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Abstract

For some positive constant ε0, we give a ( 3
2 − ε0)-approximation algorithm for the following

problem: given a graph G0 = (V,E0), find the shortest tour that visits every vertex at least once.
This is a special case of the metric traveling salesman problem when the underlying metric is
defined by shortest path distances in G0. The result improves on the 3

2 -approximation algorithm
due to Christofides [13] for this special case.

Similar to Christofides, our algorithm finds a spanning tree whose cost is upper bounded
by the optimum, then it finds the minimum cost Eulerian augmentation (or T-join) of that
tree. The main difference is in the selection of the spanning tree. Except in certain cases where
the solution of LP is nearly integral, we select the spanning tree randomly by sampling from a
maximum entropy distribution defined by the linear programming relaxation.

Despite the simplicity of the algorithm, the analysis builds on a variety of ideas such as
properties of strongly Rayleigh measures from probability theory, graph theoretical results on
the structure of near minimum cuts, and the integrality of the T-join polytope from polyhedral
theory. Also, as a byproduct of our result, we show new properties of the near minimum cuts
of any graph, which may be of independent interest.

1 Introduction

The Traveling Salesman Problem (TSP) is a central and perhaps the most well-known problem in
combinatorial optimization. TSP has been a source of inspiration and intrigue. In the words of
Schrijver [36, Chapter 58], “it belongs to the most seductive problems in combinatorial optimization,
thanks to a blend of complexity, applicability, and appeal to imagination”.

In an instance of the TSP, we are given a set of vertices with their pairwise distances and the
goal is to find the shortest Hamiltonian cycle which visits every vertex. It is typically assumed that
the distance function is a metric.

The best known approximation algorithm for TSP has an approximation factor of 3
2 and is

due to Christofides [13]. Polynomial-time approximation schemes (PTAS) have been found for
Euclidean [2], planar [24, 3, 28], or low-genus metrics [16, 15] instances. However, the problem is
known to be MAX SNP-hard [33] even when the distances one or two (a.k.a (1, 2)-TSP). It is also
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proved that there is no polynomial-time algorithm with an approximation factor better than 220
219

for this problem, unless P = NP [32].
It has been conjectured that there is a polynomial-time algorithm for this problem with an

approximation ratio of 4
3 . We make some progress towards proving this conjecture for graph metrics.

These are metrics defined by shortest path distances in an arbitrary undirected graph. In other
words, we develop an approximation algorithm for the following problem: Given a graph G0 =
(V,E0), find the shortest tour that visits every vertex at least once.

Theorem 1.1. The approximation ratio of Algorithm 2 on graph metrics is at most 3
2 − ε0, where

ε0 > 0 is a constant.

A corollary of the analysis of the above theorem is that the integrality gap of the natural linear
programming relaxation (due to Held and Karp [26]) is also strictly below 3

2 on graph metrics. This
ratio is also conjectured to be 4

3 in general. Recently, the conjecture has been proved in the special
case when the underlying graph G0 is cubic [21, 1, 9].

1.1 Overview of the Algorithm and Techniques

We propose the same algorithm as in Asadpour et al. [4] for TSP. Let x be the optimum solution
of the Held-Karp linear programming relaxation. We sample a tree F from a maximum entropy
distribution in which for every T, P [T] ∝

∏
e∈T λe. We find non-negative λe’s in a such a way that

for every edge e ∈ E and tree F sampled from µ, P [e ∈ F] is proportional to xe. The details are
described in Section 3.

It is not hard to see that the expected cost of the above tree is bounded by the cost of x. We
conjecture that the expected cost of the minimum cost Eulerian augmentation of T is strictly less
than half of the cost of x for every metric.

Conjecture 1.2. The approximation ratio of Algorithm 1 on any metric is at most 3
2 − ε

′

0, where
ε′0 > 0 is a constant.

However, in this paper, we analyze this algorithm only for graphical metrics and after a slight
modification. In our algorithm, we handle the case where x is nearly integral separately using a
deterministic algorithm. In fact, when x is nearly integral, it is not hard to find a rounding scheme
with an approximation ratio close to 4

3 . When x is not nearly integral, we follow Algorithm 1. See
Algorithm 2 for the details.

The analysis of the algorithm has three major ingredients: (i) polyhedral structure of T-join
polytope (ii) structure of near minimum cuts, and (iii) properties of random spanning trees. In
Part (i), we use the integrality of the T-join polytope to relate the cost of the Eulerian augmenta-
tion to the distribution of near minimum cuts and the parity of the edges of F across them. This
builds on the work of Wolsey [39] who showed that Christofides algorithm returns a solution whose
cost is at most 3

2 times the optimum value of Held and Karp LP. Part (ii) on the structure of
near minimum cuts builds on the cactus structure [17] and polygon representation [5] of minimum
and near-minimum cuts, respectively. Finally, the last part uses techniques from a recent and very
interesting study of strongly Rayleigh measures [8] and their properties to prove results on the joint
distribution of the parity of the number of edges across multiple cuts.

Structure of Near Minimum Cuts. Let G(V,E) be the weighted (or fractional) graph defined by
x. G is fractionally 2-regular and 2-edge connected. For some δ, consider all (1 + δ) near minimum
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cuts or equivalently all cuts of size at most 2(1 + δ). We show that for δ small enough, either a
constant fraction of edges appear in a constant number of (1 +δ)-near minimum cuts, or x is nearly
integral.

If x is integral, that is if G is a cycle, then every edge belongs to θ(n) minimum cuts where n
is the number of vertices. Our characterization proves an approximate converse of this statement:
for some large constant τ, if almost all the edges are in more than τ near minimum cuts, then the
graph is close to a Hamiltonian cycle in the sense that almost all of its edges are nearly integral.

The above theorem is proved by a careful characterization of the structure of near minimum
cuts for any graph and it could be of independent interest. For stating this characterization, we
need to define a few things. Let C be a collection of cuts in graph G. Define a cross graph G on
vertex set C where an edge between two vertices denotes that their corresponding cuts cross. Every
connected component of G partitions the vertices of G into a set of “atoms”. We show that if C is a
collection of near minimum cuts, the graph resulting from contracting the atoms of any connected
component is very close to a cycle. In particular, the weight of nearly all the edges in the resulting
graph is very close to half of the size of a minimum cut of G.

Stated in the above form, our result is a generalization of Dinits et al. [17] from minimum cuts
to near-minimum cuts. The main technical tool behind the proof is the structure called polygon
representation of near-minimum cuts as defined by Benczur [5, 6, 7]. In some sense, our theorem
adds a characterization of the placement of the edges between the atoms to the polygon represen-
tation, when δ is sufficiently small. We refer the reader to section 5 for the proof.

Random Spanning Trees and Strongly Rayleigh Measures. In the analysis of this algorithm
for asymmetric TSP [4], Asadpour et al. use the negative correlation between the edges of random
spanning trees to obtain concentration results on the distribution of edges across a cut. For this
work, we have to use even stronger virtues of negative dependence [34]. In particular, we use the fact
that the distribution of spanning trees belongs to a more general class of measures called Strongly
Rayleigh. These measures maintain negative association and log concavity of the rank sequence
similar to random spanning trees. In addition, they are closed under projection and truncation and
conditioning in certain scenarios.

For an edge e, let C be the set of near minimum cuts of G that contain e. We prove that for a
constant fraction of edges e, with constant probability, all of the cuts in C that contain e have an
even intersection with F. Note that the expected number of edges of F across any near minimum
cut in C is very close to 2 and it follows simply that a particular cut in C contains two edges of F
with constant probability. Our proof shows the stronger property that with constant probability,
the number of edges of F across all cuts in C is even. It is instructive to look at the case where C
contains only two degree cuts corresponding to the endpoints of an edge e = {u, v}. It seems that
even in this special case, there is no direct combinatorial argument to prove that with constant
probability, both u and v have an even degree in F. We refer the reader to section 6 for more
details.

2 Notation and the Linear Program Relaxation

We will use the following linear programming relaxation called LPsubtour, known as subtour elimi-
nation or Held-Karp linear program. Let c({u, v}) denote the distance between u and v or the cost
of choosing edge {u, v} for each u, v ∈ V(G0).
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(LPsubtour) minimize
∑

u,v∈V

c({u, v})x{u,v}

subject to
∑

u∈S,v∈S

x{u,v} ≥ 2 ∀S ( V

∑
u∈V

x{u,v} = 2 ∀ v ∈ V

x{u,v} ≥ 0 ∀u, v ∈ V.

With a slight abuse of notation, let x be an optimal solution of this LP. Define G = (V,E, x) to
be the fractional support graph corresponding to the optimal vector x, i.e., E = {e : xe > 0}.

Throughout the paper, we will refer to xe as the fraction of edge e in G and to G as a fractional
or weighted graph. In this sense, the degree of a node in G is the sum of the fractions of edges
incident to that node. Therefore, G is fractionally 2-regular and 2-edge connected.

The following notations will be adopted. For a set E′ ⊆ E, and any function f defined on the
edges of G, let

f (E′) =
∑
e∈E′

f (e).

For example, c(E′) =
∑

e∈E′ c(e). Similarly, let x(E′) =
∑

e∈E′ xe, and c(x(E′)) =
∑

e∈E′ c(e)xe. In
particular, we use c(x) := c(x(E)).

For a set S ⊆ V, let E(S) = {{u, v} : u, v ∈ S} be the set of edges inside S. For two non-crossing
sets S,S′ ⊂ V, let E(S,S′) = {{u, v} : u ∈ S, v ∈ S′} be the set of edges between the vertices in S and
S′. In particular, if S ⊂ S′, we use E(S,S′) := {{u, v} : u ∈ S, v ∈ S′ \ S}. Also let S = V \ S, and
d(S) = E(S,S) for any F ⊆ E.

3 The Algorithm

Our algorithm is quite similar to Christofides algorithm: first it finds a spanning tree whose cost
is upper bounded by the optimum, then it finds the minimum cost Eulerian augmentation of that
tree.

The main difference is in the selection of the spanning tree. Here, our idea is similar to Asadpour
et al. [4]. The algorithm selects a spanning tree randomly from G, the support graph of the solution
of LPsubtour. The tree is sampled from a distribution µ defined over T , the set of spanning trees of
G. This distribution is called λ-uniform or maximum entropy because for every T ∈ T ,

P [T] ∝
∏
e∈T

λe.

The algorithm finds non-negative λe’s in a such a way that for every edge e ∈ E and tree F
sampled from µ, P [e ∈ F] is (approximately) equal to (1− 1

n )xe. We refer the reader to [4] for more
details.

After selecting the spanning tree, the algorithm finds the minimum cost Eulerian augmentation
or T-join on the odd-degree vertices of F and constructs a Hamiltonian cycle by short cutting. The
details are described in Algorithm 1.
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Algorithm 1 Algorithm for TSP for general metrics
Input: A set V of vertices and a cost function c : V × V → R+ satisfying the triangle inequality.
Output: A hamiltonian tour on V.
1: Solve the LPsubtour to get an optimum solution x. Let G = (V,E, x) be the support graph of x.
2: Define z := (1 − 1/n)x. Let µ denote the maximum entropy distribution over spanning trees of

G such that for a spanning tree F sampled from µ, P [e ∈ F] = ze for each edge e ∈ E.
3: Sample a spanning tree F from µ.
4: Let T denote the set of odd-degree nodes in F. Compute the cheapest T-join J.
5: return the tour J ∪ F.

In Conjecture 1.2, we conjecture that the expected cost of the tour returned by Algorithm 1 is
strictly less than 3

2 of the cost of OPT for general metrics. However, we can analyze this algorithm
only for graphical metrics and after a slight modification. In a special case, where a large fraction of
edges in x are nearly integral, we choose the tree deterministically. More specifically, we say an edge
e ∈ E is nearly integral if xe ≥ 1 − γ, where γ > 0 is a constant. Also x is a nearly integral solution
of LPsubtour if it has many nearly integral edges, i.e., |{e : xe ≥ 1−γ}| ≥ (1− ε2)n for certain constants
γ, ε2 > 0. If x is a nearly integral solution of LPsubtour, we find the minimum cost spanning tree
that contains as many nearly integral edges as possible. In other words, we find F′ the minimum
cost spanning subgraph of G0 that contains all of the nearly integral edges and define F to be the
minimum cost spanning tree of F′. Then we simply add minimum T-join on odd-degree vertices of
F. The details of our final algorithm are described in Algorithm 2.

