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Abstract 
A new class of algorithms based on the triangle in- 

equality has recently been proposed for use in content- 
based image retrieval. These algorithms rely on com- 
paring a set of key images to the database images, 
and storing the computed distances. Query images 
are later compared to the keys, and the triangle in- 
equality is used to speedily compute lower bounds on 
the distance from the query to each of the database 
images. This paper addresses the question of increas- 
ing performance of this algorithm by the selection of 
appropriate key images. Several algorithms for key 
selection are proposed and tested. 

1 Introduction 
There is a growing need for the ability to query im- 

age databases based on image content. Such content- 
based retrieval usually revolves around the use of a dis- 
tance measure-a scoring function that rates the simi- 
larity of two images. Since distance measure compu- 
tation can be expensive, there is a need to eliminate 
candidate database images from a search without di- 
rect comparison to the query image. One method is 
to eliminate candidate images by the use of the tri- 
angle inequality[3]. In this scheme, a set of key im- 
ages is stored in the database, along with the distance 
from each database image to each key image. When 
the user chooses a query image, the distance from the 
query image to each key image is computed. The tri- 
angle inequality can then be used to compute lower 
bounds on the distance from the query image to each 
of the database images: possibly eliminating database 
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images as candidates for an approximate match to the 
query. The number of key images is assumed to be 
much smaller than the number of database images- 
thus, the total number of distance computations is 
greatly reduced. This scheme can be expanded to the 
use of multiple distance measures in combination. 

1.1 Selecting Good Keys 
One aspect of triangle-inequality-based search al- 

gorithms previously unaddressed in the literature is 
how to select keys which maximally eliminate images 
without direct comparison. This paper proposes and 
tests several algorithms for selecting good keys. 

1.2 F’undamental Query Strategies: 

Given an image database S, a query image q, and 
a distance measure d, there are two main types of 
searches. One can request all images s E S such 
that the distance d(q ,s )  is less than some threshold 
value T.  We label this task Threshold. The second 
search task is to find the image or images in S which 
minimize d(q, s). We label this task Best-Match. In 
this paper, we evaluate key selection algorithms for 
triangle-inequality-based searches for both Threshold 
queries and Best-Match queries. 

Threshold and Best-Match 

2 Overview of the Triangle Inequality 
Algorithm 

There are several schemes in the literature that 
take advantage of the triangle inequality to reduce 
the number of direct comparisons in a Threshold 
search[3, 4, 2, 6, 11. The intuition behind all the 
schemes is that the distance between two objects can- 
not be less than the difference in their distances to  
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any other object. More formally, let i represent a 
database object, q represent a query object, k rep- 
resent some key object, and d represent some distance 
measure that is a metric. The following inequality is 
always true: 

Thus, by comparing the database and query objects 
to a third key object, a lower bound on the distance 
between the two objects can be obtained. We define 
Z(d,IC,i,q) to be equal to the lower bound on d ( i , q )  
found by calculating Id(i, I C )  - d(q ,  I C ) ] .  We further 
shorten Z(d, I C ,  i ,  q )  to Z(d, I C )  when there is no confu- 
sion as to  the values of i and q. 

Burke and Keller[G] first proposed the idea of us- 
ing the triangle inequality to reduce comparisons. 
Uhlmann[lO] described the vantage point tree, or vp- 
tree, in which relative distances to key objects are re- 
peatedly used to partition the database. Each node 
in the tree represents a vantage-point. The left child 
containing those objects which are within a certain 
distance to the vantage point, while the right child 
contains the remaining objects. By repeatedly com- 
paring the query to the vantage-point objects, one can 
eliminate subtrees from the search. Enhancements to 
the vp-tree include partitioning of the distances into 
more than two sets, and multiple vantage points at 
each node [5]. 

In a vantage point tree, each node traversed re- 
quires a distance comparison between the query and 
the key. Berman[3] and Baeza-Yates, et. al.[l] in- 
vented a tree structure in which all the nodes at  a 
given level are associated with a single key. Thus, the 
total number of distance comparisons required while 
traversing the tree is only the height of the tree. Indi- 
vidual node traversals are thus very cheap. The nodes 
are assumed to have many more than 2 children, since 
it is worth pruning as many leaves as possible at the 
cost of having extra node traversals. 

