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Abstract

Ž .For photogrammetric applications, solutions to camera exterior orientation problem can be classified into linear direct
and non-linear. Direct solutions are important because of their computational efficiency. Existing linear solutions suffer from
lack of robustness and accuracy partially due to the fact that the majority of the methods utilize only one type of geometric
entity and their frameworks do not allow simultaneous use of different types of features. Furthermore, the orthonormality
constraints are weakly enforced or not enforced at all. We have developed a new analytic linear least-squares framework for
determining camera exterior orientation from the simultaneous use of multiple types of geometric features. The technique
utilizes 2Dr3D correspondences between points, lines, and ellipse–circle pairs. The redundancy provided by different
geometric features improves the robustness and accuracy of the least-squares solution. A novel way of approximately
imposing orthonormality constraints on the sought rotation matrix within the linear framework is presented. Results from
experimental evaluation of the new technique using both synthetic data and real images reveal its improved robustness and
accuracy over existing direct methods. q 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Camera exterior orientation estimation is an es-
sential step for many photogrammetric applications.
It addresses the issue of determining the exterior

Ž .parameters position and orientation of a camera
with respect to a world coordinate frame. Solutions
to the exterior orientation problem can be classified
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into linear and non-linear methods. Linear methods
have the advantage of computational efficiency, but
they suffer from lack of accuracy and robustness.
Non-linear methods, on the other hand, offer a more
accurate and robust solution. They are, however,
computationally intensive and require initial esti-
mates. The classical non-linear photogrammetric ap-

Žproach to exterior orientation e.g. the bundle adjust-
.ment method requires setting up a non-linear least-

squares system. Given initial estimates of the exte-
rior parameters, the system is then linearized and
solved iteratively. While the classical technique
guarantees the orthonormality of the rotation matrix
and delivers the best answer, it, however, requires
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good initial estimates. It is a well-known fact that the
initial estimates must be close or the system may not
converge quickly or correctly. Hence, the quality of
initial estimates is critical since it determines the
convergence speed and the correctness of the itera-
tive procedure. Robust and accurate linear solutions,
which are often used to provide initial guesses for
non-linear procedures, are therefore important for
photogrammetric problems.

Numerous methods have been proposed to analyt-
ically obtain camera exterior parameters. Previous
methods have primarily been focused on using sets
of 2D–3D point correspondences to solve for the
transformation matrix, followed by extracting the
camera parameters from the solved transformation.
The linear method using points is well known in
photogrammetry as direct linear transformation
( )DLT .

The original proposal of DLT method appears in
Ž .Abdel-Aziz and Karara 1971 . Since then, different

variations of DLT methods have been introduced.
Ž .For example, Bopp and Krauss 1978 published a

variation of the DLT, incorporating added constraints
Ž .into the solution. Okamoto 1981 gave an alterna-

tive derivation of the DLT from a more general
Ž .mathematical framework. Shan 1996 introduced a

linear solution for object reconstruction from a stere-
opair without interior orientation and less require-
ments on known points than the original DLT formu-
lation.

In computer vision, the DLT-like methods include
Ž .the three-point solution Fischler and Bolles, 1981 ,
Žthe four-point solutions Hung et al., 1985; Holt and

.Netravali, 1991 , and the six- or more-point solutions
Ž .Sutherland, 1974; Tsai, 1987; Faugeras, 1993 . Har-

Ž .alick et al. 1994 reviewed and compared major
direct solutions of exterior orientation using three-
point correspondences and characterized their perfor-
mance under varying noisy conditions. Sutherland
Ž .1974 provided a closed-form least-squares solution
using six or more points. The solution, however, is

Ž .only up to a scale factor. Faugeras 1993 proposed a
similar technique that solves the scale factor by
applying a normality constraint. His solution also
includes a post-orthogonalization process that en-
sures the orthonormality of the resulting rotation

Ž .matrix. Tsai 1987 presented a direct solution by
decoupling the camera parameters into two groups;

each group is solved for separately in different stages.
While efficient, Tsai’s method does not impose any
of the orthonormal constraints on the estimated rota-
tion matrix. Also, the errors with the camera parame-
ters estimated in the earlier stage can significantly
affect the accuracy of parameters estimated in the
later stage.

These methods are effective and simple to imple-
ment. However, they are not robust and are very

Žsusceptible to noise in image coordinates Wang and
.Xu, 1996 , especially when the number of control

points approaches the minimum required. For the
Ž .three-point solutions, Haralick et al. 1994 show

that even the order of algebraic substitutions can
render the output useless. Furthermore, the point
distribution and noise in the point coordinates can
also dramatically change the relative output errors.
For least-squares-based methods, a different study by

Ž .Haralick et al. 1989 show that when the noise level
exceeds certain level or the number of points is
below certain level, these methods become extremely
unstable and the errors skyrocket. The use of more
points can help relieve this problem. However, gen-
eration of more control points often proves to be
difficult, expensive, and time-consuming. Another
disadvantage of point-based methods is the difficulty
with point matching, i.e., finding the correspon-
dences between the 3D scene points and 2D image
pixels.

In view of these issues, other researchers have
investigated the use of higher-level geometric fea-
tures such as lines or curves as observed geometric
entities to improve the robustness and accuracy of
linear methods for estimating exterior parameters.
Over the years, various algorithms using features
other than points for exterior orientation problems
have been introduced both in photogrammetry and

Žcomputer vision Doehler, 1975; Haralick and Chu,
1984; Paderes et al., 1984; Mulawa, 1989; Mulawa
and Mikhail, 1988; Tommaselli and Lugnani, 1988;
Chen and Tsai, 1990, 1991; Echigo, 1990; Lee et al.,
1990; Liu et al., 1990; Wang and Tsai, 1990; Fin-
sterwalder, 1991; Heikkila, 1991; Rothwell et al.,
1992; Weng et al., 1992; Mikhail, 1993; Petsa and

. Ž .Patias, 1994a,b . In photogrammetry, Strunz 1992
gives a good overview of using various features
Ž .points, lines, and surfaces for different photogram-
metric tasks, including camera orientation. Szczepan-



( )Q. Ji et al.r ISPRS Journal of Photogrammetry & Remote Sensing 55 2000 75–93 77

Ž .ski 1958 reviewed nearly 60 different solutions for
space resection, dating back to 1829, for the simulta-
neous and separate determination of the position and
rotation parameters. An iterative Kalman filtering
method for space resection using straight-line fea-

Ž .tures was described in Tommaselli and Tozzi 1996 .
Ž .Masry 1981 described a method for camera abso-

Ž .lute orientation and Lugnani 1980 for camera exte-
rior orientation by spatial resection, using linear

Ž .features. Drewniok and Rohr 1997 presented an
approach for automatic exterior orientation of aerial
imagery that is based on detection and localisation of

Ž . Ž .planar objects manhole covers . Ethrog 1984 used
parallel and perpendicular lines of objects for estima-
tion of the rotation and interior orientation of non-
metric cameras.

