Policy search by dynamic programming

J. Andrew Bagnell Sham Kakade
Carnegie Mellon University University of Pennsylvania
Pittsburgh, PA 15213 Philadelphia, PA 19104
Andrew Y. Ng Jeff Schneider
Stanford University Carnegie Mellon University
Stanford, CA 94305 Pittsburgh, PA 15213
Abstract

We consider the policy search approach to reinforcememntiteg. We

show that if a “baseline distribution” is given (indicatingughly how

often we expect a good policy to visit each state), then wedwmive

a policy search algorithm that terminates in a finite numidfesteps,

and for which we can provide non-trivial performance gutgas. We
also demonstrate this algorithm on several grid-world PG planar
biped walking robot, and a double-pole balancing problem.

1 Introduction

Policy search approaches to reinforcement learning reptespromising method for solv-
ing POMDPs and large MDPs. In the policy search setting, \garas that we are given
some clasgl of policies mapping from the states to the actions, and wasiintd a good
policy = € II. A common problem with policy search is that the search thhdli can be
difficult and computationally expensive, and is thus tyfpychased on local search heuris-
tics that do not come with any performance guarantees.

In this paper, we show that if we give the learning agent a éldistribution” on states

(specifically, one that indicates how often we expect it tontesach state; cf. [5, 4]), then we
can derive an efficient policy search algorithm that tern@gaafter a polynomial number
of steps. Our algorithm outputs a non-stationary policy] aach step in the algorithm
requires only a minimization that can be performed or apipnated via a call to a standard
supervised learning algorithm. We also provide non-ttigisarantees on the quality of the
policies found, and demonstrate the algorithm on seveoddlpms.

2 Preiminaries

We consider an MDP with state spaggnitial states, € S; action spacel; state transition
probabilities{ P, (-)} (here,Ps, is the next-state distribution on taking actioim states);
and reward functiot® : S — R, which we assume to be bounded in the intef9al].

In the setting in which the goal is to optimize the sum of disted rewards over an infinite-
horizon, it is well known that an optimal policy which is bdtkarkov and stationary (i.e.,
one where the action taken does not depend on the currentdimays exists. For this
reason, learning approaches to infinite-horizon discalM®Ps have typically focused

on searching for stationary policies (e.g., [8, 5, 9]). listlvork, we consider policy search
in the space of non-starionary policies, and show how, withse distribution, this allows
us to derive an efficient algorithm.

We consider a setting in which the goal is to maximize the séiomdiscounted rewards
over a7 step horizon: 2E[R(so) + R(s1) + ... + R(sr—1)]. Clearly, by choosing
T sufficiently large, a finite-horizon problem can also be usedpproximate arbitrar-
ily well an infinite-horizon discounted problem. (E.qg.,)&iven anon-stationarypolicy
(me, T4, - .., mr—1), Where eachr, : S — A s a (stationary) policy, we define the value
..... wr1(8) = FE[R(s¢) + R(se41) + ... + R(sp—1)|st = s; (w4, ..., wp_1)]

as the expected (normalized) sum of rewards attained biyrgtat states and the “clock”
at timet, taking one action according tq, taking the next action according 1@, and
so on. Note that

Vﬂ'tmu;ﬂ'T—l (S) = %R(S) + ES’NPSM(S) [VT"H»lm»»;ﬂ'T—l (S)]7
wherethe ¥’ ~ P, ()" subscriptindicates that the expectation is with respest tirawn
from the state transition distributiaf,, ().

In our policy search setting, we consider a restricted adéseterministic, stationary poli-
ciesll, where eaclr € ITisamapr : S — A, and a corresponding classrafn-stationary
policiesIl” = {(mo, m1,...,7r_1) | forallt, =, € II}. Inthe partially observed, POMDP
setting, we may restridil to contain policies that depend only on the observable éspec
of the state, in which case we obtain a class of memorylesgive policies. Our goal is
to find a non-stationary policyry, 7 ..., 77—1) € IIT which performs well under the
performance measufé,, -, . ., (so), which we abbreviate &g (so) when there is no
risk of confusion.

