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Abstract

We present an algorithm for performing Lambertian pho-
tometric stereo in the presence of shadows. The algorithm
has three novel features. First, a fast graph cuts based
method is used to estimate per pixel light source visibility.
Second, it allows images to be acquired with multiple illu-
minants, and there can be fewer images than light sources.
This leads to better surface coverage and improves the re-
construction accuracy by enhancing the signal to noise ratio
and the condition number of the light source matrix. The
ability to use fewer images than light sources means that the
imaging effort grows sublinearly with the number of light
sources. Finally, the recovered shadow maps are combined
with shading information to perform constrained surface
normal integration. This reduces the low frequency bias
inherent to the normal integration process and ensures that
the recovered surface is consistent with the shadowing con-
figuration

The algorithm works with as few as four light sources
and four images. We report results for light source visibil-
ity detection and high quality surface reconstructions for
synthetic and real datasets.

1. Introduction

Shadowing is nearly unavoidable in any image. In fact
under orthographic projection, the only light source direc-
tion illuminating a scene which can result in an entirely
shadowless image is the one aligned with the viewing di-
rection. Despite their ubiquitous presence, many computer
vision algorithms either ignore or explicitly exclude data
with shadowing.

In the context of surface reconstruction from photometric
measurements, shadows are a double edged sword. While
attached shadows can be understood from the local surface
geometry relative to the light source, cast shadows are non-
local and their causes are more difficult to identify. When
not accounted for appropriately, they can lead to grossly

distorted reconstructions. Yet, it is precisely the global nature
of shadowing that can be an asset for a surface reconstruction
algorithm since shadows constrain the shape of portions of
the surface not in physical proximity.

Thus, the challenges are to first identify which pixels in an
image correspond to surface patches that are in shadow with
respect to each light source, and then to exploit the implied
shadowing constraints to the fullest extent. In this paper, we
consider shadowing within the context of photometric stereo
and address both these issues.

A problem analogous to shadow detection is determining
light source visibility at every pixel. In fact, the two prob-
lems are equivalent for a scene illuminated by a single point
source. Traditional photometric stereo assumes that each
image is acquired under a single point light [21]. Since at
least three sources are needed to recover a surface normal, it
is common to use additional light sources to ensure that most
surface points are covered by at least three sources. How-
ever, this also leads to an increase in the number of acquired
images. One way to reduce acquisition cost is to acquire
images with multiple light sources activated simultaneously.

Using multiple light sources per image improves the re-
construction accuracy in more than one way. The signal
strength will be enhanced at portions of the surface that are
actually exposed to multiple sources, which has positive im-
plications for boosting the signal to noise ratio (SNR) [19].
Moreover, light sources can be placed further from the view-
ing direction (while providing sufficient coverage of the sur-
face), which leads to better conditioning of the light source
matrix, and consequently better surface normal estimates.

A common heuristic for dealing with shadows is to sim-
ply compare an image pixel’s value to a global threshold; if
it falls below the threshold, the corresponding source is not
used for estimating the surface normal at that pixel. How-
ever, this heuristic is clearly ill-suited even for single source
images. For example, attached shadows are characterized by
a gradual fall-off in intensity which may be indistinguishable
from intensity change due to varying albedo.

Determining light source visibility when multiple sources
illuminate each image is even more complicated. Is a low im-
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age intensity in a multi-source image due to only one source
being visible? Or is it due to two sources placed obliquely
with respect to the surface normal? Or is it simply an artifact
of low surface albedo? These questions can be answered
with the realization that, for most surfaces, visibility with
respect to a light source is a piece-wise constant function.
We exploit this fact to construct a fast and highly accurate
shadow labeling algorithm based on graph cuts.

Once the shadowing and light source visibility issues have
been resolved, it is trivial to compute the surface normal at
every pixel. However, we can do better. Since we actually
recover the shadow boundaries, we have the opportunity to
ensure that our surface normal integration procedure pro-
duces a height field consistent with the observed shadowing
behavior. Spatial constraints such as those lent by shadows
can also overcome the low-frequency bias often observed
in integrating a normal field. See [17] for instance. Our
approach to surface normal integration with shadows can
be succinctly considered as a quadratic program that can
be solved using powerful interior point method based QP
solvers [2].

