
Graphical Models62,165–201 (2000)

doi:10.1006/gmod.1999.0519, available online at http://www.idealibrary.com on

Surface Reconstruction and Display
from Range and Color Data

Kari Pulli

Nokia Mobile Phones Research, Oulu, Finland
E-mail: kari.pulli@nokia.com

and

Linda G. Shapiro

University of Washington, Seattle, Washington
E-mail: shapiro@cs.washington.edu

Received August 7, 1998; revised August 6, 1999; accepted October 18, 1999

This paper addresses the problem of scanning both the color and geometry of
real objects and displaying realistic images of the scanned objects from arbitrary
viewpoints. We describe a complete system that uses a stereo camera setup with
active lighting to scan the object surface geometry and color. Scans expressed in
sensor coordinates are registered into a single object-centered coordinate system by
aligning both the color and geometry where the scans overlap. The range data are
integrated into a surface model using a robust hierarchical space carving method.
The fit of the resulting approximate mesh to data is improved and the mesh structure
is simplified using mesh optimization methods. In addition, a method for view-
dependent texturing of the reconstructed surfaces is described. The method projects
the color data from the input images onto the surface model and blends the various
images depending on the location of the viewpoint and other factors such as surface
orientation. c© 2000 Academic Press

1. INTRODUCTION

This paper presents a set of algorithms that together constitute a complete system for
scanning and displaying textured objects. The tasks required to fulfill our goal can be
organized into a sequence of stages that process the input data. Each of these stages presents
us with its own problems. Specifically, the problems addressed in this paper are as follows:

• How can we scan the object surface geometry using color cameras and structured
light?

165

1524-0703/00 $35.00
Copyright c© 2000 by Academic Press

All rights of reproduction in any form reserved.

166 PULLI AND SHAPIRO

• Our scanner allows us to digitize only one view of an object at a time so that several
scans from many viewpoints are required to scan the whole object. How can we accurately
transform all the data in a single object-centered coordinate system?
• How can we convert separate range views into a single surface description? How

can we use our knowledge of the scanning procedure to make this process more robust and
reliable?
• How can we manipulate the surface description so that it better approximates the

input data, and how can we control the size and resolution of the surface representation?
• How can we combine the color information from the different views together with

the surface geometry to render realistic images of our model from arbitrary viewpoints?

1.1. Previous Work

In this section we briefly mention some previous work in surface modeling from range
data and in image-based rendering that heavily influenced our research. Further descriptions
of related work can be found in later sections.

1.1.1. Surfaces from range.Surface reconstruction from range data has been studied
for a long time. In his dissertation, Besl [1] did an excellent job of exploring low-level range
image processing and segmentation. His later work in registration of range data has been
influential [2].

Hoppeet al.[26–28] developed a three-phase system for reconstructing arbitrary surfaces
from unstructured 3D point data. The first phase creates an approximate triangle mesh by
extracting the zero set of a signed distance function that was estimated from the point data.
The second phase iteratively improves the fit of the mesh and simplifies the mesh. In the third
phase the surface representation is changed to Loop’s subdivision scheme [34] (extended
to allow sharp features), which can represent curved surfaces more accurately and more
compactly than a triangle mesh. Around the same time, Chen and Medioni [7, 8] worked
on similar problems. Their research addressed registration of range maps into a single
coordinate system and subsequent integration of the data into the surface representation.

Curless and Levoy developed two important techniques for building complex and accurate
models from range images: spacetime analysis, a robust and accurate scheme for estimating
depth using a light stripe scanning system [11], and a volumetric space carving technique
for aggregating several range scans into a single geometric model [12].

1.1.2. Image-based rendering.Our work on view-dependent texturing was heavily in-
fluenced by the image-based rendering papers published in SIGGRAPH 96. The Microsoft
Lumigraph [22] and Stanford Light Field Rendering [32] address the same problem: given
a collection of color images of an object from known viewpoints, how can one create new
images of the same object from an arbitrary viewpoint? Their solution was to think of the
pixels of the input images as half-rays ending at the camera image plane and encoding
the apparent directional radiance of the object surface. From these samples a function that
returns a color for a directed ray can be calculated. New images can then be created by
evaluating that function over the rays associated with each pixel in the output image and
painting the pixels with the returned colors. This approach is quite general and allows realis-
tic rendering of objects that are hard to model and render using traditional graphics methods.
However, a very large set of input images is required, and the 4D function mapping rays to
colors requires large storage.

SURFACE MODELING FROM RANGE AND COLOR DATA 167

Debevecet al. [15] described a system that allows a user to interactively reconstruct
architectural scenes from color images. After the user specifies the basic structure of the
geometric models and marks correspondences between image features and model features,
the system calculates the actual dimensions of the model elements. The models are then
view-dependently textured using the original camera images.

1.2. Contributions

The contributions in this paper include the following:

• We have constructed a practical range scanner that uses inexpensive color cameras
and a controlled light source. The range data are inferred from camera images using optical
triangulation. The quality of the range data is increased by adapting spacetime analysis [11]
for our scanner.
• We have developed a new method for pairwise registration of range and color scans.

Our method directly addresses the most difficult part of 3D registration: establishing reliable
point correspondences between the two scans. We implement a robust optimization method
for aligning the views using the established point pairs.
• We have developed a method for simultaneously registering multiple range maps

into a single coordinate system. Our method can be used in conjunction with any pairwise
registration method. The scans are first registered pairwise. The results of pairwise regis-
tration create constraints that can then be used to simultaneously find a global registration.
• We have developed a simple and efficient hierarchical space carving method for

creating approximate meshes from registered range maps.
• We have developed a view-dependent texturing method that allows us to combine

the color data with reconstructed surface models at display time.

1.3. Overview

The first three sections of this paper discuss methods for reconstructing geometric sur-
face models from range scans. Section 2 deals with data acquisition, Section 3 addresses
registration of the scan data, and Section 4 discusses methods for reconstructing surfaces
from registered range data. Section 5 is concerned with the use of color data and presents
our method for view-dependent texturing of scanned surfaces. Section 6 concludes the pa-
per. Most of the material in Sections 2, 4, and 5 has been previously published in various
conferences [46–48], while the material in Section 3 has only appeared in a dissertation [45].

2. DATA ACQUISITION

We built our own system for scanning both range and color data. In this section we
first describe the hardware configuration of our scanner. We then discuss our simple but
robust method for obtaining dense range data from stereo with active lighting. This section
concludes with a description of how spacetime analysis, a method that was developed for
another type of scanner, was adapted to our system for more reliable and accurate scanning.

2.1. Scanning Setup

Our scanning system consists of the following main parts (see Fig. 1). Four NTSC color
video cameras are mounted on an aluminum bar. The cameras, which produce images

168 PULLI AND SHAPIRO

FIG. 1. The scanner hardware: four video cameras, a slide projector on a turntable, and table lamps.

at 640× 480 resolution, are connected to a digitizing board, which can switch between
the four inputs under computer control. Below the cameras, a slide projector sits on a
computer-controlled turntable. The slide projector emits a vertical stripe of white light,
which is manually focused to the working volume. A few lamps provide adjustable lighting
for capturing color images.

We obtain range data by active stereo, in our case by sweeping a vertical beam of light
over a scene that is kept otherwise dark. One of the cameras is chosen as the base camera, and
we obtain a dense range map corresponding to the surfaces visible to that camera. Finally,
the lights are turned on, and we take a color image from the base camera. Additionally,
we determine background pixels by backlighting objects and tracking which pixels change
color and intensity. We will now describe our range through triangulation method.

2.2. Range from Stereo

In traditional stereo vision one tries to match pixels in one camera image to pixels in the
image of another camera. The pixel matching relies on intensity variations due to surface
texture. If the cameras have been calibrated and the matched pixels correspond to the same
point on some surface, it is trivial to calculate an estimate of the 3D coordinates of that
point.

In our system we solve the pixel correspondence problem by projecting only a single
vertical light stripe onto the scene. This is illustrated for the case of two cameras in Fig. 2.
The set of points projecting to a pixel forms a line in 3D, and we can calculate that line
from calibration data. We match the stripe pixels by projecting the line corresponding to a
pixel in the left image onto the right image, and then intersecting the projected line with the
stripe in the right image. Once we have matched two pixels, we use the intersection of their
corresponding 3D lines to determine the 3D coordinates of the surface point visible through
the pixel in the left image. The whole scene is scanned by aiming the stripe at the left side
of the working volume, reconstructing surface points illuminated by the beam, turning the
beam to the right by a small fixed angle, and repeating the process until the beam has swept
over the whole working volume. The result is a dense range map, an image that stores the
3D coordinates of the first visible surface point through each pixel in the left camera image
if that point is also visible both to the light projector and the right camera.

SURFACE MODELING FROM RANGE AND COLOR DATA 169

FIG. 2. The epipolar line of an illuminated pixel in the left image is intersected with the stripe in the right
image, producing a match and enabling triangulation.

We can increase the reliability of our system by using more than two cameras. In our
case, we use four cameras, and we are satisfied if the surface point is visible from the base
camera, the light projector, and any of the other cameras. In the case when the point is visible
from several cameras, we can check whether the match was reliable by calculating the 3D
coordinates of that point from several camera pairs and checking whether the answers agree.
The averaged solution from the pairs deemed reliable is finally returned.

2.3. Spacetime Analysis

Our scanning method requires that we accurately locate the center of the stripe in a
camera image. At first this seems quite easy; techniques such as taking an average weighted
by pixel intensities across the beam should give good results. However, there are the hidden
assumptions that the surface illuminated by the beam is locally planar and that the whole
width of the stripe is visible to the camera.

2.3.1. Problems in locating the stripe.Curless and Levoy [11] noticed that when the
assumptions of a planar surface and a fully visible stripe are violated, the range estimates
become systematically distorted. They used a Cyberware scanner, which scans range data
using a calibrated laser beam with a single calibrated camera. Figure 3 is adapted from
[11] to a system of two calibrated cameras and an uncalibrated light beam, and it illustrates
several configurations that lead to an incorrect estimate for the surface point coordinates.
Figure 3a shows the ideal situation: a completely visible stripe on a flat surface, yielding
an accurate range estimate. In Fig. 3b part of the beam is occluded in the right camera by a
protuberance of the object. The estimate of the stripe center on the right camera is biased to
the left, pulling the range estimate closer toward the left camera. In Fig. 3c the center of the
beam is aimed at a sharp silhouette corner of the object, and only half of the beam hits the
surface. The stripe center estimate of both cameras is biased to the left, giving incorrect 3D
coordinates for the surface point on the silhouette edge. Because of this phenomenon, it is
hard to scan the surface reliably all the way to the silhouette boundary. Figure 3d shows the
beam pointing at a sharp crease on the surface. The left half of the stripe is fully visible to the
left camera, whereas the right half of the stripe is foreshortened because the surface turns
away. This results in a bias to the left in the stripe center estimate. By a similar argument,
the stripe center is biased to the right in the right camera, resulting in error in scanning the
surface point.

170 PULLI AND SHAPIRO

FIG. 3. Error sources in range by triangulation using a light beam with unimodal intensity distribution (center)
with two sensors. (a) Ideal situation, a planar object, leads to correct results. (b) A self-occlusion biases the estimate
forward. (c) The beam hits the surface only partially, pulling the surface estimate away from the silhouette.
(d) Images of beams are partially foreshortened. (e) Intensity changes lead to incorrect surface point estimate in a
system using calibrated light source. (f) Intensity changes move the surface point estimate along the surface in a
system using calibrated cameras and uncalibrated light source.

