Connectivity for Failures

of Incoming Edges, RCIN
(A.2.9), 134

RelPrime, Relative Primeness
(B.5.7), 231

Restricted Chromatic Alternating
Graph Accessibility Problem,
RCAGAP (A.2.5), 131

Restricted Lexicographically First
Maximal Independent Set,
RLFMIS (B.1.7), 225

Restricted Plane Sweep
Triangulation, SWEEP
(B.6.2), 232

reversal, 66
reversal bounded, 66
Riddle, W. E., 184
Rivest, Ronald L., 71
RLFMIS, Restricted

Lexicographically First
Maximal Independent Set
(B.1.7), 225

RNC , viii, 46, 93, 99, 118, 144, 146,
149, 152–154, 221, 223–225,
235, 239–242, 249, 252

Robinson, J. A., 171
Roncato, Alessandro, 182

Rosier, Louis E., 188
Rounds, W. C., 184
routing, 166

two layer channel, 166
Rudolph, Larry, 64, 103, 229, 230
Ruzzo, Walter L., 15, 24, 29, 32,

33, 53, 65, 84, 109, 110, 123,
148, 169, 176, 178, 180, 188,
189, 208, 211, 217, 232

Rytter, Wojciech, 16, 132, 146, 176

S

Sabadini, N., 197, 198
SAC , 179, 180, 210, 252, 254
Sahni, Sartaj, 146
Sairam, S., 236
SAM2CVP, 77, 105, 107, 147, 181,

187
Synchronous Alternating

Monotone Fanout 2 CVP
(A.1.6), 123

Sang Cho, 178, 183, 228
Sántha, Miklós, 181, 228
Sanz, Jorge L. C., 10
Sarnath, Ramnath, 160, 164
Satisfiability Problem, 121
saturated edge, 154
Savage, John E., 14, 67, 159, 161,

162, 166
Savitch, Walter J., 19, 65, 129
Savitch’s Theorem, 65
SBDTS, 181

Strong Bisimilarity in
Deterministic Transition
Systems (B.4.1), 227

SBFS, 95, 107
Stack Breadth-first Search

(A.3.5), 147
SBTS, 183, 228

Strong Bisimilarity in Transition
Systems (A.7.10), 180

SC, 190, 191
Subgroup Containment (A.8.7),

190
SC , 67, 199, 252, 254
SCCM, 164, 225

Stable Configuration in
Connectionist Model (*)
(A.5.7), 162

308 INDEX

SCH, 199, 204
Successive Convex Hulls (A.9.5),

205
Schäffer, Alejandro A., ix, x,

159–164, 198, 199, 223, 251
schedule

best fit decreasing, 155
greedy, 157
height-priority, 157
list, 156
precedence constrained

3-processor, 222
weight-priority, 157

scheduling, 155
Schevon, Catherine A., 146
Schieber, Baruch, 134
Schwartz, Stuart C., 264, 275, 278
SE, Subgroup Equality (A.8.8), 190
search

alternating breadth-first, 148
binary, 40
breadth-depth first, 146
depth-first, 145, 239
depth-first planar directed, 146
lexicographic breadth-first, 148
polynomially local, PLS , 158
problem, 119
rational binary, 151
stack breadth-first, 147

Seki, Hiroyuki, 176
semi-group

ordered, 125
well-ordered, 125

semi-unbounded circuits, 252
sequential time, 25
Seres, S., 232
Serna, Maria J., 111, 125, 126, 134,

151, 167, 170, 171
set cover, 165
set system, 181
Sethi, Ravi, 69, 229
SFI, Subgroup Finite Index

(A.8.9), 190
Shallcross, David, 226, 229, 230
shared memory, 22, 24
sharp P , 250
Shaw, Ralph A., 16, 122, 152
Shimozono, Shinichi, 219, 220
Shiraishi, Shuji, 17, 175

Shmoys, David B., 132, 138, 223,
240

Shor, Peter W., 141
Short Vectors Dimension 2, SV2

(B.7.2), 234
Short Vectors, SV (B.7.1), 234
Shoudai, Takayoshi, 17, 139, 175,

184
SHUF, Iterated Shuffle (A.7.15),

183
shuffle, 183
SI, Group Isomorphism (A.8.12),

192
signature, 89
SIMDAG, 23
Simons, Roger A., x, 103, 122, 146,

170–172
simulated annealing, 162
simulation, 20, 33, 34, 220

Borodin’s, 16, 54
Sinclair, Alistair, 143
Sinclair’s algorithm, 143
Singer, Michael F., 242
size, 29
Skyum, Sven, 124
SLOG, 130, 189, 253, 254
SLPmem, 179

Straight-line Program
Membership (A.7.6), 178

SLPnonempty, Straight-line
Program Nonempty (A.7.7),
179

SM, 236
Stable Marriage (B.8.3), 236

SMFP, Stable Marriage Fixed Pair
(B.8.4), 237

Smith, Alvy Ray, III, 216
Smith, Justin R., 146, 240
SMMR, Stable Marriage Minimum