Barros, et. a1.[2], successfully used a single set 
of keys and the triangle inequality in a real image 
database. They did not use any tree structure, but 
stored all the distances in a table. In Berman and 
Shapiro[4] we introduced an indexing and retrieval al- 
gorithm for multiple keys and multiple distance meau- 
res, and stored the distances in a table, rather than a 
tree structure. This algorithm is summarized below. 

2.1 Threshold Searches with Multiple 

Equation (1) can be extended naturally by substi- 
tuting a set of keys K = ( I C l , .  . . , I C M )  for IC as follows: 

Keys 

d ( i ,  Q )  2 m a 5 a 9 3 4 l d ( i ,  IC,) - 4 %  h)l (2) 

We define Z’(d, K, i ,  q )  to  be equal to  the lower bound 
on d( i , q )  found by using equation 2. As before, we 
shorten Z‘(d, K ,  i ,  q )  to Z’(d, K )  where possible. 

Consider a large set of database objects, I = 
( 2 1 , .  . . , i ~ }  and a much smaller set of key objects, 
K = { k l , .  . . , I C M } .  Pre-calculate d( i , , k t )  for all 
{ 1 5 s < M }  x { 1 5 t 5 N } .  Now consider a request 
to find all database objects i, such that d( i , ,q )  5 T 
for some query image q and threshold value T .  We 
can calculate lower bounds on (d ( i1 ,  q),  . . . , d ( i ~ ,  q ) }  
by calculating, {d(q,  kl), . . . , d(q, k M ) }  and repeatedly 
using equation (2). If we prove that T is less than 
d ( i s ,  q ) ,  then we eliminate i ,  from our list of possible 
matches to q .  After the elimination phase, we search 
linearly through the uneliminated objects, comparing 
each to q in the standard fashion. This algorithm 
involves M + U distance measure calculations, and 
O ( M N )  simple (constant cost) operations, where U is 
the number of uneliminated objects. The hope is that 
M + U is sufficiently smaller than N to result in an 
overall time savings. 

2.2 Threshold Searches with Multiple 
Distance Measures 

In Berman and Shapiro[4], we extended the above 
scheme to work with combinations of distance mea- 
sures. The intuition is that lower bounds on the dis- 
tance between two objects for distance measures dl 
and dz can be used to calculate a lower bound be- 
tween the objects for distance measure d when d can 
be calculated directly from dl  and dz .  

Let D = d l ,  . . . , d p  be a set of distance measures. 
These distance measures will be known as the base dis- 
tance measures. Let K = K1,. . . , K p  be a set of sets 
of keys. Let L ( D ,  K ,  i ,  q )  be the set of lower bounds 
Z’(d,, K,, i, q )  calculated from equation 2 for each tu- 
ple ( d ,  E D , K ,  E K),1 < s 5 P. 

Now consider a new distance measure d‘ that is 
of the form d ’ ( i , ~ )  = f ( d l ( i , g ) ,  . . . , d s ( i , g ) ) ,  where 
f is monotonically non-decreasing in its parame- 
ters. For example, f might describe a weighted 
sum of the base measures, or even combinations of 
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minima and maxima of sets of the base measures. 
Since Z ’ ( d s l K s l i , q )  5 d , ( i ,q )  for all s, substituting 
Z’(d , ,Ks , i lq )  for each instance of d , ( i , q )  gives us 
d’( i ,  4 )  2 f(Z’(di, Ki , i ,  q ) ,  . . . , Z’(& , K,  , i, 4)). Thus 
we can calculate a lower bound on d’(i, q )  given lower 
bounds on the base distance measures. As with sin- 
gle distance measures, we can thus eliminate database 
objects as candidates for approximate matching to a 
query object without direct comparisons. 

2.3 Implementing Best-Match Using the 

The calculated lower bounds on the distance from 
the database objects to the queries have an interesting 
property that we are currently attempting to exploit. 
Suppose we are given two database images il and i 2  

and query q such that d( i1 ,q)  < d( i2 ,q ) .  Experimen- 
tal evidence suggests that quite often Z ( d , k , i l , q )  < 
Z(d, k ,  i2 ,q) .  That is, the ordering of the lower bounds 
reflects the ordering of the closeness of the images to  
the query. The correlation between the two inequali- 
ties increases with the number of keys. In tests of up 
to 1800 images with multiple distance measures, we 
have found that the best match to  a query can often 
be determined by ordering the images on the basis of 
their calculated lower bounds and directly examining 
the first dozen or so images. 