Researchers have also used other known geomet-
ric shapes in the scene to constrain the solution. Such

Ž .shapes can be 2D straight lines, circles, etc. or 3D
Ž . Žfeatures on a plane, cylinder, etc. Mikhail and

. ŽMulawa, 1985 . Others Kruck, 1984; Kager, 1989;

.Forkert, 1996 have incorporated geometric con-
straints such as coordinate differences, horizontal
and space distances, and angles to improve the tradi-

Ž .tional bundle adjustment method. Heikkila 1990 ,
Ž . Ž .Pettersen 1992 , and Maas 1999 employed a mov-

Ž .ing reference bar known distance for camera orien-
tation and calibration.

Ž .In computer vision, Haralick and Chu 1984
presented a method that solves the camera exterior
parameters from the conic curves. Given the shape of
conic curves, the method first solves for the three
rotation parameters using an iterative procedure. The
three translation parameters are then solved analyti-
cally. The advantage of this method is that it does
not need to know the location of the curves and it is
more robust than any analytical method in that rota-
tion parameter errors are reduced to minimum before
they are used analytically to compute translation

Ž .parameters. In their analytic method, Liu et al. 1990
Ž .and Chen and Tsai 1990 discussed direct solutions

for determining camera exterior parameters based on
a set of 2D–3D line correspondences. The key to
their approach lies in the linear constraint they used.
This constraint uses the fact that a 3D line and its
image line lie on the same plane determined by the
center of perspectivity and the image line. Rothwell

Ž .et al. 1992 discussed a direct method that deter-

mines camera parameters using a pair of conic curves.
The method works by extracting four or eight points
from conic intersections and tangencies. Exterior
camera parameters are then recovered from these

Ž .points. Kumar and Hanson 1989 described a robust
technique for finding camera parameters using lines.

Ž .Kamgar-Parsi and Eas 1990 introduced a camera
calibration method with small relative angles. Gao
Ž .1992 introduced a method for estimating exterior
parameters using parallelepipeds. Forsyth et al.
Ž .1991 proposed to use a pair of known conics or a
single known circle for determining the pose of the

Ž .object plane. Haralick 1988 and Haralick and Chu
Ž .1984 presented methods for solving for camera
parameters using rectangles and triangles. Abidi
Ž .1995 presented a closed form solution for pose
estimation using quadrangular targets. Linnainmaa

Ž .and Harwood 1988 discussed an approach for de-
termination of 3D object using triangle pairs. Chen

Ž .and Tsai 1991 proposed closed solution for pose
estimation from line-to-plane correspondences and
studied the condition of the existence of the closed

Ž .solution. Ma 1993 introduced a technique for pose
estimation from the correspondence of 2Dr3D con-
ics. The technique, however, is iterative and requires
a pair of conics in both 2D and 3D.

Analytic solutions based on high-level geometric
features afford better stability and are more robust
and accurate. Here, the correspondence problem can
be addressed more easily than for the point-based
methods. However, high-level geometric features
may not always be present in some applications, and
points are present in many applications. Therefore,
completely ignoring points while solely employing
high-level geometric entities can be a waste of read-
ily available geometric information. This is one of
the problems with the existing solutions: they either
use points or lines or conics but not a combination of
features. In this paper, we describe an integrated
least-squares method that solves for the camera
transformation matrix analytically by fusing avail-
able observed geometric information from different
levels of abstraction. Specifically, we analytically
solve for the exterior parameters from simultaneous
use of 2D–3D correspondences between points, be-
tween lines, and between 2D ellipses and 3D circles.
The attractiveness of our approach is that the redun-
dancy provided by features at different levels im-
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proves the robustness and accuracy of the least-
squares solution, therefore improving the precision
of the estimated parameters. To our knowledge, no
previous research attempts have been made in devel-
oping a linear solution to exterior orientation with
simultaneous use of all three classes of features.

Ž .Work by Phong et al. 1995 described a technique
in which information from both points and lines is
used to compute the exterior orientation. However,
the method is iterative and involves only points and
lines.

Another major factor that contributes to the lack
of robustness of the existing linear methods is that
orthonormality constraints on the rotation matrix are
often weakly enforced or not enforced at all. In this
research, we introduce a simple, yet effective, scheme
for approximately imposing the orthonormal con-
straints on the rotation matrix. While the scheme
does not guarantee that the resultant rotation matrix
completely satisfies the orthonormal constraints, it
does yield a matrix that is closer to orthonormality
than those obtained with competing methods.

This paper is organized as follows. Section 2
briefly summarizes the perspective projection geom-
etry and equations. Least-squares frameworks for
estimating the camera transformation matrix from
2D–3D point, line, and ellipsercircle correspon-
dences are presented in Sections 3–5, respectively.
Section 6 discusses our technique for approximately
imposing orthonormal constraints and presents the
integrated linear technique for estimating the trans-
formation matrix simultaneously using point, line,
and ellipsercircle correspondences. Performance
characterization and comparison of the developed
integrated technique is covered in Section 7.

2. Perspective projection geometry

To set the stage for the subsequent discussion,
this section briefly summarizes the pin–hole camera
model and the perspective projection geometry.

Ž . tLet P be a 3D point and x y z be the coordi-
nates of P relative to the object coordinate frame
C . Define the camera coordinate system C to haveo c

its z-axis parallel to the optical axis of the camera
lens and its origin located at the perspective center.