It is worth noting that Curless and Levoy presented a fourth case, where changes in surface
intensity bias the stripe center estimate, leading to an error in the range estimate (see Fig. 3e).
This is not really a problem in our system. Recall that while they use a calibrated light beam
and a calibrated camera, we use an uncalibrated light beam and several calibrated cameras.
In the case of a planar textured surface, the stripe center estimates would be similarly
biased in both cameras. However, as shown in Fig. 3f, the reconstructed point still lies on
the surface.

2.3.2. Solution to the problem.The problems illustrated in Fig. 3 can be overcome
by reformulating the task. Instead of trying to findwherethe center of the beam is in a
single image, one can track the time-varying intensity profiles of the pixels to find outwhen
the beam was centered at each pixel. Curless and Levoy [11] call this approach spacetime
analysis. Let us assume that the beam is wide enough to cover several pixels in the image,
its intensity has a unimodal distribution, and we move the beam in steps that are small
compared to the beam width. When the beam approaches the surface point visible through
a pixel, the intensity of the pixel first increases and then begins to decrease as the beam
sweeps past the point. The shape of the time-varying intensity profile of the pixel has the
same shape as the profile of the beam, and the time when the beam was centered on the
pixel can be reliably estimated from that profile.

Spacetime analysis produces a function describing when (if ever) the beam was centered
on each image pixel. We can use this function in our triangulation method as follows.
Choose a pixel in the left image and note the time when the beam was centered at that pixel.
Find the epipolar line corresponding to that pixel on the right image as before; i.e., project
the 3D line corresponding to the pixel onto the right image. The epipolar line defines a
new function that maps a position on the line to a time when the beam was centered on the
pixel under the line. To match the original pixel on the left image we simply search for a
line position such that the pixel under it has the same time as the original pixel. The 3D
coordinates of the surface point are found by triangulation as before. We implemented this
method and thereby reduced the errors illustrated in Fig. 3.

SURFACE MODELING FROM RANGE AND COLOR DATA 171

3. REGISTRATION

An important step in surface modeling from range data is to register several partial range
scans into a common coordinate system. The individual range scans are initially expressed
in the sensor coordinate system. An initial registration is often obtained directly from the
scanning system or interactively from the user, and the registration is refined by accurately
aligning the overlapping parts of the data. If the surface color is scanned along with geometry,
the color information can be used to better match data points corresponding to the same
point on the object surface. When the color scans are combined to form texture maps that are
then applied to the reconstructed model, it is important that the colors also align precisely.
Aligning only the geometry may lead to blurring and ghosting in textures.

Registration can be subdivided into the correspondence and alignment subproblems. The
correspondence problemis to determine for a given point in one scan the points in the
other scans that correspond to the same point on the object surface. Thealignment problem
is to find a rigid 3D transformation that aligns the corresponding points. Of these two
problems the correspondence problem is the harder one, while closed form solutions exist
for determining the alignment in the least-squares sense.

Most registration methods use heuristics to determine approximate point correspondences
and improve the alignment, iterating these two steps until the process converges. We will
cover previous approaches for correspondence heuristics and alignment methods in Sec-
tion 3.1. These methods were typically first developed for pairwise registration of range
scans; we will also summarize how they have been extended into multiview registration. In
Section 3.2 we present a new method for determining a consistent set of point correspon-
dences that effectively uses and aligns the color information. In Section 3.3 we present a
robust method for aligning range scans given a set of point correspondences. The method
first finds a transformation that aligns most of the paired points, then automatically re-
moves bad pairs (false matches) and refines the alignment using all the remaining pairs. In
Section 3.4 we introduce a fast and robust approach for multiview registration that com-
pletely separates correspondence determination and simultaneous alignment of all the views.

3.1. Background and Related Work

If we have two overlapping range scans of the same object, we can register the views by
aligning their overlapping geometry. A good registration can be found by minimizing the
equation

Np∑
i=1

‖Tp i − qi ‖2, qi = arg min
q∈Q
‖Tp i − q‖. (1)

Here we are looking for a rigid 3D transformationT that minimizes the distances of the
scanned pointspi ∈P to a setQ, which can be another set of scanned points, a surface fitted
to a point set, or a complete surface model. Equation (1) is difficult to solve directly, as it
tries to simultaneously solve the correspondence (findqi ∈Q corresponding topi , and if
none does, exclude thei th element from the sum) and the alignment (find transformationT).
However, since it is easy to solve the alignment given the correspondences, and vice versa,
the idea of iterating over two simpler subproblems is used in most practical registration
methods.

172 PULLI AND SHAPIRO

Besl and McKay [2], Chen and Medioni [8], and Zhang [63] proposed minimizing Eq. (1)
by iterating between pairing corresponding points and solving the transformation. The
objective function in the iterative closest point (ICP) approach is similar to Eq. (1):

Np∑
i=1

‖Tkpi − qi ‖2, qi = Match(Tk−1pi ,Q). (2)

The estimate of the registration transformationT is refined in small steps. First, while the
transformation is held fixed, the pointsTk−1pi are paired withqi using a correspondence
heuristic. Now the pairs are held fixed, and a transformationTk that bringsP closer toQ is
calculated. As the surfaces move closer, finding better point pairs becomes easier and more
reliable, which enables finding better transformations, so pairings and alignments can be
iterated until the process converges.

3.1.1. Correspondence heuristics.Several methods have been suggested for pairing
points and for determining whether some points should be paired at all. Potmesil’s [44]
approach was to estimate a local normal vector at the pointpi and to pair it with the
intersection of the normal and the other surfaceQ. If the normal did not intersectQ, pi was
ignored. Chen and Medioni [8] adopted the same strategy.

Besl and McKay [2] and Zhang [63] paired each pointpi with the closest point inQ.
Godinet al.[21] looked for the closest compatible point, where the points were compatible
if their colors are similar enough. Gagnonet al. [19] found the closest point such that its
normal vector does not point away from the first point. One can also modify the distance
function so that it takes into account not only the physical distance but also the difference
in the associated information (Eggertet al. [17] compared normal vectors).

These heuristics still produce many pairs that are unlikely to correspond even approxi-
mately to the same surface location. Methods have been developed to disallow or cull some
such pairs. Turk and Levoy [59] eliminated pairs where the points are too far apart, or where
the closest point is on the silhouette of the range map. Doraiet al. [16] discarded pairs if
they were not compatible with the neighboring pairs. Take two pairs, (pi , qi) and (p j , q j).
Unless the distance‖pi − p j‖ equals the distance‖qi − q j‖, it is not possible that both pairs
are valid at the same time, since a rigid registration transformation preserves 3D distances.

Weik [61] developed a method that avoids the closest point search by projecting points
from one range map to another range map. As illustrated in Fig. 4, a pointp is paired by
projecting it top′ on the image plane of the scanner of the other view and finding the point
q′ in the other view that projects to the same location. However, he also used image intensity
information to find a better pair for a point. The intensity difference1I = I0(p)− I1(p′),
intensity gradient∇ I1(p′), and displacementd such that1I =∇ I1(p′) · d are calculated.
The original point is paired with the pointq, which projects to the new corrected image
locationp′ + d. Weik also prevents some points from being paired if they cannot possibly
be visible, due to self-occlusion in the direction of the other viewpoint (pointx in Fig. 4).

A few researchers [21, 63] have noted that the point pairing should be symmetric. The
pairing can easily be made symmetric by first projecting points inP to Q, then projecting
points inQ to P, and finally merging the two sets of pairs.

3.1.2. Alignment methods.The most widely used alignment method finds the rigid
Euclidean motion that minimizes the sum of squared distances between the paired points.

SURFACE MODELING FROM RANGE AND COLOR DATA 173

FIG. 4. Project a point to the other view’s image, apply an image gradient-based correction, and project back
to the other view’s range data.

Closed form solutions were published independently by Horn [29] and Faugeras and Hebert
[18], and Horn’s method was later reformulated by Wang and Jepson [60].

This approach works well if the paired points really correspond to the same points on
the surface. Typically, however, even a few bad point pairs pull the solution away from the
perfect registration, producing a situation like the one illustrated in Fig. 5. The surfaces are
in a fair registration, but they still need to slide a bit past each other. Several pairs pull the
solution to the correct direction, but most paired points are very close to each other and
therefore resist motion in any direction, preventing the surfaces from moving more than a
very small step, which slows the convergence near the solution.

Chen and Medioni [8] moved a surface so that points on it move closer to the tangent
planes of their counterparts on the other surface (Fig. 6). Whereas in the previous method
ideal springs were attached to point pairs, here only the first end of the spring is fixed, while
the other end is free to slide along the other surface. No penalty is associated with surfaces
sliding past each other, so larger steps are possible, and the registration is likely to converge
faster. Although the sliding spring approach typically converges faster, there are situations
where the fixed spring approach works better. If the point pairs are good, the fixed springs
pull the surfaces to alignment immediately, while with sliding springs a good pairing may
not move the surfaces at all if the points already lie in the tangent plane of their counterparts.

Champlebouxet al. [4] designed a function that can be quickly evaluated at any 3D
location and which returns the distance from that point to the surface. The function repre-
sentation allows speedy numerical estimation of its gradients, and a surface is moved closer
to the other using a gradient descent type of optimization.

FIG. 5. If many of the paired points do not correspond to the same surface points, many seemingly good pairs
(short distances) resist motion in all directions.

174 PULLI AND SHAPIRO

FIG. 6. Minimizing the distance from a point to a plane allows the left pair to pull the surfaces into alignment
without the other pairs resisting tangential sliding.

3.1.3. Other approaches to registration.Higuchi et al. [23] used a representation that
decouples rotation and translation and noted that solving the translation is easy once
the relative rotation has been solved. A regular spherical mesh is fitted to the data so
that the edges have approximately the same length. At each vertex, a discrete estimation of
the Gaussian curvature of the underlying surface is calculated. The rotation can be solved
by searching for the rotation of a sphere that minimizes the sum of squared differences of
the curvature estimates. This method can be applied only to objects topologically equivalent
to a sphere.

Blais and Levine [3] evaluated the quality of registration by projecting one range map
to the image plane of the other. This technique was later used by Masuda and Yokoya, and
Weik. The projection is used only for evaluation, not for registration. The optimization is
done using simulated reannealing, a stochastic global optimization method.

3.1.4. Multiview registration. A simple method for registering several views is by reg-
istering views sequentially: the unregistered views are registered, one at a time, to a view
that has already been registered. The problem with this approach is illustrated in Fig. 7.
When the views are registered pairwise in the scanning order, small registration errors begin
to accumulate.

Turk and Levoy’s [59] solution to the compounding registration error relies on their
scanner’s ability to take cylindrical scans. A single cylindrical scan of the object is taken
and is used as an anchor; other scans are then registered with the cylindrical scan. Chen and
Medioni [8] registered the views one at a time, merging the registered view into a single
“metaview.” All the new views were then registered with the metaview rather than just a
single neighboring or anchor view. This approach was also taken by Masudaet al. [37].

Gagnonet al. [19] pointed out that when more views are added, it is possible that they
bring information that could improve the registration of the previously registered views.

FIG. 7. (a) Small errors accumulate, resulting in a large gap. (b) Multiview registration enforces a consensus
solution.

SURFACE MODELING FROM RANGE AND COLOR DATA 175

They project a set of points in viewi to all the other views and calculate a transformation that
registers viewi using all the paired points. This process is iterated repeatedly over all the
views until the registration slowly converges. Jinet al.[30] tried to solve the same problem
by incrementally building a surface model, against which new views can be registered and
already-registered views can be reregistered, but the method was very slow.