Triangle Inequality 

3 What is a Good Key? 
We begin this section with a discussion of what 

makes a good single key. Later, we discuss the choice 
of keys in combination. We make the simplifying as- 
sumption that all distances are within the range of 0 
to 1, inclusive. We also make the assumption that the 
database is static and known in advance. 

3.1 Good Keys for Threshold Style 

Consider database image i, query image q,  key im- 
age k ,  distance function d.  We say that key k separates 
q from i for value v if Id(i, k )  - d(q ,  k)l > w. Suppose 
that d ( i ,  q )  > T for some threshold T.  The triangle 
inequality implies that the value Id(i, k )  - d(q ,  k)I can 
range from 0 to  d ( i ,  4). Key k will eliminate image i as 
a candidate match to q only if it separates i from q for 
value T .  The purpose of the algorithm is to  eliminate 
as many non-matching candidate images as possible 
through key comparison. Thus, a good key will elim- 
inate more candidate images than a poor key. The 
concept of separation described above motivates the 
following discussion. 

Queries 

Given a set of database images S ,  distance measure 
d ,  and key 5, we can compute a density function f on 
d ( s ,  k ) ,  s E S. Since we do not know the queries in ad- 
vance, we make the simplifying assumption that the 
queries are taken from the database images and ignore 
exact matches in our searches. Given threshold T ,  we 
can calculate the fraction of images that k will sepa- 
rate from a random query by looking at this density 
function. For example, if all of the area of the den- 
sity function lies in a narrow range (2, x + e ) ,  e < T ,  
as shown in Figure la, then k will never separate any 
query from any image in the database. If the den- 
sity function has a uniform distribution, as shown in 
Figure l b ,  then for 0 < T < 1/2, P(k separates i 
from q )  = (1 - T)2 .  If the density function is multipo- 
lar, with N equally sized narrow spikes separated by 
distance greater than T ,  as shown in Figure IC, then 
P(k  separates i from q )  = ( N  - l ) /N.  If the density 
function has a Gaussian shape, as shown in Figure Id,  
then, roughly speaking, greater standard deviations 
will indicate greater average separation of images by 
the key. 

The issue gets more complicated when choosing sev- 
eral keys. Using keys k1 and k2 will be no better 
than just using k l  if they both separate the same im- 
ages from queries. The question of whether or not 
two keys separate the same images is computationally 
expensive to answer in the general case, but can be 
approximately answered by sampling. One can also 
use the fact that very similar keys will separate the 
same images and thus try to avoid keys that are too 
close together. For example, in a clusterable database, 
keys should come from different clusters. Indeed, the 
key selection algorithms with the best results make use 
of clustering and ensuring that different keys separate 
different images. 

3.2 Good Keys for Best-Match Queries 

Given images il and i 2 ,  query q and key k, assuming 
that d( i l  , q )  < d(i2,  q ) ,  key k orders il and i 2  correctly 
if Z(d, k, i l l  q )  < Z(d, k ,  i 2 ,q ) .  We can extend this defi- 
nition naturally to sets of keys and multiple distance 
measures. Although our analyses were for Thresh- 
old queries, the results were very good for Best-Match 
queries as well. Further analysis of keys optimized for 
Best-Match queries is an open area of research. 

4 Algorithms for Key Selection 

We examined five different algorithms for key se- 
lection: random keys, choosing keys by examining 
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a) single spike b) uniform 

c )  multimodal d) Gaussian 

Figure 1: The shape of the density functions deter- 
mines the performance of the keys. 

the variance of the density function, ranking by test- 
ing thresholding efficiency, a greedy thresholding al- 
gorithm, and a clustering algorithm. The algorithms 
assume a database S and a set of candidate keys. 

Random Our prototype image database system 
currently uses a set of (up to 20) keys chosen randomly 
and uniformly from the database itself. The triangle 
inequality algorithms give excellent performance com- 
pared to linear search even with random keys, so this 
is a natural benchmark against which to test the other 
algorithms. 

Variance Taking a subset S‘ of our database S ,  we 
calculated the density function of d ( k ,  s), s E S’ for 
each candidate key IC .  We selected those candidate 
keys which had the density functions with the greatest 
variance. 

