
Selecting Good Keys for Triangle-Inequality-Based Pruning
Algorithms

Andrew Berman and Linda G. Shapiro *

Department of Computer Science and Engineering
University of Washington

Seattle, MJA 98195

{ aberman,shapiro}@cs. washington.edu

Abstract
A new class of algorithms based on the triangle in-

equality has recently been proposed for use in content-
based image retrieval. These algorithms rely on com-
paring a set of key images to the database images,
and storing the computed distances. Query images
are later compared to the keys, and the triangle in-
equality is used to speedily compute lower bounds on
the distance from the query to each of the database
images. This paper addresses the question of increas-
ing performance of this algorithm by the selection of
appropriate key images. Several algorithms for key
selection are proposed and tested.

1 Introduction
There is a growing need for the ability to query im-

age databases based on image content. Such content-
based retrieval usually revolves around the use of a dis-
tance measure-a scoring function that rates the simi-
larity of two images. Since distance measure compu-
tation can be expensive, there is a need to eliminate
candidate database images from a search without di-
rect comparison to the query image. One method is
to eliminate candidate images by the use of the tri-
angle inequality[3]. In this scheme, a set of key im-
ages is stored in the database, along with the distance
from each database image to each key image. When
the user chooses a query image, the distance from the
query image to each key image is computed. The tri-
angle inequality can then be used to compute lower
bounds on the distance from the query image to each
of the database images: possibly eliminating database

‘This research was supported by the National Science Foun-
dation under Grant No. IRI-9711771 and by the Washington
Technology Center.

images as candidates for an approximate match to the
query. The number of key images is assumed to be
much smaller than the number of database images-
thus, the total number of distance computations is
greatly reduced. This scheme can be expanded to the
use of multiple distance measures in combination.

1.1 Selecting Good Keys
One aspect of triangle-inequality-based search al-

gorithms previously unaddressed in the literature is
how to select keys which maximally eliminate images
without direct comparison. This paper proposes and
tests several algorithms for selecting good keys.

1.2 F’undamental Query Strategies:

Given an image database S, a query image q, and
a distance measure d, there are two main types of
searches. One can request all images s E S such
that the distance d(q ,s) is less than some threshold
value T. We label this task Threshold. The second
search task is to find the image or images in S which
minimize d(q, s). We label this task Best-Match. In
this paper, we evaluate key selection algorithms for
triangle-inequality-based searches for both Threshold
queries and Best-Match queries.

Threshold and Best-Match

2 Overview of the Triangle Inequality
Algorithm

There are several schemes in the literature that
take advantage of the triangle inequality to reduce
the number of direct comparisons in a Threshold
search[3, 4, 2, 6, 11. The intuition behind all the
schemes is that the distance between two objects can-
not be less than the difference in their distances to

12
0-8186-8329-5/97 $10.00 0 1997 IEEE

http://washington.edu

any other object. More formally, let i represent a
database object, q represent a query object, k rep-
resent some key object, and d represent some distance
measure that is a metric. The following inequality is
always true:

Thus, by comparing the database and query objects
to a third key object, a lower bound on the distance
between the two objects can be obtained. We define
Z(d,IC,i,q) to be equal to the lower bound on d (i , q)
found by calculating Id(i, I C) - d(q , I C)] . We further
shorten Z(d, I C , i , q) to Z(d, I C) when there is no confu-
sion as to the values of i and q.

Burke and Keller[G] first proposed the idea of us-
ing the triangle inequality to reduce comparisons.
Uhlmann[lO] described the vantage point tree, or vp-
tree, in which relative distances to key objects are re-
peatedly used to partition the database. Each node
in the tree represents a vantage-point. The left child
containing those objects which are within a certain
distance to the vantage point, while the right child
contains the remaining objects. By repeatedly com-
paring the query to the vantage-point objects, one can
eliminate subtrees from the search. Enhancements to
the vp-tree include partitioning of the distances into
more than two sets, and multiple vantage points at
each node [5].

In a vantage point tree, each node traversed re-
quires a distance comparison between the query and
the key. Berman[3] and Baeza-Yates, et. al.[l] in-
vented a tree structure in which all the nodes at a
given level are associated with a single key. Thus, the
total number of distance comparisons required while
traversing the tree is only the height of the tree. Indi-
vidual node traversals are thus very cheap. The nodes
are assumed to have many more than 2 children, since
it is worth pruning as many leaves as possible at the
cost of having extra node traversals.

