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Abstract
A novel scene reconstruction technique is presented,

different from previous approaches in its ability to cope
with large changes in visibility and its modeling of in-
trinsic scene color and texture information. The method
avoids image correspondence problems by working in a
discretized scene space whose voxels are traversed in a
fixed visibility ordering. This strategy takes full account
of occlusions and allows the input cameras to be far apart
and widely distributed about the environment. The algo-
rithm identifies a special set of invariant voxels which to-
gether form a spatial and photometric reconstruction of the
scene, fully consistent with the input images. The approach
is evaluated with images from both inward- and outward-
facing cameras.

1 Introduction
We consider the problem of acquiring photorealistic 3D

models of real environments from widely distributed view-
points. This problem has sparked recent interest in the
computer vision community [1, 2, 3, 4, 5] as a result of
new applications in telepresence, virtual walkthroughs, and
other graphics-oriented problems that require realistic tex-
tured object models.

We use the termphotorealismto describe 3D recon-
structions of real scenes whose reprojections contain suffi-
cient color and texture information to accurately reproduce
images of the scene from a broad range of target view-
points. To ensure accurate reprojections, the input images
should be representative, i.e., sparsely distributed through-
out the target range of viewpoints. Accordingly, we pro-
pose two criteria that a photorealistic reconstruction tech-
nique should satisfy:

� Photo Integrity: The reprojected model should accu-
rately reproduce the input images, preserving color,
texture and pixel resolution
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� Broad Viewpoint Coverage: Reprojections should be
accurate over a large range of target viewpoints. This
requires that theinput imagesare widely distributed
about the environment

The photorealistic scene reconstruction problem, as
presently formulated, raises a number of unique challenges
that push the limits of existing reconstruction techniques.
Photo integrity requires that the reconstruction be dense
and sufficiently accurate to reproduce the original images.
This criterion poses a problem for existing feature- and
contour-based techniques that do not provide dense shape
estimates. While these techniques can produce texture-
mapped models [1, 3, 4], accuracy is ensured only in places
where features have been detected. The second criterion
means that the input views may be far apart and con-
tain significant occlusions. While some stereo methods
[6, 7] can cope with limited occlusions, handling visibil-
ity changes of greater magnitude appears to be beyond the
state of the art.

Instead of approaching this problem as one of shape re-
construction, we instead formulate acolor reconstruction
problem, in which the goal is an assignment of colors (ra-
diances) to points in an (unknown) approximately Lam-
bertian scene. As a solution, we present avoxel coloring
technique that traverses a discretized 3D space in “depth-
order” to identify voxels that have a unique coloring, con-
stant across all possible interpretations of the scene. This
approach has several advantages over existing stereo and
structure-from-motion approaches to scene reconstruction.
First, occlusions are explicitly modeled and accounted for.
Second, the cameras can be positioned far apart without
degrading accuracy or run-time. Third, the technique inte-
grates numerous images to yield dense reconstructions that
are accurate over a wide range of target viewpoints.

The voxel coloring algorithm presented here works by
discretizing scene space into a set of voxels that is tra-
versed and colored in a special order. In this respect, the
method is similar to Collins’ Space-Sweep approach [8]
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which performs an analogous scene traversal. However,
the Space-Sweep algorithm does not provide a solution
to the occlusion problem, a primary contribution of this
paper. Katayama et al. [9] described a related method
in which images are matched by detecting lines through
slices of an epipolar volume, noting that occlusions could
be explained by labeling lines in order of increasing slope.
Our voxel traversal strategy yields a similar scene-space
ordering but is not restricted to linear camera paths. How-
ever, their algorithm used a reference image, thereby ig-
noring points that are occluded in the reference image
but visible elsewhere. Also related are recently developed
panoramic stereo [10, 11] algorithms which avoid field of
view problems by matching360� panoramic images di-
rectly. Panoramic reconstructions can also be achieved us-
ing our approach, but without the need to build panoramic
images (see Figs. 1 (b) and 4).