In summary, our main contributions are the following:

• A highly accurate shadow labeling algorithm based on
fast graph cuts.

• A photometric stereo algorithm that uses multiple light
sources to enhance surface coverage and reconstruction
accuracy, while requiring fewer images than sources.

• A normal integration algorithm that enforces the visibil-
ity constrained imposed by the estimated shadowmaps.

We begin with an overview of prior work in Section 2,
outline our shadowing and visibility determination algorithm
in Section 3 and discuss the problem of constrained normal
integration in Section 4. We present experimental results
on real and synthetic data in Section 5 and conclude with
further discussions in Section 6.

2. Related Work
Ever since its introduction in the field of computer vi-

sion [21], calibrated photometric stereo has been a problem
of significant interest because it can yield very high quality
surface normal estimates for surfaces that approximate Lam-
bertian behavior or where the reflectance maps are known.
We point the reader to [14] for an overview of traditional
photometric stereo. Photometric stereo under complex illu-
mination has been demonstrated in [4]. The assumption of
Lambertian BRDF in photometric stereo has been relaxed in
a few cases, notably example-based photometric stereo [11].

Deriving shape information from only shadows also has
a long history including a series of works by Kender and his
colleagues starting with [15] as well as Daum and Dudek [9].

Shadow carving [18] is a visual hull carving approach to
surface reconstruction from shadows, however, it works only
with cast shadows and uses an ad hoc labeling of shadow
boundaries. A theoretical analysis of shape recovery from
shadows is discussed in [16] where it is shown that a surface
can be reconstructed from shadowing due to a finite set of
sources up to a four-parameter family of projective transfor-
mations, but no implementation was presented due to the
difficulty of accurately detecting shadows. As expected in
any algorithm that relies purely on shadows for reconstruc-
tion, a prohibitively large number of images are needed to
yield reasonable results. In contrast, by combining shadow
and shading constraints, we can produce comparable results
with very few images.

Shadow detection or removal can be performed with a
single image by incorporating additional assumptions on the
lighting and acquisition set-up. For instance, [13] discuss
a shadow removal algorithm based on assumptions such as
Planckian lighting and narrow-band cameras. By instead
using user-supplied hints in a Bayesian framework, smooth
shadows can be extracted in [22].

Multiple light sources have been used in the past to
increase surface coverage without any attempt to recover
shadow boundaries, such as [8]. The advantages of multi-
plexed illumination are elucidated in [19], however, demul-
tiplexing requires the assumption that as many images are
acquired as light sources used (as does [8] above). A mul-
tiple source photometric stereo algorithm that uses color is
presented in [3], however their method reduces to [8] for
grayscale images of Lambertian scenes.

At the other end of the spectrum from single-source photo-
metric stereo are frequency domain methods under complex
illumination [4]. However, the theory of these methods ap-
plies only to convex smooth surfaces, and high frequency
behavior such as cast shadows are a significant limitation.
A dense photometric stereo method in [23] relies on around
50 light sources to cover the surface and eliminate shadow
effects for recovering a discretized normal field through an
MRF-like formulation.

The basic problem of surface normal integration can be
considered equivalent to solving a Poisson equation [20].
Other approaches project the non-integrable gradient field
onto a set of integrable slopes using some suitable choice
of basis functions, such as Fourier [10]. By only imposing
integrability, it can be shown that a surface can be recovered
even in uncalibrated photometric stereo up to a three parame-
ter generalized bas-relief ambiguity [5, 26]. A generalization
of several of these classes of methods for integrating gradi-
ent fields is discussed in [1]. For integrating gradient fields
arising in large images, a fast marching method can be used
as an initialization to a more expensive conjugate gradient
descent [12].

All the above methods of surface normal integration are



unconstrained. The problem of integrating surface normals
with shadow constraints is discussed in [25]. However, the
problem practically solved therein is a soft version, where
the constraints are added in the objective function as a regu-
larizer and may not be exactly satisfied. A heuristic attempt
at shadow detection followed by constrained normal integra-
tion is presented in [24].