Barros, et. a1.[2], successfully used a single set
of keys and the triangle inequality in a real image
database. They did not use any tree structure, but
stored all the distances in a table. In Berman and
Shapiro[4] we introduced an indexing and retrieval al-
gorithm for multiple keys and multiple distance meau-
res, and stored the distances in a table, rather than a
tree structure. This algorithm is summarized below.

2.1 Threshold Searches with Multiple

Equation (1) can be extended naturally by substi-
tuting a set of keys K = (I C l , . . . , I C M) for IC as follows:

Keys

d (i , Q) 2 m a 5 a 9 3 4 l d (i , IC,) - 4 % h)l (2)

We define Z’(d, K, i , q) to be equal to the lower bound
on d(i , q) found by using equation 2. As before, we
shorten Z‘(d, K , i , q) to Z’(d, K) where possible.

Consider a large set of database objects, I =
(2 1 , . . . , i ~ } and a much smaller set of key objects,
K = { k l , . . . , I C M } . Pre-calculate d(i , , k t) for all
{ 1 5 s < M } x { 1 5 t 5 N } . Now consider a request
to find all database objects i, such that d(i , ,q) 5 T
for some query image q and threshold value T . We
can calculate lower bounds on (d (i1 , q), . . . , d (i ~ , q) }
by calculating, {d(q, kl), . . . , d(q, k M) } and repeatedly
using equation (2). If we prove that T is less than
d (i s , q) , then we eliminate i , from our list of possible
matches to q . After the elimination phase, we search
linearly through the uneliminated objects, comparing
each to q in the standard fashion. This algorithm
involves M + U distance measure calculations, and
O (M N) simple (constant cost) operations, where U is
the number of uneliminated objects. The hope is that
M + U is sufficiently smaller than N to result in an
overall time savings.

2.2 Threshold Searches with Multiple
Distance Measures

In Berman and Shapiro[4], we extended the above
scheme to work with combinations of distance mea-
sures. The intuition is that lower bounds on the dis-
tance between two objects for distance measures dl
and dz can be used to calculate a lower bound be-
tween the objects for distance measure d when d can
be calculated directly from dl and dz .

Let D = d l , . . . , d p be a set of distance measures.
These distance measures will be known as the base dis-
tance measures. Let K = K1,. . . , K p be a set of sets
of keys. Let L (D , K , i , q) be the set of lower bounds
Z’(d,, K,, i, q) calculated from equation 2 for each tu-
ple (d , E D , K , E K),1 < s 5 P.

Now consider a new distance measure d‘ that is
of the form d ’ (i , ~) = f (d l (i , g) , . . . , d s (i , g)) , where
f is monotonically non-decreasing in its parame-
ters. For example, f might describe a weighted
sum of the base measures, or even combinations of

13

minima and maxima of sets of the base measures.
Since Z ’ (d s l K s l i , q) 5 d , (i ,q) for all s, substituting
Z’(d , ,Ks , i lq) for each instance of d , (i , q) gives us
d’(i , 4) 2 f(Z’(di, Ki , i , q) , . . . , Z’(& , K, , i, 4)). Thus
we can calculate a lower bound on d’(i, q) given lower
bounds on the base distance measures. As with sin-
gle distance measures, we can thus eliminate database
objects as candidates for approximate matching to a
query object without direct comparisons.

2.3 Implementing Best-Match Using the

The calculated lower bounds on the distance from
the database objects to the queries have an interesting
property that we are currently attempting to exploit.
Suppose we are given two database images il and i 2

and query q such that d(i1 ,q) < d(i2 ,q) . Experimen-
tal evidence suggests that quite often Z (d , k , i l , q) <
Z(d, k , i2 ,q) . That is, the ordering of the lower bounds
reflects the ordering of the closeness of the images to
the query. The correlation between the two inequali-
ties increases with the number of keys. In tests of up
to 1800 images with multiple distance measures, we
have found that the best match to a query can often
be determined by ordering the images on the basis of
their calculated lower bounds and directly examining
the first dozen or so images.

Triangle Inequality

3 What is a Good Key?
We begin this section with a discussion of what

makes a good single key. Later, we discuss the choice
of keys in combination. We make the simplifying as-
sumption that all distances are within the range of 0
to 1, inclusive. We also make the assumption that the
database is static and known in advance.