Algorithm 2 Improved approximation algorithm for graphic TSP
Input: A set V of vertices and a cost function c : V × V → R+ satisfying the triangle inequality.
Output: A hamiltonian tour on V.
1: Let ε2 = 2 · 106

√
δ, γ = 4

√
δ, δ = 6.25 · 10−16.

2: Solve the LPsubtour to get an optimum solution x. Let G = (V,E, x) be the support graph of x.
3: if x contains (1 − ε2)n edges of fraction greater than 1 − γ then
4: Find a minimum cost spanning subgraph F′ in G0 that contains all the edges of fraction

greater than 1 − γ, and let F be the minimum cost spanning tree in F′.
5: Let T denote the set of odd-degree nodes in F. Compute the cheapest T-join J.
6: return the tour J ∪ F.
7: else
8: return output of Algorithm 1.
9: end if

3.1 Analysis and the Structure Theorem

In the analysis, we handle the cases considered in Algorithm 1 and Algorithm 2 differently. If x is
nearly integral, then a simple polyhedral argument bounds the cost of the tree F and the T-join J.
The argument is presented in Section B, Case 2. Indeed the approximation factor is close to 4

3 in
this case.

The more interesting case is when x is not nearly integral, and F is sampled from the distribution
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(LPT− join) minimize
∑
e∈E

c(e)ye

subject to
∑

e∈E(S,S)

ye ≥ 1 ∀S ⊆ V, |S ∩ T| odd

ye ≥ 0 ∀ e ∈ E

Figure 1: Linear program for the T-join problem.

µ in Step 3 of Algorithm 1. In that case, first observe that the expected cost of F is at most c(x)
since the probability of choosing each edge e is at most xe. The main part of the argument is to
show that the expected cost of the T-join J is smaller than (1 − ε0) c(x)

2 .
In order to bound the cost of the T-join, first observe that half of any solution of LPsubtour, the

vector x
2 , is a feasible fractional solution to the LPT− join (see Figure 1) for any set T ⊆ V. This is

because across any cut, the sum of the fractions of x
2 is at least 1. This observation, made originally

by Wolsey [39], also implies that the solution of Christofides is at most 3
2 c(x).

In order to get a factor better than 3
2 , it is sufficient to construct a feasible solution of smaller

cost for the T-join polytope, when T is the set of odd degree vertices of the sampled spanning tree
F. When T in LPT− join is set to the odd-degree vertices of F, the constraints present are exactly for
the cuts which intersect in odd number of edges with F.

A cut is a (1 + δ) near minimum cut of G if the total fraction of the edges in the cut is at most
(1 + δ) times the minimum cut of G. In other words, cuts (S,S) for which x(E(S,S)) ≤ 2(1 + δ) are
called near minimum cuts. Also, a cut (S,S) is odd with respect to F iff F ∩ E(S,S) is odd, i.e., F
contains an odd number of edges of the cut (S,S). The following two definitions are crucial.

We say an edge e is even with respect to F if any near minimum cut that includes e is even
with respect to F, i.e., for all (S,S) such that e ∈ E(S,S) and x(E(S,S)) ≤ 2(1 + δ), |F ∩ E(S,S)| is
even. Given a tree F, setting ye = xe

2(1+δ) for each edge e which is even with respect to F and ye = xe
2

for every other edge e, we obtain a feasible solution to the LPT− join when T is the set of odd-degree
vertices of F. Thus it is enough to find a tree F for which the set of even edges is large.

Let E(e) be the event that e is even with respect to F where F is sampled from the distribution
µ. We say e is good if the probability of this event is bounded from zero by some constant. More
precisely, if for a fixed constant ρ > 0,

P
[
∃(S,S) : e ∈ E(S,S) and x(E(S, S)) ≤ 2(1 + δ) and |F ∩ E(S, S)| is odd

]
≤ 1 − ρ.

Our strategy is to identify a large number of good edges in the graph. We will use these edges
to show that the cost of T-join is strictly less than c(x)

2 . The following Theorem shows that it is
indeed possible to find such edges if the algorithm samples the tree F in Step 3.

Theorem 3.1 (Structure Theorem). Let x be an optimal solution of LPsubtour, and let µ be the
λ-uniform measure defined based on x. There exist sufficiently small constants ε1, ρ bounded away
from zero such that at least one of the following is satisfied by x:

1. there is an abundance of good edges in x: There exists a set E∗ ⊂ E such that x(E∗) ≥ ε1n,
and

∀e ∈ E∗ : P [E(e)] ≥ ρ.
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2. x is nearly integral: x contains at least (1 − ε2)n edges of fraction greater than 1 − γ.

We note that the Structure Theorem is valid for all feasible solutions to the Held-Karp relaxation
and not just for vertex solutions of the linear program which have been studied intensely [12, 10, 23].
We also remark that we have not tried to optimize the constants but do explain the necessary
dependence between them in Appendix H. Theorem 3.1 implies Theorem 1.1 by constructing feasible
solutions to LPT− join of small cost. We show that in Appendix B.

4 Proof of the Structure Theorem (Main Ideas)

The rest of the paper is dedicated to proving the Structure Theorem. For proving this theorem,
we have to establish several results about the structure of near minimum cuts in graphs as well as
properties of random spanning trees. In this section, we will explain the main ideas.

4.1 Atoms, Cut Classes and Cross Graphs

Definition 4.1 (Atom). For a collection C of cuts of a graph G = (V,E), the atoms of C are the
members of a partition P of the vertex set V such that

• no cut of C divides any of the atoms of C, and

• P is the coarsest partition with this property.

We say an atom is singleton if it is a set of a single vertex of V.

Definition 4.2 (Cross Graph). A pair of cuts (A,A) and (B,B) is said to cross if A ∩ B,A \ B,B \
A,V \ (A∪B) are all non-empty. For a collection C of cuts of a graph G = (V,E), cross graph G is
a graph on vertex set C and that has an edge between two cuts in C if they cross. Each connected
component of G is called a cut class.

Consider the cross graph corresponding to (1 + δ)-near minimum cuts of G and let C1,C2, · · ·Cl
be its cut classes. Denote the set of atoms of any of these families of cuts by φ(Ci) for 1 ≤ i ≤ l.
We say a cut in Ci is trivial, if it separates an atom of φ(Ci) from the rest of the atoms. Since no
cut of Ci can cross its trivial cuts, Ci has a trivial cut iff it has exactly one near minimum cut, or
equivalently two atoms. Moreover, no cut class can have 3 atoms.

Definition 4.3. Let τ = 1
20
√
δ

= 2 · 106. We say a cut class Ci is large if |φ(Ci)| ≥ τ, and small
otherwise.

Let L(τ) be the set of all atoms of the large cut classes, i.e.

L(τ) =
⋃

Ci:|φ(Ci)|≥τ

φ(Ci).

The size of L(τ) plays an important role. It can be shown that we always have |L(τ)| ≤ n(1+ 2
τ−2 ).

Now, if |L(τ)| is far from its maximum possible value, i.e. |L(τ)| < (1−ε)n , then case 1 of Theorem 3.1
holds. Otherwise case 2 holds. In order to understand this intuitively, think about the cross graph
defined by the minimum cuts of a cycle of length n. Observe that this graph contains

(n
2
)

(near)
minimum cuts, and the cross graph G contains only one connected component or equivalently, one
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large cut class with n atoms. Therefore, if G is a cycle of length n, |L(τ)| = n. The following Lemma
is a weak inverse of this observation: if |L(τ)| is large, then the LP solution is in a sense close to a
Hamiltonian cycle.

Lemma 4.4. For any ε ≥ 1
τ−2 , if |L(τ)| ≥ (1 − ε)n then G contains at least (1 − 20

√
δ − 17ε)n edges

of fraction greater than 1 − 4
√
δ.

On the other hand, if L(τ) is small, we would like to show that G contains many good edges.
Our best hope for finding good edges are among the edges that do not belong to too many near
minimum cuts. Because of that, we will try to find edges that are not contained in any large cut
classes. Let us make that precise.

Definition 4.5. An edge e is incident to an atom a, if exactly one of its endpoints is contained in
a. An edge e is said to be contained in a cut class Ci if e is incident to some atom of Ci.

Let ES be the set of edges that are not contained in any of the large cut classes. In the next
lemma we show that if |L(τ)| < (1 − ε)n, then x(ES) is large:

Lemma 4.6. If |L(τ)| < (1 − ε)n then x(ES) ≥ n(ε − 3δ).

Being in ES does not automatically guarantee that an edge is good (see Figure 2 for a counter
example). We will identify three types of good edges in ES in Section 4.3. We do this after we
establish a few properties of near minimum cuts in the next subsection.

Before that, we are ready to assign the exact values of the constants. Lemma 4.4 places a
lower bound on the value of ε in terms of τ. A similar bound on ε is also given in Theorem 4.26
when L(τ) is small. We set ε = 5000

τ = 2.5 · 10−3 so as to satisfy all the conditions. This already
implies appropriate values for ε2 and γ in the algorithm. We set ε2 = 2 · 106

√
δ ≥ 20

√
δ + 17ε and

γ = 4
√
δ. Finally, from Lemma B.3, 2ε2 + 4γ ≤ 0.11 is enough to give a better than 3

2 bound on
the performance of the algorithm. This implies δ = 6.25 · 10−16 suffices to satisfy all the conditions.

4.2 Near Minimum Cuts and their Cactus-like Structure

In this section, we prove crucial lemmas about the structure of near minimum cuts of any graph.
Applying these lemmas to the solution of the Held-Karp linear program directly yields Lemma 4.4
and Lemma 4.6.

Let H be an unweighted graph and let c denote the minimum cut of H. For a partitioning
P = {P1,P2, . . . ,Pk} of vertices in H, let H(P) be the graph obtained by identifying the vertex set of
each part Pi, and removing the self-loops afterwards. For example, for a cut class Ci, each vertex
of H(φ(CI)) is an atom of Ci.

The following lemma about the structure of minimum cuts follows from the cactus representa-
tion [17] (also see Fleiner and Frank [20] for a short proof).

Lemma 4.7. [17] Let Ci denote a cut class of minimum cuts of H. Then H(φ(Ci)) is a cycle where
weight of every edge is exactly c

2 and every pair of edges of the cycle corresponds to a minimum cut
of H.

Our main result in this section is that the above lemma generalizes to the structure of near
minimum cuts in an approximate sense. In the following definition we define cactaceous structures
as a cycle-like structure. Then we show that any cut class of a collection of near minimum cuts is
cactaceous.
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Definition 4.8 ((α, α′, β)-cactaceous). A graph H = (V,E) with minimum cut c is (α, α′, β)-cactaceous
if for some δ ≥ 0:

• There exists at least m := (1−α
√
δ)|V(H)| pairs of vertices of H, {(v1,u1), (v2,u2), . . . , (vm,um)}

such that for each 1 ≤ i ≤ m, E(vi,ui) ≥ c
2 (1 − α′

√
δ), and each vertex v ∈ V(H) is contained

in at most two such pairs.

• The number of edges of the graph H satisfies the following:

c
2
|V(H)| ≤ |E(H)| ≤ (1 + βδ)

c
2
|V(H)|.

Theorem 4.9. For any δ < 1/100, let Ci denote a cut class of (1 + δ) near minimum cuts of H.
Then H(φ(Ci)) is (20, 4, 3)-cactaceous.

If we let δ = 0 in the description of Theorem 4.9, we obtain that for any cut class Ci of the
collection of minimum cuts of H, the graph H(φ(Ci)) is a cycle where the weight of each edge is c

2 ,
thus we obtain Lemma 4.7.