Eggertet al. [17] attempted to overcome the thresholding difficulties of pairwise cor-
respondences (maximum allowed difference in position, normals, color, etc.) that most
previous methods have to deal with. They assume that all points on the object’s surface
have been observed at least twice. Therefore, a proper corresponding location exists for
each point; it just needs to be found. They simply pair each point with the closest compati-
ble point. However, we have observed that pairing a point in only one other view can prevent
the algorithm from converging to a correct solution. Sometimes the views form cliques such
that all the views belonging to a clique are in a good registration, but the cliques themselves
are not well registered to each other. As a result, the closest point is usually found in another
view of the same clique, and no further progress is made, even though the global registration
may be far from perfect.

3.2. Correspondence Problem

The traditional correspondence heuristics pair points using simple local pairing rules.
Figure 8 shows two examples where a surface is paired with a copy of itself that has been
translated to the left and upward. In Fig. 8a points are paired with the closest point with
matching normal, while in Fig. 8b the heuristic looks for the closest point with matching
color. Not only are the pairings produced using local heuristics inconsistent, but almost
none of the paired points actually correspond to the same point on the surface. It is clearly
not enough to just throw away bad pairs; we should instead concentrate on finding good
ones.

Before suggesting an alternative point pairing method, we list some desirable properties
of good pairings:

FIG. 8. Local heuristics lead to inconsistent pairings. (a) Points are paired with the closest point with com-
patible normal vector. (b) Points are paired with the closest point with compatible color.

176 PULLI AND SHAPIRO

• Each point and its partner should correspond to the same location on the surface,
and only points from surfaces visible in both views should be paired.
• The mapping within the overlapping surface should be bijective, i.e., one-to-one (a

point can be paired with only a single point) and onto (every point in the overlapping region
should have a partner).
• The pairs should be consistently related with a single rigid 3D motion.
• The color data should be aligned as well as the geometry. In fact, surfaces that have

rotational or translational symmetries cannot be unambiguously registered using geometric
data alone [19, 61].

It is difficult to create a pairing with the above properties using only local heuristics that
myopically look for a closest compatible point without considering how the other points
are paired. We propose a new, more global metric for simultaneously pairing the points on
overlapping surfaces. The basic idea is to align images of the data sets and pair surface
points projecting to the same image location.

Consider two textured surfaces that are already in close alignment. If the scanned surfaces
are rendered as they would be seen from an arbitrary viewpoint (from which the overlap of
the two surfaces is visible) the resulting 2D color images are also in alignment. Each point
on surface A projects to the same pixel as its corresponding point on surface B.

In our case we have two views of a textured surface in rough alignment, and we would
like to improve their registration. If we could move one of the views (partial surface) such
that its projected image aligns well with the image of the other surface, we could be fairly
confident that visible surface points projecting to the same pixel correspond to the same
point on the object surface. We can then find good point pairs by pairing points that project
to the same pixel. A brief examination confirms that all the properties that we listed as
desirable are indeed satisfied by this algorithm.

Color Plate 1 illustrates the basic idea in our point-pairing mechanism. We have two
scans of color and range data, and the range data are roughly aligned. A textured mesh of
one scan is projected onto the color image of the other scan (left images) and moved in 3D
so its projection aligns with the color image (right images). A dense set of 3D point pairs is
obtained by pairing points projecting to the same pixel. We now discuss our point-pairing
method in more detail.

3.2.1. Color image alignment.We have color and range scans from two different view-
points, and we want to align the projections of the color information on the first camera’s
image plane. We do this by projecting the textured surface of the second scan on the first
color image, calculating color differences and gradients, linearizing the problem for fast
implementation, and converting the differences to incremental 3D motions that better align
the images. Note that this requires a rough initial alignment so that the projected second
scan overlaps at least partially with the first scan, and the orientations do not differ more
than 20–30◦.

We model the imaging geometry as follows (see Fig. 9). The first camera with focal length
f is located atx0 and oriented along (e1, e2, e3) such that the viewing direction is−e3. The
images are assumed to already be in a rough alignment and we move the second surface
by rotating it around its center of massc by the anglesα, β, andγ around thee1, e2, and
e3 axes, respectively, followed by a translationb. In addition to the color data, the second
surface projects a height fieldh onto the image plane of the first camera.

SURFACE MODELING FROM RANGE AND COLOR DATA 177

We want to minimize

E(T) =
∑
(u,v)

[w(u,v)(I1(ψ(u, v))− I0(u, v))]2. (3)

In this equationψ is the inverse of the image flow telling which pixel moves to (u, v). The
image flow is induced by a 3D transformationT, which refines our initial rough registration
until no small additional motion can reduce the error of Eq. (3).I0 is the original color

COLOR PLATE 1. Consistent pairing of points. Roughly aligned textured meshes are projected on color
images (left) and moved so their projections align with the images (right).

COLOR PLATE 2. The geometry of a toy husky (left). Realism is greatly enhanced by texture mapping
(right).

COLOR PLATE 3. (a) A ray from the viewer’s center is cast through a pixel, intersecting the object surface.
The intersection point is projected back to color images, producing candidate pixels for coloring the pixel of the
original ray in the viewer. (b) A false color rendering of the surface geometry uses hardware to find the surface
point visible through each pixel. Red, blue, and green channels encodex, y, andz coordinates, respectively.
(c) The 3D point corresponding to the pixel pointed to in (b) is projected into three color images (the dot on the
nose).

178 PULLI AND SHAPIRO

FIG. 9. Color image alignment setup.

image,I1 is the image of the second surface, andw(u,v) is a per pixel weight. We solve this
iteratively using the Gauss–Newton method, that is, by doing the Taylor series expansion of
I1(ψ(u, v)) around identityT, truncating the series, and solving for the small transformation
Ṫ, yielding ∑

(u,v)

[
w(u,v)

(
gT

(u,v)ψ̇(u, v)Ṫ + e(u,v)
)]2 = 0. (4)

In this equationgT
(u,v)=∇ I1(u, v) is the image gradient, ande(u,v)= I1(u, v)− I0(u, v) is

the color error. The remaining terms are

ψ̇(u, v)Ṫ = 1

h(u, v)

[
fe1− ue3

fe2− ve3

] 0 Z −Y 1 0 0
−Z 0 X 0 1 0
Y −X 0 0 0 1




α̇

β̇

γ̇

ḃ0

ḃ1

ḃ2


, (5)

where [X Y Z]T is the vector from the center of rotation to the surface point projecting to
image location (u, v):

[X Y Z]T = P(u, v)− c= x0+ h(u, v)

f
(ue1+ ve2+ fe3)− c. (6)

We solve this from the normal equationsAṪ=−b whereA= ∑(u,v) w(u,v)ψ̇(u, v)T

g(u,v)gT
(u,v)ψ̇(u, v) is an 8× 8 matrix andb= ∑(u,v) w(u,v)e(u,v)ψ̇(u, v)Tg(u,v) is an 8-vector.

Ṫ is solved best by applying Cholesky decomposition for positive semidefinite matrices
to A.

SURFACE MODELING FROM RANGE AND COLOR DATA 179

3.2.2. Practical issues.The colored surfaces are created by texturing each range image
with its associated color image. The range images are converted to meshes by connecting
the range maps into dense triangle meshes. We use a heuristic that takes into account both
triangle edge lengths and triangle orientation and removes triangles that are likely to connect
two surfaces across a step edge due to self-occlusion. The dense meshes are simplified to
about 10,000 triangles [20].

In order to calculatėT, we need to come up with values forI1(u, v), h(u, v), g(u,v), and
w(u,v) while the rest are given. The first two we obtain simply by rendering the second
colored surface from the viewpoint of the first camera and by consulting the frame and
z-buffers, respectively. Simple image processing ofI1(u, v) produces an estimate ofg(u,v).
The weightsw(u,v) are determined as follows. Ideally, portions where the surface projects in
I1 are a subset ofI0. We want to evaluate the function only within that subset by setting the
weightsw(u,v) to zero for those pixels ofI0, whereI1 does not contain data. In order to make
the weight function smooth, the pixels well inside the valid range data inI1 have weight
one, while the pixels closer to boundaries have a smaller weight that smoothly diminishes to
zero at the boundary. In our implementation we used a linear feathering ramp whose width
was 20 pixels. The ramp distance was calculated from the boundary using 4-connectivity
(city-block distance), all pixels outside of the boundary obtain zero weight while all other
pixels obtain nonzero weights. The weights can also be used to downweight samples that
are suspected of being less accurate for various reasons. The image alignment is performed
twice, once from each scanner position. The two sets of images are registered separately,
producing two sets of point pairs. This way both views are treated symmetrically, and neither
view prevails over the other.

The basic image alignment method only finds a local minimum for the image registration
error (Eq. (3)). The implementation becomes both faster and more robust when we solve
the problem in a hierarchical fashion. We begin the hierarchical search by building an
image pyramid for the input color. We first register low-resolution versions of the images,
then increase the resolution, and continue the process until the level of resolution of the
input color images is reached. The registration is performed identically at every resolution
level.

3.3. Robust Alignment

Once the color images are aligned most of the point pairs correspond to almost the same
surface point, but we cannot expect that to be the case with all pairs. Points from different
surfaces may be matched, for example, next to step edges or when the views fail to scan
all the visible surface. If we proceed to minimize the sum of squared pairwise distances,
the false pairings will have a large influence on the result. We could try to use various
compatibility thresholds to filter out the bad pairs. However, it is far from obvious how to
automatically choose the thresholds. Instead, we combine Horn’s least-squares point set
alignment method with a robust statistical method.

Masuda and Yokoya [38] have previously used aleast median of squares(LMS) ap-
proach [49] to robustly register noisy views when there is at least 50% overlap between the
views. In the following, we describe our method based on aleast trimmed squares(LTS)
approach [50], which has a better convergence rate and smoother objective function than
LMS. We have also developed a method for determining the percentage of correctly paired
points, so they all can contribute to the final result.

180 PULLI AND SHAPIRO

3.3.1. Least trimmed squares.LTS [50] can correctly fit a function when up to 50% of
the data are contaminated by outliers. In LTS one tries to find a function such that the sum

h∑
i=1

(r 2)i :n (7)

is minimized, where (r 2)1:n≤ · · · ≤ (r 2)n:n are the ordered squared residuals of the function
estimates and the measured values,n is the number of data points, andh determines which
portion of the data needs to fit well to the function. A typical choice forh, when the rate of
outliers in the data is unknown, isn/2. In practice LTS is implemented by randomly selecting
NS data points that (over)determine the function, evaluating Eq. (7) with that function,
storing the function and evaluation, repeating thisNI times, and choosing the function with
the best evaluation. The probability that at least one sampling consists only of inliers is

1− (1− (1− ε)NS)NI , (8)

whereε is the rate of outliers. Assuming over half of the data are inliers, the inlier errors
follow Gaussian distribution, andn is large, one can estimate the standard deviation of the
fit from the median of squared residuals [49]:

s0 = 1.4826
√

r 2
n/2:n. (9)

In our case the estimated function is the rigid 3D transformation that aligns two range
scans. In each iteration,NS paired points are selected and the 3D motion that aligns the
pairs is calculated. The solution is evaluated by applying that motion to the whole data set,
pairing all the points, and summing theh smallest squared point distances. If the current
solution evaluates better than other tries so far, the solution is stored. Note that the set of
point pairs from whichNS pairs are selected does not change forNI iterations.

3.3.2. Better fit using all the inliers.Having obtained an estimate for the registration
using LTS, we try to improve the result by finding a least-squares solution using all good
point pairs. We first apply the best LTS solution, create new point pairs, and estimate the
standard deviation of the inliers using Eq. (9). A least-squares solution is found by using
the pairs that are within 2.5 times the standard deviation of the current fit. In a normally
distributed sample population, over 98% of the samples are within 2.5 standard deviations
from the mean.