3.1 Good Keys for Threshold Style

Consider database image i, query image q, key im-
age k , distance function d. We say that key k separates
q from i for value v if Id(i, k) - d(q , k)l > w. Suppose
that d (i , q) > T for some threshold T. The triangle
inequality implies that the value Id(i, k) - d(q , k)I can
range from 0 to d (i , 4). Key k will eliminate image i as
a candidate match to q only if it separates i from q for
value T . The purpose of the algorithm is to eliminate
as many non-matching candidate images as possible
through key comparison. Thus, a good key will elim-
inate more candidate images than a poor key. The
concept of separation described above motivates the
following discussion.

Queries

Given a set of database images S , distance measure
d , and key 5, we can compute a density function f on
d (s , k) , s E S. Since we do not know the queries in ad-
vance, we make the simplifying assumption that the
queries are taken from the database images and ignore
exact matches in our searches. Given threshold T , we
can calculate the fraction of images that k will sepa-
rate from a random query by looking at this density
function. For example, if all of the area of the den-
sity function lies in a narrow range (2, x + e) , e < T ,
as shown in Figure la, then k will never separate any
query from any image in the database. If the den-
sity function has a uniform distribution, as shown in
Figure l b , then for 0 < T < 1/2, P(k separates i
from q) = (1 - T)2 . If the density function is multipo-
lar, with N equally sized narrow spikes separated by
distance greater than T , as shown in Figure IC, then
P(k separates i from q) = (N - l) /N. If the density
function has a Gaussian shape, as shown in Figure Id,
then, roughly speaking, greater standard deviations
will indicate greater average separation of images by
the key.

The issue gets more complicated when choosing sev-
eral keys. Using keys k1 and k2 will be no better
than just using k l if they both separate the same im-
ages from queries. The question of whether or not
two keys separate the same images is computationally
expensive to answer in the general case, but can be
approximately answered by sampling. One can also
use the fact that very similar keys will separate the
same images and thus try to avoid keys that are too
close together. For example, in a clusterable database,
keys should come from different clusters. Indeed, the
key selection algorithms with the best results make use
of clustering and ensuring that different keys separate
different images.

3.2 Good Keys for Best-Match Queries

Given images il and i 2 , query q and key k, assuming
that d(i l , q) < d(i2, q) , key k orders il and i 2 correctly
if Z(d, k, i l l q) < Z(d, k , i 2 ,q) . We can extend this defi-
nition naturally to sets of keys and multiple distance
measures. Although our analyses were for Thresh-
old queries, the results were very good for Best-Match
queries as well. Further analysis of keys optimized for
Best-Match queries is an open area of research.

4 Algorithms for Key Selection

We examined five different algorithms for key se-
lection: random keys, choosing keys by examining

14

a) single spike b) uniform

c) multimodal d) Gaussian

Figure 1: The shape of the density functions deter-
mines the performance of the keys.

the variance of the density function, ranking by test-
ing thresholding efficiency, a greedy thresholding al-
gorithm, and a clustering algorithm. The algorithms
assume a database S and a set of candidate keys.

Random Our prototype image database system
currently uses a set of (up to 20) keys chosen randomly
and uniformly from the database itself. The triangle
inequality algorithms give excellent performance com-
pared to linear search even with random keys, so this
is a natural benchmark against which to test the other
algorithms.

Variance Taking a subset S‘ of our database S , we
calculated the density function of d (k , s), s E S’ for
each candidate key IC . We selected those candidate
keys which had the density functions with the greatest
variance.

Separation We examined our database by hand to
find pairs of images that we judged to be approximate
matches. The average distance between these pairs
was calculated. This value T represented a potential
“threshold value” that one might use in a query to find
approximate matches. We then selected those candi-
date keys IC which maximized P(ld(sl,IC) - d(sz,Ic)l >
3”) over all pairs s1 , s2 E SI, where S’ was a subset of
our database S.

Greedy Variance and Separation may choose sev-
eral keys which separate the same pairs of images.
We thus modified Separation to keep track of which
pairs of images were separated by each key. The first
key selected was the same as that selected by Sepa-
ration. The performance of the remaining keys were
then recalculated to discount pairs of images already
separated by the first key. This process was continued
for subsequent keys until a preset number of keys was
selected.

Cluster We used a simple clustering algorithm on
the database. We selected the two database images
IC1 and IC2 that were furthest apart, and used them
as initial seeds for clustering. These two images were
placed into our set of keys, and the remaining images
were assigned to clusters based on their distances to
the key images. We then found the image that was
furthest from the current set of keys, added it to the
set, and re-clustered the database on the updated set
of keys. We continued this process until the correct
number of keys were selected.