3. Detecting shadows and light source visibility
Since it forms the central workhorse of our algorithm,

we will begin this section with a very short introduction to
graph cuts as a method for combinatorial optimization. In
Section 3.2, we will describe our approach to shadow label-
ing in m ≥ 4 images, where each image is illuminated by
exactly one point light source. In practice, a trivial selection
procedure such as choosing the three brightest light sources
can also yield good surface normal estimates. But such a
selection procedure, of course, cannot assert with any cer-
tainty whether a particular pixel is shadowed or not. Neither
can a global thresholding heuristic determine that informa-
tion, for instance in the presence of attached shadows with
texture variation, as discussed in Section 1. Our aim here is
to use the single source setup to illustrate the design of our
algorithm for determining light source visibility.

In section 3.3, we extend this algorithm to the much
more difficult problem of determining light source visibility
in multi-source photometric stereo with fewer number of
images than light sources. Unlike the single source setup,
there exist no reasonable heuristics for solving this problem.

3.1. Graph cuts review

Let P be a set of pixels and L be a set of discrete labels,
then consider the problem of finding a labeling f : P → L
such that a given energy function, E(f) of the form

E(f) =
∑
p∈P

Dp(fp) +
∑

(p,q)∈N

Vp,q(fp, fq), (1)

is minimized.
The first term in the above expression is called the data

term which measures the disagreement between a given la-
beling and the observed data. The second term, called the
smoothness term, imposes a penalty on variation of label-
ing within a neighborhood. Problems of this form occur
frequently in physics, computer science and mathematics.
One can show that finding the minimum energy solution to
this problem can be interpreted as finding the maximum a
posteriori labeling for a class of Markov Random Fields.
In general, finding the global minimum of problems of this
form is an NP-complete problem and one must resort to
approximation algorithms.

The fast graph cuts based algorithm of Boykov et al. [7]
is one such polynomial time approximation scheme. The

algorithm operates by solving a max flow/min cut problems
on a sequence of weighted graphs in which the set of pixels
P is the vertex set the set N is the edgeset. The quality of
approximation achieved depends on the properties of the
function Vp,q .

3.2. Shadow Labeling

Let us begin by defining some notation. Let P be the set
of pixels, ni represent the surface normal at the i-th pixel
and sj stand for the j-th light source direction. If the pixel
i is not shadowed from the light source j, the color of the
pixel in the jth image is given by

cij = n>i sj , i = 1, · · · , N j = 1, · · · ,m (2)

Given 3 or more light sources it is then simple to invert the
above equation as a least squares system to determine the
normal vector on a per pixel basis. However, it is not always
the case that every light source is visible to every pixel. In
the hard shadowing case, we can write the image formation
equation as

cij =

{
n>i sj if source sj is visible to pixel i
0 otherwise

(3)

For each pixel i, define a {0, 1}-vector wi such that wij is 1
if light source j is visible to pixel i, 0 otherwise. Then the
image formation equation can be written as

cij = wij

(
n>i sj

)
(4)

Since image measurements for shadowed pixels are not ex-
actly zero, determining which pixels are shadowed is a hard
combinatorial problem with no known solution.

If we consider visibility of a light source as a function on
the object surface, while discontinuous, it is not completely
non-smooth. We can exploit this fact to solve the problem of
determining when certain light sources are shadowed or not
(that is, recovering the vector wi) on a per pixel basis. Since
the number of possible vectors wi is finite (O(2m)), we can
consider this to be a pixel labeling problem, where each
lighting configuration corresponds to a label. The smooth-
ness prior is then encoded in terms of a penalty that demands
that nearby pixels have similar lighting configurations. Thus,
with W being the matrix with row vectors wi, we can for-
mulate a discrete optimization problem:

min
W

∑
r∈P

Dr(W) + λ
∑

(p,q)∈Nr

Dpq(W)

 (5)

where Nr is some appropriate notion of a neighborhood.
Let Wr be the diagonal matrix formed using the entries

of wr, the lighting indicator vector for the r-th pixel. Then,



the extent to which the image formation equation is satisfied
at the r-th pixel is given by

Dr(W) = ‖Wr(L>nr)− cr‖ (6)

where L is a 3 × m matrix whose columns are the light
sources. cr is a column vector with length equal to number
of light sources. The cost can be divided by Trace(Wr) to
ensure that more light sources being visible does not amount
to higher cost, but we did not find it necessary in practice.