Regret (B.8.6), 238
Smolka, Scott A., 181, 183
smooth, 230
SMSP, Stable Marriage Stable Pair

(B.8.5), 237
Snir, Marc, 64, 103
Snoeyink, Jack, x
Soffa, Mary Lou, 139, 140
soft Oh, 104, 246
Sorenson, Jonathan, 230
Soroker, Danny, 223, 235, 242

INDEX 309

sort, 4–6, 26, 93, 124, 224
rank, 6

SP , 103, 253
space hierarchy theorem, 70
speedup, 5, 103
speedup equation, 9
Spencer, Thomas, 128
Spirakis, Paul G., x, 21, 111, 125,

134, 135, 167, 170, 171, 215,
216

square circuit, 105
SquareCVP, 105
Sridhar, M. A., 133, 136
Stable Configuration in

Connectionist Model (*),
SCCM (A.5.7), 162

Stable Marriage, 236
SM (B.8.3), 236
Fixed Pair, SMFP (B.8.4), 237
Minimum Regret, SMMR

(B.8.6), 238
Stable Pair, SMSP (B.8.5), 237

Stable Roommates Problem, 236
Stack Breadth-first Search, SBFS

(A.3.5), 147
standard encoding, 79
Staples, John, 16, 122, 152
STCON, 129
Stearns, Richard E., 70, 176
Stein, Clifford, 153
Steve’s Class, or SC , 67, 252
Stewart, Iain A., x, 128, 129, 137,

189
STI, 223

Subtree Isomorphism (B.9.9),
242

Stimson, Michael J., 19
Stockmeyer, Larry J., x, 14, 15, 19,

30, 32, 36, 66, 68, 129, 171,
172, 209

Storer, James A., 219
straight-line program, 126
Straight-line Program

Membership, SLPmem (A.7.6),
178

Nonempty, SLPnonempty
(A.7.7), 179

Straubing, Howard, 15, 32, 33
strict P-completeness, 103
strict T (n)-P-complete, 105

Strong Bisimilarity
in Deterministic Transition

Systems, SBDTS (B.4.1), 227
in Transition Systems, SBTS

(A.7.10), 180
strong NP-complete, 102
strong P-complete, 100, 102
Subgroup Containment, SC

(A.8.7), 190
Subgroup Equality, SE (A.8.8), 190
Subgroup Finite Index, SFI

(A.8.9), 190
Subramanian, Ashok, x, 235–238
substitution, 171
Subtree Isomorphism, 223

STI (B.9.9), 242
Successive Convex Hulls, SCH

(A.9.5), 205
Sudborough, Ivan Hal, 179
Sunder, S., 156
SV, 235

Short Vectors (B.7.1), 234
SV2, 229

Short Vectors Dimension 2
(B.7.2), 234

SWEEP, Restricted Plane Sweep
Triangulation (B.6.2), 232

Sylow Subgroups, SylowSub
(B.5.8), 232

SylowSub, Sylow Subgroups
(B.5.8), 232

symmetric logarithmic space, 130,
253

synchronous, 77, 123
Synchronous Alternating Monotone

Fanout 2 CVP, SAM2CVP
(A.1.6), 123

Szemerédi, Endre, 16, 132
Szymacha, Tomasz, 132, 146

T

Tamassia, Roberto, 236
Tardos, Eva, x
Tarjan, Robert E., 69, 98, 154, 237,

239
TC, 220

Telephone Connection (B.8.7),
238

310 INDEX

Telephone Connection, TC (B.8.7),
238

Teng, Shang-Hua, x, 66, 143
term matching, 171, 172
Tewksbury, Stuart K., 264, 275, 278
Thérien, Denis, 200
time constructible, 105
Tiwari, Prasoon, 234
Tompa, Martin, ix, x, 63, 69, 177,

210, 230, 231
TopCVP, 76, 157

Topologically Ordered Circuit
Value Problem (A.1.2), 121

topological ordering, 76, 121
Topologically Ordered Circuit

Value Problem , TopCVP
(A.1.2), 121

Torrecillas, A., 124, 151
transition system, 180
transitive closure, 35
Traveling Salesman 2-Opt (*),