Separation We examined our database by hand to 
find pairs of images that we judged to  be approximate 
matches. The average distance between these pairs 
was calculated. This value T represented a potential 
“threshold value” that one might use in a query to find 
approximate matches. We then selected those candi- 
date keys IC which maximized P(ld(sl,IC) - d(sz,Ic)l > 
3”) over all pairs s1 , s2 E SI, where S’ was a subset of 
our database S.  

Greedy Variance and Separation may choose sev- 
eral keys which separate the same pairs of images. 
We thus modified Separation to  keep track of which 
pairs of images were separated by each key. The first 
key selected was the same as that selected by Sepa- 
ration. The performance of the remaining keys were 
then recalculated to discount pairs of images already 
separated by the first key. This process was continued 
for subsequent keys until a preset number of keys was 
selected. 

Cluster We used a simple clustering algorithm on 
the database. We selected the two database images 
IC1 and IC2 that were furthest apart, and used them 
as initial seeds for clustering. These two images were 
placed into our set of keys, and the remaining images 
were assigned to clusters based on their distances to 
the key images. We then found the image that was 
furthest from the current set of keys, added it to  the 
set, and re-clustered the database on the updated set 
of keys. We continued this process until the correct 
number of keys were selected. 

5 Experiments 
For our experiments, we collected two sets of im- 

ages, one with 600 members, and one with 800 mem- 
bers. From each set, 100 images were chosen arbi- 
trarily to be candidate key images. The remaining 
500 and 700 images became the test database. The 
five algorithms were run on the candidate images to  
choose sets of 1 to 9 keys. 

We queried the database against itself testing the 
system’s performance using the keys chosen by the 
key selection algorithms. To eliminate exact matches, 
we temporarily removed each query image from the 
database. To test the performance of the keys on a 
Best-Match search, we determined the best match to 
the query and calculated its position in the ordering 
of the lower bounds. To test the performance of the 
keys on a Threshold search, we counted the number of 
images separated from the query by a given threshold 
value. This threshold value was determind off-line by 
calculating the average distance between pairs of im- 
ages known to  be similar. For the Random key selec- 
tion algorithm, we ran the tests 10 times and averaged 
the results. 

5.1 The Distance Measures 
Our prototype database system allows great flex- 

ibility in forming composite distance measures from 
a set of “base” distance measures. For our tests, we 
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used two base distance measures: a color measure and 
a texture measure. We then modified both of them 
to add spatial locality, creating four more measures. 
We also tested two composite distance measures, con- 
taining both texture and color components . A short 
summary of the various distance measure follows: 

F G  C D E  
0.9% CL 1.1% 1.6% 

1.2% GR 1.6% 2.3% 

3.6% CL 3.7% 4.6% 

Color Histogram This is a simple L1 distance mea- 
sure based on breaking up the color space into a 
4 x 4 ~ 4  RGB cube. 

1.8 

1.9 

1.3 

Local Binary Partition Texture This is a stan- 
dard and easy to implement texture measure with very 
good performance[ll]. For each pixel p, the 8 neigh- 
bors are examined to see if their intensity is greater 
than p.  The result becomes an 8 digit binary number, 
and a histogram of the numbers is created for each 
image. Two images are compared by taking the L1 
distance between their histograms. 

A 
Color 

Histogram 
LBP 

Texture 
Horizontal 

Color 
Vertical 

Color 
Horizontal 

Texture 
Vertical 

Horizontal Color and Horizontal Texture For 
these two distance measures, each image was split into 
three equal-sized horizontal pieces. Two images were 
compared by averaging the Color or Texture distance 
between the corresponding pieces. 

B 
GR 

CL 

GR 

GR 

CL 

CL 

Vertical Color and Vertical Texture These dis- 
tance measures are similar to the horizontal distance 
measure above, except that the images were split ver- 
tically. 

Texture 
Color + 
Texture 

Minimum(Color, Texture) Our prototype sys- 
tem allows taking the minimum of several distance 
measures. This is useful in cases where the user wishes 
to find a similar image without detailing the nature of 
the correspondence. For this measure, the color dis- 
tance and texture distance are both calculated, and 
the minimum returned. 

GR 

Sum(Color, Texture) Several image retrieval sys- 
tems such as QBIC and Virage offer the weighting of 
color, texture, and other qualities. This measure is 
equivalent to an equal weighting of color and texture. 