Theorem 4.9 is proved in section 5. The main technical tool behind the proof is the structure
called polygon representation of near-minimum cuts as defined by Benczur [5, 6, 7]. Benczur showed
that for δ ≤ 1/5, the near minimum cuts of any graph H can be represented using polygon represen-
tation (see section 5 for more information). Our theorem uses this representation heavily. However,
the emphasis of [7] (and results before that) were on representing the vertex sets of minimum cuts.
Instead, here we focus on the edge sets and observe several interesting properties that could be of
independent interest.

Lemma 4.7 and Theorem 4.9 show connections between a single cut class of minimum cuts
and a single cut class of near minimum cuts. Observe that one particular edge might be included
in various cuts occurring in distinct cut classes. We first discuss the representation of different
cut classes of minimum cuts as represented by a cactus graph [17] and then the representation of
different cut classes of an arbitrary collection of cuts in a tree hierarchy [5].

Definition 4.10 (Cactus Graph). A cactus graph is a graph with no cut edges in which no two
simple cycles share an edge. Every cactus graph K can be represented as a tree T where the vertices
of T are the cycles of K and there is an edge between two cycle vertices if they share a vertex.

The cactus representation of H consists of a partition P of vertices of H and the cactus graph
K whose vertices may have either an element of P or the empty set, each element of P appearing
exactly once.

Lemma 4.11. [17] Let H be an unweighted graph with minimum cut c. There is a cactus K = (U,F)
and a mapping f : V → U so that the preimages f−1(U1) and f−1(U2) are the two shores of a
minimum cut of H for every 2-element cut of K with shores U1 and U2. Moreover, every minimum
cut of H arises this way.

In his thesis, Benczur [6] generalized this concept to any collection of cuts. He proved that any
collection of cuts possesses a tree hierarchy [6, Theorem 4.1.6].

For the purpose of the proofs, Benczur gives a slightly modified description of the cactus repre-
sentation such that unlike the usual definitions, it is uniquely defined (e.g. in his definition unlike
the usual description of a cactus cycles of length 3 are now allowed). Here, we also use this new
representation.
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Definition 4.12 (Tree Hierarchy). A collection of cuts C with cut classes C1, . . . ,Cl possesses a
tree hierarchy if

• a cactus graph K(C) is given, with cycles C1, . . . ,Cl such that Ci is of length |φ(Ci)|, and the
elements of φ(Ci) are mapped to the vertices of Ci; and

• all pairs of atoms a ∈ φ(Ci) and b ∈ φ(C j) with i , j that are mapped to a coinciding vertex of
the cactus satisfy a ∪ b = V. We call them connecting atoms.

In Figure 3 an example of a feasible solution of LPsubtour with its cactus representation is shown.

Remark 4.13. Unlike the old definitions for the cactus structure, the vertices of G are not mapped
to just a single vertex of K(C). Instead, as described above they are mapped to exactly one vertex
of each cycle of K(C).

There is a simple way to transform the original cactus representation to the new one. For a
cactus vertex a of a cycle C, we may get the vertices of the new definition from the original one by
erasing the edges of C, and taking the union of the vertices in all cactus vertices reachable from a
by the remaining cactus edges.

Theorem 4.14. [6] Any collection of cuts possess a tree hierarchy.

Observe that the above results can be simply applied to the fractionally weighted graphs, by
multiplying the weight of each edge by some large number N such that Nxe is an integer for all edges
e, then inserting Nxe parallel edges between the endpoints of e and applying the above theorems to
the obtained multi-graph.

We now show that applying the above results to the structure of near minimum cuts of the Held-
Karp linear programming solution x leads to the proofs of Lemma 4.6 and Lemma 4.4. Firstly,
Theorem 4.9 implies the following Corollary about the structure of any cut class of near minimum
cuts of the weighted graph G = (V,E, x).

Corollary 4.15. For any δ < 1/100, let Ci be a cut class of the (1 + δ) near minimum cuts of the
weighted graph G = (V,E, x). Then G(φ(Ci)) satisfies the following:

• There exists at least m := (1−20
√
δ)|φ(Ci)| pairs of vertices of G(φ(Ci)), {(a1, b1), (a2, b2), . . . , (am, bm)}

such that for each 1 ≤ i ≤ m, x(ai, bi) ≥ 1− 4
√
δ, and each vertex a ∈ V(G(φ(Ci))) is contained

in at most two such pairs.

• |φ(Ci)| ≤ x(E(G(φ(Ci)))) ≤ (1 + 3δ)|φ(Ci)|.

The proof of Lemmas 4.4 and 4.6 simply follows from the above corollary and tree representation
of near min-cuts as given by Theorem 4.14. We show that in Appendix C.

4.3 Good Edges and Random Spanning Trees

In this section, we show that at least a constant fraction of the edges in ES (as defined before
Lemma 4.6) are good. It is easy to see (and it is proved in Lemma C.1) that each small cut class
can only have a constant number of near minimum cuts. Therefore all edges in ES that are only in
a constant number of small cut classes appear only in a constant number of near minimum cuts.
We will identify three types of good edges from these. The first of these are “trivial edges”.
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Definition 4.16 (Trivial Edge). We call an edge trivial if it occurs in only two near minimum
cuts, which are the degree constraint of its endpoints.

Trivial edges are the simplest possible candidate edges for being good. In fact, besides certain
extreme cases, most trivial edges are good (see Figure 2 for an example of a trivial edge which is
not good).

Proposition 4.17. Any trivial edge e such that xe < 1
2 −

1
8000 or xe > 1

2 + 1
8000 is good. Furthermore,

of any pair of adjacent trivial edges, one of them is good.

u v

u′ v′

w

1

∞ ∞

1
√

n
1
√

n

1

1

1

1

1

1

1

u v

u′ v′

w

1
2

1 1

1
2

1
2

1
2

1

1

1

1

1

1

Figure 2: The left diagram represents the λ values of the edges, while the right diagram represents
the approximate probability of each edge. The example shows that although P [(u, v) ∈ T] ' 1

2 , and
the expected degree of u and v is 2, P

[
degT(u) + degT(v) = 3

]
= 1 − o(1). Therefore (u, v) is not

good. Note that this is not exactly a solution to LPsubtour but still points to difficulties in proving
Proposition 4.17.

The above Proposition is proved in Section 6.2 in two parts under Proposition 6.18 and Lemma
6.23. As showed in Figure 2, if e is a trivial edge but xe = 1/2 ± o(1), then e might be contained in
an odd near minimum cut with high probability and therefore it will not be good. Because of this,
we have the pairing of trivial edges in the second part of the proposition.

Definition 4.18 (Inside Edge). An edge e = (u, v) is an inside edge of a non-trivial small cut class
Ci if Ci is the only non-trivial small cut class that contains e, and atoms of Ci containing u and v
are singletons.

The second type of good edges are inside edges.

Proposition 4.19. Let Ci be a small cut class which contains an atom with more than n/2 vertices
of G and 200|φ(Ci)|2δ ≤ 1. Then any inside edge of Ci is good.

Again, the above statement is directly implied by Lemma 6.27 proved in Section 6.3. In most
cases, the sum of the fractions of good trivial and inside edges covered in the above lemmas add

11



up to Ω(n). However, there are graphs that do not have any trivial or inside edges, even though
they do not have any large cut classes (see Figure 3). In those graphs, we identify another class of
potentially good edges.

12

3

4

5

nn − 1

n − 2

1

1
2

1
2

1
2

1
4

1
4

1
2

1
4

1
8

1
8

1

1
2

1
2

An−2

An−2

A2

A2

A3

A3

A4

A4

1 B1 2B2

3 B3

4 B4

n − 1 Bn−1 nBn

C2

C3

C4

Cn−2

Cn/2

Cn/2−1 Cn/2+1

Cn/2−1 Cn/2+1

C2 Cn−2

Figure 3: The left diagram represents a feasible solution of LPsubtour, the middle diagram represents
the tree hierarchy of the cut classes, and the right diagram shows the tree Γ(C). The graph is
constructed by connecting each pair of vertices i, j by xi, j := 2−|i− j|, unless i or j = 1, 2,n − 1,n;
in which the fractions are selected precisely to get a feasible LP solution. In the middle diagram
the cactus representation of the graph is shown. Here, C2,C3, . . . ,Cn−2 are the non-trivial cut
classes, and the rest are trivial. Each cut class Ci contains two atoms φ(Ci) := {Ai,Ai}, where
Ai := {1, 2, . . . , i}, and each trivial-cut class contain the atoms {{i},Bi := {i}}. The dashed edges is
used to represent the connecting pairs of atoms. Γ(C), however, contains only the non-trivial cut
classes. Observe that Cn/2 is chosen to be the root, and the tree is made of two long threads. In
particular, note that all of the edges except {1, 2}, {n− 1,n}, are non-trivial, and the graph does not
contain any inside edges.

Definition 4.20 (Trivial Cut Classes). We say a cut class is trivial if it contains exactly two
atoms, and one of them is a singleton.

Let Γ(C) be the tree defined by the cactus graph representing the tree hierarchy of all near
minimum cuts of G, such that each node of Γ(C) corresponds to a non-trivial cut class of C
(since the trivial cut classes are the leaves of tree defined on K(C) the tree remains connected after
removing those cut classes). Lemma F.1 shows that for all cut classes, except possibly one, there
is an atom which has more than n/2 vertices. Let Cr be that cut class. We root the tree Γ(C) at Cr
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(if Cr does not exist, we just pick an arbitrary cut class) and direct it away from the root. Figure
3 represents an example of the directed tree Γ(C).

Definition 4.21 (Father-Connector). For each non-root cut class Ci in Γ(C), we call the unique
connecting atom that contains at least n/2 vertices the father-connector of Ci. Observe that
father-connector of Ci coincides with an atom of the father of Ci in a vertex of K(C).

Definition 4.22 (Thread). Let P be a directed path in Γ(C). We call P a thread iff all of its
vertices are small cut classes, and they have degree exactly 2 in Γ(C). The length of the thread is
the number of vertices of P. We call a thread unbalanced with parameter ε ≥ 0 if the father-
connector atoms of all of its cut classes contain at least n( 1

2 + ε) vertices. Observe that unbalanced
threads do not contain the root.

Proposition 4.25 shows that in each unbalanced thread, a constant fraction of edges are good
edges. We will also show if the sum of the fraction of good edges in ES that are either trivial
or inside is small, then Γ(C) contains many long threads. However, these two statement do not
necessarily imply that we always have a sufficient number of good edges; because we may count a
good edge several times. In order to avoid this, we assign every good edge to a cut class.

Definition 4.23 (Edge-Assignment). Let e = {u, v} ∈ ES be a good edge, not contained in Cr. We
assign e to the farthest cut class Ci from the root that contains e. For example, if e is an inside edge
of some small cut class, it will be assigned to that class. Otherwise, if e is not contained in any cut
class, we assign e to the farthest cut class Ci from the root that has u and v in one of its atoms
other than the father-connector. For example, if a small cut class Ci contains a non-connecting
non-singleton atom a, then all of the good edges between the vertices of a will be assigned to Ci. In
both cases, if Ci is not a small cut class, or Ci is the root of Γ(C), we do not assign e.

Remark 4.24. It is worth noting that the set of cut classes that contain an edge e ∈ E make a
path C1,C2, . . . ,Ck, in the underlying (undirected) graph of Γ(C). This path can be decomposed into
two directed paths, say C1,C2, . . . ,Ci and Ck,Ck−1 . . . ,Ci; therefore, the farthest cut class from the
root that contains e might not be well-defined (i.e. it can be either C1 or Ck if i− 1 = k− i). In this
special case we assign e to one of the two possible farthest cut classes arbitrarily. However, all three
types of edges that we consider in the proof of Theorem 4.26 are contained in a single directed
path of cut classes in Γ(C).

We say a good edge is assigned to a thread if it is assigned to one of the cut classes of the thread.
For any β > 0, let πβ be the set of unbalanced threads with parameter β. In the next proposition,
we show that any thread P ∈ π ε

5120
of length at least 10 is assigned at least a fraction ε

20480 of good
edges. See Subsection 6.4 for the proof.

Proposition 4.25. Let π ε
5120

be the set of unbalanced threads with parameter ε
5120 . Then, the above

method assigns at least ε
20480 fraction of (good) edges that are even with probability at least ε310−16

to any thread P ∈ π ε
5120

of length at least 10.