3 ThePolicy Search Algorithm

Following [5, 4], we assume that we are given a sequence o# lhstributions
1o, p1, - - - » pr—1 Over the states. Informally, we think pf as indicating to the algorithm
approximately how often we think a good policy visits eactestt timet.

Our algorithm (also given in [4]), which we call Policy Selatsy Dynamic Programming
(PSDP) is in the spirit of the traditional dynamic programgiapproach to solving MDPs
where values are “backed up.” In PSDP, it is the policy whichacked up. The algorithm
begins by findingrr_1, thenwr_o, ... down towy. Each policyr, is chosen from the
stationary policy clasEl. More formally, the algorithm is as follows:

Algorithm 1 (PSDP) GivenT, ., andIl:
fort=T-1,T7-2,...,0
Setr; = arg Hlan/eHESNM [Vﬂ/,ﬂt+1...,ﬂT_1 (S)]

In other words, we choosg fromI1 so as to maximize the expected sum of future rewards
for executing actions according to the policy sequeigern;,1,. .., mr—1) when starting
from a random initial state drawn from the baseline distributiqn.

Sincepuo, . . ., ur—1 provides the distribution over the state space that theriéthgo is op-
timizing with respect to, we might hope that if a good poliepds to visit the state space
in a manner comparable to this base distribution, then PSHIRaturn a good policy.
The following theorem formalizes this intuition. The theor also allows for the situation
where the maximization step in the algorithm (thre max,<11) can be done only approx-
imately. We later give specific examples showing settingstiich this maximization can
(approximately or exactly) be done efficiently.

The following definitions will be useful. For a non-statiopaolicy © = (79, ..., 7™ r—-1),
define the future state distribution

/’Lﬂ,t(s) = Pr(St = S|SQ,7T).

l.e. ur +(s) is the probability that we will be in stateat timet if picking actions according
to = and starting from state,. Also, given twoT'-step sequences of distributions over
statesy = (po,...,) @andu’ = (ug, - .., p;), define the averageariational distance
between them to Be
1 T-1
dvar(ﬂaﬂ/) = ? Z Z |Mt(s) - M;(S”
t=0 seS
Hence, ifr,.; is some policy, thed,., (i, ir,.,) represents how much the base distribution
1 differs from the future state distribution of the poligy.s.

Theorem 1 (Performance Guarantee) Letw = (m,...,mr—1) be a non-stationary pol-
icy returned by are-approximate version of PSDP in which, on each step, thecpaij
found comes withia of maximizing the value. I.e.,

Esmp [Vm-,m+1...,ﬂT_1 (S)] 2> maxy sy, [Vﬂ’-,m+1...,ﬂT_1 (S)] — €. 1)
Then for allm,e € II” we have that
Vi(80) > Vi (50) = T'e — Tdyar (1, i,) -

Proof. This proof may also be found in [4], but for the sake of comgietss, we also

provide it here. Let,(s) = Pr(s; = s[so, Tref), Tret = (Tref 05 - - - Trer,7—1) € 17, and
m = (mo,...,mr—1) be the output of-PSDP. We have
Vit (8) = Va(s) = F X125 Baimr [R(s2)] = Vig,...(5)

= S Banp R R(50) + Vi (5t) = Vi, (80)] = Vig... ()

T-1
= t=0 EStNPt35t+1NPst7rrCf’t(st) [%R(St) + V7Tt+1-,---(8t+1) — Va,(s0)]

= Z:Bl EStNPt [Vﬂ'rcf,t;ﬂ't+17~~77TT71 (St) - VT"t;ﬂ't+17~~;7TT—1 (St)]
It is well-known that for any functiorf bounded in absolute value k¥, it holds true that
|Esmpi [f(8)] = Esmps [f(8)]] < BY . |pi(s) — pa(s)|. Since the values are bounded in
the interval0, 1] and sinceP; = pr, ; ¢,

T-1

t=0 EStNPt [Vﬂ'rcf,t;ﬂ't+17~~;7TT71 (St) - V7Tt777t+1;~~~777T—1(St)]