The remainder of the paper is organized as follows: Sec-
tion 2 formulates and solves the voxel coloring problem,
and describes its relations to shape reconstruction. Sec-
tion 3 presents an efficient algorithm for computing the
voxel coloring from a set of images, discussing complexity
and related issues. Section 4 describes experiments on real
and synthetic image sequences.

2 Voxel Coloring
The voxel coloring problem is to assign colors (radi-

ances) to voxels (points) in a 3D volume so as to maximize
photo integritywith a set of input images. That is, render-
ing the colored voxels from each input viewpoint should
reproduce the original image as closely as possible. In or-
der to solve this coloring problem we must consider the
following two issues:

� Uniqueness: Multiple voxel colorings can be consis-
tent with a given set of images. How can the problem
be well-defined?

� Computation: How can a voxel coloring be computed
from a set of input images?

This section formalizes the voxel coloring problem and
explores geometrical constraints on camera placement that
enable an efficient solution. In order to address the unique-
ness and computation issues, we introduce a novel visibil-
ity constraint that greatly simplifies the analysis. Thisordi-
nal visibility constraintenables the identification of certain
invariant voxels whose colorings are uniquely defined. In
addition, the constraint defines a depth-ordering of voxels
by which the coloring can be computed in a single pass
through the scene volume.
2.1 Notation

We assume that both the scene and lighting are station-
ary and that surfaces are approximately Lambertian. Under

(a) (b)

Figure 1: Compatible Camera Configurations. Both of the
following camera configurations satisfy the ordinal visibil-
ity constraint: (a) a downward-facing camera moved 360
degrees around an object, and (b) a rig of outward-facing
cameras distributed around a sphere.

these conditions, the radiance at each point is isotropic and
can therefore be described by a scalar value which we call
color. We also use the term color to refer to the irradiance
of an image pixel. The term’s meaning should be clear by
context.

A 3D sceneS is represented as a finite1 set of opaque
voxels (volume elements), each of which occupies a finite
homogeneous scene volume and has a fixed color. We de-
note the set of all voxels with the symbolV . An image is
specified by the setI of all its pixels. For now, assume that
pixels are infinitesimally small.

Given an image pixelp and sceneS, we refer to the
voxelV 2 S that is visible and projects top by V = S(p).
The color of an image pixelp 2 I is given bycolor(p; I)
and of a voxelV by color(V;S). A sceneS is said to be
completewith respect to a set of images if, for every image
I and every pixelp 2 I, there exists a voxelV 2 S such
thatV = S(p). A complete scene is said to beconsistent
with a set of images if, for every imageI and every pixel
p 2 I,

color(p; I) = color(S(p);S) (1)

2.2 The Ordinal Visibility Constraint
For concreteness, a pinhole perspective projection

model is assumed. To simplify the analysis, we introduce
a constraint on the positions of the cameras relative to the
scene. This constraint simplifies the task of resolving visi-
bility relationships by establishing a fixed depth-order enu-
meration of points in the scene.

Let P andQ be scene points andI be an image from a
camera centered atC. We sayP occludesQ if P lies on
the line segmentCQ. We require that the input cameras
are positioned so as to satisfy the following constraint:

1It is assumed that the visible scene is spatially bounded.
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(a) (b) (c) (d) (e)

Figure 2: Ambiguity in Scene Reconstruction. All five scenes are indistinguishable from these two viewpoints. Shape
ambiguity: scenes (a) and (b) have no points in common—no hard points exist. Color ambiguity: (c) and (d) share a point
that has a different color assignment in the two scenes. Color invariants: each point in (e) has the same color in every
consistent scene in which it is contained. These six points constitute thevoxel coloringfor these two views.

Ordinal visibility constraint: There exists a
normk � k such that for all scene pointsP and
Q, and input imagesI, P occludesQ in I only
if kPk < kQk.