In the next theorem, we show that if the fractional value of trivial or inside edges in Γ(C) is less
than εn

3840 , then it contains at least εn
2560 unbalanced threads with parameter ε

5120 of length 10.
Let us define some notations. Let EST ⊂ ES be the set of trivial good edges, ESN ⊂ ES be the set

of edges (not necessarily good) that are contained in at least one small non-trivial cut class, and
let ESI ⊂ ESN be the set of inside edges of small cut classes. Also let π∗ be the maximum disjoint
set of unbalanced threads with parameter ε/5120, each of length at least 10.
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Theorem 4.26. If |L(τ)| < (1 − ε)n, and ε ≥ 4920
τ then one of the following is always true:

1. x(ESI ) + x(EST ) ≥ εn
3840 ; or

2. The fractional value of edges assigned to threads in π∗ is at least ε2n
6·107 .

The proof appears in the appendix Section D

5 The Cactus-like Structure of Near Minimum Cuts

In this section, we will prove Theorem 4.9. For the sake of brevity, we do not work with the graph
H, instead we prove the theorem for a fixed cut class Ci of H. Since Ci is fixed in this section, with
a little abuse of notation let H be the graph obtained by identifying the vertex set of each atom of
φ(Ci), and removing the self-loops (i.e. we use H to represent H(φ(Ci))). Theorem 4.9 can be seen
as an immediate corollary of the following lemma:

Lemma 5.1. Let c ≥ 1, be an integer, δ < 1/100, and H = (V,E) be an unweighted c-edge connected
graph such that for any non-trivial cut (S,S) there exists a (1 + δ) near minimum cut that crosses
(S,S). If the cross graph of the (1 + δ) near minimum cuts of H is connected, then H is (20, 4, 3)-
cactaceous.

Observe that the two properties of graph H in the Lemma follows by the definition of atoms and
cut classes. In the rest of this section we prove the above Lemma. Therefore, we always assume H
is a c-edge connected unweighted graph that satisfies the assumptions of Lemma 5.1.

Let us start by some basic lemmas regarding the properties of near minimum cuts. The cut of
a set X ⊂ V is the set of edges d(X) that separates X from its complement. Let X and Y be two
crossing sets of V. It was shown in [17] that if their corresponding cuts are minimum cuts, then the
cuts defined by any of the four sets X ∩ Y,X ∪ Y,X \ Y,Y \ X is also a minimum cut. The following
lemma proves an extension of this property for near minimum cuts:

Lemma 5.2. Let (X,X) and (Y,Y) be two crossing cuts of H and let (X,X) be a (1+δ) near minimum
cut. Then the size of the cuts of any of the four sets X ∩ Y,X ∪ Y,X \ Y,Y \ X is at most δc more
than |d(Y)|.

Proof. We prove the lemma only for X∩Y; the rest of the cases can be proved similarly. Since the
cut function |d(.)| is a submodular function we have

|d(X ∩ Y)| + |d(X ∪ Y)| ≤ |d(X)| + |d(Y)| ≤ (1 + δ)c + |d(Y)|.

Since |d(X ∪ Y)| ≥ c, we have |d(X ∩ Y)| ≤ |d(Y)| + δc. This completes the proof of the lemma. �

For two disjoint sets X,Y ⊂ V recall that E(X,Y) := {(u, v) : u ∈ X, v ∈ Y}. Benczur in [6, Lemma
5.3.5] proved the following useful lemma:

Lemma 5.3 (Benczur [6]). Let (X,X) and (Y,Y) be two crossing (1 + δ) near minimum cuts of H.
Then |E(X ∩ Y,X ∩ Y)| ≥ (1 − δ) c

2 .
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Note that it can be derived from the above lemma that |E(X∩Y,Y∩X)| ≥ (1−δ) c
2 , |E(X∩Y,X∩

Y)| ≥ (1 − δ) c
2 and |E(Y ∩ X,X ∩ Y)| ≥ (1 − δ) c

2 .
We start by proving that H satisfies the second property of cactaceous structures for β = 3.

Since H is c-edge connected, the degree each vertex is at least c. Therefore, it remains to show
that the average degree of vertices of H is not far from c. Interestingly, there are examples where
some vertices in H can have very large degrees. The difficulty of the proof follows from this fact
by noting that we are not able to use proof techniques that bound the maximum degree of the
vertices.

Lemma 5.4. The average degree of the vertices of H is at most (1 + 3δ)c.

Proof. Let (X,X) be a near minimum cut of H. We maintain a partition S of vertices of H. We
initialize S = {X,X} and iteratively break one of the sets in S into two sets. In particular, we pick a
subset S j ∈ S of size at least 2, and we find a cut (S′j,S j \S′j) separating the vertices of S j minimizing
|E(S′j,S j \ S′j)|. Note these minimum cuts are restricted to the subsets, S j ⊂ V, and can be different
from the near minimum cuts of H. We then substitute S j with S′j and S j \ S′j. We keep doing this
operation until all of the elements of S become singletons. Note that each edge between the vertices
of H has contributed to exactly one of the cuts considered during this procedure. Therefore, if we
show that the size of each cut |E(S′j,S j \ S′j)| ≤ (1 + 3δ) c

2 , then the average degree of the vertices of
H will be at most:

|E|
|V|
≤
|E(X,X)|
|V|

+
|V| − 2
|V|

(1 + 3δ)
c
2
≤ (1 + 3δ)c.

We say a near minimum cut (Y,Y) is outside of a set S, if both of its cut sides are not a subset
of S (i.e., Y,Y * S). Observe that if a cut (Y,Y) is outside of S then either one of the cut sides Y,Y
contains S or the cut (Y,Y) crosses S, i.e., both the cut sides intersect S non-trivially. In Claim 5.5
we show that that if a set S ⊂ V is highly connected (i.e., minT⊂S |E(T,S \ T)| ≥ 1 + 3δ) c

2), then
any near minimum cut (Y,Y) of H that is outside of S crosses it. But, all S j considered throughout
the procedure are either a subset of X, or X and (X,X) does not cross any of them. Since (X,X) is
outside of any set S j, the size of the minimum cut of each S j must be at most (1 + 3δ) c

2 , and we are
done.

Claim 5.5. Let S ⊂ V such that (S,S) is a non-trivial cut, and for any set T ⊂ S, |E(T,S \ T)| >
(1 + 3δ) c

2 , then any near minimum cut of H that is outside of S, crosses S.

Proof. We prove by contradiction. Suppose there exists a near minimum cut (X0,X0) outside of S,
and not crossing S. Since (S,S) is a non-trivial cut of H, there exists a near minimum cut (X1,X1)
crossing (S,S). Moreover, since the set of near minimum cuts of H are connected, there is a path
of crossing cuts which connects (X0,X0), and (X1,X1).

Let (Y0,Y0), . . . , (Yk,Yk) be a sequence of cuts such that Y0 = X0, for each 0 ≤ i < k, (Yi,Yi)
crosses (Yi+1,Yi+1), and (Yk,Yk) is the only cut that crosses S. We reach to a contradiction by
showing that (Yk,Yk) can not be a near minimum cut. Since (Y0,Y0) is outside of S, and all cuts
except (Yk,Yk) do not cross S, all of the cuts of the path must be outside of S. Therefore, since
(Yk−1,Yk−1) does not cross S, without loss of generality we may assume that Yk−1 ∩ S = ∅.

Since (Yk,Yk) crosses S, by Claim’s assumption we have |E(Yk∩S,Yk∩S)| > (1+3δ) c
2 . On the other

hand, since (Yk,Yk) crosses (Yk−1,Yk−1) by Lemma 5.3 we have |E(Yk ∩ Yk−1,Yk ∩ Yk−1)| ≥ (1 − δ) c
2 .
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Therefore:

|E(Yk)| ≥ |E(Yk ∩ S,Yk)| + |E(Yk ∩ Yk−1,Yk)|
≥ |E(Yk ∩ S,Yk ∩ S)| + |E(Yk ∩ Yk−1,Yk ∩ Yk−1)|

> (1 + 3δ)
c
2

+ (1 − δ)
c
2

= (1 + δ)c,

where the first inequality holds by the fact that Yk−1 ∩ S = ∅. Therefore, (Yk,Yk) can not be a near
minimum cut of H which is a contradiction. �

�

It remains to prove H satisfies the first property of the cactaceous structures for α = 20, α′ = 4.
This is the most technical part of the proof of Lemma 5.1.

Lemma 5.6. There exists at least m = (1−20
√
δ)|V| pairs of vertices of H, {(v1,u1), (v2,u2), . . . , (vm,um)},

such that for each 1 ≤ i ≤ m, |E(vi,ui)| ≥ (1− 4
√
δ) c

2 , and each vertex v ∈ V is contained in at most
two such pairs.

To prove this lemma we need to use the polygon representation defined in [5] and then gener-
alized in [7] to represent the set of near minimum cuts of each of the cut classes of H.

Definition 5.7. The polygon representation of a cut class Ci possesses the following properties:

• A representing polygon is a regular polygon with a collection of distinguished represent-
ing diagonals, with all polygon-edges and diagonals drawn by straight lines in the plane.
These diagonals divide the polygon into cells.

• Each atom of φ(Ci) is mapped to a (different) cell of this polygon; some cells may contain no
atoms.

• No cell has more than one incident polygon edge; each cell incident to the polygon boundary
contains an atom which we call an outside atom. The rest of the atoms are called inside
atoms.

• Each representing diagonal defines a cut, with sides being the union of the atoms contained
by cells on each side of the diagonal; The collection of cuts Ci is equal to the collection of cuts
defined by representing diagonals.

We learn from Benczur [6, Theorem 5.2.2] that if Ci represents a connected set of (1 + δ) near
minimum cuts and δ < 1/5, then it possesses a polygon representation. Moreover, he gives an
explicit representation that determines which atoms will be inside or outside.

Recall that by the assumptions of Lemma 5.1, H contains exactly one cut class, and the atoms
of that cut class are exactly the vertices of H. Therefore, in the rest of the proof we use the fact
that (1 + δ) near minimum cuts of H can be represented by a polygon representation where each
atom is a single vertex of H.

We start by proving Lemma 5.6, in the special case where the polygon representation does not
have any inside atoms. In subsection 5.1 we extend the proof to the general case where inside
atoms may exist. So for now, we may assume that we have a (regular) convex |V|-gon, such that
each vertex is mapped to a distinguished edge of the polygon, and diagonals represent the near
minimum cuts.
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Lemma 5.8. Suppose that the polygon representation of H does not have any inside atoms.
Then, for any integer σ ≥ 12, there exists at least m = (1 − 8

σ−10 )|V| pairs of vertices of H,
{(v1,u1), (v2,u2), . . . , (vm,um)} such that for each 1 ≤ i ≤ m, |E(vi,ui)| ≥ (1 − 2σδ) c

2 , and each vertex
v ∈ V is contained in at most two such pairs.

Proof. Let n := |V|, and let us label the vertices of the polygon representation cyclically as
p1, p2, . . . , pn. Moreover, assume that the n vertices v1, v2, . . . , vn of H are placed on the edges
of the polygon such that vi is placed on the edge (pi, pi+1). We show that we can select the m highly
connected pairs, from the pairs of vertices mapped to adjacent edges of the polygon. In particular,
we show that there is a set A of vertices of H of size |A| = (1 − 8

σ−10 )n such that for any vi ∈ A,
we have |E(vi, vi+1)| ≥ (1 − 2σδ) c

2 . Note that the lemma easily follows from the existence of A, we
can construct the m pairs based on each vertex vi of A and vi+1. Therefore, each v j ∈ V may be
included in at most two pairs (v j−1, v j), and (v j, v j+1).

In order to show there is a large number of edges connecting vi and vi+1 it is sufficient to show
that |d({vi, vi+1})| is small. In particular, since H is c-edge connected, if |d({vi, vi+1})| ≤ (1 + δ′)c, then
|E(vi, vi+1)| ≥ (1 − δ′) c

2 for any δ′ > 0. Therefore it is sufficient to show that there is a large set A,
such that for any vi ∈ A, the size of the cut d({vi, vi+1}) is at most (1 + 2σδ)c.