Ž . tLet x y z be the coordinates of P in C .c c c c

Define C to be the image coordinate system, with itsi

u-axis and Õ-axis parallel to the x- and y-axes of the
camera coordinate frame, respectively. The origin of

Ž . tC is located at the principal point. Let u Õ be thei

coordinates of P , the image projection of P in C .i i

Fig. 1 depicts the pin–hole camera model.
Based on the perspective projection theory, the

Ž .projection that relates u,Õ on the image plane to
Ž .the corresponding 3D point x , y , z in thec c c

camera frame can be described by

xu c

Õl s 1Ž .yc� 0 � 0f zc

where l is a scalar and f is the camera focal length.
Ž . t Ž . tFurther, x y z relates to x y z by a rigidc c c

body coordinate transformation consisting of a rota-
tion matrix and a translation. Let a 3=3 matrix R
represent the rotation and a 3=1 vector T describe
the translation, then

xc x
sR qT 2Ž .y yc ž /� 0 zzc

Žwhere T and R can be parameterized as Ts t tx y
. tt andz

r r r11 12 13

Rs r r r21 22 23� 0r r r31 32 33

R and T describe the orientation and location of the
object frame relative to the camera frame, respec-
tively. Together, they are referred to as the camera

Fig. 1. Camera and perspective projection geometry.
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transformation matrix. Substituting the parameter-
Ž .ized T and R into Eq. 2 yields

tx r r r xc 11 12 13 x
ts q 3Ž .y r r r y yc 21 22 23 ž /� 0 � 0 � 0zz r r r tc 31 32 33 z

Ž .Combining the projection Eq. 1 with the rigid
Ž .transformation of Eq. 2 and eliminating l yields

the collinearity equations, which describe the ideal
relationship between a point on the image plane and
the corresponding point in the object frame

r xqr yqr zq t11 12 13 x
us f 4Ž .

r xqr yqr zq t31 32 33 z

r xqr yqr zq t21 22 23 y
Õs f

r xqr yqr zq t31 32 33 z

For a rigid body transformation, the rotation ma-
trix R must be orthonormal, that is, R t sRy1. The
constraint R t sRy1 amounts to the six orthonormal-
ity constraint equations on the elements of R

r 2 qr 2 qr 2 s1 r r qr r qr r s011 12 13 11 21 12 22 13 23

2 2 2r qr qr s1 r r qr r qr r s021 22 23 11 31 12 32 13 33

2 2 2r qr qr s1 r r qr r qr r s031 32 33 21 31 22 32 23 33

5Ž .

where the three constraints on the left column are
referred to as the normality constraints and the three
on the right column as the orthogonality constraints.

The normality constraints ensure that the row vectors
of R are unit vectors, while the orthogonality con-
straints guarantee orthogonality among row vectors.

3. Camera transformation matrix from point cor-
respondences

Given the 3D object coordinates of a number of
points and their corresponding 2D image coordi-
nates, the coefficients of R and T can be solved for
by a least-squares solution of an over-determined
system of linear equations. Specifically, the least-
squares method based on point correspondences can
be formulated as follows.

Ž .Let X s x , y , z , ns1, . . . , K , be the 3Dn n n n

coordinates of K points relative to the object frame
Ž .and U s u , Õ be the observed image coordinatesn n n

of these points. We can then relate X and U vian n
Ž .the collinearity equations in Eq. 4 . Rewriting Eq.

Ž .4 yields

fr x q fr y q fr z yu r x yu r y11 n 12 n 13 n n 31 n n 32 n

yu r z q ft yu t s0 6Ž .n 33 n x n z

fr x q fr y q fr z yu r x yÕ r y21 n 22 n 23 n n 31 n n 32 n

yÕ r z q ft yu t s0n 33 n y n z

We can then set up a matrix M and a vector V as
follows

fx fy fz 0 0 0 yu x yu y yu z f 0 yu1 1 1 1 1 1 1 1 1 1

0 0 0 fx fy fz yÕ x yÕ y yÕ z 0 f yÕ1 1 1 1 1 1 1 1 1 1
.

2 K=12 .M s 7Ž ..
fx fy fz 0 0 0 yu x yu y yu z f 0 yuK K K K K K K K K K� 0
0 0 0 fx fy fz yu x yÕ y yÕ z 0 f yÕK K K K K K K K K K

t
12=1 r r r r r r r r r t t tV s 8Ž .11 12 13 21 22 23 31 32 33 x y zž /

where M is hereafter referred to as the collinearity
matrix and V is the unknown vector of transforma-

tion parameters containing all sought rotational and
translational coefficients.
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To determine V , we can set up a least-squares
problem that minimizes

2 5 5 2
j s MV 9Ž .

where j 2 is the sum of squared residual errors of all
points. Given an overdetermined system, a least-
squares solution to the above equation requires mini-

5 5 2mization of MV . Its solution contains an arbi-
trary scale factor due to the lack of constraints on R.
To uniquely determine V , different methods have
been proposed to solve for the scale factor. In the

Ž .least-squares solution provided by Sutherland 1974 ,
the depth of the object is assumed to be unity; t s1.z

Not only is this assumption unrealistic for most
applications, but also the solution is constructed
without regard to the orthonormal constraints that R

Ž .must satisfy. Faugeras 1993 posed the problem as a
constrained least-squares problem using a minimum

Žof six points. The third normality constraint the last
. Ž .one on the left column in Eq. 5 is imposed by

Faugeras during the minimization to solve for the
scale factor and to constrain the rotation matrix. The
linearity in solution is preserved due to the use of a
single normality constraint.

4. Camera transformation matrix from line corre-
spondences

Given correspondences between a set of 3D lines
and their observed 2D images, we can set up a
system of linear equations that involve R, T , and the
coefficients for 3D and 2D lines as follows. Let a 3D
line L in the object frame be parametrically repre-
sented as

L: XslNqP

Ž . twhere Xs x y z is a generic point on the line, l

is a scalar representing the signed distance from
Ž . tpoint P to point X, Ns A B C is the known

Ž . tdirection cosine vector and Ps P P P is ax y z

known point on the line relative to the object frame.
Let the corresponding 2D line l on the image plane
be represented by

l : auqbÕqcs0

Fig. 2. Projection plane formed by a 2D image line l and the
corresponding 3D line L.

Ideally, the 3D line must lie on the projection plane
formed by the center of perspectivity and the 2D
image line as shown in Fig. 2.