The smoothness costDpq can be taken to be the Hamming
distance between the vectors wp and wq:

Dpq(wp,wq) = ‖wp −wq‖1. (7)

While the Hamming distance is not a discontinuity preserv-
ing metric on the space of labels, we have found it to suffice
for our application. The above functional is now an instance
of the metric labelling problem as the Hamming distance
is a metric on the set of configurations and can be solved
using the algorithms proposed in [7]. Once the best lighting
configuration has been determined, the normals are trivially
determined.

Note that, in our algorithm, we do not need to simultane-
ously optimize over continuous normals and discrete shadow
labels. Within each graph cut iteration, the putative shadow
labeling assigns source visibility at every pixel, which deter-
mines the normal through the photometric stereo equation.
If the shadow labeling is incorrect, residual error in (6) will
be high. It is this error that graph cuts minimize by swapping
shadow labels. Thus, normals do not form a direct part of
our MRF formulation.

3.3. Multi-source Photometric Stereo

We will now extend the graph cut formulation of the pre-
vious section to recover visibility information and surface
normals in the case of multi-source photometric stereo. Sup-
pose k ≥ 4 images are acquired using m > k light sources,
with some combinations of multiple sources illuminating
each image. For concreteness, we assume that the pattern
chosen was such that the light sources j, · · · , j +m− k are
used to acquire the j-th image. The arguments that follow
can be easily extended to include any pattern in which the
light sources are combined.

It is not known a priori whether a pixel is occluded or
visible with respect to any particular light source, however,
an inherent assumption is that at least three sources are
visible to every pixel (else, the normal becomes undefined).
Depending upon the number of visible sources, there are∑m

l=3

(
m
l

)
possible lighting configurations for every pixel.

The label at pixel r can be represented by a {0, 1}-vector,
wr, of lengthm such that wrj is 1 if the j-th source is visible
to pixel r and 0 otherwise.

Let Wr be a k ×m band-diagonal matrix, defined for
every pixel r, such that

Wr(l, l+j−1) =

{
1 if source j visible to pixel r in image l
0 otherwise

(8)
Now the data term corresponding to the energy function in
(5) becomes

Dr(W) = ‖Wr(L>nr)− cr‖ (9)

while the smoothness cost is again the Hamming distance
between the labels.

Note that the minimum number of images required by our
algorithm is four, since with three images, whatever be the
choice of labeling, a normal vector is uniquely determined.
So, the residual which forms the data term will be identically
zero for any random labeling and the graph cuts algorithm
will not be guided by any image data.

An inherent ambiguity in our formulation is when the sur-
face normal lies in the plane that bisects the angle between
two light sources. In that case, the data term is not infor-
mative. Unless there happens to be a dominant plane in the
scene which is fortuitously aligned with such a direction, the
smoothness information from neighborhood pixels suffices
to render this ambiguity difficult to observe in practice.

4. Combining shading and shadowing con-
straints

h(x2)− ‖x− x2‖ tan θ

h(x3)− ‖x− x3‖ tan θ

x1 x2x3

h(x)

x

Figure 1. Shadow and anti shadow constraints

In this section we consider the problem of reconstructing
a surface from an estimate of its normals, consistent with the
estimated shadowmaps.

Let H(x, y) be the surface we wish to reconstruct and
let P (x, y) and Q(x, y) be estimates of ∂xH and ∂yH , re-
spectively. In the absence of shadows, one considers the



variational minimization problem:

min
H

∫
Ω

(Hx − P )2 + (Hy −Q)2 dxdy,
∂H

∂n

∣∣∣∣
∂Ω

= 0

(10)
Here, ∂Ω denotes the boundary of the domain Ω and n is the
direction normal to ∂Ω. The Euler-Lagrange equations for
the above results in the following Poisson problem:

Hxx +Hyy = ∂xP + ∂yQ
∂H

∂n

∣∣∣∣
∂Ω

= 0 (11)

This is a standard problem in numerical linear algebra and a
vast array of methods exist to solve it efficiently.