T-1 T-1

t=0 ESNM [Vﬂrcf,t777t+1,~~~77TT71(S) - Vﬂtxﬂt+17~»;7rT—1(S)] - Zt:o |Pt(5) - Mt(s)|

T-1
< Zt:() maxyernBsp, [Vﬂl777t+1;~~~777T—1(8) = Vrimera,emroa (8)] = T'dvar (Hrmyee > 1)
Te + Tdyar (fryes» 1)
where we have used equation (1) and the factthatc II7". The result now follows. O

This theorem shows that PSDP returns a policy with perfonadnat competes favorably
against those policies..; in II7 whose future state distributions are closg.tdence, we
expect our algorithm to provide a good policy if our prior kvledge allows us to choose a
u that is close to a future state distribution for a good poiicii” .

Itis also shown in [4] that the dependencedy. is tight in the worst case. Furthermore, it
is straightforward to show (cf. [6, 8]) that theapproximate PSDP can implemented using
a number of samples that is linear in the VC dimensioflppolynomial inT’ and%, but
otherwise independent of the size of the state space. (P& fetails.)

IN

IN

4 |nstantiations

In this section, we provide detailed examples showing hol@P&iay be applied to specific
classes of policies, where we can demonsitataputationakfficiency.

If S'is continuous ang; andy; are densities, the inner summation is replaced by an irftegra

4.1 Discreteobservation POMDPs

Finding memoryless policies for POMDPs represents a diffiznd important problem.

Further, it is known that the best memoryless, stochadtitiosary policy can perform

better by an arbitrarily large amount than the best memesyldeterministic policy. This

is frequently given as a reason for using stochastic paliditowever, as we shortly show,
there is no advantage to using stochastic (rather thanrdigtistic) policies, when we are
searching for non-stationary policies.

Four natural classes of memoryless policies to considexsaf@lows: stationary determin-
istic (SD), stationary stochasti6S§, non-stationary deterministitéND) and non-stationary
stochastic £9. Let the operator opt return the value of the optimal polity class. The

following specifies the relations among these classes.

Proposition 1 (Policy ordering) For any finite-state, finite-action POMDP,
opt(SD) < opt(SY < opt(ND) = opt(NS)

We now sketch a proof of this result. To see thaibjit) = opt(NS), let uns be the future
distribution of an optimal policytys € NS Consider running PSDP with base distribution
uns After each update, the resulting poli€ynso, Tns s - - -, ¢, - - ., 1) MUSt be at least
as good asys. Essentially, we can consider PSDP as sweeping throughtieaestep and
modifying the stochastic policy to be deterministic, whilever decreasing performance.
A similar argument shows that @3 < opt(ND) while a simple example POMDP in the
next section demonstrates this inequality can be strict.

The potentially superior performance of non-stationaygms contrasted with stationary
stochastic ones provides further justification for theie.usurthermore, the last inequal-
ity suggests that only considering deterministic poli¢ggesufficient in the non-stationary
regime.

Unfortunately, one can show that it is NP-hard to exactly mraximately find the best
policy in any of these classes (this was shown3brin [7]). While many search heuristics
have been proposed, we now show PSDP offers a viable, cotigmatily tractable, alter-
native for finding a good policy for POMDPs, one which offeesformance guarantees in
the form of Theorem 1.

Proposition 2 (PSDP complexity) For any POMDP, exact PSDPR:(= 0) runs in time
polynomial in the size of the state and observation spacdsratine horizon tim&’.

Under PSDP, the policy update is as follows:

ﬂ-t(o) = arg maXaESN,ut [p(0|5)V¢l-,7rt+1---,7TT—1 (5)]) (2)
where p(o|s) is the observation probabilities of the POMDP and the poseguence
(a,m41 ..., mr—1) @always begins by taking actien It is clear that given the policies from
timet¢ + 1 onwards,V; ., ...~_, (s) can be efficiently computed and thus the update 2
can be performed in polynomial time in the relevant quasgitintuitively, the distribution
1 specifies here how to trade-off the benefits of different ulydey state-action pairs that
share an observation. Ideally, it is the distribution pded by an optimal policy foND
that optimally specifies this tradeoff.