Relative to the camera frame, the equation of the
projection plane can be derived from the 2D line
equation as

afx qbfy qcz s0c c c

where f is the focal length. Since the 3D line lies on
the projection plane, the plane normal must be per-
pendicular to the line. Denote the plane normal by

t 2 2 2 2 2Ž . (ns af ,bf ,c r a f qb f qc ; then given an
ideal projection, we have

nt R Ns0 10Ž .
Similarly, since point P is also located on the
projection plane, this leads to

nt R PqT s0 11Ž . Ž .
Ž . Ž .Eqs. 10 and 11 are hereafter referred to as copla-

narity equations. Equivalently, they can be rewritten
as

A a r qB a r qC a r qA b r qB b r11 12 13 21 22

qC b r qA c r qB c r qC c r s023 31 32 33

P a r qP a r qP a r qP b r qP b rx 11 y 12 z 13 x 21 y 22

qP b r qP c r qP c r qP c r qa tz 23 x 31 y 32 z 33 x

qb t qc t s0y z
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Given a set of J line correspondences, we can set up
a system of linear equations similar to those for

points that involve matrix H and vector V , where V
is as defined before and H is defined as follows

A a B a C a A b B b C b A c B c C c 0 0 01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

P a P a P a P b P b P b P b P c P c a b cx 1 y 1 z 1 x 1 y 1 z 1 x 1 y 1 z 1 1 1 11 1 1 1 1 1 1 1 1
.

2 J=12 .H s 12Ž ..
A a B a C a A b B b C b A c B c C c 0 0 0J J J J J J J J J J J J J J J J J J� 0
P a P a P a P b P b P b P c P c P c a b cx J y J z J x J y J z J x J Y J z J J J JJ J J J J J J J J

and is called the coplanarity matrix. Again we can
solve for V by minimizing the sum of squared

5 5 2residual errors HV . V can be solved for up to a
scale factor. The scale factor can be determined by
imposing one of the normality constraints as dis-
cussed for the case using points.

5. Camera transformation matrix from ellipse–
circle correspondences

5.1. Camera transformation matrix from circles

Ž .Given the image an ellipse of a 3D circle and its
Ž .size, the pose position and orientation of the 3D

circle relative to the camera frame can be solved for
analytically. Solutions to this problem may be found

Ž . Ž .in Haralick and Shapiro 1993 , Forsyth et al. 1991 ,
Ž .and Dhome et al. 1989 . If we are also given the

pose of the circle in the object frame, then we can
use the two poses to solve for R and T. Specifically,

Ž . t Ž . tlet N s N N N and O s O O O bec c c c c c c cx y z x y z

the 3D circle normal and center in the camera coor-
Ždinate frame respectively. Also, let N s N No o ox y

. t Ž . tN and O s O O O be the normal ando o o o oz x y z

center of the same circle, but in the object coordinate
system. O and N are computed from the observedc c

image ellipse using a technique described in Forsyth
Ž .et al. 1991 , while N and O are assumed to beo o

known. The problem is to determine R and T from
the correspondence between N and N , and be-c o

tween O and O . The two normals and the twoc o

centers are related by the transformation R and T as
shown below

No xr r r11 12 13

NN sR N s 13Ž .or r r yc o 21 22 23� 0 � 0r r r31 32 33 No z

and

O to xr r r x11 12 13

O tO sRO qTs qor r r yyc o 21 22 23� 0 � 0� 0r r r t31 32 33 O zo z

14Ž .

Ž . Ž .Equivalently, we can rewrite Eqs. 13 and 14 as
follows

N r qN r qN r sNo 11 o 12 o 13 cx y z x

N r qN r qN r sNo 21 o 22 o 23 cx y z y

N r qN r qN r sNo 31 o 32 o 33 cx y z x

and

O r qO r qO r q t sOo 11 o 12 o 13 x cx y x x

O r qO r qO r q t sOo 21 o 22 o 23 y cx y x y

O r qO r qO r q t sOo 31 o 32 o 33 z cx y x z

Each pair of 2D ellipse and 3D circle therefore offers
six equations. The three equations from orientation
Ž Ž ..Eq. 13 are not independent due to unity constraint
on the normals. Given I observed ellipses and their



( )Q. Ji et al.r ISPRS Journal of Photogrammetry & Remote Sensing 55 2000 75–9382

corresponding object space circles, we can set up a
system of linear equations to solve for R and T by

5 5 2minimizing the sum of residual errors QVyk ,
where Q and k are defined as follows

° ¶N N N 0 0 0 0 0 0 0 0 01 1 1o o ox y z

0 0 0 N N N 0 0 0 0 0 01 1 1o o ox y z

0 0 0 0 0 0 N N N 0 0 01 1 1o o ox y z

O O O 0 0 0 0 0 0 1 0 01 1 1o o ox y z

0 0 0 O O O 0 0 0 0 1 01 1 1o o ox y z

0 0 0 0 0 0 O O O 0 0 11 1 1o o ox y z

.
6 I=12 .Q s 15Ž ..

N N N 0 0 0 0 0 0 0 0 0I I Io o ox y z

0 0 0 N N N 0 0 0 0 0 0I I Io o ox y z

0 0 0 0 0 0 N N N 0 0 0I I Io o oz y z

O O O 0 0 0 0 0 0 1 0 0I I Io o ox y z

0 0 0 O O O 0 0 0 0 1 0I I Io o ox y z

0 0 0 0 0 0 O O O 0 0 1¢ ßI I Io o ox y z

and

t
6 I=1 N N N O O O . . . N N N O O O1 1 1 1 1 1 I I I I I Ik s 16Ž .c c c c c c c c c c c cx y z x y z x y z x y zž /

Since each circle provides six equations, a minimum
Ž .of two circles are needed if only circles are used to

uniquely solve for the 12 parameters in the transfor-
mation matrix. To retain a linear solution, not even
one normality constraint can be imposed using La-
grange multipliers due to k being non-zero vector.