We call such a normocclusion-compatible. For some
camera configurations, it is not possible to define an
occlusion-compatible norm. However, a normdoesex-
ist for a broad range of practical configurations. For in-
stance, suppose the cameras are distributed on a plane
and the scene is entirely below that plane, as shown in
Fig. 1(a). For every such viewpoint, the relative visibility
of any two scene points depends entirely on which point is
closer to the plane, so we may definek � k to be distance
to the plane. More generally, the ordinal visibility con-
straint is satisfied wheneverno scene point is contained
within the convex hull C of the camera centers. Here
we use the occlusion-compatible normkPk

C
, defined to

be the Euclidean distance fromP to C. For convenience,
C is referred to as thecamera volume. Fig. 1 shows two
useful camera configurations that satisfy this constraint.
Fig. 1(a) depicts an inward-facing overhead camera rotat-
ing 360� around an object. Ordinal visibility is satisfied
provided the camera is positioned slightly above the ob-
ject. The constraint also enables panoramic reconstruc-
tions from outward-facing cameras, as in Fig. 1(b).

2.3 Color Invariance
The ordinal visibility constraint provides a depth-

ordering of points in the scene. We now describe how this
ordering can be used in scene reconstruction. Scene recon-
struction is complicated by the fact that a set of images can
be consistent with more than one rigid scene. Determining
a scene’s spatial occupancy is therefore an ill-posed task
because a voxel contained in one consistent scene may not
be contained in another. (see Fig. 2(a),(b)). Alternatively,
a voxel may be part of two consistent scenes, but have dif-
ferent colors in each (Fig. 2(c),(d)).

Given a multiplicity of solutions to the color reconstruc-
tion problem, the only way to recover intrinsic scene in-
formation is throughinvariants— properties that are satis-
fied by everyconsistent scene. For instance, consider the
set of voxels that are contained in every consistent scene.
Laurentini [12] described how these invariants, calledhard
points, could be recovered by volume intersection from bi-
nary images. Hard points are useful in that they provide
absolute information about the true scene. However, such
points are relatively rare; some images may yield none
(see, for example, Fig. 2). In this section we describe
a more frequently occurring type of invariant relating to
color rather than shape.

A voxel V is acolor invariant with respect to a
set of images if, for every pair of scenesS andS 0

consistent with the images,V 2 S \ S 0 implies
color(V;S) = color(V;S 0)

Unlike shape invariance, color invariance does not re-
quire that a point be contained in every consistent scene.
As a result, color invariants are more prevalent than hard
points. In particular, any set of images satisfying the or-
dinal visibility constraint yields enough color invariants to
form a complete scene reconstruction, as will be shown.

Let I1; : : : ; Im be a set of images. For a given
image point p 2 Ij define Vp to be the voxel in
fS(p) j S consistentg that is closest to the camera vol-
ume. We claim thatVp is a color invariant. To estab-
lish this, observe thatVp 2 S impliesVp = S(p), for if
Vp 6= S(p), S(p) must be closer to the camera volume,
which is impossible by the definition ofVp. It follows from
Eq. (1) thatVp has the same color in every consistent scene;
Vp is a color invariant.

Thevoxel coloring of an image setI1; : : : ; Im
is defined to be:
S = fVp j p 2 Ii; 1 � i � mg
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Fig. 2(e) shows the voxel coloring for the pair of im-
ages in Fig. 2. These six points have a unique color in-
terpretation, constant in every consistent scene. They also
comprise the closest consistent scene to the cameras in the
following sense—every point in each consistent scene is
either contained in the voxel coloring or is occluded by
points in the voxel coloring. An interesting consequence
of this closeness bias is that neighboring image pixels of
the same color produce cusps in the voxel coloring, i.e.,
protrusions toward the camera volume. This phenomenon
is clearly shown in Fig. 2(e), where the white and black
points form two separate cusps. Also, observe that the
voxel coloring is not a minimal reconstruction; removing
the two closest points in Fig. 2(e) still leaves a consistent
scene.
2.4 Computing the Voxel Coloring

In this section we describe how to compute the voxel
coloring from a set of images that satisfy the ordinal vis-
ibility constraint. In addition it will be shown that the set
of voxels contained in the voxel coloring form a complete
scene reconstruction that is consistent with the input im-
ages.