Before defining the set A, we need to define some notations. Since each near minimum cut of
H is corresponding to a representing diagonal (and a consecutive sequence of vertices), we will use
intervals to represent (near minimum) cuts. For example, for any two vertices pi and p j the interval
[pi, p j] := {pi, pi+1, . . . , p j}, or [pi, p j) := {pi, pi+2, . . . , p j−1}. Also let C(pi, p j) := d({vi, vi+1, . . . , v j−1})
be the cut corresponding to the representing diagonal that connects pi to p j if it existed. We
say two intervals cross, if their corresponding cuts cross. For example, the intervals [pi, pi+2] and
[pi+2, pi+4] do not cross, while [pi, pi+2] and [pi+1, pi+3] cross each other. We say an interval [pi′ , p j′]
is a subinterval of [pi, p j] if the set of polygon vertices contained in [pi′ , p j′] is a subset of [pi, p j].
For example, [p2, p4] is a subinterval of [p1, p5], but [p4, p2] is not a subinterval of [p1, p5].

For each vertex pi, let qi be the nearest vertex to pi (in terms of the (clockwise) cyclic dis-
tance), such that C(pi, qi) is a near minimum cut. Note that each vertex pi is adjacent to at least
one representing diagonal; otherwise, there is no near minimum cut crossing {vi−1, vi}, which is a
contradiction. Thus qi is well defined. Since we only consider the non-trivial near minimum cuts
of H we have qi , pi+1 and qi , pi−1. Moreover, note that if qi = pi+2, then we can easily add vi
to A, since |d({vi, vi+1})| ≤ (1 + δ) c

2 . Hence, we may only focus on the vertices of the polygon where
qi < [pi−1, pi+2].

For any vertex pi of the polygon, we define a chain as a sequence of vertices qi0 , qi1 , qi2 , . . . , qil
satisfying the following properties:

1. qi0 = qi,

2. qil = pi+2,

3. for all j ≥ 1, we have qi j ∈ [pi+2, qi j−1); and

4. for all j ≥ 1, there exists a vertex r j such that the cut C(qi j , r j) is a near-minimum cut, and it
crosses the cut C(pi, qi j−1).

The length of the chain is the number of its vertices. For any vertex pi, let Pi be its shortest length
chain.
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pi

pi+1

pi+2

qi0

qi1
qi2

r1

r2

r3

Figure 4: An example of a chain of length 4 with vertices qi0 , qi1 , qi2 , pi+2 for a vertex pi.

Chains will be very useful constructions in the rest of the proof. Figure 4, and the construction
given in the proof of the first part of the next claim should help with a better understanding of the
definition. The last statement of the Claim will be useful later in the proof of Lemma 5.10.

Claim 5.9. The following properties are satisfied for any vertex pi of the polygon representation:

1. There exists at least one chain for pi.

2. If there exists a chain of length σ for pi, then |E(vi, vi+1)| ≥ (1 − 2σδ) c
2 .

3. Let P′i := {q′i0 , q
′

i1
, . . . , q′il} be a chain for vertex pi, and let C(pi′ , p j′) be a near minimum cut such

that pi′ ∈ [pi+2, qi), and more than two vertices of P′i are contained in the interval [pi′ , p j′), If
[pi′ , p j′] crosses [pi, qi], or is a subinterval of [pi, qi], then there is a shorter chain for pi.

Proof. We start by proving the first property. We construct the chain starting at qi0 := qi, and
inductively adding vertices that are closer to pi, such that for each new vertex qi j there is a near
minimum cut C(qi j , r j) that crosses C(pi, qi j−1). Since qi j−1 , pi+1, the cut C(pi, qi j−1) is always a
non-trivial cut, thus by the assumptions on H, there exists a near minimum C(pi′ , p j′) crossing it.
Trivially one of pi′ or p j′ (say p j′) is closer to pi than qi j−1 . Therefore, we can let qi j := p j′ , unless
j′ = i + 1 (i.e., p j′ < [pi+2, qi j−1)). To avoid this problem we let C(pi′ , p j′) to be a near minimum
crossing C(pi+1, qi j−1), and we exploit the assumption that qi is the closest vertex to pi that makes a
near minimum cut.

Consider the cut C(pi+1, qi j−1). Since qi j−1 ∈ [pi+3, qi] (i.e., the chain has not completed yet),
C(pi+1, qi j−1) is a non-trivial cut. Thus there is a near minimum cut C(pi′ , p j′) that crosses C(pi+1, pi j−1).
Without loss of generality, suppose that p j′ ∈ (pi+1, pi j−1). Therefore, the cut C(pi′ , p j′) would also
cross C(pi, qi j−1), unless j′ = i. But this means that qi was not the closest vertex to pi that makes a
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near minimum cut which is a contradiction. Therefore, the near minimum cut C(pi′ , p j′) also crosses
C(pi, qi j−1), and we can simply set qi j := p j′ .

For the second property we use a simple induction to show that |C(pi, qi j)| ≤ c + (2 j + 1)δc.
Note that if this is true, then we have |C(pi, pi+2)| = |C(pi, qiσ−1)| ≤ c + (2σ − 1)δc which implies that
|E(vi, vi+1)| ≥ (1− σδ) c

2 , and we are done. The induction hypothesis trivially holds for the base case
since |C(pi, qi0)| = |C(pi, qi)| ≤ (1 + δ)c. Now suppose it holds for the cut C(pi, qi j). Observe that by
Lemma 5.2 we have

|C(pi, qi j+1)| ≤ |C(pi, qi j)| + δc ≤ c + (2 j + 1)δ + 2δc = c + (2( j + 1) + 1)δc,

where the last inequality holds by the induction hypothesis. This implies the induction claim.
To prove the last property, it suffices to construct a shorter chain for pi using the near minimum

cut C(pi′ , p j′). Let q′i j
, q′ik be the first, and the last vertices of the chain that are contained in [pi′ , p j′).

By claim’s assumptions we have k ≥ j + 2.
Let Pi := {q′i0 , q

′

i1
, . . . , q′i j

, pi′ , q′ik+1, . . . , q
′

il
}. Since k ≥ j + 2, the length of Pi is smaller than P′i .

Suppose [q′ik+1
, r′k+1] is the cut that crosses [pi, q′ik]. To prove Pi is indeed a chain we need to show

that [pi′ , p j′] crosses [pi, q′i j
], and [q′ik+1

, r′k+1] crosses [pi, pi′]. The latter can be proved simply by
noting that pi′ ∈ (q′ik+1

, q′ik].
It remains to prove [pi′ , p j′] crosses [pi, q′i j

]. By claim’s assumption [pi′ , p j′] either crosses [pi, qi],
or is a subinterval of it. If [pi′ , p j′] crosses [pi, qi], then we have q′i j

= q′0. Therefore, [pi′ , p j′] crosses
[pi, q′i j

]. On the other hand, if [pi′ , p j′] is a subinterval of [pi, qi], then p j′ ∈ (pi′ , qi]. Since q′i j
∈ [pi′ , p j′),

[pi′ , p j′] must cross [pi, q′i j
].

�

Now we are ready to define the set A. We define A := {vi : length(Pi) ≤ σ} to be the set of
vertices vi such that the length of the shortest chain Pi of pi is at most σ. By property 2 of the
above claim, if length of Pi is at most σ, then we have |E(vi, vi+1)| ≥ (1− 2σδ) c

2 . It remains to prove
that |A| ≥ (1 − 8

σ−10 )n.
We say a vertex pi is bad if length(Pi) > σ (i.e., vi < A). In the next lemma we show that the

number of bad vertices is at most 8
σ−10 n. This completes the proof of Lemma 5.8. �

Lemma 5.10. The number of bad vertices is at most 8
σ−10 n.

Proof. We prove this claim by a double counting argument. Consider a graph D, with n vertices
one for each vertex of the polygon and b additional “bad” vertices one for each interval [pi, qi]
corresponding to a bad vertex pi. We construct a directed acyclic graph (DAG) by adding directed
edges from the bad vertices to the rest (we allow directed edges between the bad vertices too). We
will show that the indegree of each vertex is at most 4, while the outdegree of each bad vertex is
at least σ−2

2 . The lemma follows by noting that the sum of the indegrees is equal to the sum of the
outdegrees, thus:

4(n + b) ≥ b
σ − 2

2
⇒ b ≤

8
σ − 10

n.

The construction of the graph D is quite intricate and we will do it in several steps. We say
a vertex p j is a potential child of [pi, qi] iff p j ∈ [pi+2, qi). We say an interval [p j, q j] is a potential
child of [pi, qi] iff it is a subinterval of [pi, qi], and both of its endpoints are potential children of
[pi, qi]. The directed edges of D are from a bad vertex to a subset of its potential children. Since
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the edges are directed only from an interval to the intervals/vertices inside it, D will be a directed
acyclic graph.

We add the directed edges inductively in a bottom up manner. Consider an interval [pi, qi] and
suppose we have added the edges between the potential children of [pi, qi], such that the outdegree
of all intervals is at least σ−2

2 .
Let Di be the induced subgraph of the set of potential children of [pi, qi]. Trivially Di is also a

directed acyclic graph. We show that it contains at least (σ − 2)/2 sources (vertices of indegree 0).
Then we connect [pi, qi] to some specific set of the sources of Di.

Let Pi = qi0 , qi1 , . . . , qil be the shortest chain assigned to vertex pi. Since pi is a bad vertex we
have l ≥ σ. Let σ′ be the largest odd integer smaller than σ (i.e., σ′ := σ− I [σ is even]). Define the
set of vertices Si := {qi3 , qi5 , . . . , qiσ′ } in Di. Note that Si contains all vertices of Pi with odd index
except qi1 ; this is a technical requirement and will be useful later in the proof of Claim 5.12.

In the next claim we show each source vertex in Di has a directed path to at most one of the
vertices of Si. This implies that Di contains at least |Si| = (σ′ − 1)/2 ≥ σ−2

2 sources since either the
vertex in Si is a source or there is a unique source connected to it.

Claim 5.11. Any source of Di is connected by directed paths to at most one of the vertices of Si.

Proof. Let [p j, q j] be a potential child of [pi, qi], connected by directed paths to two vertices qik , qik′ ∈

Si, where k + 2 ≤ k′. We show that using [p j, q j], we can obtain a shorter chain for pi, which is a
contradiction.

First note the transitivity: if x is a potential child of y, and y is a potential child of z, then x is also
a potential child of z. Since each interval is only adjacent to its potential children, and this property
is transitive, qik and qik′ are potential children of [p j, q j]. Therefore, qik , qik′ ∈ [p j+2, q j) ⊂ (p j, q j).
Hence, all the vertices between them in Pi, and in particular qik+1 , are also contained in (p j, q j).

Since [p j, q j] is a potential child of [pi, qi], [p j, q j] is a subinterval of [pi, qi], and p j ∈ [pi+2, qi).
Moreover, since C(p j, q j) is a near minimum cut, and at least three vertices of Pi are included in
(p j, q j), by part 3 of Claim 5.9 we may obtain a shorter chain for pi which is a contradiction. �

Now we are ready to define the σ′−1
2 directed edges from (pi, qi) to its potential children: for

each vertex qi j ∈ Si, we add an edge from [pi, qi] to one of the sources (i.e., vertices with indegree
0) in Di that has a directed path to qi j .

It remains to show that after the construction of D the indegree of each vertex is at most 4. It
is worth noting that, indeed some of the vertices may have indegree more than 1. As an example,
suppose [pi, qi], and [pi+1, qi+1] are two bad intervals (note that qi+1 does not necessarily equal to
the vertex next to qi in the polygon). The crucial fact is that [pi+1, qi+1] is not a potential child of
[pi, qi], even if it is a subinterval of [pi, qi]. Now suppose [pi+1, qi+1] has a directed edge to a source
vertex x ∈ V(Di)∩V(Di+1). Since [pi+1, qi+1] < V(Di), the directed edge is not included in Di. Hence
x might seem to be a source vertex in Di even though it already has an incoming edge.