6. The integrated technique

In the previous sections, we have outlined the
least-squares frameworks for computing the transfor-
mation matrix from different features individually. It
is desirable to be able to compute camera exterior
parameters using more than one type of feature
simultaneously. In other words, given observed geo-

metric entities at different levels, we want to develop
a mechanism that systematically and consistently
fuses this information. The reason is quite obvious:
using all available geometric information will pro-
vide a more accurate and robust solution, since it
increases the redundancy of the least-squares estima-
tion. It also reduces the dependency on points. We
can be more selective when choosing points, without
worrying about the minimum number of points
needed for accurate results. Furthermore, we can
worry less about whether the selected points are
coplanar or not and their distribution. This section is
devoted to formulating a direct solution for comput-
ing camera transformation matrix from the simulta-
neous use of 2D–3D correspondences of points,
lines, and ellipsesrcircles.
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6.1. Fusing all obserÕed information

The problem of integrating information from
points, lines, and circles is actually straightforward,
given the frameworks we have outlined individually
for points, lines, and circles. The problem can be
stated as follows.

Given the 2D–3D correspondences of K points,
J lines, and I ellipsercircle pairs, we want to set up
a system of linear equations that involves all geomet-
ric entities. The problem can be formulated as a
least-squares estimation in the form of minimizing
5 5WVyb , where V is the unknown vector of trans-
formation parameters as defined before, and b is a
known vector defined below. W is an augmented
coefficient matrix, whose rows consist of linear
equations derived from points, lines, and circles.
Specifically, given the M, H, and Q matrices defined

Ž Ž . Ž . Ž .in Eqs. 7 , 12 and 15 , the W matrix is

M
Ž2 Kq2 Jq6 I .=12W s 17Ž .Hž /Q

where the first 2 K rows of W represent contribu-
tions from points, the second subsequent 2 J rows
represent contributions from lines, and the last 6 I
rows represent contributions from circles. The vector
b is defined as

tŽ2 Kq2 Jq6 I .=1b s 180 0 0 . . . kŽ . Ž .
Ž .where k is defined in Eq. 16 . Given W and b, the

least-squares solution to V is
y1t tVs W W W b 19Ž . Ž .

It can be seen that to have an overdetermined system
of linear equations, we need 2 Kq2 Jq6 IG12 ob-
served geometric entities. This may occur with any
combination of points, lines, and circles. For exam-
ple, one point, one line, and one circle or two points
and one circle are sufficient to solve the transforma-

Ž .tion matrix from Eq. 19 . Any additional points or
lines or circles will improve the robustness and the
precision of the estimated parameters. The integrated
approach so far, however, does not impose any of
the six orthonormality constraints. Also, we assume
equal weightings for observations from the multiple
features. We realize stochastic model is very impor-
tant while using multiple features. As part of future

work, we plan to use error propagation to compute a
covariance matrix for each type of feature. The
covariance matrices can then be used to compute the
observation weightings.

6.2. Approximately imposing orthonormal con-
straints

The least-squares solution to V described in the
last section cannot guarantee the orthonormality of
the resultant rotation matrix. One major reason why
previous linear methods are very susceptible to noise
is because the orthonormality constraints are not
enforced or enforced weakly. To ensure this, the six
orthonormal constraints must be imposed on V within
the least-squares framework. The conventional way
of imposing these constraints is through the use of
Lagrange multipliers. However, simultaneously im-
posing any two normality constraints or one orthogo-
nality constraint using Lagrange multipliers requires
a non-linear solution for the problem. Therefore,
most linear methods choose to use a single normality

Ž .constraint. For example, Faugeras 1993 imposed
the constraint that the norm of the last row vector of
R be unity. This constraint, however, cannot ensure
complete satisfaction of all orthonormal constraints.
To impose more than one orthonormality constraint

Ž .but still retain a linear solution, Liu et al. 1990
suggested the constraint that the sum of the squares
of the three row vectors be 3. This constraint, how-
ever, cannot guarantee normality of each individual

Ž . Ž .row vector. Haralick et al. 1989 and Horn 1987
proposed direct solutions, where all orthonormality
constraints are imposed, but for the 3D to 3D abso-
lute orientation problem. They are only applicable
for point correspondences and are not applicable to
line and circle–ellipse correspondences. Most impor-
tant, their techniques cannot be applied to the general
linear framework we propose.

Given the linear framework, even imposing one
constraint using the Lagrange multiplier can render
the solution non-linear. It is well known that the
solution to minimizing a quadratic function with

Žquadratic constraints referred to as trust region
.problem in statistics can only be achieved by non-

linear methods.
We now introduce a simple, yet effective, method

for approximately imposing the orthonormal con-
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straints in a way that offers a linear solution. We
want to emphasize that the technique we are about to

Ž tintroduce cannot guarantee a perfect satisfying R s
y1 .R rotation matrix. However, our experimental

study proves that it yields a matrix that is closer to a
rotation matrix than those obtained using the compet-
ing methods. The advantages of our technique are:
Ž .1 all six orthonormal constraints are imposed si-

Ž .multaneously; 2 constraints are imposed on each
Ž .entry of the rotation matrix, and 3 asymptotically,

the resulting matrix should converge to a rotation
matrix. However, this method requires knowledge of
the 3D orientation of a vector in both camera and
object frames.

We now address the problem of how to impose
the orthonormality constraints in the general frame-
work of finding pose from multiple geometric fea-
tures described in Sections 3–5. Given the pose of
circles relative to the camera frame and the object

Ž . t Žframe, let N s N N N and N s N Nc c c c o o ox y z x y

. tN be the 3D circle normals in camera and objecto z

Ž .frames, respectively. Eq. 13 depicts the relation

between two normals that involves R. The relation
can also be expressed in an alternative way that

t Ž t y1.involves R note R sR as follows

Nc xr r r11 21 31
t NN sR N s 20Ž .cr r r yo c 12 22 32� 0 � 0r r r13 23 33 Nc z

Ž .Equivalently, we can rewrite Eq. 20 as follows

N r qN r qN r sNc 11 c 21 c 31 ox y z x

N r qN r qN r sNc 12 c 22 c 32 ox y z y

N r qN r qN r sNc 13 c 23 c 33 ox y z z

Given the same set of I observed ellipses and
their corresponding object space circles, we can set
up another system of linear equations that uses the
same set of circles as in Q. Let QX be the coefficient
matrix that contains the coefficients of the set of
linear equations, then QX is