6 Results 
We discuss the performance of the various key se- 

lection algorithms, first for Best-Match and then for 
Threshold. As the rankings of the algorithms did not 
change much as a function of number of keys, we only 
show the results for 9 keys, the maximum number 
tested. As the performance of the algorithms on the 

Texture I& 

Table 1: Best Algorithms for Best-Match with 9 keys 
on a database of 500 images 

Column Headings: 
A: Distance measure 
B: Best key selection algorithm: GR=Greedy, 
CL=Cluster, RA=Random 
C: Average rank of best match using best algorithm 
D: Second best key selection algorithm 
E: Average rank of best match using second best al- 
gorithm 
F: Average rank of best match using randomized key 
selection 
G: Ratio of performance of randomized algorithm to 
best algorithm (F/C) 

two databases was very similar, we only show tables 
for the larger database. 

6.1 Performance of Key Selection Algo- 
rithms for Best-Match 

As is shown in Table 1, Cluster provided the best 
keys for the texture measures, while Greedy provided 
the best keys for the color measures and the combi- 
nation color/texture measures. The second best algo- 
rithm was also always Greedy or Cluster except for the 
vertical texture measure in the larger database, which 
had Random as the second best. 

Columns C, E, and F of the table show the average 
rank of the best match using the appropriate key selec- 
tion algorithm. For example, a 2% would mean that 
the true best match was ranked in the top 2% of the 
returned images. Column G represents the ratio of the 
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number of images which would be examined using the 
Random keys to the number of images which would 
be examined using the best discovered keys. Thus, 
in the first row, the best keys returned the closest 
match in the top 0.9% of the images. For the 700 im- 
age database, this translates to the top 6 or 7 images. 
The random keys returned the closest match in the 
top 11 images. If this database was a representative 
sample of a 700,000 image database, then the number 
of images needed to be directly compared would be 
approximate 630 and 1120 respectively. On average, 
there was a 42% reduction in the number of images 
examined using the best discovered keys compared to  
using the random keys. 

A 
Color 

Histogram 
LBP 

Texture 
Horizontal 

The overall performance of the algorithms was ex- 
cellent. In the worst case for the database of 700 im- 
ages, horizontal color, the closest match was ranked in 
the top 3.6%-that meant that only approximately 24 
images had to  be compared directly after pruning to 
find the best match. The database of 500 images had 
slightly worse performance with the average ranking 
of the best image ranging from 1.2% to 5.1%, again 
with the worst performance found in horizontal color. 

B C D E 
GR 98.5% RA 97.4% 

GR 83.2% CL 81.2% 

GR 94.4% RA 90.8% 

6.2 Performance of Key Selection Algo- 
rithms for Threshold 

Color 
Vertical 

Color 

As table 2 shows, the Greedy key selection method 
was the clear winner for Threshold, yielding the best 
performance for every distance measure. There was no 
clear second place algorithm-Random, Variance, and 
Cluster all appeared in second place for several mea- 
sures. The Greedy keys reduced the number of images 
that had to be directly compared by the Random keys 
by 16% to 44%. 

GR 93.2% VA 90.0% 

The second thing to  note in Table 2 is the wide 
range of performance between distance measures. The 
triangle inequality algorithm thresholded 98.5% of the 
images for the Color Histogram distance measure, yet 
it only thresholded 54.6% of the images for the Verti- 
cal Texture distance measure. It is difficult to compare 
across distance measures since the distribution of dis- 
tance values across pairs of images vary greatly from 
measure to measure. Especially interesting was the 
fact that using 5 keys for Vertical Texture resulted in a 
53% thresholding. Thus, the additional four keys only 
eliminated an additional two percent of the database. 
In [l], Baeza-Yates, et. al.., demonstrated how, given 
a random model for database objects and keys, a loga- 
rithmic number of keys should threshold almost all of 
the database. For our experiments to have supported 

Horizontal 
Texture 
Vertical 
Texture 

Min(Color, 
Texture) 
Color + 
Texture 

GR 55.3% CL 49.9% 

GR 54.6% VA 52.7% 

GR 97.8% CL 96.4% 

GR 94.5% CL 91.5% 

Table 2: Best Algorithms for Threshold with 9 keys 
on Database of 700 images 

Column Headings: 
A: Distance measure 
B: Best key selection algorithm: GR=Greedy, 
CL=Cluster, RA=Random, VA=Variance 
C: Average percent of database eliminated using best 
algorithm 
D: Second best key selection algorithm 
E: Average percent of database eliminated using sec- 
ond best algorithm 
F: Average percent of database eliminated using ran- 
domized key selection 
G: Ratio of performance of randomized algorithm to 
best algorithm (100% - F)/(100% - C) 

this, the addition of four more keys would have had 
to increase the thresholding from 53% to about 70%. 
That this didn’t occur demonstrates that traditional 
models of randomness do not really apply to images 
or groups of images. 