The voxel coloring is computed one voxel at a time
in an order that ensures agreement with the images at
each step, guaranteeing that all reconstructed voxels satisfy
Eq. (1). To demonstrate that voxel colorings form consis-
tent scenes, we also have to show that they are complete,
i.e., they account for every image pixel as defined in Sec-
tion 2.1.

In order to make sure that the construction is incremen-
tally consistent, i.e., agrees with the images at each step,
we need to introduce a weaker form of consistency that ap-
plies to incomplete voxel sets. Accordingly, we say that
a set of voxels with color assignments isvoxel-consistent
if its projection agrees fully with the subset of every input
image that it overlaps. More formally, a setS is said to be
voxel-consistent with imagesI1; : : : ; Im if for every voxel
V 2 S and image pixelsp 2 Ii andq 2 Ij , V = S(p) =
S(q) implies color(p; Ii) = color(q; Ij) = color(V;S).
For notational convenience, defineSV to be the set of all
voxels inS that are closer thanV to the camera volume.
Scene consistency and voxel consistency are related by the
following properties:

1. If S is a consistent scene thenfV g [ SV is a voxel-
consistent set for everyV 2 S.

2. SupposeS is complete and, for each pointV 2 S,
V [ SV is voxel-consistent. ThenS is a consistent
scene.

A consistent scene may be created using the second
property by incrementally moving farther from the camera
volume and adding voxels to the current set that maintain

voxel-consistency. To formalize this idea, we define the
following partition of 3D space into voxel layers of uni-
form distance from the camera volume:

Vd
C = fV j kV k

C
= dg (2)

V =

r[

i=1

Vdi
C

(3)

whered1; : : : ; dr is an increasing sequence of numbers.
The voxel coloring is computed inductively as follows:

SP1 = fV j V 2 Vd1 ; fV g voxel-consistentg

SPk = fV j V 2 Vdk ; fV g [ SPk�1 voxel-consistentg

SP = fV j V = SPr(p) for some pixelpg

We claim SP = S. To prove this, first define
Si = fV j V 2 S ; kV k

C
� dig. S1 � SP1 by

the first consistency property. Inductively, assume that
Sk�1 � SPk�1 and letV 2 Sk. By the first consistency
property,fV g [ Sk�1 is voxel-consistent, implying that
fV g[SPk�1 is also voxel-consistent, because the second
set includes the first andSPk�1 is itself voxel-consistent.
It follows thatS � SPr. Note also thatSPr is complete,
since one of its subsets is complete, and hence consistent
by the second consistency property.SP contains all the
voxels inSPr that are visible in any image, and is there-
fore consistent as well. ThereforeSP is a consistent scene
such that for each pixelp, SP(p) is at least as close toC as
S(p). HenceSP = S. 2

In summary, the following properties of voxel colorings
have been shown:

� S is a consistent scene

� Every voxel inS is a color invariant

� S is computable from any set of images satisfying the
ordinal visibility constraint

3 Reconstruction by Voxel Coloring
In this section we present a voxel coloring algorithm

for reconstructing a scene from a set of calibrated images.
The algorithm closely follows the voxel coloring construc-
tion outlined in Section 2.4, adapted to account for im-
age discretization and noise. As before, it is assumed that
3D space has been partitioned into a series of voxel lay-
ersVd1

C
; : : : ;Vdr

C
increasing in distance from the camera

volume. The imagesI1; : : : ; Im are assumed to be dis-
cretized into finite non-overlapping pixels. The cameras
are assumed to satisfy the ordinal visibility constraint, i.e.,
no scene point lies within the camera volume.