This result does not contradict the NP-hardness resultsause it requires that a good
baseline distribution: be provided to the algorithm. However, jf is the future state
distribution of the optimal policy itND, then PSDP returns an optimal policy for this class
in polynomial time.

Furthermore, if the state space is prohibitively large tdigren the exact update in equa-
tion 2, then Monte Carlo integration may be used to evalusekpectation over the state
space. This leads to arapproximate version of PSDP, where one can obtain an #igori
with no dependencen the size of the state space and a polynomial dependendeon t
number of observation§;, andé (see discussion in [4]).

4.2 Action-value approximation

PSDP can also be efficiently implemented if it is possiblefficiently find an approximate
action-value functio, .., .. ~_, (s), i.e., if at each timestep

€2> ESN#t [maxa€A|Va,ﬂ’t+1---JTT—1 (5) - th-,ﬂt+1---,ﬂ’T—1 (S)” .
(Recall that the policy sequenge, 741 ..., mp—1) always begins by taking actiomn)
If the policy 7 is greedy with respect to the action valigr, . , .. ,_, (s) then it follows
immediately from Theorem 1 that our policy value differafrthe optimal one bQ7e plus
the . dependent variational penalty term. It is important to rib& this error is phrased in
terms of an average error over state-space, as opposedioitstcase errors over the state
space that are more standard in RL. We can intuitively griaisphly observing that value
iteration style algorithms may amplify any small error irethialue function by pushing
more probability mass through where these errors are. Pi&iWever, as it does not use
value function backups, cannot make this same error; theofifee computed policies
in the future keeps it honest. There are numerous efficigmession algorithms that can
minimize this, or approximations to it.

4.3 Linear policy MDPs

We now examine in detail a particular policy search example/hich we have a two-
action MDP, and a linear policy class is used. This case &résting because, if the
termE;< ., [Vr xiin,....mo_ (8)] (from the maximization step in the algorithm) can be nearly
maximized by some linear policy, then a good approximation tocan be found.

Let A = {a1,az2}, andIl = {my(s) : & € R"}, wheremy(s) = a1 if 6T¢(s) > 0,
andmy(s) = ag otherwise. Hereg(s) € R™ is a vector of features of the state Con-
sider the maximization step in the PSDP algorithm. Letfifig be the indicator function
(1{True} = 1, 1{False} = 0), we have the following algorithm for performing the maxi-
mization:

Algorithm 2 (Linear maximization) Givenml andm?2:

fori=1tom;

Samples() ~ ;.
Use my Monte Carlo samples to estimat¥, e (s®) and

1,Tt415-005

Vs mesn,mr_ (s@). Call the resulting estimates andgo.
Lety® = 1{q1 > ¢z}, andw® = |q; — ga|.
Find 0 = argming >4 wW1{1{0T¢(sD) > 0} # y}.
Outputry.

Intuitively, the algorithm does the following: It samples statess(!), ..., s(™1) from the
distributiony;. Usingmy Monte Carlo samples, it determines if actiepor actiona, is
preferable from that state, and creates a “lalél” for that state accordingly. Finally, it
tries to find a linear decision boundary separating the staten whicha, is better from
the states from which, is better. Further, the “importance” or “weight’(*) assigned to
s() is proportional to the difference in the values of the twdaet from that state.

The final maximization step can be approximated via a callnyp standard supervised
learning algorithm that tries to find linear decision bourgs such as a support vector
machine or logistic regression. In some of our experimamésuse a weighted logistic
regression to perform this maximization. However, usingdir programming, it is possible
to approximate this maximization. Let

T(0) = fw@l{l{e%(s(“) >0} £y}

i=1

N A

Figure 1: lllustrations of mazes: (a) Hallway (b) McCallenMaze (c) Sutton’s Maze

be the objective in the minimization. If there is a valueddhat can satisfie¥'(6) = 0,
then it can be found via linear programming. Specifically,gach value of, we let there
be a constraint

0Tp(sD) >k ify® =1

07p(s) < —k otherwise

otherwise, where: is any small positive constant. In the case in which thesetcaimts

cannot be simultaneously satisfied, it is NP-hard to finglming 7°(9). [1] However, the

optimal value can be approximated. Specifically*if= arg miny 7'(9), then [1] presents
a polynomial time algorithm that findsso that

T(6) < (n+ 1)T(67).