When shadows are present in the scene, the knowledge
whether a pixel is shadowed or not imposes additional con-
straints on the height field [9]. Shadow graphs were devel-
oped as a representation of these constraints in [25]. In the
following we briefly describe these constraints.

For simplicity of presentation, we consider a one dimen-
sional image on the interval [x0, xe]. The generalization to
two dimensional images requires applying the same logic by
decomposing the image into a collection of one dimensional
strips parallel to the projection of the light source direction
on the image plane.

Without any loss of generality, we assume that the light
source causing the shadowing is inclined at an angle less
then π/2. We can now decompose the image into a set of
intervals. Each interval is such that it only contains pixels
which are shadowed and is maximal, that is, there is no
other decomposition of the image possible in which another
interval contains it as a proper subset. Let the line segment
[x1, x2] be such an interval where x1 and x2 are both shadow
edges. Then, it is easy to see that all points x ∈ [x1, x2] are
shadowed by x2 and obey the inequality

h(x) ≤ h(x2)− ‖x− x2‖ tan θ ∀x ∈ [x1, x2] (12)

These are the shadowing constraints. Now, if x3 is not
shadowed, then we know that there is no point between x3

and the end of the image that occludes it from the light
source, i.e. every point x ∈ (x3, xe] has height less than
‖x3 − x‖ tan θ, i.e

h(x) ≤ h(x3) + ‖x− x2‖ tan θ ∀x ∈ [x3, xe] (13)

These are the anti-shadowing constraints. Figure 1 illustrates
the two sets of constraints. Imposing these constraints on
the optimization problem in (10) results in a constrained
optimization problem which can’t be solved using a Poisson
solver anymore, since we can’t take variational derivatives.

Let Dx ∈ Rm×m and Dy ∈ Rn×n be matrices corre-
sponding to the derivative operators on Rn and Rm, and let
Sx = Dx ⊗ In and Sy = Dy ⊗ Im, where ⊗ is the matrix
Kronecker product and Im is the m-dimensional identity

operator. Finally let h, p and q be vectors obtained by con-
catenating the columns of H,P and Q, respectively. Then
the quadratic programming problem we solve is

min h>
(
S>x Sx + S>y Sy

)
h− 2(p>Sxh+ q>Syh)

subject to Ah ≤ b (14)

where, the matrix A and vector b encodes the discrete
shadow and anti-shadow constraints. The matrix A is ex-
tremely sparse with only two non-zero entries per row. Since(
S>x Sx + S>y Sy

)
is positive semidefinite, the above is a con-

vex quadratic program which can be solved efficiently using
modern solvers based on interior point methods [6]. We use
the MOSEK solver [2].

5. Experimental Results
In this section, we report the performance of the our

algorithm on a number of synthetic and real datasets. Our
synthetic data is generated using the POVRay raytracer with
1% random noise added to image intensities.

We begin by considering a synthetic sphere with sharply
varying albedo and illuminated by four light sources, one
source per image. All shadows are attached. As is evident
from the input images in Figure 2, it is very difficult to judge
shadow boundaries using mere intensity thresholding for
such textured surfaces. The shadow labeling recovered by
ShadowCuts is nearly identical to ground truth.

Our next synthetic example consists of two convex hemi-
spheres placed on a plane. For a complex scene, it makes
sense to use more light sources for better coverage. Four
images of the scene are obtained using six light sources, with
three sources turned on at a time. Both attached and cast
shadows are present and an inspection of the input images

(a) Image 1 (c) Image 3 (e) Ground truth

(b)Image 2 (d) Image 4 (f) Estimated

Figure 2. Four source, four image photometric stereo with shadows.
This figure illustrates the accurate recovery of attached shadows
with a small number of images. Figures (a)–(d) are the source
images used as input to the shadowcuts algorithm, (e) shows the
ground truth shadowing configurating and (f) shows the labeling
obtained using the shadowcuts algorithm. Notice that sharp changes
in albedo do not affect the output of out algorithm.