N 0 0 N 0 0 N 0 0 0 0 0° ¶1 1 1c c cx y z

0 N 0 0 N 0 0 N 0 0 0 01 1 1c c cx y z

0 0 N 0 0 N 0 0 N 0 0 01 1 1c c cz y z

.X 3 I=12 .Q s 21Ž ..
N 0 0 N 0 0 N 0 0 0 0 0I I Ic c cx y z

0 N 0 0 N 0 0 N 0 0 0 0I I Ic c cx y z

0 0 N 0 0 N 0 0 N 0 0 0¢ ßI I Ic c cz y z

Correspondingly, we have kX defined as

t
X 3 I=1 N N N 0 0 0 . . . N N N 0 0 01 1 1 I I Ik s 22Ž .o o o o o ox y z x y zž /

To implement the constraint in the least-squares
Ž .framework, we can augment matrix W in Eq. 19

with QX, yielding W X, and augment vector b in Eq.
Ž . X X X X18 with k , yielding b , where W and b are
defined as follows

W bX 2 Kq2 Jq9 I=12 XŽ2 Kq2 Jq9 I .=1W s b sX Xž / ž /Q k

Putting it all together, the solution to V can be found
5 X X 5 2by minimizing W Vyb , given by

y1X t X X t XVs W W W b 23Ž .Ž .

For each circle, we add three additional equations to
impose the orthonormality constraints. Therefore, the
first 2 K rows of W X represent contributions from
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points, the second subsequent 2 J rows represent
contributions from lines, and the last 9I rows repre-
sent contributions from circles.

We must make it clear that the proposed method
for imposing orthonormality will not be applicable if
the required ellipsercircle features are not available.
It is only applicable to circles but not applicable to
points or lines. In this case, we can only partially
apply the orthonormality constraints, i.e., applying
one of the normality constraints or performing a
post-orthogonalization process like the one used by

Ž .Faugeras 1993 .
To have an overdetermined system of linear equa-

tions, we need 2 Kq2 Jq9IG12 observed geomet-
ric entities. This may occur with any combination of
points, lines, and circles. For example, one point,
one line, and one circle or two points and one circle
or even two circles are sufficient to solve for the
transformation matrix. The resultant transformation
parameters R and T are more accurate and robust
due to fusing information from different sources. The
resultant rotation matrix R is also very close to being
orthonormal since the orthonormality constraints have
been explicitly added to the system of linear equa-
tions used in the least-squares estimation. The ob-
tained R and T can be used directly for certain

Žapplications or fed to an iterative procedure such as
.the bundle adjustment method to refine the solution.

Since the obtained transformation parameters are
accurate, the subsequent iterative procedure not only
can converge very quickly, usually after a couple of
iterations as evidenced by our experiments but, more
importantly, converge correctly. In the section to
follow, we study the performance of the new linear
exterior orientation estimation method against the
methods that use only one type of geometric entity at
a time, using synthetic and real images.

7. Experiments

In this section, we present and discuss the results
of a series of experiments aimed at characterizing the
performance of the integrated linear exterior orienta-
tion estimation technique. Using both synthetic data
and real images of industrial parts, the experiments
conducted aim at studying the effectiveness of the
proposed technique for approximately imposing the

orthonormal constraints and quantitatively evaluating
the overall performance of the integrated linear tech-
nique against existing linear techniques.

7.1. Performance study with synthetic data

This section consists of two parts. First, we pre-
sent results from a large number of controlled exper-
iments aimed at analyzing the effectiveness of our
technique for imposing orthonormal constraints. This
was accomplished by comparing the errors of the
estimated rotation and translation vectors obtained
with and without orthonormal constraints imposed
under different conditions. Second, we discuss the
results from a comparative performance study of the
integrated linear technique against an existing linear
technique under different noisy conditions.

In the experiments with simulation data, the 3D
Ždata 3D point coordinates, 3D surface normals, 3D

.line direction cosines are generated randomly within
specified ranges. For example, 3D coordinates are

wŽ .randomly generated within the cube y5, y5, y5
Ž .xto 5,5,5 . 2D data are generated by projecting the

3D data onto the image plane, followed by perturb-
ing the projected image data with independently and

Ž .identically distributed iid Gaussian noise of mean
vector of zero and covariance matrix of s 2 I, where
s 2 represents noise variance and I is the identity
matrix. From the generated 2D–3D data, we estimate
the rotation and the translation vector using the
linear algorithm, from which we can compute the
estimation errors. The estimation error is defined as
the Euclidean distance between the estimated rota-

Ž . Žtion translation vector and the ideal rotation trans-
.lation vector. We choose the rotation matrix rather

than other specific representations like Euler angles
and quaternion parameters for error analysis. This is
because all other representations depend on the esti-
mated rotation vector. For each experiment, 100

Ž .trials with different noise instances are performed
and the average distance errors are computed. The
noise level is quantified using the signal-to-noise

Ž .ratio SNR . SNR is defined as 20log drs , where s

is the standard deviation of the Gaussian noise and d
is the range of the quantity being perturbed.

Figs. 3 and 4 plot the mean rotation and transla-
tion errors as a function of the SNR, with and
without orthonormal constraints imposed. It is clear
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Fig. 3. Mean rotation vector error versus SNR. The plot was
generated using the integrated linear technique with a combination
of one point, one line, and one circle. Each point in the figure
represents an average of 100 trials.

from the two figures that imposing the orthonormal
constraints improves the estimation errors for both
the rotation and translation vectors. The improve-
ment is especially significant when the SNR is low.

To further study the effectiveness of the technique
for imposing constraints, we studied its performance
under different numbers of pairs of ellipsercircle
correspondences. This experiment is intended to
study the efficacy of imposing orthonormal con-
straints versus the amount of geometric data used for
the least-squares estimation. The results are plotted

Ž .Fig. 4. Mean translation vector error mm versus SNR. The plot
was generated using the integrated linear technique with a combi-
nation of one point, one line, and one circle. Each point in the
figure represents an average of 100 trials.

Fig. 5. Mean rotation vector error versus the number of
Ž .ellipsercircle pairs SNRs35 .

in Figs. 5 and 6, which give the average rotation and
translation errors as a function of the number of
ellipsercircle pairs used, with and without con-
straints imposed. The two figures again show that
imposing orthonormal constraints leads to an im-
provement in estimation errors. This improvement,
however, begins to decrease when the features used
exceed a certain number. The technique is most
effective when fewer ellipsercircle pairs are used.