If a voxelV is not fully occluded in imageIj , its pro-
jection will overlap a nonempty set of image pixels,�j .
Without noise or quantization effects, a consistent voxel
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should project to a set of pixels with equal color values. In
the presence of these effects, we evaluate the correlation of
the pixel colors to measure the likelihood of voxel consis-
tency. Lets be the standard deviation andn the cardinality

of
m[

j=1

�j . Suppose the sensor error (accuracy of irradiance

measurement) is approximately normally distributed with
standard deviation�0. If �0 is unknown, it can be esti-
mated by imaging a homogeneous surface and computing
the standard deviation of image pixels. The consistency
of a voxel can be estimated using the likelihood ratio test:

�V = (n�1)s2

�2
0

, distributed as�2 [13].

3.1 Voxel Coloring Algorithm
The algorithm is as follows:

S = ;

for i = 1; : : : ; r do

for every V 2 Vdi
C

do

project to I1; : : : ; Im, compute �V

if �V < thresh then S = S [ fV g

The threshold,thresh, corresponds to the maximum al-
lowable correlation error. An overly conservative (small)
value ofthresh results in an accurate but incomplete re-
construction. On the other hand, a large threshold yields a
more complete reconstruction, but one that includes some
erroneous voxels. In practice,thresh should be chosen ac-
cording to the desired characteristics of the reconstructed
model, in terms of accuracy vs. completeness.

Much of the work of the algorithm lies in the compu-
tation of�V . The set of overlapping pixels depends both
on the shape ofV ’s projection and the setS of possibly
occluding voxels. To simplify the computation, our imple-
mentation used a square mask to approximate the projected
voxel shape. The problem of detecting occlusions is solved
by the scene traversal ordering used in the algorithm; the
order is such that ifV occludesV 0 thenV is visited before
V 0. Therefore, occlusions can be detected by using a one-
bit mask for each image pixel. The mask is initialized to
0. When a voxelV is processed,�i is the set of pixels that
overlapV ’s projection inIi and have mask values of 0.
These pixels are marked with masks of1 if �V < thresh.

Voxel traversal can be made more efficient by employ-
ing alternative occlusion-compatible norms. For instance,
using the axis-aligned bounding box of the camera volume
instead ofC, andL1 instead ofL2, gives rise to a sequence
of axis-aligned cube-shaped layers.
3.2 Discussion

The algorithm visits each voxel exactly once and
projects it into every image. Therefore, the time complex-
ity of voxel coloring is:O(voxels�images). To determine

the space complexity, observe that evaluating one voxel
does not require access to or comparison with other voxels.
Consequently, voxels need not be stored in main memory
during the algorithm; the voxels making up the voxel col-
oring will simply be output one at a time. Only the images
and one-bit masks need to be allocated. The fact that the
space and time complexities of voxel coloring are linear in
the number of images is essential in that large numbers of
images can be processed at once.

The algorithm differs from stereo and optical-flow tech-
niques in that it does not perform window-based image
correlation in the reconstruction process. Correspondences
are found during the course of scene traversal by voxel pro-
jection. A disadvantage of this searchless strategy is that
it requires very precise camera calibration to achieve the
triangulation accuracy of stereo methods. Accuracy and
run-time also depend on the voxel resolution, a parameter
that can be set by the user or determined automatically to
match the pixel resolution, calibration accuracy, and com-
putational resources.

Importantly, the approach reconstructs only one of the
potentially numerous scenes consistent with the input im-
ages. Consequently, it is susceptible to aperture problems
caused by image regions of near-uniform color. These
regions cause cusps in the reconstruction (see Fig. 2(e)),
since voxel coloring yields the reconstruction closest to the
camera volume. This is a bias, just like smoothness is a
bias in stereo methods, but one that guarantees a consistent
reconstruction even with severe occlusions.

4 Experimental Results
The first experiment involved 3D reconstruction from

twenty-one views spanning a360� object rotation. Our
strategy for calibrating the views was similar to that in
[14]. Instead of a turntable, we placed the objects on a
software-controlled pan-tilt head, viewed from above by a
fixed camera (see Fig. 1(a)). Tsai’s method [15] was used
to calibrate the camera with respect to the head, by rotat-
ing a known object and manually selecting image features
for three pan positions. The calibration error was approxi-
mately 3%.