(a) (c) (e)

(b) (d) (f)

Figure 3. Six source, four image photometric stereo with shadows.
The figure illustrates accurate shadow map recovery in the presence
of varying albedo, cast as well as attached shadows. (a)-(d) Input
images. (e) Ground truth shadow labeling. Each color stands for a
different light source visibility configuration. (f) Labeling obtained
using the ShadowCuts algorithm. Recovered surface has been false
colored to indicate height above ground plane. Notice that sharp
changes in albedo do not affect output of our algorithm.

shows there is no obvious way to decipher the underlying
source visibilities. Our algorithm, on the other hand, cor-
rectly recovers the shadowing configuration almost every-
where. Figure 3 also shows the reconstruction obtained by
integrating normals after imposing shadow constraints.

For comparison, we apply the algorithm of [8] to four
single source images of the same scene. The resulting re-
construction (Figure 4) looks very distorted and the reason
becomes clear if we compare the estimates of x and y gradi-
ents obtained by the two methods. While gradients obtained
using ShadowCuts are symmetric with clean boundaries,
those obtained using the method in [8] are severely biased
by shadows. In particular, one can see the image of the cast
shadow boundaries in the gradient estimates. This demon-
strates our algorithm’s advantage where a greater number of
sources can be used for enhanced surface coverage without
increasing the number of acquired images.

In the previous examples, the geometry of the scene was
reasonably simple, even though the shadowing configura-
tions were complicated. In the next synthetic example, we
recover the shadowing configuration for a more intricate
geometry, using four images from five sources. The geom-
etry of the dragon model gives rise to a variety of cast and
attached shadows of varying sizes. Again, the estimated
shadow map matches the ground truth very closely (Fig-
ure 5).

(a) The surface recovered from Coleman & Jain.

(b) (c)

(d) (e)

Figure 4. Comparison with Coleman & Jain’s four source photome-
try method. (a) The reconstructed surface is badly distorted. (b)-(c)
x and y gradients estimated using Coleman and Jain’s method.
Notice the significant bias in gradients caused by cast shadows.
(d)-(e) Gradient estimates for the same geometry obtained using
ShadowCuts.

We present reconstructions on some real objects where
traditional algorithms would be hampered by the presence
of shadows. Consider Figure 6, where four images of the
object are obtained using five light sources, with two turned
on at a time. Notice the faithful reconstruction in shadowed
regions, such as the underside of the chin.

Another example of the reconstruction obtained by our al-
gorithm for a real object is shown in Figure 7. Notice the cast
shadow labeling on the left shoulder and attached shadow
labelings on the sides of the skirt. Very accurate recovery of
high frequency detail is consistent with expectations from a
photometric stereo algorithm.

6. Discussions

We have demonstrated in this paper a novel and reliable
algorithm for recovering cast and attached shadows in the
presence of albedo variation and complex geometry. We
have introduced a technique for multiple light source pho-
tometric stereo which enables better coverage of complex
objects without increasing the number of images acquired.
It has additional benefits of an improved SNR and better
conditioning of the light source matrix.

The recovered shadow boundaries allow us to perform



(e) (f)

Figure 5. Shadow recovery in the presence of complex geometry. (a) The ground truth shadow map. (b) Shadow map estimated using
ShadowCuts algorithm. Notice the complexity of the shadowing pattern near (clockwise insets) the head, front legs, wings and hind legs.

normal integration with the constraint that the recovered
surface respect these shadow boundaries. Applications for
this might arise for objects with vicious geometries or for
overcoming the low-frequency bias in normal integration.
For regular objects considered in this paper, the shadow
constraints do not result in an appreciably different surface.
This is understandable as our normal estimates are excellent,
so even unconstrained integration results in a surface that
satisfies most of the shadow constraints.

An important avenue for future work is extension of this
method to uncalibrated photometric stereo.
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