To compare the integrated linear technique with
an existing linear technique, we studied its perfor-

Ž .mance against that of Faugeras 1993 . The results
are given in Figs. 7 and 8, which plot the mean

Ž .Fig. 6. Mean translation vector error mm versus the number of
Ž .ellipsercircle pairs SNRs35 .
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Fig. 7. Mean rotation vector error versus SNR. The curve for
Faugeras’ algorithm was obtained using 10 points, while the curve
for the integrated technique was generated using a combination of
three points, one line, and one circle.

rotation and translation vector errors as a function of
the SNR, respectively.

The two figures clearly show the superiority of
the new integrated technique over Faugeras’ linear
technique, especially for the translation errors. To
further compare the sensitivity of the two techniques
to viewing parameters, we changed the position pa-
rameters of the camera by doubling the camera
distance z to the object points. Figs. 9 and 10 plot
the mean rotation and translation vector errors as a

Ž .Fig. 8. Mean translation vector error mm versus SNR. The curve
for Faugeras’ algorithm was obtained using 10 points, while the
curve for the integrated technique was generated using a combina-
tion of three points, one line, and one circle.

Fig. 9. Mean rotation vector error versus SNR with an increased
Žcamera position parameter z doubling the camera and object

.distance z . The curve for Faugeras’ algorithm was obtained using
10 points, while the curve for the integrated technique was
generated using a combination of three points, one line, and one
circle.

function of SNR respectively under the new camera
position. While increasing z causes an increase in
the estimation errors for both techniques, its impact
on Faugeras’ technique is more serious. This leads to
a much more noticeable performance difference be-
tween the two linear techniques. The fact that the

Ž .Fig. 10. Mean translation vector error mm versus SNR with an
Žincreased camera position parameter z doubling the camera and

.object distance z . The curve for Faugeras’ algorithm was gener-
ated using 10 points while the curve for the integrated technique
was generated using a combination of three points, one line, and
one circle.
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integrated technique using only five geometric enti-
Žties three points, one line, and one circle with a total

.of 17 equations still outperforms Faugeras’ tech-
Ž .nique, which uses 10 points a total of 20 equations ,

shows that the higher-level geometric features such
as lines and circles can provide more robust solu-
tions than those provided solely by points. This
demonstrates the power of combining features on
different levels of abstraction. Our study also shows
that Faugeras’ linear technique is very sensitive to
noise when the number of points used is close to the
required minimum. For example, when only six
points are used, a small perturbation of the input data
can cause significant errors on the estimated parame-
ters, especially the translation vector. Figs. 9 and 10
reveal that the technique using only points is numeri-
cally unstable to viewing parameters with respect to
z.

7.2. Performance characterization with real images

This section presents results obtained using real
images of industrial parts. The images contain linear

Ž .features points and lines and non-linear features
Ž .circles . This phase of the experiments consist of
two parts. First, we visually assess the performance
of the linear least-squares framework using different
combinations of geometric entities, such as one cir-
cle and six points; one circle and two points; and one

Fig. 11. The alignment between the image of a part and the
Ž .reprojected outline white of using the exterior orientation com-

Ž .puted using two points as indicated by the black squares and one
Ž .circle the upper circle with the integrated technique.

Fig. 12. The alignment between the image of a part and the
Ž .reprojected outline white of using the exterior orientation com-

Ž .puted using one point, two lines, and one circle the upper circle
with the integrated technique. The points and lines used are
marked with black squares and lines.

circle, one point and two lines. The performance of
the proposed technique is judged by visual inspec-
tion of the alignment between the image of a part
and the reprojected outline of the part using the
estimated transformation matrix. Second, the tech-
nique is compared against existing methods that use
only one type of geometric entity as well as against

Žthe Gauss–Newton iterative method similar to the
.bundle adjustment method . Due to unavailability of

groundtruth data, the closeness between the solutions
from the integrated linear method and from the
iterative method, as represented by the residual er-
rors, as well as the number of iterations required by
the iterative method to converge, are used as mea-
sures to indicate the goodness of the solution ob-
tained using the new method.

To test the integrated technique, we performed the
Ž .following experiments. The transformation R T

was analytically computed using our integrated tech-
nique with different combinations of points, lines,
and circles. Figs. 11–13 illustrate the results ob-
tained using the following combinations of features:
two points plus one circle; one point, two lines, and
one circle; and six points and one circle, respec-
tively. Visual inspection of the figures reveals that
results obtained from the three configurations are all
good enough to serve as an initial guess to an
iterative procedure. It is also evident from Figs.
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Fig. 13. The alignment between the image of a part and the
Ž .reprojected outline white of using the exterior orientation com-

Ž .puted using six points as indicated by the black squares and one
Ž .circle the upper circle with the integrated technique.

11–13 that the result using six points and one circle
is superior to the ones obtained using the other two
configurations.

The significance of these sample results is as
follows. First, they demonstrate the feasibility of the
proposed framework applied to real image data. Sec-
ond, they show that using multiple geometric primi-
tives simultaneously to compute the exterior orienta-
tion reduces the dependency on points. One can be
more selective when choosing which point corre-
spondence to use in exterior orientation estimation.
This can potentially improve the robustness of the
estimation procedure since image points are more
susceptible to noise than image lines and ellipses.
Third, the use of more than the minimum required
number of geometric features provides redundancy
to the least-squares estimation, therefore improving
the accuracy of the solution, as evidenced by the
progressively improved results as the number of
linear equations increase.