If, for example, 80% of the data are inliers, it is far better to sum the 80% smallest squared
residuals when evaluating an LTS trial, rather than only 50% as the basic method advises.
While estimating the standard deviation, we also calculate the percentage of the pairs that are
inliers. We use this estimate in the next round of LTS trial evaluations. In our implementation,
20 rounds of LTS are performed with five point pairs each time. Assuming that 80% of the
paired points correspond to the same surface point, there is a 0.9996 probability of having
at least one round in which all the five pairs are inliers. Note that this 80% is over the point
pairs that project to the same pixel after color image alignment rather than 80% of all range
data. In our experiments the inlier percentage is typically much higher, at least 90%, even
though the surfaces have only 30% of overlap.

The 3D transformation estimate of each round is evaluated by rendering the geometry of
the meshes into thez-buffer and pairing points that project to the same pixel. No 2D image

SURFACE MODELING FROM RANGE AND COLOR DATA 181

alignment is performed. From the viewpoint ofI0, residuals are calculated for all pixels
where a mesh fromI1 is projected. If, however,I0 does not contain valid data on such a
pixel, the residual of the pixel is set infinitely large. The residuals are also calculated from
projectingI0 over I1.

After LTS, a new set of point pairs is formed by rendering the geometries to the
z-buffer and pairing points that fall to the same pixel. The standard deviation of the in-
liers is estimated, and a least-squares solution is found using the point pairs with distance
less than 2.5 standard deviations.

3.4. Multiview Registration

The methods for multiview registration described in Section 3.1.4. use the basic ICP idea
of iteratively pairing points and moving the views closer. One view at a time, points in the
current view are paired with points in the other views, the current view is aligned with the
others, and the process is iterated until convergence. Point correspondence determination is
unreliable when views are not yet in good alignment. But even if accurate correspondences
are determined, the registration will not improve very much if the other views are not
already in consistent alignment. Therefore a large number of iterations are required, and
in each round the point correspondences have to be determined again. Additionally, due to
unreliable pairs, the registration may converge to a local, instead of the global, minimum.

We can significantly accelerate multiview registration if we separate the correspondence
determination and the finding of a consistent global alignment. First, we find a set ofreliable
point pairs between each view and several neighboring views. The set of pairs is then kept
unchanged, and a global registration is determined that simultaneously aligns all the pairs.

We begin by constructing an initial registration via interactive sequential pairwise reg-
istration. The user is given visual feedback of the initial registration by being shown the
subsampled registered range data, surrounded by thumbnails of the color images at the
viewpoint of each sensor, as in Fig. 10. Each view is then registered pairwise with a few
neighboring views. It is of no particular importance which pairwise registration method

FIG. 10. Multiview registration. A global registration is found from reliable point pairs found through pairwise
registration.

182 PULLI AND SHAPIRO

is used, as long as the results are accurate and reliable. Once a pair of views are in good
registration, reliable point pairs are found and only pairs that are very close to each other
are retained. The pairing is done symmetrically from one view to the other.

With the pairwise registrations forming a graph such that every view is connected to every
other view through several paths, the global registration is determined using the stored point
pairs. Stoddart and Hilton [55] and Eggertet al.[17] both developed a method that attaches
imaginary springs to the paired points and simulates a simplified version of the resulting
dynamic system.

Our approach is to modify a traditional ICP successive relaxation procedure, while keep-
ing the point pairs fixed. One at a time, we add views into a set, and while doing so, we
align the new view using only point pairs that connect the view with other views already
in the set. Once all the views have been added, the relaxation process begins. A view is
simultaneously registered with all the views with which it has point pairs. This process is
repeatedly iterated over all the views as long as the registration improves. For data sets con-
sisting of one or two dozen views, the convergence is typically obtained in under a minute.
We also verify registration results by aligning the views simultaneously using a conjugate
gradients method. The final registration error is comparable, though the execution takes
several minutes. Yet even that is dramatically faster than our earlier approach, similar to the
one in [19], which took hours because the costly projection step had to be repeated at every
iteration, and typically hundreds of iterations were required.

4. SURFACE RECONSTRUCTION

Registration brings separate scans into a single coordinate system, yet the registered
scans remain separate until they are processed into a single surface. There are two important
steps in surface reconstruction from range data. The data must beintegratedinto a single
representation, and surfaces must beinferredeither from that representation or directly from
the original data. There does not seem to be a clear consensus as to the order in which these
two steps should be taken.

Several researchers have decided to first approximate each data set as a polygonal mesh
[43, 51, 54, 59]; the individual meshes are then connected to form a single mesh covering
the whole object. Soucy and Laurendeau [54], for example, first divided the range data
into subsets based on which surface regions are visible within each view. In each subset,
the redundancy of the views was used to improve the surface approximation. Finally, the
triangulated non-overlapping subsets were connected into a single mesh.

Other authors [12, 24, 27] chose first to integrate the data into a signed distance function
and then to extract a polygonal mesh using the marching cubes algorithm [35]. Hoppe
et al.’s [27] method was designed to work with arbitrary point clouds. They first estimated
local tangent planes to each data point, and then propagated the tangent plane orientations
over the whole data set. The distance of a 3D point is evaluated as the distance to the
closest tangent plane, where the distance is positive if the point is above the plane, negative
otherwise. Ideally the zero set of the distance function would follow the object surface.
However, the local tangent plane estimation phase smooths the signed distance function.
Hoppeet al. later improved the results by fitting the mesh better to the original data [28].

Curless and Levoy improved the distance function estimation for the case that the input is
structured in the form of a set of range maps [12]. They defined a volumetric function based
on a weighted average of signed distances to each range image. Their scheme evaluates this

SURFACE MODELING FROM RANGE AND COLOR DATA 183

FIG. 11. An example where the old method for obtaining initial surface with correct topology fails. (a) The
registered point set (data courtesy of Patrick Flynn of WSU). (b) The result from using the method by Hoppeet al.
[27]. (c) The result from our method.

volumetric function at discrete points on a uniform 3D grid and uses these discrete samples
to determine a surface that approximates the zero set of the volumetric function. Like that of
Hoppeet al., their scheme may fail to detect features smaller than the grid spacing and has
difficulties with thin features. However, their use of space carving (throwing away regions
known to lie outside the object) makes the approach much more robust. The signed distance
function is evaluated at a fixed, very fine resolution, and the output of the marching cubes
algorithm is used as the final result.

We originally used the method of [27] to obtain an initial mesh, which we then simplified
and improved the fit to the original data using the methods of [28]. The initial mesh algorithm
does not require any knowledge (such as viewing directions) aside from the data points
themselves, and works quite nicely if the data do not contain outliers and uniformly sample
the underlying surface. Unfortunately real data often violate both of those requirements.
Figure 11a shows the eight registered range maps of a toy chair. Although most of the
outliers and background data points were interactively removed from the data sets prior
to initial mesh estimation, many outliers remain, especially around the spokes of the back
support; some data were missing, and the data were not uniform enough for the algorithm
to produce a topologically correct result (see Fig. 11b).

We decided to abandon Hoppeet al.’s [27] method and create a more robust method that
produced the result shown in Fig. 11c. Like Curless and Levoy, we use the idea of space
carving. However, we use a hierarchical approach that saves storage space and execution
time, and we do not attempt to directly obtain the final result. Instead, we concentrate on
capturing the object topology as correctly as possible given the input data. Additionally,
we use only robust methods such as interval analysis [53] that enable us to recover thin
objects that are typically difficult to model using the signed distance function approach.
We keep the mesh optimization method of [28] since for our purposes we typically want a
mesh that is both accurate and concise. Typically one-pass methods such as [12] can only
produce meshes that are either dense or not very accurate. Mesh optimization first improves
the accuracy and can also simplify the mesh drastically with little sacrifice in accuracy.

184 PULLI AND SHAPIRO

In the rest of this section we describe our hierarchical space carving method for determin-
ing the object topology and creating initial meshes. We also briefly describe some results of
using the mesh optimization algorithm of Hoppeet al.[28], and conclude with a discussion
of results and various properties of our method.

4.1. Hierarchical Space Carving

Our method has the following assumptions. The data are assumed to be a collection of
registered range maps acquired from various viewpoints around the object. The data must
be obtained using some line-of-sight method, so that every straight line between a data
point and the sensor lies entirely outside the object. Finally, the calibration parameters of
the sensor must be known in the sense that any 3D point can be projected to the sensor’s
image plane, or equivalently, the correspondences between 3D lines and pixels on the image
plane are known. If the calibration parameters are not known beforehand, it is often possible
to estimate them directly from the known correspondences between 3D points and their 2D
image coordinates. For example, in the case of the data set in Fig. 11, we did not have the
calibration parameters but estimated them using Tsai’s method of camera calibration [58].

4.1.1. Space carving.The idea of space carving is illustrated in Fig. 12. In Fig. 12a
there is a working volume, and the object we are trying to reconstruct is only known to
be somewhere inside of it. Figure 12b shows a scanner and its viewing cone. The left and
bottom sides of the object are visible to the scanner; therefore the volume between the
scanned surface and the sensor can be removed. If there are data from the background in
addition to the object, even more of the unknown volume can be removed. Figure 12c shows
how another view carves more space away.

In the end a connected volume that closely approximates the object is left. An approxi-
mation of the object surface can be obtained by extracting the boundary between the space
that was carved away and the volume that remains. The resulting surface estimate can have
arbitrary topology; i.e., the object can have any number of holes, yet the surface itself is
without boundaries or holes, even when some of the object surface was not scanned. In
general, the resulting surface is the one with maximum volume such that the model is still
compatible with all of the scanned data. Figure 12c shows a situation where the whole top
side of the object remained unseen by the scanner. Nevertheless, the gap in the input is filled
by a plausible solution that is not far from the true surface.

FIG. 12. The idea of space carving. (a) The working volume contains an object. (b) A scan can prove some
of the volume lies outside the object. (c) More scans remove more space, but the object remains.

SURFACE MODELING FROM RANGE AND COLOR DATA 185

FIG. 13. The three cases of the algorithm. (a) The cube is in front of the range data. (b) The cube is entirely
behind the surface with respect to the sensor. (c) The cube intersects the range data.

4.1.2. Carve a cube at a time.Our algorithm discretizes space into a collection of cubes
or voxels and processes them one at a time. Figure 13 illustrates how the status of a single
cube with respect to a single view is determined:

• In case (a) the cube lies between the range data and the sensor. Therefore the cube
must lie outside of the object and can be discarded.
• In case (b) the whole cube is behind the range data. As far as the sensor is concerned,

the cube is assumed to lie inside of the object.
• In case (c) the cube is neither fully in front of the data nor behind the data, in most

cases because it intersects the range map. The cube is assumed to intersect the object surface.

The cubes are labeled as follows. The eight corners of the cube are projected to the
sensor’s image plane, where their convex hull forms a hexagon. The rays from the sensor to
the hexagon form a cone, which is truncated so that it just encloses the cube (see Fig. 14a). If
all the data points projecting onto the hexagon are behind the truncated cone (i.e., are farther
than the farthest corner of the cube from the sensor), the cube is outside the object. If all
these points are closer than the closest cube corner, the cube is inside the object. Otherwise,
we have the boundary case. Areas for which range data is missing are treated as points that
are close to the sensor. If the data have been preprocessed so that parts of the range maps
were labeled as background, the background points are treated as being infinitely far away
from the sensor.

Multiview rules:
any view says out

=> cube is out
all views say in

=> cube is in
else

=> cube is at
 boundary

b

FIG. 14. (a) An octree cube and its truncated cone. The arrow points to the sensor. (b) Multiple cubes and
sensors.