5 Experiments
For our experiments, we collected two sets of im-

ages, one with 600 members, and one with 800 mem-
bers. From each set, 100 images were chosen arbi-
trarily to be candidate key images. The remaining
500 and 700 images became the test database. The
five algorithms were run on the candidate images to
choose sets of 1 to 9 keys.

We queried the database against itself testing the
system’s performance using the keys chosen by the
key selection algorithms. To eliminate exact matches,
we temporarily removed each query image from the
database. To test the performance of the keys on a
Best-Match search, we determined the best match to
the query and calculated its position in the ordering
of the lower bounds. To test the performance of the
keys on a Threshold search, we counted the number of
images separated from the query by a given threshold
value. This threshold value was determind off-line by
calculating the average distance between pairs of im-
ages known to be similar. For the Random key selec-
tion algorithm, we ran the tests 10 times and averaged
the results.

5.1 The Distance Measures
Our prototype database system allows great flex-

ibility in forming composite distance measures from
a set of “base” distance measures. For our tests, we

15

used two base distance measures: a color measure and
a texture measure. We then modified both of them
to add spatial locality, creating four more measures.
We also tested two composite distance measures, con-
taining both texture and color components . A short
summary of the various distance measure follows:

F G C D E
0.9% CL 1.1% 1.6%

1.2% GR 1.6% 2.3%

3.6% CL 3.7% 4.6%

Color Histogram This is a simple L1 distance mea-
sure based on breaking up the color space into a
4 x 4 ~ 4 RGB cube.

1.8

1.9

1.3

Local Binary Partition Texture This is a stan-
dard and easy to implement texture measure with very
good performance[ll]. For each pixel p, the 8 neigh-
bors are examined to see if their intensity is greater
than p. The result becomes an 8 digit binary number,
and a histogram of the numbers is created for each
image. Two images are compared by taking the L1
distance between their histograms.

A
Color

Histogram
LBP

Texture
Horizontal

Color
Vertical

Color
Horizontal

Texture
Vertical

Horizontal Color and Horizontal Texture For
these two distance measures, each image was split into
three equal-sized horizontal pieces. Two images were
compared by averaging the Color or Texture distance
between the corresponding pieces.

B
GR

CL

GR

GR

CL

CL

Vertical Color and Vertical Texture These dis-
tance measures are similar to the horizontal distance
measure above, except that the images were split ver-
tically.

Texture
Color +
Texture

Minimum(Color, Texture) Our prototype sys-
tem allows taking the minimum of several distance
measures. This is useful in cases where the user wishes
to find a similar image without detailing the nature of
the correspondence. For this measure, the color dis-
tance and texture distance are both calculated, and
the minimum returned.

GR

Sum(Color, Texture) Several image retrieval sys-
tems such as QBIC and Virage offer the weighting of
color, texture, and other qualities. This measure is
equivalent to an equal weighting of color and texture.

6 Results
We discuss the performance of the various key se-

lection algorithms, first for Best-Match and then for
Threshold. As the rankings of the algorithms did not
change much as a function of number of keys, we only
show the results for 9 keys, the maximum number
tested. As the performance of the algorithms on the

Texture I&

Table 1: Best Algorithms for Best-Match with 9 keys
on a database of 500 images

Column Headings:
A: Distance measure
B: Best key selection algorithm: GR=Greedy,
CL=Cluster, RA=Random
C: Average rank of best match using best algorithm
D: Second best key selection algorithm
E: Average rank of best match using second best al-
gorithm
F: Average rank of best match using randomized key
selection
G: Ratio of performance of randomized algorithm to
best algorithm (F/C)

two databases was very similar, we only show tables
for the larger database.

6.1 Performance of Key Selection Algo-
rithms for Best-Match

As is shown in Table 1, Cluster provided the best
keys for the texture measures, while Greedy provided
the best keys for the color measures and the combi-
nation color/texture measures. The second best algo-
rithm was also always Greedy or Cluster except for the
vertical texture measure in the larger database, which
had Random as the second best.

Columns C, E, and F of the table show the average
rank of the best match using the appropriate key selec-
tion algorithm. For example, a 2% would mean that
the true best match was ranked in the top 2% of the
returned images. Column G represents the ratio of the

16

number of images which would be examined using the
Random keys to the number of images which would
be examined using the best discovered keys. Thus,
in the first row, the best keys returned the closest
match in the top 0.9% of the images. For the 700 im-
age database, this translates to the top 6 or 7 images.
The random keys returned the closest match in the
top 11 images. If this database was a representative
sample of a 700,000 image database, then the number
of images needed to be directly compared would be
approximate 630 and 1120 respectively. On average,
there was a 42% reduction in the number of images
examined using the best discovered keys compared to
using the random keys.