In order to compare the results with those of other
existing techniques, we computed the exterior orien-
tation of the same object using the same six points
and the same circle, separately. The result for the
exterior orientation computation using a linear tech-

Ž . Žnique Ji and Costa, 1997 similar to that of Faugeras
Ž ..1993 with six points is given in Fig. 14. The

Ž .algorithms of Dhome et al. 1989 and Forsyth et al.
Ž .1991 for the pose-from-circle computation were

Ž .augmented in Costa 1997 to handle non-rotation-

Fig. 14. The alignment between the image of a part and the
Ž .reprojected outline white of using the exterior orientation com-

puted using six points alone. It shows good alignment only at the
lower part of the object where the concentration of detectable
feature points is located and a poor alignment on the upper part of

Ž .the object as indicated by the arrow .

ally symmetric objects. The results of this augmented
algorithm using the single ellipsercircle correspon-
dence are shown in Fig. 15. Notice that due to the
localized concentration of detectable feature points
and the physical distance between the circle and
these points, the projected outlines computed align
well only in the areas where the features used are
located. Specifically, the result in Fig. 15 shows a
good alignment in the upper portion of the object

Fig. 15. The alignment between the image of a part and the
Ž .reprojected outline white of using the exterior orientation com-

puted using a single circle. It shows a good alignment in the upper
portion of the object where the circle is located and a poor

Ž .alignment in the lower part as indicated by the arrow .
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Table 1
Exterior orientations from different methods

Ž .Method R T mm

0.410 y0.129 y0.902
Ž . w xPoint only Fig. 14 y43.125 y25.511 1232.0360.606 y0.700 0.376

y0.681 y0.701 y0.208

0.302 0.302 y0.932
Ž . w xCircle only Fig. 15 y35.161 y15.358 1195.2930.692 y0.628 0.355

y0.655 y0.753 y0.054

0.398 y0.142 y0.902
Ž . w xPoints and circle Fig. 13 y43.077 y26.400 1217.8550.554 y0.667 0.336

y0.700 y0.684 y0.201

0.341 y0.156 y0.927
Ž . w xBundle adjustment Fig. 16 y43.23 y28.254 1273.070.631 y0.693 0.349

y0.697 y0.704 y0.137

where the circle is located and a poor alignment in
Ž .the lower part as indicated by the arrow . On the

other hand, the result in Fig. 14 shows a good
alignment only at the lower part of the object where
the concentration of detectable feature points is lo-
cated and a poor alignment on the upper part of the

Ž .object as indicated by the arrow .
Visual inspection of the results in Figs. 13–15

shows the benefits of the new technique over the
existing methods. The model reprojection using the
transformation matrix obtained using the new tech-
nique yields a better alignment than those using only
points or only ellipsercircle correspondences. To
compare the performance quantitatively, we compare
the transformation matrices obtained using the three

Ž .methods with different combinations of features
against the one obtained from the iterative procedure
Ž .bundle adjustment Table 1 shows the numerical
results for the transformations obtained from using
only points, only the circle, and a combination of
points and circle. The results from each method were

Table 2
Iterations needed for the bundle adjustment method to converge
using the solutions of the three linear methods as initial estimates

Method Number of iterations

Points only 4
Circle only 6
Points and circle 1

then used as the initial guess to the iterative Gauss–
Newton method. The final transformation obtained
after the convergence of the iterative method is
shown in the last row of Table 1. These final results
are the same regardless of which initial guess was
used. But they vary in number of iterations required
as shown in Table 2.

Table 2 summarizes the number of iterations re-
quired for the iterative procedure to converge using
as initial guesses the results from the three linear
methods mentioned in Table 1. Fig. 16 shows the
results from the iterative procedure.

Fig. 16. The result obtained from the bundle adjustment method
after only one iteration using the solution in Fig. 13 as approxima-
tion.
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It is evident from Tables 1 and 2 and Fig. 16 that
the new technique yields a transformation matrix that
is closer to the one obtained from the bundle adjust-
ment procedure and therefore requires fewer itera-

Ž .tions one here for the bundle adjustment method to
converge. By contrast, the final results for initial
guesses obtained using only points and only one
circle require four and six iterations, respectively, for
the bundle adjustment procedure to converge. The
result from the quantitative study echoes the conclu-
sion from visual inspection: the new technique offers
better estimation accuracy, because it is capable of
fusing all information available.

To further validate our technique, we tested it on
over 50 real images with similar results. Fig. 17 give
results of applying the integrated technique to differ-
ent industrial parts with different combinations of
geometric features. Our experiments also reveal, as
was theoretically expected for a system of linear
equations of the form AXsb, a decay in robustness
when the number of equations in the linear system
reaches the minimum required for a solution to be
found. The premise is that one should make use of as
many available features as possible in order to im-

Fig. 17. Results of the integrated method applied to different
industrial parts.

prove accuracy and robustness. Our technique fol-
lows this principle.

8. Discussion and summary

In this paper, we presented a linear solution to the
exterior orientation estimation problem. The main
contributions of this research are the linear frame-
work for fusing information available from different
geometric entities and for introducing a novel tech-
nique that approximately imposes the orthonormality
constraints on the rotation matrix sought. Experimen-
tal evaluation using both synthetic data and real
images show the effectiveness of our technique for
imposing orthonormal constraints in improving esti-
mation errors. The technique is especially effective
when the SNR is low or fewer geometric entities are
used. The performance study also revealed superior-
ity of the integrated technique to a competing linear
technique using only points in terms of robustness
and accuracy.

We want to discuss several issues related to the
proposed algorithm. First, the algorithm is designed
for single images. It can be easily extended to multi-
ple images by cascading the least-squares framework
for each image. Second, it is worth to point out that
the final accuracy of the estimated exterior orienta-
tion depends not only on the measurement accuracy,
the feature number, but also heavily on distribution
of measurements. In the work described in this pa-
per, we did not address this issue. This will be a
future task. Thirdly, the paper emphasizes only the
fact that we introduce a framework that is CAPA-
BLE of integrating different types of geometric fea-
tures for estimating exterior camera parameters.
Studying the effects of what actually cause this
improvement is an interesting and nontrivial task.
We will leave it for future study. Fourthly, when
comparing with point-only method with the inte-
grated approach, we used only 10 points. In practice,
many more points may be used for the points-only
method. This can significantly improve the perfor-
mance of the point-only methods and therefore re-
duce the performance difference between the two.
Finally, for the integrated approach, we assume equal
weighting for different features. As part of future
work, we plan to use error propagation to compute a
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covariance matrix for each type of feature. The
covariance matrices can then used as weightings for
different features.

The new technique proposed in this paper is ideal
for applications such as industrial automation where
robustness, accuracy, computational efficiency, and
speed are needed. Its results can also be used as
initial estimates in certain applications where more
accurate camera parameters are needed. The pro-
posed algorithm is more suitable for images with
man-made objects, especially in close-range applica-
tions.
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