186 PULLI AND SHAPIRO

Figure 14b illustrates the situation in which the whole working volume has been tes-
sellated into cubes and the scene has been scanned from several viewpoints. The cubes
are processed independently from one another. Each cube is labeled with respect to all the
views using the following rules. Determining that a cube is outside of the object is conclu-
sive evidence; therefore it is enough for a single view to label a cube as outside to remove
it. We can only indirectly infer that a cube is inside the object, and then only if every view
agrees. If one more view were available, that view might indicate that the cube is really
outside the object or on its boundary, but without that view we can only assume the cube
is inside. Again, if a cube is neither in nor out, it is labeled as part of the object boundary.
The implicit surface corresponding only to the observed data will then be the surface of
minimum volume. The bias toward range points that are behind others is corrected during
mesh optimization.

4.1.3. Hierarchical approach. A fixed partitioning of space suffers from a tradeoff
between accuracy and efficiency. With large cubes the object cannot be modeled accurately.
Using small cubes gives better results, but requires much more work. However, if we take
a hierarchical approach using octrees, large chunks of space can be quickly ruled out and
our efforts can be concentrated close to the surface.

Figure 15 illustrates the hierarchical space carving approach for the chair data set. Initially
a large cube surrounds the data. Since by definition it intersects the data, it is immediately
subdivided into eight smaller cubes, which the algorithm tries to label as being outside
the object. In Fig. 15 none of these eight smaller cubes is carved away. At the next level
a number of cubes are discarded. The remaining volume shrinks closer and closer to the
actual surface until finally, in this case after seven subdivisions, we are left with a relatively
accurate approximation to the chair, with the correct topological structure.

In thissimultaneous processingorder, the whole octree is traversed once, and the consen-
sus of all the views is used to label each cube. Another possibility issequential processing,
where the algorithm hierarchically processes one view at a time, building on the results
of the previously processed views. Sequential processing can be used to integrate a new
view into a previously processed octree. The algorithm recursively descends the octree
and performs the occlusion test for each cube that has not been determined to lie outside
of the object. If the new view indicates that a cube is outside, the cube is relabeled and
the subtrees below it are removed. Similarly, a boundary label overrides a previous inside
label, in which case the cube’s descendants have to be recursively tested, potentially to the
maximum subdivision level.

FIG. 15. Hierarchical carving of cubes.

SURFACE MODELING FROM RANGE AND COLOR DATA 187

Although both processing orders produce the same result, the simultaneous processing
order is in general faster [56]. In sequential processing the silhouette of the object creates a
visual cone (centered at the sensor) that separates volumes known to be outside from those
speculated to be inside. The algorithm would then have to recurse to the finest subdivision
level to accurately determine this boundary. In simultaneous processing, however, another
view could determine at a rather coarse level of subdivision that at least part of that boundary
is actually outside the object, and the finer levels of the octree for that subvolume need never
be processed.

The sequential processing approach has a different kind of advantage. Since we only
need to store the data from a single view at a time, this approach scales better when there
are a large number of views of the same object. If we have dozens or even more views,
we can use a hybrid between the sequential and simultaneous approaches. First, choose a
small subset of the views (8–12) from different sides of the object. The subset is processed
using the simultaneous approach, and most of the excess space is carved away. The first set
of views is discarded, and a new subset is selected and processed using the current model,
until all the views have been processed.

4.1.4. Mesh extraction.The labeling of the octree nodes divides the space into two
sets: the cubes that are known to lie outside the object and the cubes that are assumed to
be part of the object. Our surface estimate will be the closed boundary between these sets.
This definition allows us to create a plausible surface even at locations where no data are
obtained. The boundary is represented as a collection of vertices and triangles that can easily
be combined to form a mesh.

The octree generated by the algorithm has the following structure: outside cubes and inside
cubes do not have any children, while the boundary cubes have a sequence of descendants
down to the finest subdivision level. To generate a surface representation, we traverse the
octree starting from the root. At an outside cube we do not need to do anything. At a
boundary cube that is not at the finest level, we recursively descend to the children. If we
reach the maximum subdivision level and the cube is either at the boundary or inside, we
check the labelings of the cube’s six neighbors. If a neighboring cube is an outside cube,
two triangles are created for the face they share. In an inside cube that is not at the maximum
subdivision level, the algorithm checks whether it abuts an outside cube, and if so creates
enough triangles (of the same size as the ones created at the finest level) to cover the shared
part of the face.

4.2. Mesh Optimization

The hierarchical space carving algorithm produces a mesh that is not a very good ap-
proximation for the object surface. The mesh is dense, and the orientations of the mesh
faces suffer from severe quantization as they are strictly aligned with the coordinate axes.
However, the mesh is a proper 2D manifold and its vertices are relatively close to the object
surface, so it serves as an excellent starting point for nonrobust optimization methods.

The mesh optimization method we adopted is described by Hoppeet al. [25, 28]. The
approach tries to fit the initial mesh to a set of unorganized points, while at the same time
simplifying the structure of the mesh. Clearly these two goals are conflicting: the more
faces there are in the mesh, the more accurately the data can be approximated. However,
a concise surface description is faster to operate on, to transfer, and to display. A practical
goal is therefore a compact but still fairly accurate mesh.

188 PULLI AND SHAPIRO

FIG. 16. (a) Point cloud of toy dog. (b) Initial smoothed mesh created by hierarchical space carving, 49,316
faces. (c) A simplified mesh, 576 faces.

Figure 16 shows a typical mesh optimization sequence using the method presented above.
We start with a point cloud (Fig. 16a) and a dense initial mesh (Fig. 16b) created by
our hierarchical space carving algorithm. Figures 16c–16f show four snapshots from the
optimization process. The above method requires the setting of a representation penalty,
which is increased monotonically during the iteration, as well as a spring constant. In this
example the spring constant seems to have been too low for this noisy data at first, resulting
in a roughly chiseled mesh. At later iterations higher spring constants and representation
penalties yield a concise but accurate model of a toy dog.

4.3. Discussion

Our work is not the first to use octrees for hierarchical processing of the working volume.
Szeliski [56] constructed octree bounding volumes of objects from silhouettes extracted
from intensity images. Each silhouette forms a cone centered at the corresponding camera,
and the resulting model is the intersection of these visual cones. In the limit (with infinite
number of input images) the resulting model is called the line hull. The objects do not have
to be convex for this technique to work; some holes can be recovered. However, only surface
locations that are part of the silhouette from some viewpoint can be modeled accurately,
so indentations and locations where both the principle curvatures are negative cannot be
recovered. Connolly [10] created octree models from range maps taken from arbitrary
viewpoints. Each range map is converted to a quadtree, and the quadtrees are transformed
into the octree coordinate system and then assimilated into an octree model of the object.
The algorithm projects four rays for each quadtree node through the octree, clearing octree
nodes along the way. Since the level of octree nodes is the same as the level of the quadtree
node, the hole that is carved is jaggy and larger than it should be. The carving could be made
more accurate by performing it at a finer level of resolution, but then the processing would
become more costly, and it would become more difficult to guarantee that all the cubes
that should be removed are removed. Chienet al. [9] tried to address these problems by
creating range quadtrees from six orthogonal viewing directions and intersecting them into a
volumetric octree model. Although the quadtrees conform much better to the structure of the
octree, there is a large class of objects that cannot be modeled using this approach, including
objects with at least two holes that are not perpendicular to each other. Our approach of
projecting subvolumes onto range images is a much more robust method; it eliminates the
deficiencies of Connolly’s without introducing the restrictions of Chienet al.’s approach.
Other works that use a principle similar to ours include [33, 57]. A recent paper by Kutulakos

SURFACE MODELING FROM RANGE AND COLOR DATA 189

TABLE 1

Statistics for the Chair Data Set

Levels: 2 3 4 5 6 7 8
Nodes: 73 217 649 2377 9393 41201 190441
Faces: 74 128 422 1372 5152 18446 71038
Seconds: 0.1 1.2 0.8 1.7 6.0 26.1 121.1

Note.For example, at level 5 the octree contained 2377 nodes, the boundary between the
object and free space was 1372 faces, and it took an additional 1.7 s to process from level 4.

and Seitz [31] formally studies space carving and combines basic shape-from-silhouettes
[56] with ideas from shape-from-stereo and shape-from-shading. Their method does not
require explicit range data, requiring instead a set of calibrated color images with known
poses and that the scene radiance follow a locally computable model such as Lambertian
reflection.

In the rest of this section we discuss some execution statistics, the connection between
our approach and interval analysis, how our method deals with thin objects, and how it is
affected by noisy input data.

4.3.1. Execution statistics.Table 1 summarizes some execution statistics for the chair
data set. It shows the number of octree nodes, the number of square faces between the
outside cubes and the others, and execution times for subdivision levels 2 through 8. The
timings were obtained using an SGI O2 with a 175-MHz R10000 processor, and they show
the incremental extra time it takes to process a level given that all the data were already
processed up to the previous level. From these results we can make several observations.
First, the execution times are fast enough to allow interactive selection of a suitable process-
ing resolution, balancing the competing goals of correct recovery of object topology and
conciseness of the representation. Second, the size of internal data structures, output, and
execution times all grow exponentially as powers of (approximately) four. The theoretical
reason for this is quite obvious. Each increase in level causes the octree cells to be bisected
in three orthogonal directions, so the number of cells grows by a factor of 23= 8. However,
the object surface is a 2D manifold embedded in 3D, so the number of cells that intersect
the surface grows only by a factor of 22= 4. The fact that time and space requirements grow
approximately by factors of four demonstrates that the algorithm automatically concentrates
its efforts close to the surface. There is a seeming anomaly in the timing for level 3. The
probable reason is that at the coarse levels the cubes’ projections onto the sensors’ image
planes cover a large area, so the inside/outside labeling of the cubes takes a long time.

4.3.2. Interval analysis. Our guideline in surface reconstruction was to avoid nonrobust
techniques such as averaging as much as possible. Instead, we propagate and manipulate
constraints into more useful forms that allow robust estimation of the object surface topology,
while we leave the accurate fitting of a concise surface representation to the data to a later
stage. The space carving method that we use to robustly determine surface topology is a
particular instance of a general technique called interval analysis.

Interval analysis [53] takes a conservative approach for determining function values. Let
us assume that we want to plot a functionf (x), and we do not know the actual values, but we
can somehow deduce the minimum and maximum valuesf attains within a given interval.
Rather than plotting some approximation off , we can plot a block covering all the possible

190 PULLI AND SHAPIRO

values within the bounding box. Or, if we can obtain better bounds forf within a shorter
interval, we can subdivide the original interval into shorter segments. Thus, interval analysis
allows us to narrow down the interval within which the function value lies by eliminating
the impossible intervals, ideally converging arbitrarily close to the actual value.

In our reconstruction algorithm we use interval analysis to determine binary function
values that indicate whether a point in a volume is inside or outside an object. We partition
space into regions (cubes) and conservatively determine for each region whether it lies
completely inside, completely outside, or neither. Using recursive subdivision, we efficiently
prune large regions of space away from the object boundary, and focus both computation
and storage on the spatial region of interest, that is, the region next to the surface.

4.3.3. Thin objects. Some methods that employ signed surface distance functions are
unable to correctly reconstruct thin objects. Curless and Levoy [12], for example, build a
distance function by storing positive distances to voxels in front of the surface and negative
distances to voxels behind the surface. In addition to distances, weights are stored to facilitate
combining data from different views. With this method, views from opposite sides of a thin
object interfere and may cancel each other, preventing reliable extraction of the zero set of
the signed distance function.