First we show that if two intervals are both adjacent to a vertex of Di, then they can not be
crossing:

Claim 5.12. Assume that two bad intervals [pi, qi] and [p j, q j] are both directly adjacent to a vertex
x. Then we either have pi is adjacent to p j in the polygon, or p j, q j ∈ [pi, qi), or pi, qi ∈ [p j, q j).

Proof. Assume that pi is not adjacent to p j (otherwise we are done). Since each bad vertex has
exactly one associated interval in D, we also have pi , p j. First of all, note that by claim’s
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assumption, x is a potential child of both of the intervals. Therefore, [pi, qi] and [p j, q j] have a
non-empty intersection. Without loss of generality, assume that p j ∈ [pi, qi) (the other cases are
equivalent). We need to show that q j ∈ [pi, qi). Suppose not; let Pi = qi0 , . . . , qil be the shortest
chain assigned to pi. We show that we may modify Pi and obtain a shorter chain for pi.

Since [pi, qi] is adjacent to x, by definition x is a source in Di that has a directed path to one of
the vertices of Si (say qik) in Di (note that x may be equal to qik). Since [p j, q j] is also adjacent to
x, by transitivity, qik is a potential child of [p j, q j]. Moreover, since q j < [pi, qi), all of the vertices
qi1 , qi2 , . . . , qik are also potential children of [p j, q j] (note that since we may have q j = qi0 = qi, qi0
is not necessarily a potential child of [p j, q j]). Therefore, we have qi1 , qi2 , . . . , qik ∈ (p j, q j). Since by
construction of Si, k ≥ 3, at least 3 vertices of the chain Pi is contained in (p j, q j).

Since p j ∈ [pi, qi), but p j is not equal to pi, nor adjacent to it, we have p j ∈ [pi+2, qi). Moreover,
since q j < [pi, qi), [p j, q j] crosses [pi, qi]. Therefore, since [p j, q j] is a near minimum cut that contains
three consecutive vertices of Pi, by part 3 of Claim 5.9 we may obtain a shorter chain for pi, which
is a contradiction. �

Now we can show that the indegree of each vertex in D is at most 4:

Claim 5.13. The indegree of each vertex of D is at most 4.

Proof. We prove the claim by contradiction. Let x ∈ V(D) be a vertex with indegree at least 5. We
show that one of the 5 intervals adjacent to x is indeed a potential child of another one, and thus x
was not a source vertex for at least one of the induced DAGs associated to one of these intervals,
which is a contradiction.

First of all, since each bad vertex has exactly one associated interval in D, the 5 intervals must
start at distinct vertices of the polygon. Therefore, among these 5 intervals we can find 3 intervals
[pi, qi], [p j, q j], [pk, qk] such that no two of pi, p j, pk are adjacent in the polygon.

By Claim 5.12 these three intervals may not cross. Without loss of generality, let p j, q j, pk, qk ∈

[pi, qi). Therefore, since p j, pk are not equal to pi, nor adjacent to it, we have p j, pk ∈ [pi+2, qi).
Therefore, [p j, q j], [pk, qk] are potential children of [pi, qi] unless they are not a subinterval of [pi, qi]
(i.e. q j ∈ [pi, p j), and qk ∈ [pi, pk)).

Suppose they are not a subinterval of [pi, qi]; similarly we can assume pk, qk ∈ [p j, q j), and
pk ∈ [p j+2, q j). But since [p j, q j], [pk, qk] are not a subinterval of [pi, qi], [pk, qk] must be a subinterval
of [p j, q j]. Therefore, [pk, qk] is a potential child of [p j, q j]. This means that [pk, qk] ∈ V(D j) was
adjacent to x, and hence x has an indegree 1 in D j which contradicts with the fact that [p j, q j] is
adjacent to x. �

This completes the proof of Lemma 5.10. �

5.1 Cut Classes with Inside Atoms

In this subsection we show that inside atoms (vertices) of the polygon representation do not have
a great impact on the number of pairs of vertices that are highly connected. First, we prove the
crucial lemma 5.16 which shows that the inside atoms are loosely connected to each other. We use
this lemma in Corollary 5.17 to extend the proof of Lemma 5.8 in the case where we have inside
atoms as well. Then we will show that the number of inside atoms is at most an O(

√
δ) fraction

of outside atoms. Let Vin and Vout be the set of inside/outside vertices of V(H) respectively. Since
by Corollary 5.17 there are at least m := (1− 8

σ−10 )|Vout| pairs of outside vertices of H such that the
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vertices in each pair are connected by at least (1−2σδ) c
2 number of edges, and by Corollary 5.19 we

have |Vin| ≤ O(σδ|Vout|), setting σ := 2/
√
δ, we will obtain that there are at least m := (1− 20

√
δ)|V|

pairs of vertices of H, such that the vertices in each pair are connected by at least (1−4
√
δ) c

2 edges.
We start by describing the properties of inside atoms. We use the results in [6] to distinguish

between inside and outside vertices of H. We need to use the definition of k-cycles:

Definition 5.14 (Benczur [6, Definition 5.3.1]). We say that k cut sides Ci ⊂ V, for 1 ≤ i ≤ k,
form a k-cycle if

• Ci crosses both Ci−1 and Ci+1;

• Ci ∩ C j = ∅ for j , i − 1, i or i + 1; and

•
⋂

1≤i≤k Ci , ∅.

One of the main differences between the properties of the collections of minimum and near
minimum cuts is that minimum cuts do not admit any k-cycle. Benczur in [6] showed that the
collection (1 + δ) near minimum cuts does not have a 1/δ-cycle. In particular, 6/5 near minimum
cuts do not have any k-cycle for k ≤ 5. He also showed that the set of inside atoms of the
polygon representation are those atoms a, for which there exists a vertex subset W and a collection
{C∩W : (C,C) ∈ Ci, a * C} that form a k-cycle for k ≥ 3. It is not hard to see that if the set of cuts
C possesses a polygon representation, then we have W = V for any cycle associated to an inside
atom. We say that a k-cycle is for an inside atom a, if a ∈

⋂
i Ci.

Here is the strategy for the rest of this section. We will prove in Lemma 5.16 that the minimum
cut within any subset of inside atoms is quite small. We use that to prove Corollaries 5.17 and 5.19.
But before that, we state the following technical lemma whose proof is deferred to the appendix.

Lemma 5.15. Let T ⊂ Vin be a subset of inside vertices of H. Then the size of the minimum cut
minS⊂T |E(S,T \ S)| ≤ 12δ c

2 = 6δc.

Now we are ready to show that most of the edges adjacent to the inside atoms go to the outside
atoms:

Lemma 5.16. |E(Vin)| ≤ 6δ|Vin|c.

Proof. The proof strategy is similar to Lemma 5.4. Define S as a collection of sets which are a
partitioning of Vin. We start from S = {Vin}, and iteratively break one of the sets in S into two
sets through its minimum cut. We keep doing this until S becomes all singletons. By lemma 5.15
the size of the minimum cut of any subset of inside vertices is no more than 12δ c

2 . Therefore, the
total number of the edges of H encountered in the process will be at most (|Vin| − 1)12δ c

2 . Since
each edge between the inside vertices of H is seen exactly once in the process, the number of edges
between the inside vertices of H is no more than 12δ|Vin|

c
2 . �

With the following two corollaries we complete the proof of Lemma 5.6. First we show how to
extend the proof of Lemma 5.8 to the polygon representation of the cut classes that contain inside
atoms:

Corollary 5.17. For any integer σ ≥ 12, there exists at least m = (1 − 8
σ−10 )|Vout| pairs of vertices

of H, {(v1,u1), (v2,u2), . . . , (vm,um)} such that for each 1 ≤ i ≤ m, |E(vi,ui)| ≥ (1 − 2σδ) c
2 , and each

vertex v ∈ V is contained in at most two such pairs.
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Proof. We essentially use the same proof strategy of Lemmas 5.8 and 5.10. The main difference is
that because of the existence of inside vertices the cuts C(pi, p j) considered in the proof is not well
defined (recall that C(pi, p j) is not necessarily a near minimum cut in H, thus it may not correspond
to a representing diagonal of the polygon representation). In fact depending on the set of inside
vertices contributed to different sides of the cut C(pi, p j), we get cuts of different sizes. For an
interval [pi, p j], define I(pi, p j) := argminI⊆Vin

|d({vi, . . . , v j−1} ∪ I)| to be a subset of inside vertices
which together with the outside vertices in the interval [pi, p j] makes the minimum possible cut,
and let

C(pi, p j) := d({vi, vi+1, . . . , v j−1} ∪ I(pi, p j)),

be that cut. It is not hard to see that the whole argument would work assuming this new definition,
and we can show that for most of vertices |C(pi, pi+2)| ≤ c(1 + 2σδ). Unfortunately, |C(pi, pi+2)| being
small does not immediately imply that |E(vi, vi+1)| is large, since the cut C(pi, pi+2) may contain inside
vertices. In the rest of the proof we show that for any vertex pi of the polygon representation, if
|C(pi, pi+2)| ≤ c(1 + 2σδ), then |E(vi, vi+1)| ≥ (1 − 2σδ) c

2 .
We prove the statement by contradiction; suppose |C(pi, pi+2)| ≤ c(1 + 2σδ), and |E(vi, vi+1)| <

(1 − 2σδ) c
2 . Let I := I(pi, pi+2), and S := I ∪ {vi, vi+1} (note that C(pi, pi+2) = E(S,S)). Trivially I , ∅.

We show that |E(S)| ≤ (1− 2σδ+ 20|I|δ) c
2 . Then we use the fact that H is c-edge connected to argue

that the degree of each vertex is at least c, thus the number of the edges adjacent to vertices of S
is at least c|S|. This implies that |C(pi, pi+2)| � c(1 + 2σδ), unless I = ∅ which is a contradiction.

First we show that the |E(I, {vi, vi+1})| ≤ 4δ|I|c.

Claim 5.18. For any inside vertex vin ∈ Vin and vout ∈ Vout we have |E(vin, vout)) ≤ 2δc.

Proof. Let C = {C1,C2, . . . ,Ck} be a k-cycle for vin. Since vout is an outside vertex, C is not a
cycle for vout, and thus vout ∈ Ci for some 1 ≤ i ≤ k. Since Ci crosses Ci−1 and Ci+1, we have
|E(Ci,Ci−1)| ≥ (1 − δ) c

2 and |E(Ci,Ci+1)| ≥ (1 − δ) c
2 . Therefore,

|E(vin, vout)| ≤ |E(vin,Ci)| ≤ c(1 + δ) − c(1 − δ) = 2δc.

�

By the above claim and Lemma 5.16 we have

|E(S)| = |E(I, vi)| + |E(I, vi+1)| + |E(I)| + |E(vi, vi+1)| ≤ 4δ|I|c + 6δ|I|c + (1 − 2σδ)
c
2

Since |d(S)| = |C(pi, pi+2)| ≤ c(1 + 2σδ) we get

c(|I| + 2) − c (1 − 2σδ + 20|I|δ) ≤ |d(S)| ≤ c(1 + 2σδ)⇒ |I| ≤ 20δ < 1,

where the last inequality holds by the fact that δ < 1/20. Therefore I = ∅ and we get a contradiction.
�

It remains to prove an upperbound on the number of inside vertices:

Corollary 5.19. The number of inside vertices is no more than |Vin| ≤
1

1−27δ |Vout|
[
(2σ + 3)δ + 8

σ−10

]
.

23



Proof. We use a double counting argument. Let Ein be the set of edges between the inside vertices,
Eout be the set of edges between the outside vertices and Ein−out be the set edges from the inside to
outside vertices. By Lemma 5.16 we have |Ein| ≤ 6δ|Vin|c. Since the degree of each inside vertex is
at least c, we have

|Ein−out| ≥ c(1 − 12δ)|Vin|. (1)

Let σ ≥ 12 be an integer (it will be fixed later), by lemma 5.17, there are m := (1− 8
α−10 )|Vout| pairs

of outside vertices such that the vertices in each pair are connected by at least (1 − 2σδ) c
2 edges.