Here,n is the dimension of. Therefore, if there is a linear policy that does well, wevals
find a policy that does well. (Conversely, if there is no linpalicy that does well—i.e.,
if T(6*) above were large—then the bound would be very loose; howevéris setting
there is no good linear policy, and hence we arguably shoaide using a linear policy
anyway or should consider adding more features.)

5 Experiments

The experiments below demonstrate each of the instamt@mtescribed previously. [[Is
there a better way to emphasise the parallelism with thammtisttion section?]]

5.1 POMDP gridworld example

Here we apply PSDP to some simple maze POMDPs (Figure (5dertmnstrate its per-
formance. In each the robot can move in any of the 4 cardimattion. Except in (5.1c),
the observation at each grid-cell is simply the directionslich the robot can freely move.
The goal in each is to reach the circled grid cell in the mimmtatal number of steps from
each starting cell.

First we consider the hallway maze in Figure (5.1a). The rblece is confounded by all
the middle states appearing the same, and the optimal stiicpalicy must take time at
least quadratic in the length of the hallway to ensure it gethe goal from both sides.
PSDP deduces a non-stationary deterministic policy witlchmoetter performance: first
clear the left half maze by always traveling right and themilght half maze by always
traveling left.

McCallum’s maze (Figure 5.1b) is discussed in the litematas admitting no satisficing
determinisitic reactive policy. When one allows non-stadiry policies, however, solutions
do exist: PSDP provides a policy with 55 total steps to goal.olr final benchmark,
Sutton’s maze (Figure 5.1c), the observations are detedhiiy the openness of all eight
connected directions.

Below we summarize the total number of steps to goal of owrélyn as compared with
optimality for two classes of policy. Column 1 denotes PSBFgrmance using a uniform
baseline distribution. The next column lists the perforownf iterating PSDP, starting
initially with a uniform baseling: and then computing with a new baselimebased on the

previously constructed policy. Column 3 corresponds to optimal stationary deterministic
policy while the final column gives the best theoreticalhiavable performance given
arbitrary memory. It is worthwhile to note that the PSDP coiagions are very fast in all
of these problems, taking well under a second in an intezgrieinguage.

w uniform | p iterated| Optimal SD | Optimal
Hallway 21 21 00 18
McCallum 55 48 00 39
Sutton 412 412 416 | > 408

5.2 Robot walking

Our work is related in spirit to Atkeson and Morimoto [2], whidescribes a differential
dynamic programming (DDP) algorithm that learns quadnaloe functions along trajec-
tories. These trajectories, which serve as an analog of.alistribution, are then refined
using the resulting policies. A central difference is thee of the value function back-
ups as opposed to policy backups. In tackling the controblpra presented in [2] we
demonstrate ways in which PSDP extends that work.

[2] considers a planar biped robot that walks along a bar. réhet has two legs and a
motor that applies torque where they meet. As the robot lackss, it walks by essentially

brachiating (upside-down); a simple mechanism grabs thada foot swings into posi-

tion. The robot (excluding the position horizontally alathg bar) can be described in a 5
dimensional state space using angles and angular vekfriti the foot grasping the bar.
The control variable that needs to be determined is thedripde.

In [2], significant manual “cost-function engineering” asHaping” of the rewards was
used to achieve walking at fixed speed. Much of this is dueddithitations of differential
dynamic programming in which cost functions must alwaysgally quadratic. This rules
out natural cost functions that directly penalize, for epdamfalling. As this limitation does
not apply to our algorithm, we used a cost function that relwahe robot for each time-
step it remains upright. In addition, we penalize quadadiicleviation from the nominal
horizontal velocity of 0.4 m/s and control effort applied.