In the case of a thin sheet of paper, our algorithm would construct a thin layer of octree
cubes (voxels) straddling the paper by carving away the space between the sensor and the
object but leaving the voxels that intersect the object, creating a shell around the surface.
This is illustrated in Fig. 17a. Note, however, that our method can fail in the presence of
measurement noise and registration error if the minimum cube size is set too small, as
illustrated in Fig. 17b. Due to a registration error the indentation on the light gray view
penetrates in front of the darker view, and vice versa. This causes too many cubes to be
carved away, creating a hole. This example shows that in order to correctly reconstruct thin
objects, the minimum size for the cubes should be larger than the sum of the registration
error, the range sampling error, and the sampling density.

4.3.4. Effects of noise.One of the benefits of the space carving approach is that it
automatically removes most of the outliers in the input data. Suppose that our first view
contains some outlier data points that fall outside the object. Because we have only a
single view, our algorithm first labels the cubes containing the outliers as lying on the
object surface. However, if from the perspective of another view one of these cubes lies
in front of the object (or even background), the cube is removed, thereby eliminating the
corresponding outlying data. This may also happen if the outlying point is a valid data

FIG. 17. A thin sheet seen from the left (light gray) and right (dark gray) is reconstructed correctly in (a). In
(b) registration error and small cube size combine to cause a hole.

SURFACE MODELING FROM RANGE AND COLOR DATA 191

point from the background instead of an erroneous range measurement. Suppose that the
views were obtained by reorienting the object in front of a stationary scanner and that the
views have been registered into a common coordinate system using a subset of the surface
points. Now the background moves relative to the object from view to view, and in general
the background data in one view can be identified by another view and labeled as such or
removed altogether.

Outliers that lie behind the surface as seen from the scanner can be damaging, since
they could cause our algorithm to incorrectly carve away a piece of the object. For several
reasons, this has not been a problem for us. Most outliers we have observed either belong
to other objects in the background or appear around the silhouette edges of the object. We
use background data to carve the space around the object more efficiently, and outliers at
the object boundaries do not cause deep holes to be carved into the object.

Noise still remains a problem for the mesh optimization phase. However, using the initial
mesh we can first eliminate input points that are too far from the mesh, as they are likely to
be outliers.

5. VIEW-DEPENDENT TEXTURING

Our scanner obtains color images along with range data, and in Section 3 we described
how we use the color information to aid in obtaining correct 3D registration. Our surface
reconstruction method did not use color information, but we want to be able to associate
the input color with the resulting surface models. Although the coarse polygon mesh in
Color Plate 2 (left) is recognizable as a toy dog, the textured model in Color Plate 2 (right)
almost completely hides the polygonal nature of the underlying surface representation, and
the intricate fur texture gives an impression of very detailed geometry.

Instead of statically associating a single color with each surface location, we useview-
dependenttexturing to dynamically project color onto the surface depending on the current
viewpoint. View-dependent texturing was initially used inimage-based renderingsystems
[6, 22, 32, 41], some of which do not use any geometric information, but it is also increasingly
being used to texture map geometric models [15, 39, 42, 47].

View-dependent texturing using several existing color images is really an interpolation
problem. When rendering an image of the surface model with colors, we think in terms of
(inverse) rays of light that propagate through pixels on the image plane and intersect the
surface model. When determining the color for the ray–surface intersection, we first have to
identify the images that potentially may see that location. We then must identify the pixels
within those images that we need. Finally, input color values from several images have to be
blended together. The following three subsections describe how we solve these problems in
order to determine the color of a given pixel in the output image. We then explain how we
can obtain real-time renderings using these techniques, present some results, and conclude
with a discussion. A more detailed description comparing this and an alternative view-based
rendering method can be found in [47].

5.1. Choosing Views

In principle, any camera view that sees the same surface point as visible through a viewer
pixel could contribute to the color of that pixel. However, views with viewing directions far
away from that of the virtual camera should not be used if closer views are available. Oth-
erwise, self-occlusions become much more frequent, so only a small portion of the surface

192 PULLI AND SHAPIRO

FIG. 18. (a) A Delaunay triangulation of the unit sphere is computed for the vertices corresponding to the
viewing directions of the input images. The triangle (i , j , k) containing the viewing direction of the virtual camera
determines the three views used to search for candidate rays. (b) Although viewl is closer to the current viewing
direction, viewk is a better choice.

is likely to be visible both to the viewer and to the distant view, if any. Additionally, small
errors in registration, camera calibration, and surface reconstruction lead to larger errors in
backprojecting surface points to the color images. In our system we only search for matching
pixels from three input images that have been taken from nearby viewing directions.

To facilitate the selection of suitable views, the views are organized as illustrated in
Fig. 18a. Vertices corresponding to each of the viewing directions of the input images are
placed on a unit sphere, and a Delaunay triangulation of the sphere using those vertices is
computed. To begin rendering a frame, we determine the viewing direction of the viewer
and place a corresponding vertex on the unit sphere as shown in Fig. 18a. The triangle
containing that vertex determines the three views within which candidate rays for the surface
points visible to the viewer will be sought. Note that these views are not always the three
closest views, although the closest one is guaranteed to be among the three. For example,
in Fig. 18b viewl is closer to the current view direction than viewk. However, viewk is
preferred becausei, j , andl all lie to one side of the current view. If there is some part of
the surface visible to the viewer but occluded in viewsi and j , that location is more likely
to be visible in viewk than in viewl .

5.2. Finding Compatible Rays

The first task in determining the color of a particular pixel in the viewer image is to locate
the point on the object surface that is visible through that pixel. Color Plate 3a illustrates this
problem by showing a ray through one of the viewer’s pixels ending at its first intersection
with the object surface.

There are two straightforward ways in which graphics hardware can be used to determine
the surface point visible through a given pixel. The method we have chosen to implement
(and the one taken by Gortleret al. [22]) is illustrated in Color Plate 3b. First, we calculate
the axis-aligned bounding box for the triangle mesh representing the object. We then scale
and translate the coordinates of each vertex so that the bounding box is transformed to a
cube with unit-length sides. Now we can encode thex, y, andz coordinates of each vertex
in the red, green, and blue components of its color, so that when the mesh is rendered in the

SURFACE MODELING FROM RANGE AND COLOR DATA 193

viewer, we get an image like the one in Color Plate 3b. Within each triangle, the graphics
hardware interpolates the color, and therefore also the encoded surface location. The surface
location visible through a pixel is then given by the pixel’s color.

The method described above can only be applied directly to polygonal surface represen-
tations. For a more general technique, we could read in the depth buffer after rendering the
untextured surface, and convert each depth value to the corresponding 3D point using the
known projection and viewing transformations. However, this approach requires over four
times as many basic operations (multiplications, divisions, and additions).

Once we have determined the surface point corresponding to a viewer pixel, we obtain
candidate rays by projecting that point back to the input images. For example, the viewer
pixel marked by the arrow in Color Plate 3b corresponds to a point on the dog’s snout,
which projects back to the dots in the three images in Color Plate 3c. To perform these
projections, we need to know each camera’s internal and external parameters. In our case, the
camera calibration procedure used for obtaining depth from stereo determines the internal
parameters of the camera; the external parameters for each view are obtained by registering
the range maps into a common coordinate system.

Not all the candidate rays obtained through backprojection should be accepted. Due to
self-occlusion the surface point may not be visible in a given image. We can detect this if we
retain the original range maps for each camera. For example, we can calculate the distance
from the surface point to the camera and compare it to the range map value for the pixel to
which the point projects. If these distances differ significantly, we reject the ray.

5.3. Combining Rays

The colors of the compatible rays are averaged together via a weighting scheme that uses
three different weights:directionalweight,sampling qualityweight, andfeatheringweight.

The task of the directional weight is to favor rays originating from views whose viewing
direction is close to that of the virtual camera. Not only should a view’s weight increase as
the current viewing direction moves closer, but the other views’ weights should decrease,
leaving only the closest view when the viewpoints coincide. Because we use three input
views forming a triangle containing the current view, it is natural to choose as weights the
barycentric coordinatesof the current view with respect to the others. We radially project
the vertex of the current view direction onto the planar triangle formed by the surrounding
three views (i.e., the triangle is intersected by a line passing through the point and the
center of the sphere). The directional weight of each of the three input views is given by
the corresponding barycentric coordinate of the projected point.

The sampling quality weight directly reflects how well a ray samples the surface. We
assign to each ray/pixel of each input image a weight that is defined as the cosine of the
angle between the local surface normal and the direction from the surface point to the sensor.
This weight is illustrated in Fig. 19b for a view of the toy dog (the higher the intensity, the
higher the weight).

The feathering weight is used to hide artifacts due to differences in lighting among the
input images and other view-dependent differences. Without the feathering weight, the
boundaries of the input views become noticeable because a view contributes to pixel colors
on one side of a silhouette edge but not on the other. As illustrated in Fig. 19c, the feathering
weight is zero outside the object, and it grows linearly to a maximum value of one within
the object.

194 PULLI AND SHAPIRO

FIG. 19. (a) A view of a toy dog. (b) The sampling quality weight. (c) The feathering weight.

5.4. Precomputation for Runtime Efficiency

In principle, the directional weight changes for each pixel. However, in order to accelerate
the implementation, we choose three input images for all the pixels of a given frame using
the general viewing direction (the direction of the optical axis) as the direction of the ray.
Similarly, the directional weight of each input image is calculated once for a frame and is
the same for every pixel. Of course, in a 3D viewer, if the viewpoint changes, the input
images and directional weights are recalculated.

On the other hand, the sampling quality and feathering weights depend only on the input
data and are not functions of viewpoint. Therefore they remain constant, so we can determine
them in advance and store them in a lookup table. We preprocess each pixel of each image
by calculating these two weights and storing their product in the alpha channel of a pixel,
where it is readily accessible.

A large part of the viewer’s processing time is spent projecting object surface points
onto input images. We speed this up by preprocessing the input images (along with associ-
ated information such as the weights and range data) to remove the radial lens distortions
beforehand, so that only perspective projection remains for runtime.

5.5. Results

Our approach does not require hardware texture mapping, yet we can display complex
textured models at interactive rates (5 to 6 frames per second on a 175-MHz SGI O2).
The only part of the algorithm that uses hardware graphics acceleration is the rendering of
z-buffered Gouraud-shaded polygons to determine which points on the object surface are
visible in each frame. The algorithm can be easily modified to work with arbitrary surface
descriptions by finding the visible surface points using thez-buffer instead of rendering
triangles colored by location.

5.6. Discussion

5.6.1. Related work.The following four works inspired us to think about view-based
texturing in terms of finding and blending rays. Chen [5] and McMillan and Bishop [41]
modeled environments by storing the light field function around a point. The rays visible
from a point are mapped to a cylinder around that point, and new horizontal views are created
by warping a portion of the cylinder to the image plane. Both systems allow rotations about
the vertical axis, but they do not support continuous translation of the viewpoint. Levoy

SURFACE MODELING FROM RANGE AND COLOR DATA 195

and Hanrahan [32] and Gortleret al. [22] developed image synthesis systems that use
a 4D slice of the light field and that support continuous translation and rotation of the
viewpoint. In both systems, new images are synthesized from a stored grid of 2D images
by an interpolation procedure, but Gortleret al. use additional geometric information to
improve on ray interpolation. One advantage of these methods over surface reconstruction
techniques is that they can capture the appearance of any object regardless of the complexity
of its surface. The main disadvantage is the difficulty of storing and accessing its enormous
representation.