We have
|Eout| ≥

c
2

(1 − 2σδ)(1 −
8

σ − 10
)|Vout|. (2)

Finally, by lemma 5.4 we have

|V|(1 + 3δ)
c
2
≥ |Ein| + |Eout| + |Ein−out|. (3)

By combining equations (1),(2), and (3) we obtain:

[|Vin| + |Vout|] (1 + 3δ)
c
2
≥ c(1 − 12δ)|Vin| +

c
2

(1 − 2σδ)(1 −
8

σ − 10
)|Vout|

Therefore

|Vin| ≤
1

1 − 27δ
|Vout|

[
(2σ + 3)δ +

8
σ − 10

]
�

Now we may complete the proof of Lemma 5.6:
Proof of Lemma 5.6. By Corollary 5.17 there are m := (1 − 8

σ−10 )|Vout| pairs of vertices of H that
are connected by at least (1−2σδ) c

2 edges (for any integer σ ≥ 12). Also by Corollary 5.19, we have
|Vin| ≤

|V|
1−27δ

[
(2σ + 3)δ + 8

σ−10

]
. Therefore, there is at least

(1 −
8

σ − 10
)|Vout| ≥

(
1 −

8
σ − 10

−
1

1 − 27δ

[
(2σ + 3)δ +

8
σ − 10

])
|V|

pairs of vertices of H such that each pair is connected by at least (1 − 2σδ) c
2 edges. Since δ < 1

100 ,
setting σ =

√
4/δ and rounding it down to the nearest integer implies the Lemma. �

This completes the proof of Theorem 4.9.

5.2 Cyclic Cut Classes

In this subsection we prove a much stronger statement (cf. Theorem 4.9) on small cut classes. For
a small cut class Ci, let κ(Ci) := 10|φ(Ci)| × δ.

We say a cut class is cyclic if it is not the root of Γ(C), and

20|φ(Ci)|κ(Ci) = 200|φ(Ci)|2 < 1

(note that τ is picked to ensure that each small cut class is cyclic). The following proposition shows
nice properties of the cyclic cut classes.
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Proposition 5.20. Let C be the collection of (1 +δ) near minimum cuts of fractional graph G, and
let Ci be a cut class of C. If κ(Ci) := 10|φ(Ci)| × δ < 1, and δ < 1/24, then:

1. Ci does not contain any inside atoms,

2. For any a ∈ φ(Ci), the fractional degree x(d(a)) ≤ 2(1 + 2δ(|φ(Ci)| − 2)) ≤ 2(1 + κ(Ci)),

3. For any pair of adjacent outside atoms a, b of the polygon representation of Ci we have
x(E(a, b)) ≥ 1 − 2δ(|φ(Ci)| − 3) ≥ 1 − κ(Ci).

Similar to the rest of the proofs in this section, we just look at the graph H(φ(Ci)), and we
prove the above proposition for such a graph when 10|φ(Ci)|δ < 1. This is proved in the following
Lemma:

Lemma 5.21. Let c ≥ 1 be an integer, δ < 1/100, and H = (V,E) be an unweighted c-edge connected
graph such that for any non-trivial cut (S,S), there exists a (1 + δ) near minimum cut that crosses
(S,S). If the cross graph of (1 + δ) near minimum cuts of H is connected, and 4|V|δ < 1, then:

1. H does not have any inside vertices in the polygon representation,

2. For any vertex v, we have |d(v)| ≤ c(1 + 2δ(|V| − 2)),

3. For any adjacent pair of vertices vi, vi+1 in the polygon representation, we have |E(vi, vi+1)| ≥
c
2 (1 − 2δ(|V| − 3)).

Proof. First we show that Vin = ∅. The proof simply follows from Lemma 5.16. Suppose Vin , ∅,
by Lemma 5.16, there exists an inside vertex v ∈ Vin which has at most 12δc edges to other inside
atoms. Since |d(v)| ≥ c, and δ < 1/24, we have |E(v,Vout)| ≥ c − 12δc ≥ c

2 . Finally, by Claim 5.18,
for any v′ ∈ Vout we have |E(v, v′)| ≤ 2δc. But

|E(v,Vout) =
∑

v′∈Vout

|E(v, v′)| ≤ 2δ|Vout|c ≤ 2δ|V|c <
c
2
,

which is a contradiction. Note that the last inequality holds by Lemma’s assumption.
In the rest of the proof we assume Vin = ∅, thus V = Vout. The proof of the other two statements

follows from the chain construction argument of Lemma 5.8. Recall that p1, . . . , pn are the vertices
of the polygon representation, and outside atoms are placed on the sides of the polygon such that
vi is placed on the edge (pi, pi+1). First we prove the third statement of the lemma; we show
for any i, |E(vi, vi+1| ≥

c
2 (1 − 2δ(|V| − 3)). It turns out that the longest possible chain for pi is

Pi := pi−2, pi−3, . . . , pi+3, pi+2. (This follows from the fact that each vertex appears in a chain at most
once. Since by Claim 5.9 any vertex vi has at least one chain, the length of the shortest chain for vi
is at most |V|−3. Therefore, by the second part of Claim 5.9 we have |E(vi, vi+1)| ≥ c

2 (1−2δ(|V|−3)).
It remains to prove the second statement. For that we need to perturb the definition of a chain

and require that the chain of vi ends at qil = pi+1 instead of qil = pi+2. Let Pi be a chain for pi.
Observe that by inserting pi+1 at the end of Pi we obtain a feasible chain, say P′i , that ends at pi+1.
Also by following the lines of the proof of the second statement of Claim 5.9, we can show that if
length(Pi) = l, then the size of the cut |d(vi)| ≤ c(1 + 2lδ). In other words, the degree of vi is no
more than c(1 + 2lδ). Also using the proof in the previous paragraph we get length(P′i ) ≤ |V| − 2.
Therefore, |d(vi)| ≤ c(1 + 2δ(|V| − 2)). �
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6 Existence of Good Edges

In this section, we prove the three types of edges defined in subsection 4 are good. Before that,
we state some of the properties of random spanning trees and their corresponding generating
functions. The results stated in the next subsection are not new. But we include them for the sake
of completeness.

6.1 Random Spanning Trees and Strongly Rayleigh Measures

Let us start by a beautiful result of Burton and Pemantle that derives the exact probability that
a set of edges appear in a random spanning tree as a determinant. Suppose G is an electrical
network in which the conductance of every edge e is λe. Recall that λe was selected such that
P

[
T ∼ µ

]
∝

∏
e∈T λe. With an abuse of notation, in this section we use T (instead of F) to denote

the sampled spanning tree from the distribution µ.
Let e and f be two edges of G. Define ie( f ) to be the current that flows across f when a unit

current is imposed between the endpoints of e. It is known that ie(e) = ze is the probability that e is
chosen in the λ-uniform spanning tree. Burton and Pemantle [11] proved the following, known as
Transfer-Current Theorem which also gives the exact value of correlation between any two edges
in the graph.

Theorem 6.1 (Burton, Pemantle [11]). For any distinct edges e1, . . . , ek ∈ G,

P [e1, . . . , ek ∈ T] = det[iei(e j)]1≤i, j≤k.

In particular, for any two edges e and f :

P
[
e, f ∈ T

]
− P [e ∈ T]P

[
f ∈ T

]
= −ie( f )i f (e)

The next set of results are the main tools in proving the goodness of the trivial edges and are
mostly restated from a recent work of Borcea, Branden and Ligget [8] on strongly Rayleigh prob-
ability measures. Strongly Rayleigh measures include determinantal measures (in a form similar
to the above formula) and in particular uniform and λ-uniform random spanning tree measures.
They also enjoy all the virtues of negative dependence and negative association.

Let E be the ground set of elements with m = |E|. For an element e ∈ E, let Xe be the indicator
random variable for element e, and for S ⊆ E, let XS =

∑
e∈S Xe. Let Pm be the set of all multi-affine

polynomial in m variables f (te : e ∈ E) with non-negative coefficients such that f (1, 1, . . . , 1) = 1.
There is a one-one correspondence between the measures on 2E, and Pm: if µ is a measure we may
form its generating polynomial, namely f (t) =

∑
S⊆E µ(S)tS, where tS =

∏
e∈S te.

A polynomial f ∈ C[te]e∈E is called stable if f (te : e ∈ E) , 0 whenever Im(te) > 0 for all e ∈ E.
A stable polynomial with all real coefficients is called real stable. For example, this simply implies
that a polynomial in one variable is real stable iff all its roots are real. A measure µ on 2E is called
strongly Rayleigh if its generating function is real stable.

First we describe some operations (Projection, Conditioning and Truncation) that maintain the
strongly Rayleigh property.

Definition 6.2 (Projection). Given S ⊂ E and µ a measure on 2E. The projection of µ onto 2S is
the measure µ′ obtained from µ by restricting the samples to the subsets of S, i.e.:

∀A ⊆ S : µ′(A) :=
∑

B⊆E:B∩S=A

µ(B)
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Borcea et al. showed that any projection of a strongly Rayleigh measures is still a strongly
Rayleigh measure. For example, if µ is a uniform measure on the spanning trees of G = (V,E), and
S = (C,C) ⊂ E is the set of edges in the cut (C,C), the projection of µ on 2S is a strongly Rayleigh
measure.

Definition 6.3 (Conditioning). Let µ be a measure on 2E, fix some e ∈ E. The measure obtained
from µ by conditioning on Xe = 0 is the measure µ′ on 2E\{e} defined as follows:

∀A ⊆ E \ {e} : µ′(A) :=
µ(A)∑

B⊆E\{e} µ(B)

Similarly, we can define the measure obtained by conditioning on Xe = 1.

For example, if µ is a uniform measure on the spanning trees of G = (V,E), the measure obtained
by conditioning on Xe = 0 for some e ∈ E is still a uniform measure on spanning trees that does
not contain e, and it is still a strongly Rayleigh measure. Similarly, we can condition on the set
of spanning trees that contain all of the edges in a set S, and none of the edges in S′. As a
generalization, let W ⊂ V be a set of vertices. Observe that the measure obtained by conditioning
on

∑
e∈E(W) Xe = |W| − 1 (i.e. having an spanning tree inside W), is still a uniform measure on

spanning trees.
Borcea et al. proved something stronger, they showed if we condition on

∑
e Xe = p, for some

fixed number p, still we get a strongly Rayleigh measure. First we need to define the truncation of
a measure:

Definition 6.4 (Truncation). Let µ be a probability measure on 2E, and 1 ≤ p ≤ q ≤ |E|. The
truncation of µ to [p, q] is the conditional measure

µp,q :=
(
µ | p ≤ XE ≤ q

)
Borcea et al. proved that if q − p ≤ 1, the truncation of any strongly Rayleigh measure is still

strongly Rayleigh:

Theorem 6.5 ([8, Corollary 4.18]). Suppose that µ is a strongly Rayleigh probability measure on
2E and that 0 ≤ p ≤ q ≤ |E| with q − p ≤ 1. Then µp,q is strongly Rayleigh.

For example, let µ be a uniform measure on the spanning trees of G = (V,E), and S ⊂ E; a
truncation of the projection of µ on 2S is strongly Rayleigh. Let µ1 be the projection of µ on S.
For any 1 ≤ p ≤ q ≤ |S| such that q−p ≤ 1, µ1

p,q is a strongly Rayleigh measure. Moreover, since any
spanning tree sampled from µ has exactly |V|−1 = n−1 edges, conditioning on XS = p is equivalent
to XS = n − 1 − p. Therefore, conditioned on p ≤ XS ≤ q, µ1 is a strongly Rayleigh measure too.

Next we describe some properties of the strongly Rayleigh measures that are essential in our
proofs. We start with the negative association.

Definition 6.6 (Negative Association). A measure µ on 2E is called negatively associated or NA
if

Eµ [F]Eµ [G] =

∫
Fdµ

∫
Gdµ ≥

∫
FGdµ = Eµ [FG]

for any increasing functions F, G on 2E that depend on disjoint sets of elements.
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Feder and Mihail [19] proved that uniform measures on balanced matroids (and in particular
on spanning trees) have negative association. Borcea et al. in [8] proved that the strongly Rayleigh
measure satisfy the strongest form of negative association known as CNA+ which we do not describe
here.