7 Future Work 
The performance of keys in image retrieval is in- 

timately tied to the statistical behavior of the dis- 
tance measures over the image set. At present, we 
have a limited understanding of this behavior; this lim- 
its the sophistication of our key selection algorithms. 
Thus, more research into the behavior of the distance 
measures is called for. A more complete set of dis- 
tance measures will also be used in our future tests. 
Distance measures have been proposed for color, tex- 
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ture, shape[8], object presence[9], and object spatial 
relationships[7]. We would like to include representa- 
tives of each type of measure in our tests. 

We assumed a static database known in advance of 
the key selection. Many databases do not have these 
qualities. Finding good keys for non-static databases 
using triangle inequality algorithms is an open re- 
search problem. 

In our work, we selected keys from the database it- 
self. The space of possible keys is huge- it is the space 
of possible images. We would like to take advantage of 
this freedom in some tractable manner. For example, 
it may be possible to construct artificial images which 
are excellent keys for either a specific database, or 
even for large image domains. Furthermore, our anal- 
ysis contained the assumption that the query domain 
was similar to  the databasc. This is not nccessarily 
the case. 

Even if we restrict our candidate keys to some ran- 
dom subset of N images, the number of possible sub- 
sets of M keys is exponential in M .  There is no guar- 
antee that there isn’t some elusive set of keys which 
will prune the database far more than any other set. 
It may be that heuristics like those traditionally used 
for NP-complete algorithms may be applicable for key 
selection. Specifically, the Greedy algorithm could be 
modified to be optimal over a small number of key 
changes. We should also examine more clustering al- 
gorithms such as k-means clustering. 

Finally, there has been no published work on the 
proper number of keys to use for a database of a given 
size. There is a tradeoff between the elimination power 
of a set of keys and the execution time required to 
compare the query to the key set. Some queries may 
require more keys than other queries for good perfor- 
mance. 

8 Conclusions 
Of the algorithms tested, Cluster and Greedy 

clearly gave the best results. The improvement over 
random key selection was up to a factor of two. As ran- 
dom key selection reduces Best-Match searches to just 
a few percent of the database, the use of random keys 
may be perfectly acceptable for smaller databases. 

Given n sample database images and m candidate 
keys, Cluster and Greedy take O(n2)  and O(mn2) 
time respectively. Sampling may be necessary when 

confronted with very large databases. We used sam- 
pling in Greedy and not in Cluster, yet Greedy was 
essentially as good as Cluster in some cases and bet- 
ter than Cluster in the rest. 

It is promising that relatively simple algorithms 
were able to increase performance to  the extent shown 
in this paper. We hope that further work will provide 
even better performance. 
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A Analysis of separation with a uni- 
form density function 

Given a set of database images S, distance mea- 
sure d ,  key k ,  and uniform density function f on 
d ( s  E S, k ) .  Assume query q is chosen randomly 
and uniformly from S without replacement. We shbw 
that P(k separates s E S from q)  = (1 - T)2 .  
We consider three cases, that of 0 5 d ( s , k )  < T ,  
T 5 d(s,IC) 5 1 - T ,  and 1 - T < d ( s , k )  5 1. In 
the first case, k does not separate q from s when 
0 5 q 5 d ( s , k )  + T .  This occurs with probability 
d ( s ,  k )  + T .  Summing over the probability of the first 
case gives us ColzlT z+T = T2/2+T2. The third case 
is symmetrical to the first case, again giving us a value 
of T2/2 + T2.  The middle case occurs with a proba- 
bility of 1 - 2T. In this case, k does not separate q 
from s when d(s,k)-T 5 q 5 d(s,k)+T. Thisoccurs 
with a probability of 2T, yielding a joint probability 
of (1 - 2T) * 2T. Summing up the probabilities of the 
three cases gives us 2 * (3T2/2) + 2T - 4T2 = 2T - T 2  
for the probability that k does not separate q from s. 
Thus the probability that IC does separate q from s is 
1 - (2T - T 2 )  = 1 - 2T + T 2  = (1 - T ) 2 .  
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