Fig. 3 shows the voxel colorings computed from a com-
plete revolution of a dinosaur toy and a rose. To facili-
tate reconstruction, we used a black background and elim-
inated most of the background points by thresholding the
images. While background subtraction is not strictly nec-
essary, leaving this step out results in background-colored
voxels scattered around the edges of the scene volume. The
threshold may be chosen conservatively since removing
most of the background pixels is sufficient to eliminate this
background scattering effect. The middle column in Fig. 3
shows the reconstructions from a viewpoint correspond-
ing to one of the input images (shown at left), to demon-
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Figure 3: Voxel Coloring of Dinosaur Toy and Rose. The objects were rotated360� below a camera. At left is one of 21
input images of each object. The other images show different views rendered from the reconstructions.

(a) (b) (c) (d)

Figure 4: Reconstruction of Synthetic Room Scene. The input images were all taken from cameras located inside the room.
(a) shows the voxel coloring and (b) the original model from a new interior viewpoint. (c) and (d) show the reconstruction
and original model, respectively, from a new viewpoint outside of the room.
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strate photo integrity. Note that even fine details such as
the wind-up rod on the dinosaur and the leaves of the rose
were reconstructed.

We experimented with different voxel resolutions to de-
termine the effects of voxel sampling on reconstruction
quality. Increasing the sampling rate improved the recon-
struction quality, up to the limits of image quantization and
calibration accuracy, at the cost of increased run-time. A
low-resolution model can be built very quickly; a recon-
struction (not shown) containing 980 voxels took less than
a second to compute on a 250 MHz SGI Indigo2. In con-
trast, the 72,497-voxel dinosaur reconstruction shown in
Fig. 3 required evaluating a volume of 7 million voxels and
took roughly three minutes to compute.

The next experiment involved reconstructing a synthetic
room from camerasinsidethe room. The room interior was
highly concave, making reconstruction by volume intersec-
tion or other contour-based methods impractical. The room
consisted of three texture-mapped walls and two shaded
models. The models, a bust of Beethoven and a human
figure, were illuminated diffusely from above. 24 cameras
were placed at different positions and orientations through-
out the room. The optical axes were parallel to the horizon-
tal (XZ) plane.

Fig. 4 compares the original and reconstructed models
from new viewpoints. The voxel coloring reproduced im-
ages from the room interior quite accurately (as shown in
(a)), although some fine details were lost due to quanti-
zation effects. The overhead view (c) more clearly shows
some discrepancies between the original and reconstructed
shapes. For instance, the reconstructed walls are not per-
fectly planar, as some points lie just off the surface. This
point drift effect is most noticeable in regions where the
texture is locally homogeneous, indicating that texture in-
formation is important for accurate reconstruction. Not
surprisingly, the quality of image (c) is worse than that of
(a), since the former view was much farther from the input
cameras. On the whole, Fig. 4 shows that the overall shape
of the scene was captured quite well in the reconstruction.
The recovered model contained 52,670 voxels and took 95
seconds to compute.

5 Conclusions
This paper presented a new scene reconstruction tech-

nique that incorporates intrinsic color and texture informa-
tion for the acquisition of photorealistic scene models. Un-
like existing stereo and structure-from-motion techniques,
the methodguaranteesthat a consistent reconstruction is
found, even under large visibility differences across the in-
put images. The method relies on a constraint on the input
camera configuration that enables a simple solution for de-
termining voxel visibility. A second contribution was the
constructive proof of the existence of a set of color invari-

ants. These points are useful in two ways: first, they pro-
vide information that is intrinsic, i.e., constant across all
possible consistent scenes. Second, together they consti-
tute a spatial and photometric reconstruction of the scene
whose projections reproduce the input images.
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