TS2Opt (A.5.9), 164
traveling salesman, 164

heuristics, 138
Tree Isomorphism Problem, 223
triangulation, 233

arbitrary, 201
minimum length, 222
plane sweep, 201, 233

Trienekens, H. W. J. M., 17
TS2Opt, 138

Traveling Salesman 2-Opt (*)
(A.5.9), 164

Tsitsiklis, John N., 185–187, 212
Turing machine

alternating, 33, 65, 129, 198
counting, 251
random access, 247

Turing reducible, 50
TVLP, 13

Two Variable Linear
Programming (B.2.2), 226

Two Layer Channel Router
Column-swap Heuristic (*),
COLUMNS (A.5.12), 166

Two Player Game, GAME
(A.11.1), 208

Two Variable Linear Programming,
TVLP (B.2.2), 226

Two-person Pebble Game Fixed
Rank, PEBBLE (A.11.7), 213

two-way deterministic pushdown
automaton, 179

Two-way DPDA Acceptance,
2DPDA (A.7.8), 179

Tygar, J. D., 232

U

U2SATFLIP, Unweighted Two
Satisfiability FLIP (*)
(A.5.5), 161

UGAP, 130
UGPS, Unweighted Graph

Partitioning SWAP (*)
(A.5.6), 161

Ullman, Jeffrey D., 58, 96, 173,
179, 180

ULVL, Unit Length Visibility
Layers (B.6.4), 233

UMCS, 161, 164
Unweighted Maximum Cut

SWAP (*) (A.5.4), 160
UNAE3SAT, 160

Unweighted, Not-all-equal
Clauses, 3SAT FLIP (*)
(A.5.3), 159

unary encodings, 43, 100, 140, 152,
155, 159–163, 241

unbounded fanin, 63
UNIF, 107, 174

Unification (A.6.9), 171
unification, 171

left-linear semi-, 174, 227
Monadic semi-, 174
restricted term matching, 171
unrestricted, 171

Unification, UNIF (A.6.9), 171
Uniform Word Problem for Finitely

Presented Algebras, UWPFPA
(A.8.18), 194

Uniform Word Problem for
Lattices, UWPL (A.8.22), 196

uniformity, 31, 33
UE , 33
Borodin-Cook, 32
logarithmic space, 32
P , 32

UNIT, 110, 167, 170

INDEX 311

Unit Length Visibility Layers,
ULVL (B.6.4), 233

Unit Resolution, UNIT (A.6.1), 167
UNIT, Unit Resolution (A.6.1), 167
Univariate Polynomial

Factorization over Q, UPFQ
(B.7.4), 235

Unweighted Graph Partitioning
SWAP (*), UGPS (A.5.6), 161

Unweighted Maximum Cut SWAP
(*), UMCS (A.5.4), 160

Unweighted, Not-all-equal Clauses,
3SAT FLIP (*), UNAE3SAT
(A.5.3), 159

Unweighted Two Satisfiability
FLIP (*) , U2SATFLIP
(A.5.5), 161

updates, ix
Upfal, Eli, 40, 91, 93, 149, 152, 156,

157, 224, 241, 242
UPFQ, Univariate Polynomial

Factorization over Q (B.7.4),
235

upper envelope, 203
USTCON, 130
UWPFPA, 195

Uniform Word Problem for
Finitely Presented Algebras
(A.8.18), 194

UWPL, 197
Uniform Word Problem for

Lattices (A.8.22), 196

V

Valiant, Leslie G., 16, 63, 88, 124,
150, 151

van Emde Boas, Peter, 21
Van Gelder, Allen, 173
van Leeuwen, Jan, 17, 269, 270, 273
Vavasis, Stephen, 99, 187, 188, 229,

230
Vazirani, Umesh V., 149, 241, 242
Vazirani, Vijay V., 149, 241, 242
Venkatesan, Shankar M., 153
Venkateswaran, H., x, 69, 124, 125
Verbeek, Rutger, 67, 260
Vishkin, Uzi, 21, 24, 30, 36, 66, 98
Vishwanathan, S., 133, 136
Visibility Layers, VL (A.9.3), 203

visibility layering process, 203
Vitter, Jeffrey Scott, 103, 122, 146,

171, 172, 236
VL, 233

Visibility Layers (A.9.3), 203
von Braunmühl, B., 67, 260
von zur Gathen, Joachim, x, 188,

229, 231, 234, 235

W

Wagner, Klaus W., 129–131, 152,
241, 242, 257, 262, 279, 282

Wah, B., 283
Wang, Ching-Chy, 139, 140
Wang, Li-Chung, 220, 235, 238
Warmuth, Manfred K., 93, 95, 112,

154–157, 204
Wein, Joel, 153
Wigderson, Avi, 40, 91, 93, 128,

132, 137, 149, 152, 224, 241,
242

Wilber, Robert, 69
Wilson, Chris, 40
Witness for Unambiguous Finite

Automata , LFWITNESS
(B.4.2), 228

Wloka, Markus G., 159, 161, 162,
166

Woods, Derick R., 237
world wide web, ix
Wyllie, James C., 19, 22–24

Y

Yannakakis, Mihalis, 158–164, 251
Yasuura, Hiroto, 130, 171
Yesha, Yaacov, 146
Yoshida, Akitoshi, 232

Z

Zalcstein, Yechezkel, 189
Zero-sum Bimatrix Game, ZSBG

(A.11.6), 212
Zeugmann, Thomas, x, 230, 231
Zhang, Shipei, 181
Zhang, Y., 146
ZSBG, Zero-sum Bimatrix Game

(A.11.6), 212