Samples of: are generated in the same way [2] generates initial trajestausing a para-
metric policy search. For our policy we approximated theoaevalue function with a
locally-weighted linear regression. PSDP’s policy sigmifitly improves performance over
the parametric policy search; while both keep the robot inglkve note that PSDP incurs
31% less cost per step.

DDP makes strong, perhaps unrealistic assumptions abewtitservability of state vari-
ables. PSDP, in contrast, can learn policies with limitedesbability. By hiding state
variables from the algorithm, this control problem demaatsis PSDP’s leveraging of non-
stationarity and ability to cope with partial observaliliPSDP can make the robot walk
without any observations; open loop control is sufficient to propel thieot, albeit at a
significant reduction in performance and robustness. Iar€i¢s.2) we see the signal gen-
erated by the learned open-loop controller. This complegue signal would be identical
for arbitrary initial conditions— modulo sign-reversads, the applied torque at the hip is
inverted from the control signal whenever the stance foswigched.

5.3 Double-pole balancing

Our third problem, double pole balancing, is similar to ti@nsgard inverted pendulum
problem, except that two unactuated poles, rather thanglesone, are attached to the
cart, and it is our task to simultaneously keep both of thelartzaed. This makes the task

2It can be shown that this procedure of refinjpgpased on previous learned policies will never
decrease performance.

2 T T T T T T T T T 05

0.4t

control torque
angle (rad)
\

12 14 16 18 20 o 2 4 6 12 14 16 18 20

¢ lim]eo(s) ¢ lim]eo(s)
Figure 2: (Left) Control signal from open-loop learned cofier. (Right) Resulting angle
of one leg. The dashed line in each indicates which foot isging the bar at each time.

significantly harder than the standard single pole problem.

Using the simulator provided by [3], we implemented PSDP tfas problem. The
state variables were the cart position cart velocity z; the two poles’ angleg; and
¢2; and the poles’ angular velocities and ¢,. The two actions are to accelerate left
and to accelerate right. We used a linear policy clHsas described previously, and
#(s) = [z,1,¢1, 01, P2, p2]T. By symmetry of the problem, a constant intercept term
was unnecessary; leaving out an intercept enforces thati¢f the better action for some
states, thena, should be taken in the states.

The algorithm we used for the optimization step was logistgression.® The baseline
distribution iz that we chose was a zero-mean multivariate Gaussian distnibover all
the state variables. Using a horizonof= 2000 steps and 5000 Monte Carlo samples per
iteration of the PSDP algorithm, we are able to successhalgnce both poles.

References
[1] E. Amaldi and V. Kann. On the approximability of minimigy nonzero variables or
unsatisfied relations in linear systeniieoretical Comp. S¢il998.

[2] C. Atkeson and J. Morimoto. Non-parametric represémadf a policies and value
functions: A trajectory based approach.NiPS 15 2003.

[3] F.Gomezhttp://ww. cs. ut exas. edu/ user s/ nn/ pages/ sof t war e/ sof t ware. htni .

[4] Sham Kakade.On the Sample Complexity of Reinforcement LearniRgD thesis,
University College London, 2003.

[5] Sham Kakade and John Langford. Approximately optimgragimate reinforcement
learning. InProc. 19th International Conference on Machine Learniag02.

[6] Michael Kearns, Yishay Mansour, and Andrew Y. Ng. Appiroate planning in large
POMDPs via reusable trajectorig@xtended version of paper in NIPS 12999.

[7] M. Littman. Memoryless policies: theoretical limitatis and practical results. Rroc.
3rd Conference on Simulation of Adaptive Behayi®94.

[8] Andrew Y. Ng and Michael I. Jordan. BASUS A policy search method for large
MDPs and POMDPs. IRroc. 16th Conf. Uncertainty in Artificial Intelligenc2000.

[9] Ronald J. Williams. Simple statistical gradient-fallmg algorithms for connectionist
reinforcement learningMachine Learning8:229-256, 1992.

%In our setting, we use weighted logistic regression and mimé —¢(f) =
=3, wDlogp(y s, 0) wherep(y = 1|s,0) = 1/(1 + exp(—07s)). It is straightfor-
ward to show that this is a (convex) upper-bound on the abgéiinctionT'(6).