A
Color

Histogram
LBP

Texture
Horizontal

The overall performance of the algorithms was ex-
cellent. In the worst case for the database of 700 im-
ages, horizontal color, the closest match was ranked in
the top 3.6%-that meant that only approximately 24
images had to be compared directly after pruning to
find the best match. The database of 500 images had
slightly worse performance with the average ranking
of the best image ranging from 1.2% to 5.1%, again
with the worst performance found in horizontal color.

B C D E
GR 98.5% RA 97.4%

GR 83.2% CL 81.2%

GR 94.4% RA 90.8%

6.2 Performance of Key Selection Algo-
rithms for Threshold

Color
Vertical

Color

As table 2 shows, the Greedy key selection method
was the clear winner for Threshold, yielding the best
performance for every distance measure. There was no
clear second place algorithm-Random, Variance, and
Cluster all appeared in second place for several mea-
sures. The Greedy keys reduced the number of images
that had to be directly compared by the Random keys
by 16% to 44%.

GR 93.2% VA 90.0%

The second thing to note in Table 2 is the wide
range of performance between distance measures. The
triangle inequality algorithm thresholded 98.5% of the
images for the Color Histogram distance measure, yet
it only thresholded 54.6% of the images for the Verti-
cal Texture distance measure. It is difficult to compare
across distance measures since the distribution of dis-
tance values across pairs of images vary greatly from
measure to measure. Especially interesting was the
fact that using 5 keys for Vertical Texture resulted in a
53% thresholding. Thus, the additional four keys only
eliminated an additional two percent of the database.
In [l], Baeza-Yates, et. al.., demonstrated how, given
a random model for database objects and keys, a loga-
rithmic number of keys should threshold almost all of
the database. For our experiments to have supported

Horizontal
Texture
Vertical
Texture

Min(Color,
Texture)
Color +
Texture

GR 55.3% CL 49.9%

GR 54.6% VA 52.7%

GR 97.8% CL 96.4%

GR 94.5% CL 91.5%

Table 2: Best Algorithms for Threshold with 9 keys
on Database of 700 images

Column Headings:
A: Distance measure
B: Best key selection algorithm: GR=Greedy,
CL=Cluster, RA=Random, VA=Variance
C: Average percent of database eliminated using best
algorithm
D: Second best key selection algorithm
E: Average percent of database eliminated using sec-
ond best algorithm
F: Average percent of database eliminated using ran-
domized key selection
G: Ratio of performance of randomized algorithm to
best algorithm (100% - F)/(100% - C)

this, the addition of four more keys would have had
to increase the thresholding from 53% to about 70%.
That this didn’t occur demonstrates that traditional
models of randomness do not really apply to images
or groups of images.

7 Future Work
The performance of keys in image retrieval is in-

timately tied to the statistical behavior of the dis-
tance measures over the image set. At present, we
have a limited understanding of this behavior; this lim-
its the sophistication of our key selection algorithms.
Thus, more research into the behavior of the distance
measures is called for. A more complete set of dis-
tance measures will also be used in our future tests.
Distance measures have been proposed for color, tex-

17

ture, shape[8], object presence[9], and object spatial
relationships[7]. We would like to include representa-
tives of each type of measure in our tests.

We assumed a static database known in advance of
the key selection. Many databases do not have these
qualities. Finding good keys for non-static databases
using triangle inequality algorithms is an open re-
search problem.

In our work, we selected keys from the database it-
self. The space of possible keys is huge- it is the space
of possible images. We would like to take advantage of
this freedom in some tractable manner. For example,
it may be possible to construct artificial images which
are excellent keys for either a specific database, or
even for large image domains. Furthermore, our anal-
ysis contained the assumption that the query domain
was similar to the databasc. This is not nccessarily
the case.

Even if we restrict our candidate keys to some ran-
dom subset of N images, the number of possible sub-
sets of M keys is exponential in M . There is no guar-
antee that there isn’t some elusive set of keys which
will prune the database far more than any other set.
It may be that heuristics like those traditionally used
for NP-complete algorithms may be applicable for key
selection. Specifically, the Greedy algorithm could be
modified to be optimal over a small number of key
changes. We should also examine more clustering al-
gorithms such as k-means clustering.