Debevecet al. [14, 15] developed a system that fits user-generated geometric models
(blocks, arcs, etc.) of buildings to digitized images by interactively associating image fea-
tures with model features and adjusting model parameters to fit the images. View-dependent
textures are applied to the buildings by projecting the color images onto the geometric model.
If more than one image projects to the same location, images taken from view directions
close to that of the virtual camera are weighted more heavily, but the exact weighting func-
tion is not described. A blending weight is used close to the boundaries in the input data;
our feathering weight performs the same function. Although Debevecet al. mention the
importance of taking image resolution or sampling quality into account, they leave that for
future work.

There are a number of articles related to our work that focus not on the display of scanned
objects, but rather on the rapid rendering of complex environments [6, 13, 36, 40, 52]. The
idea is to trade unbounded scene complexity for bounded image complexity.

5.6.2. Geometry vs sampling density.One of the key motivations for our approach was
to study how one can trade off geometry and color sampling density. A pure image-based
approach such as light field rendering [32] requires a very dense sampling of the light
field in order to provide realistic images from arbitrary view directions. The sparser the
sampling of the color images, the more blurring there is, as the aperture of the camera has
to be increased to avoid aliasing artifacts. For most surfaces the light field function changes
smoothly directionally, which may enable the light fields to be drastically compressed.
First, we would argue that knowing even approximate geometry can make this compression
easier and perhaps more efficient. Second, if one can acquire both color and range data,
view-dependent texturing can provide this compressed form of light fields directly from a
sparse input set.

6. SUMMARY AND FUTURE WORK

In this paper, we have presented a complete system that begins with scanning both the
geometry and color of real objects and finally displays realistic images of those objects
from arbitrary viewpoints at interactive speeds. In the following subsections we summarize
our data acquisition system and the methods for registration, surface reconstruction, and
view-dependent texturing. After each summary, we discuss possible related future work.

6.1. Data Acquisition

We have built an active stereo camera system that scans both the geometry and the color
of an object. Our system solves the correspondence problem by the use of active lighting;
i.e., we project a moving vertical light stripe onto the surface. From corresponding image
locations we calculate 3D point samples on the object surface.

196 PULLI AND SHAPIRO

Traditional methods for locating the center of the light stripe bias result in discontinuities
of the surface, its orientation, and its color. For scanners that sweep the light stripe at a
constant rate across an object, it is possible to accurately track the motion of the stripe and
infer location more reliably from the estimated motion. The incorporation of spacetime
analysis [11] significantly improved the quality of our range data.

6.1.1. Future work: continuous surface digitization.1 Rather than discretely finding
for each pixel the corresponding pixel on the other images, even if that could be done in
subpixel accuracy, one could try to fit a piecewise continuous surface to the timespace data
of each camera. This surface is a height field over the image, where the “height” is the
time. The center of the beam in thei th image would then be the piecewise continuous
intersection curve of that surface and a plane that is the constanti over the whole image.
One could then imagine taking such curves from two cameras, extending the curves in the
camera images into 3D surfaces using the camera calibration data, and intersecting the 3D
surfaces. The intersection curve lies on the object surface. This way, instead of digitizing
discrete surface points, we could digitize piecewise continuous curves on the surface. We
could further extend this approach to digitize piecewise continuous surfaces: project the
isocontour curves into 3Dcontinuouslyin time, intersect the projection surfaces, and create
a piecewise continuous surface in 3D parameterized by the image rows of one of the cameras
and the time.

6.2. Registration

Most registration methods assume an approximate initial registration, which is then iter-
atively refined until the process converges. Typically scanned points in one view are paired
with points in another view, using various heuristics so that the paired points correspond to
the same surface points. With those pairs the surfaces can be moved closer together, and the
hope is that the point-pairing becomes easier and more reliable. We have developed a better
point-pairing method that simultaneously establishes all the correspondences between the
two scans by projecting the colored geometry onto the scanner image plane, moving one
of the scans until the color images align, and pairing surface points projecting to the same
point on the image plane. The range data are then moved closer using a robust statistical
regression method. This approach pairs most points with their true corresponding points in
the other view and typically reaches the final accuracy in a single iteration, while traditional
methods take much longer and may even produce inferior results.

When a large collection of views are simultaneously registered, the correspondence
problem becomes even more severe. Our solution begins with registering each view with
several neighboring views in a pairwise fashion. After a view has been registered with respect
to another view, it is easy to find corresponding points simply using spatial proximity. The
established pairings are stored, and finally the registration transformations for all the views
are found simultaneously using the stored point pairs.

6.2.1. Future work: extend the image alignment phase.Our current method first aligns
the color data of two scans so that a reliable point correspondence can be determined,
followed by geometry alignment using those correspondences. Instead of performing the
registration in two steps, we could use the range data of both the views to move one of the

1 This idea came about in a discussion with Brian Curless.

SURFACE MODELING FROM RANGE AND COLOR DATA 197

meshes so that both the color data and the height fields are aligned, along with any other
functions associated with the surface (such as normal vectors). This way we could minimize
at the same time a weighted combination of color and geometry rather than iterate between
the two subproblems.

6.3. Surface Reconstruction

The most difficult part of surface reconstruction is to correctly determine the connectivity
of the surface. If we are first given a rough estimate of the surface with fixed topology, the
problem becomes a much easier function estimation problem. We developed a hierarchical
space carving algorithm that is robust in the case of missing and noisy data. The algo-
rithm partitions space into an octree and hierarchically labels it to be inside, outside, or
on the object boundary. Finally, it extracts the boundary between the outside cubes and all
the other cubes. The result is an approximate surface close to the actual surface. The sur-
face is a proper 2D manifold; possible holes due to missing data are filled with a plausible
surface.

The initial mesh that we construct using our hierarchical space carving algorithm is a
starting point to obtain a mesh that more closely fits the data and is as sparse as possible,
while still being able to closely approximate the object. We use the Hoppeet al. [28]
algorithm for the mesh optimization. The method iterates between modifying mesh vertex
locations to better fit the mesh to the data and stochastically simplifying the mesh.

6.3.1. Future work: increase geometric accuracy.Our space carving method produces
a blocky surface, as each face can only be parallel or perpendicular to the neighboring faces.
We could post-process the resulting mesh to better conform to the data by projecting the
mesh vertices into the data. We could in fact use the same weighting scheme that Curless
and Levoy used. The difference is that they first estimated the surface distance function and
then extracted the surface. In our case the mesh is extracted first, and now we can better
deal with thin surfaces: all we have to do is to make sure that the vertices are not positioned
so that the surface self-intersects.

6.4. View-Dependent Texturing

The visual appearance of an object is determined not only by its geometry, but also
by the surface color and texture. The less uniform the color, the more important role it
typically plays. We have two reasons to use view-dependent texturing, where the texture
used to determine the color changes depending on the viewing direction, rather than static
texturing, where each surface element has exactly the same colors independent of the
viewing direction. The first reason is that the scanned data is view dependent: the accuracy
and sampling density of both geometric and color data depend on the relative orientations
of the surface and scanning direction. The second and more important reason is that we
can use view-dependent texturing to compress geometry. The original surface may contain
fine detailed geometry and thus appears different when viewed from different directions.
Even if our approximation does not directly capture that fine geometry, we can capture its
appearance using view-dependent texturing.

Our method for view-dependent texturing of reconstructed surfaces using color images
in essence projects a few color images onto an approximate surface model. In practice,
the projection starts from the virtual viewer where a ray is projected from the viewpoint

198 PULLI AND SHAPIRO

through a pixel. The ray is intersected with the surface model, and the intersection point is
projected back to the color images, producing a candidate color from each image for the
original pixel in the viewer. The candidate colors are blended using weights that depend on
how closely the viewing direction of a color image matches that of the virtual viewer, how
well the candidate pixel samples the surface, and how close the candidate pixel is to the
object silhouette. The method integrates the geometric data in 3D and then projects color
data onto the image using the geometric model.

6.4.1. Future work: relighting. Our view-based texturing approach can only be used to
view objects in the lighting conditions that prevailed when the color images were obtained.
It is possible to extend our method to allow relighting of the object in different illumination
conditions. The idea is to store a reflectance distribution function in place of a color for
each pixel of each input image.

A practical setup would require arranging several light sources at various known positions
around the working volume of the scanner. First, the object geometry is scanned once.
Then, without moving the object or the cameras, several color images are taken, each under
different known lighting conditions. From this information, we can estimate a unidirectional
reflectance distribution function for each pixel. The distribution gives the observed radiance
as a function of wavelength and the direction of the incoming light. Some results using
synthetic models and lighting are reported by Wonget al. [62].

In our current method, the color value of a contributing image ray is determined by looking
up a stored RGB value. The only difference in the proposed method would be to change
that lookup to an evaluation of the reflectance function associated with the ray. Notice that
this approach would automatically encode many lighting effects, such as self-shadowing,
diffuse interobject reflections, and to a certain degree, even specular highlights, without the
need to model them explicitly.

APPENDIX: LIST OF SYMBOLS

T rigid transformation (rotation and translation)
p, q scanned points (or surface points)
P,Q sets of scanned points (or surfaces)
(u, v) image coordinates
ψ image flow
w weight
I0, I1 color images
g color gradient
e1, e2, e3 unit coordinate vectors
x0, x1 origin of a coordinate system
f focal length
c center of mass (and of rotation)
α, β, γ rotation angles
b translation vector
h height field
r residual
ε rate of outliers
s0 estimate for standard deviation

SURFACE MODELING FROM RANGE AND COLOR DATA 199

ACKNOWLEDGMENTS

This research was conducted at the University of Washington in Seattle in 1994–1997, and it was supported
by grants from NSF (IRI-9520434 and DMS-9402734), Academy of Finland, Emil Aaltonen Foundation, Finnish
Culture Foundation, and Human Interface Technology Laboratory. We also thank Habib Abi-Rached, Michael
Cohen, Tony DeRose, Tom Duchamp, Hugues Hoppe, John McDonald, and Werner Stuetzle for their input at
various phases of this work.

REFERENCES

1. P. J. Besl,Surfaces in Range Image Understanding, Springer-Verlag, Berlin/New York, 1988.

2. P. J. Besl and N. D. McKay, A method for registration of 3-d shapes,IEEE Trans. Patt. Anal. Machine Intell.
14(2), 1992, 239–256.

3. G. Blais and M. D. Levine, Registering multiview range data to create 3d computer objects,IEEE Trans. Patt.
Anal. Machine Intell.17(8), 1995, 820–824.

4. G. Champleboux, S. Lavall´ee, R. Szeliski, and L. Brunie, From accurate range imaging sensor calibration to ac-
curate model-based 3-d object localization, inProc. IEEE Conf. on Computer Vision and Pattern Recognition,
1992, pp. 83–89.

5. S. E. Chen, Quicktime VR—An image-based approach to virtual environment navigation, InSIGGRAPH 95
Conference Proceedings, pp. 29–38, ACM SIGGRAPH, Addison–Wesley, Reading, MA, 1995.

6. S. E. Chen and L. Williams, View interpolation for image synthesis, inComputer Graphics (SIGGRAPH ’93
Proceedings), Vol. 27, pp. 279–288.

7. Y. Chen,Description of Complex Objects Using Multiple Range Images, Ph.D. thesis, Institute for Robotics
and Intelligent Systems, University of Southern California, 1994. Also technical report IRIS-94-328.

8. Y. Chen and G. Medioni, Object modelling by registration of multiple range images,Image Vision Comput.
10(3), 1992, 145–155.

9. C. H. Chien, Y. B. Sim, and J. K. Aggarwal, Generation of volume/surface octree from range data, inIEEE
Conference on Computer Vision and Pattern Recognition (CVPR ’88), pp. 254–260.

10. C. I. Connolly, Cumulative generation of octree models from range data, inProc. IEEE Int. Conf. on Robotics
and Automation, 1984, pp. 25–32.

11. B. Curless and M. Levoy, Better optical triangulation through spacetime analysis, inProc. IEEE Int. Conf. on
Computer Vision (ICCV), 1995, pp. 987–994.

12. B. Curless and M. Levoy, A volumetric method for building complex models from range images, inSIGGRAPH
96 Conference Proceedings, pp. 303–312, ACM SIGGRAPH. Addison–Wesley, Reading, MA, 1996.

13. L. Darsa, B. C. Silva, and A. Varshney, Navigating static environments using image-space simplification and
morphing, inProc. 1997 Symposium on Interactive 3D graphics.

14. P. Debevec,Modeling and Rendering Architecture from Photographs, Ph.D. thesis, Department of Computer
Science, University of California at Berkeley, 1996.

15. P. E. Debevec, C. J. Taylor, and J. Malik, Modeling and rendering architecture from photographs: A hy-
brid geometry- and image-based approach, inSIGGRAPH 96 Conference Proceedings, pp. 11–20, ACM
SIGGRAPH, Addison–Wesley, Reading, MA, 1996.

16. C. Dorai, G. Wang, A. K. Jain, and C. Mercer, From images to models: Automatic 3D object model construction
from multiple views, inProceedings of the 13th IAPR International Conference on Pattern Recognition, 1996,
pp. 770–774.

17. D. W. Eggert, A. W. Fitzgibbon, and R. B. Fisher, Simultaneous registration of multiple range views for use
in reverse engineering, inProceedings of the 13th IAPR International Conference on Pattern Recognition,
1996, pp. 243–247.

18. O. D. Faugeras and M. Hebert, The representation, recognition, and locating of 3-d objects,Int. J. Robotic
Res.5(3), 1986, 27–52.

19. H. Gagnon, M. Soucy, R. Bergevin, and D. Laurendeau, Registration of multiple range views for automatic
3-d model building, inProc. IEEE Conf. on Computer Vision and Pattern Recognition, 1994, pp. 581–586.

200 PULLI AND SHAPIRO

20. M. Garland and P. S. Heckbert, Surface simplification using quadric error metrics, inSIGGRAPH 97 Confer-
ence Proceedings, pp. 209–216, ACM SIGGRAPH, Addison–Wesley, Reading, MA, 1997.

21. G. Godin, M. Rioux, and R. Baribeau, Three-dimensional registration using range and intensity information,
in Videometrics III, pp. 279–290, Proc. SPIE, Vol. 2350, SPIE—Int. Soc. Opt. Eng., Bellingham, WA, 1994.

22. S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, The lumigraph, inSIGGRAPH 96 Conference
Proceedings, pp. 43–54, ACM SIGGRAPH, Addison–Wesley, Reading, MA, 1996.

23. K. Higuchi, H. Delingette, M. Hebert, and K. Ikeuchi, Merging multiple views using a spherical representation,
in Proceedings of the 2nd CAD-Based Vision Workshop, 1994, pp. 124–131.

24. A. Hilton, A. J. Stoddart, J. Illingworth, and T. Windeatt, Reliable surface reconstruction from multiple range
images, inComputer Vision—ECCV ’96, Springer, Berlin/New York, 1996.

25. H. Hoppe,Surface Reconstruction from Unorganized Points, Ph.D. thesis, Department of Computer Science
and Engineering, University of Washington, June 1994.

26. H. Hoppe, T. DeRose, T. Duchamp, M. Halstead, H. Jin, J. McDonald, J. Schweitzer, and W. Stuetzle, Piecewise
smooth surface reconstruction, inProceedings of SIGGRAPH ’94.

27. H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle, Surface reconstruction from unorganized
points, inProceedings of SIGGRAPH ’92pp. 71–78.

28. H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle, Mesh optimization, inComputer Graphics
(SIGGRAPH ’93 Proceedings), Vol. 27, pp. 19–26.

29. B. K. P. Horn, Closed-form solution of absolute orientation using unit quaternions,J. Opt. Soc. Am. A4(4),
1987, 629–642.

30. H. Jin, T. Duchamp, H. Hoppe, J. A. McDonald, K. Pulli, and W. Stuetzle, Surface reconstruction from
misregistered data, inVision Geometry IV, pp. 324–328, Proc. SPIE, Vol. 2573, SPIE—Int. Soc. Opt. Eng.,
Bellingham, WA, 1995.

31. K. N. Kutulakos and S. M. Seitz, A theory of shape by space carving, inProc. IEEE Int. Conf. on Computer
Vision (ICCV), 1999.

32. M. Levoy and P. Hanrahan, Light field rendering, inSIGGRAPH 96 Conference Proceedings, pp. 31–42,
ACM SIGGRAPH, Addison–Wesley, Reading, MA, 1996.

33. A. Li and G. Crebbin, Octree encoding of objects from range images,Pattern Recognition27(5), 1994,
727–739.

34. C. Loop,Smooth Subdivision Surfaces Based on Triangles, Master’s thesis, Department of Mathematics,
University of Utah, 1987.

35. W. E. Lorensen and H. E. Cline, Marching cubes: A high resolution 3D surface construction algorithm, in
Computer Graphics (SIGGRAPH ’87 Proceedings), Vol. 21. pp. 163–169.

36. W. R. Mark, L. McMillan, and G. Bishop, Post-rendering 3d warping, inProc. 1997 Symposium on Interactive
3D graphics.

37. T. Masuda, K. Sakaue, and N. Yokoya, Registration and integration of multiple range images for 3-D model
constuction, inProc. IEEE Conf. on Computer Vision and Pattern Recognition, 1996, pp. 879–883.

38. T. Masuda and N. Yokoya, A robust method for registration and segmentation of multiple range images,
Comput. Vision Image Understanding61(3), 1995, 295–307.

39. Y. Matsumoto, H. Terasaki, K. Sugimoto, and T. Arakawa, A portable three-dimensional digitizer, inProc.
Int. Conf. on Recent Advances in 3-D Digital Imaging and Modeling, 1997, pp. 197–204.

40. N. Max and K. Ohsaki, Rendering trees from precomputed Z-buffer views, inEurographics Rendering Work-
shop 1995, pp. 74–81, 359–360.

41. L. McMillan and G. Bishop, Plenoptic modeling: An image-based rendering system, inSIGGRAPH 95
Conference Proceedings, pp. 39–46, ACM SIGGRAPH, Addison–Wesley, Reading, MA, 1995.

42. W. Niem and J. Wingberm¨uhle, Automatic reconstruction of 3d objects using a mobile monoscopic camera,
in Proc. Int. Conf. on Recent Advances in 3-D Digital Imaging and Modeling, 1997, pp. 173–180.

43. R. Pito, Mesh integration based on co-measurements, inProc. IEEE Int. Conf. on Image Processing, Special
Session on Range Image Analysis, 1996.

44. M. Potmesil, Generating models for solid objects by matching 3d surface segments, inProc. Int. Joint Conf.
on Artificial Intelligence, 1983, pp. 1089–1093.

SURFACE MODELING FROM RANGE AND COLOR DATA 201

45. K. Pulli, Surface Reconstruction and Display from Range and Color Data, Ph.D. thesis, Department of
Computer Science and Engineering, University of Washington, 1997.

46. K. Pulli, H. Abi-Rached, T. Duchamp, L. G. Shapiro, and W. Stuetzle, Acquisition and visualization of colored
3d objects, inProc. Int. Conf. on Pattern Recognition, 1998.

47. K. Pulli, M. Cohen, T. Duchamp, H. Hoppe, L. Shapiro, and W. Stuetzle, View-based rendering: Visualizing
real objects from scanned range and color data, inProc. 8th Eurographics Workshop on Rendering, 1997.

48. K. Pulli, T. Duchamp, H. Hoppe, J. McDonald, L. Shapiro, and W. Stuetzle, Robust meshes from multiple
range maps, inProc. Int. Conf. on Recent Advances in 3-D Digital Imaging and Modeling, 1997, pp. 205–211.

49. P. Rousseeuw and A. Leroy,Robust Regression and Outlier Detection, Wiley, New York, 1987.

50. P. Rousseeuw and B. van Zomeren, Unmasking multivariate outliers and leverage points,J. Am. Statist. Assoc.
85(411), 1990, 633–651.

51. M. Rutishauser, M. Stricker, and M. Trobina, Merging range images of arbitrarily shaped objects, inProc.
IEEE Conf. on Computer Vision and Pattern Recognition, 1994, pp. 573–580.

52. J. Shade, D. Lischinski, D. Salesin, T. DeRose, and J. Snyder, Hierarchical image caching for accelerated
walkthroughs of complex environments, inSIGGRAPH 96 Conference Proceedings, pp. 75–82, ACM SIG-
GRAPH, Addison–Wesley, Reading, MA, 1996.

53. J. Snyder, Interval analysis for computer graphics, inProceedings of SIGGRAPH ’92, pp. 121–130.

54. M. Soucy and D. Laurendeau, A dynamic integration algorithm to model surfaces from multiple range views,
Mach. Vision Appl.8(1), 1995, 53–62.

55. A. J. Stoddart and A. Hilton, Registration of multiple point sets, inProceedings of the 13th IAPR International
Conference on Pattern Recognition, 1996, pp. 40–44.

56. R. Szeliski, Rapid octree construction from image sequences,CVGIP: Image Understanding58(1), 1993,
23–32.

57. G. H. Tarbox and S. N. Gottschlich, IVIS: An integrated volumetric inspection system, inProceedings of the
1994 Second CAD-Based Vision Workshop, pp. 220–227.

58. R. Y. Tsai, A versatile camera calibration technique for high-accuracy 3d machine vision metrology using
off-the-shelf tv cameras and lenses,IEEE J. Robotics AutomationRA-3(4), 1987, 323–344.

59. G. Turk and M. Levoy, Zippered polygon meshes from range images, inProceedings of SIGGRAPH ’94,
pp. 311–318.

60. Z. Wang and A. Jepson, A new closed-form solution for absolute orientation, inProc. Conf. on Computer
Vision and Pattern Recognition, 1994, pp. 129–134.

61. S. Weik, Registration of 3-d partial surface models using luminance and depth information, inProc. Int. Conf.
on Recent Advances in 3-D Digital Imaging and Modeling, 1997, pp. 93–100.

62. T.-T. Wong, P.-A. Heng, S.-H. Or, and W.-Y. Ng, Image-based rendering with controllable illumination, in
Proc. 8th Eurographics Workshop on Rendering, 1997.

63. Z. Zhang, Iterative point matching for registration of free-form curves and surfaces,Int. J. Comput. Vision
13(2), 1994, 119–152.

	1. INTRODUCTION
	2. DATA ACQUISITION
	FIG. 1.
	FIG. 2.
	FIG. 3.

	3. REGISTRATION
	FIG. 4.
	FIG. 5.
	FIG. 6.
	FIG. 7.
	FIG. 8.
	COLOR PLATE 1.
	COLOR PLATE 2.
	COLOR PLATE 3.
	FIG. 9.
	FIG. 10.

	4. SURFACE RECONSTRUCTION
	FIG. 11.
	FIG. 12.
	FIG. 13.
	FIG. 14.
	FIG. 15.
	FIG. 16.
	TABLE 1
	FIG. 17.

	5. VIEW-DEPENDENT TEXTURING
	FIG. 18.
	FIG. 19.

	6. SUMMARY AND FUTURE WORK
	APPENDIX: LIST OF SYMBOLS
	ACKNOWLEDGMENTS
	REFERENCES