Finally, there has been no published work on the
proper number of keys to use for a database of a given
size. There is a tradeoff between the elimination power
of a set of keys and the execution time required to
compare the query to the key set. Some queries may
require more keys than other queries for good perfor-
mance.

8 Conclusions
Of the algorithms tested, Cluster and Greedy

clearly gave the best results. The improvement over
random key selection was up to a factor of two. As ran-
dom key selection reduces Best-Match searches to just
a few percent of the database, the use of random keys
may be perfectly acceptable for smaller databases.

Given n sample database images and m candidate
keys, Cluster and Greedy take O(n2) and O(mn2)
time respectively. Sampling may be necessary when

confronted with very large databases. We used sam-
pling in Greedy and not in Cluster, yet Greedy was
essentially as good as Cluster in some cases and bet-
ter than Cluster in the rest.

It is promising that relatively simple algorithms
were able to increase performance to the extent shown
in this paper. We hope that further work will provide
even better performance.

References
[l] R.. Baeza-Yates, W. Cunto, U. Manber, and S. Wu.

Proximity matching using fixed-queries trees. In
Combinatorial Pattern Matching, pages 198-212.
Springer-Verlag, June 1994.

[2] J. Barros, J . French, W. Martin, P. Kelley, and
M. Cannon. Using the triangle inequality to reduce
the number of comparisons required for similarity-
based retrieval. In IS&T/SPIE - Storage and Re-
trieval for Still Image and Video Databases, vol-
ume IV, Jan 1996.

[3] A. Berman. A new data structure for fast ap-
proximate matching. Technical Report 1994-03-02,
Dept. of Computer Science, University of Washing-
ton, 1994.

[4] A. P. Berman and L. G. Shapiro. Efficient image
retrieval with multiple distance measures. In Pro-
ceedings of the SPIE Conference on Storage and
Retrieval for Image and Video Databases, Febru-
ary 1997.

[5] T . Bozkaya and M. Ozsoyoglu. Distance-based
indexing for high-dimensional metric spaces. In
ACM SIGMOD International Conference on. Mnn-
agement of Data,May, 1997, pages 357-368.

[6] W. A. Burkhard and R. M. Keller. Some ap-
proaches to best-match file searching. Communi-
cations of the ACM, 16(4):230-236, Apr 1973.

[7] A. Del Bimbo, M. Campanai, and P. Nesi. 3d vi-
sual query language for image databases. Journal
of Vzsual Languages and Computing, 3, 1992.

[8] A. Del Bimbo, P. Pala, and S. Santini. Visual
image retrieval by elastic deformation of object
sketches. In IEEE Symposium on Visual Lan-
guages, pages 216-223, 1994.

[9] D. A. Forsyth, J. Malik, M. M. Fleck,
H. Greenspan, T. Leung, S. Bclongic, C. Carson,
and C. Bregler. Finding pictures of objects in large

collections of images. In Proceedings of the 2nd In-
ternational Workshop on Object Representation in
Computer Vision, April 1996.

[lo] J. Uhlmann, Satisfying general proxim-
ity/similarity queries with metric trees. Informa-
tion Processing Letters, 40, 1991, pages 175-179.

[ll] L. Wang and D. C. He. Texture classification
using texture spectrum. Pattern Recognition Lett.,
13, 1990, pages 905-910.

A Analysis of separation with a uni-
form density function

Given a set of database images S, distance mea-
sure d , key k , and uniform density function f on
d (s E S, k) . Assume query q is chosen randomly
and uniformly from S without replacement. We shbw
that P(k separates s E S from q) = (1 - T)2 .
We consider three cases, that of 0 5 d (s , k) < T ,
T 5 d(s,IC) 5 1 - T , and 1 - T < d (s , k) 5 1. In
the first case, k does not separate q from s when
0 5 q 5 d (s , k) + T . This occurs with probability
d (s , k) + T . Summing over the probability of the first
case gives us ColzlT z+T = T2/2+T2. The third case
is symmetrical to the first case, again giving us a value
of T2/2 + T2. The middle case occurs with a proba-
bility of 1 - 2T. In this case, k does not separate q
from s when d(s,k)-T 5 q 5 d(s,k)+T. Thisoccurs
with a probability of 2T, yielding a joint probability
of (1 - 2T) * 2T. Summing up the probabilities of the
three cases gives us 2 * (3T2/2) + 2T - 4T2 = 2T - T 2
for the probability that k does not separate q from s.
Thus the probability that IC does separate q from s is
1 - (2T - T 2) = 1 - 2T + T 2 = (1 - T) 2 .

19