Theorem 6.7 ([8]). Strongly Rayleigh measures are negatively associated

We may associate an increasing function to any increasing event, and then use the properties
of negative association:

Definition 6.8 (Increasing Events and Functions). An increasing event A on 2E is a collection
of subsets of E that is closed upwards under containment, i.e. if A ∈ A and A ⊆ B ⊆ E, then B ∈ A.

For any increasing event A, the function f : 2E
→ {0, 1}, defined as f (A) := I [A ∈ A] is an

increasing function. The following fact is a simple application of negative association.

Fact 6.9. Let µ be a uniform measure on spanning trees of G = (V,E). For any S ⊂ E, and p ∈ R
we have

1. ∀e′ ∈ E \ S : Eµ
[
Xe′

∣∣∣XS ≥ p
]
≤ Eµ [Xe′]

2. ∀e′ ∈ E \ S : Eµ
[
Xe′

∣∣∣XS ≤ p
]
≥ Eµ [Xe′]

The following corollary is a simple consequence of this:

Corollary 6.10. Let µ be a uniform measure on spanning trees of a graph G = (V,E), S ⊂ E,
s = Eµ [XS], and r(S) be the rank of S in the graphical matroid on G. For any set S′ ⊆ S, we have
Eµ [XS′ |XS = 0] ≤ Eµ [XS′] + s, and Eµ [XS′ |XS = r(S)] ≥ Eµ [XS′] − r(S) + s.

Proof. First of all since µ is a measure on spanning trees, and each spanning tree has n − 1 =

|V| − 1 vertices, we have E
[
XS|XS = 0

]
= E

[
XS

]
+ s, and E

[
XS|XS = r(S)

]
= E

[
XS

]
− r(S) + s.

The rest of the proof simply uses the negative association. Since any spanning tree selects at
least zero, and at most r(S) edges from S, the events XS = 0, and XS = r(S) are downward, and
upward closed event respectively. Hence, by negative association the probability of the edges in
S can only increase/decrease respectively. Therefore, we have E [XS′ |XS = 0] ≤ E [XS′] + s, and
E [XS′ |XS = r(S)] ≥ E [XS′] − r(S) + s. �

The next property is ultra log-concavity (ULC) of the rank function of strongly Rayleigh mea-
sures. Recall that since there is negative correlation between the elements of a strongly Rayleigh
measures, we may apply any standard concentration bounds like Chernoff Bounds, and say the∑

e∈E Xe is highly concentrated around its expectation. ULC in a sense is a generalization of that, it
implies that the probability density of the rank sequence is a log-concave function (Note that not
all measures with negative correlation have ULC rank functions):

Definition 6.11 (Ultra Log Concavity [8, Definition 2.8]). A real sequence {ak}
m
k=0 is log-concave if

a2
k ≥ ak−1ak+1, 1 ≤ k ≤ m − 1, and it is said to have no internal zeros if the indices of its non-zero

terms form an interval (of non-negative integers). We say that a non-negative sequence {ak}
m
k=0 is

• LC if it is log-concave with no internal zeros;
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• SLC (strongly log-concave) if the sequence {k!ak}
m
k=0 is LC;

• ULC (ultra log-concave) if the sequence {ak/
(m

k
)
}
m
k=0 is LC.

Clearly, ULC ⇒ SLC ⇒ LC. If µ is a measure on 2E, then µ(XE = k)|E|k=0 is called the rank
sequence of µ. A measure is said to be ULC, SLC or LC if its rank sequence is ULC, SLC or LC,
respectively.

Let µ be a strongly Rayleigh measure, and f (t) be the generating polynomial of µ. The diag-
onal specialization of µ obtained by pretending f (t) as a univariate polynomial (i.e., considering
f (t, t, . . . , t)). This polynomial is indeed the generating polynomial of the rank sequence of µ. It
simply follows that if f (te : e ∈ E) is a stable polynomial then so is its diagonal specialization [8].
Since a univariate polynomial with real coefficients is stable iff all of its roots are real, f (t) is a
polynomial with real roots.

Therefore, the coefficients of f (t) are corresponding to the probability density function of the
convolution of a set of independent Bernoulli random variables [35]. In other words, they give the
probability distribution of the number of successes in m independent trials for a sequence of success
probabilities p1, . . . , pm:

Fact 6.12. [8, 35] The rank sequence of a strongly Rayleigh measure is the probability distribution of
the number of successes in m independent trials for some sequence of success probabilities p1, . . . , pm.

The distribution of the number of successes of n independent trials is well studied in the litera-
ture [14, 27, 22, 38, 35]. Dorrach [14] proved that these distributions are unimodal, and the mode
differs from the mean by less than 1 (recall that the mode is the value at which its probability
mass function takes its maximum value). Moreover, according to Newton’s inequality [25], these
distributions are Ultra Log-concave. Hence,

Theorem 6.13 ([25, 14, 8]). The rank sequence of any strongly Rayleigh measure is ULC, unimodal,
and its mode differs from the mean by less than 1.

In general, let Dm(p) be the set of all distributions of the sum of m independent trials where
the probability of success in the ith trial is 0 ≤ pi ≤ 1 for i = 1, . . . ,m, and the expected number
of successes is p. Let X be the number of successes. It is well known that the maximum of the
variance of X is attained when p1 = p2 = . . . = pm = p/m (cf. e.g. [27]). For a given m, here we are
interested in lower bounding the probability that the number of successes is some fixed number r,
over all distributions Dm(p) for m ≥ 1, i.e.,

B(p, r) := min
m,µ∈Dm(p)

Pµ [X = r] . (4)

The function B(p, r) will be used in several lemmas in this section. As an example, we can lower
bound the probability that exactly two edges are sampled from a (1 + δ) near minimum cut of G,
by choosing p = x(E(S,S)), and r = 2 (i.e., P

[
T ∩ E(S,S) = 2

]
≥ B(x(E(S,S)), 2)).

First, observe that if |r − p| ≥ 1, then the distribution with m := dpe trials such that bpc of pi’s
are equal to 1 implies B(p, r) = 0. Therefore, here we focus on the cases where |r− p| < 1. Hoeffding
in [27, Corollary 2.1] shows that the distribution that minimizes P [X = r] is the one where all pi’s
take only one of the three different values, only one of which is different from 0 and 1. Since here
we are minimizing over all distributions with any arbitrary number of trials m ≥ 0, we can further
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assume that none of the pi’s are 0. Let µ ∈ Dm(p) be the optimum distribution, and suppose for
k ≤ p, r, r − k of the pi’s in µ are equal to 1, We can deduce that the rest of the pi’s must be equal
to p−(r−k)

m−(r−k) . Putting these together we get:

B(p, r) = min
m,k:k≤p,r

(
m
k

) (
p − (r − k)

m

)k (
1 −

p − (r − k)
m

)m−k

(5)

Therefore it is sufficient to find the optimum values of m, k. This is done in the following theorem:

Lemma 6.14. For r−1 < p ≤ r, the optimum distribution is obtained by letting m→∞, and k = r,
or 1:

r − 1 < p ≤ r : B(p, r) = min
(
e−(p−r+1)(p − r + 1),

e−ppr

r!

)
. (6)

On the other hand, if r ≤ p < r + 1, the optimum distribution is obtained by letting k = r, and
m = r + 1, or m = ∞:

r ≤ p < r + 1 : B(p, r) = min
(
(r + 1)

( p
r + 1

)r (
1 −

p
r + 1

)
,

e−ppr

r!

)
(7)

The proof of the above Lemma is left for the final version of this paper.

Remark 6.15. Note that using simple Chernoff bounds, log-concavity, it follows that for constant
r, B(p, r) remains constant. The above lemma only characterizes the optimal lower bound.

The last useful property is the stochastically dominance property on truncations of strongly
Rayleigh measures.

Definition 6.16 ([8, Definition 2.14]). Let µ, ν be two measures defined on 2E. We say µ stochas-
tically dominates ν (ν � µ) if for any increasing event A on 2E, we have µ(A) ≥ ν(A).

Borcea et al. showed that a truncation of strongly Rayleigh measures is stochastically dominated
by a truncation of a larger value:

Theorem 6.17 ([8, Theorem 4.19]). Let µ be a strongly Rayleigh probability measure on 2E, and
let 1 ≤ k ≤ |E|. If µ({S : |S| = k − 1})µ({S : |S| = k}) , 0, then µk−1 � µk.

As an example, let µ be the uniform measure on spanning trees of G = (V,E), and A ⊂ S ⊂ E.
Let µ′ be the projection of µ on 2S. Since µ′ is strongly Rayleigh, we have µ′k � µ

′

k+1, for any integer
k ≥ 0, where µ′k, µ

′

k+1 are well defined. Therefore, we have

Pµ′k+1
[XA ≥ k′] ≥ Pµ′k [XA ≥ k′]

for k′ ∈ R.
The rest of this section is organized as follows: in subsection 6.2 we show that certain trivial

edges are good. In subsection 6.3 we show that any inside edge of a small non trivial cut class is
good. Finally, in subsection 6.4 we prove an unbalanced thread of length 10 is assigned good edges
of a constant fraction.
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6.2 Trivial Good Edges

In this subsection we show that edges of fraction bounded away from 1/2, that are included only
in trivial cuts are good. Recall that d(u) := {(u, v) ∈ E} is the set of edges with u as one endpoint.
Let dw(u) := {(u, v) : v , w}, be the set of edges incident to u, other than the edge (u,w).

Proposition 6.18. Let u and v be two vertices of G of fractional degree 2, e = (u, v), and ε < 1/100.
If xe < 1

2 − ε or xe > 1
2 + ε, then PT∼µ [E(e)] ≥ ε

100 .

Proof. Let X := |T ∩ dv(u)| and Y := |T ∩ du(v)| be the random variables indicating the number of
edges of dv(u) and du(v) that are sampled in T ∼ µ, and Z := |T∩{e}| be the indicator random variable
for e. If xe < 1/2 − ε, then from negative association (see Fact 6.9) we have ET∼µ [X + Y|Z = 0] ≥
ET∼µ [X + Y] ≥ 3 + 2ε and from Corollary 6.10, we have ET∼µ [X + Y|Z = 0] ≤ 4. Moreover, for
r = 4, 3 + 2ε ≤ p ≤ 4 Lemma 6.14 implies that

PT∼µ [X + Y = 4|Z = 0] ≥ B(E [X + Y|Z = 0] , 4) ≥ 2εe−2ε
≥ ε,

and therefore, from Corollary 6.20, we obtain that PT∼µ [E(e)] = ε
100 .

If xe > 1/2 + ε the statement can be proved similarly by conditioning on Z = 1. From Fact 6.9,
we obtain that ET∼µ [X + Y|Z = 1] ≤ ET∼µ [X + Y] ≤ 3− 2ε and Corollary 6.10 implies that we have
ET∼µ [X + Y|Z = 1] ≥ 2. Therefore, Lemma 6.14 implies that

PT∼µ [X + Y = 2|Z = 1] ≥ B(E [X + Y|Z = 1] , 2) ≥ 2ε
(3 − 2ε

3

)2
≥ ε,

and applying Corollary 6.22 we obtain that PT∼µ [E(e)] = ε
100 . �

In the following lemma we show that if x(u, v) ≤ 1/2, and Pµ [|dv(u)| + |du(v)| = 4] ≥ ε, then with
some constant probability they both have an even degree. The proof uses the LC properties of
Rayleigh measures crucially.

Lemma 6.19. Let u and v be two vertices of G, such that d(u) ∩ d(v) = ∅ (i.e., u and v does not
share any edge). Define X := |T ∩ d(u)| and Y := |T ∩ d(v)|. If the following conditions are satisfied
then PT∼µ [X = 2,Y = 2] ≥ εα

4 min( 1
2e ,

β−1
eβ−1 ):

ε ≤ PT∼µ [X + Y = 4] (8)
α ≤ PT∼µ [X ≤ 2] , PT∼µ [Y ≤ 2] (9)
1 < β ≤ ET∼µ [X] , ET∼µ [Y] (10)

Proof. By equation (8), we have:

PT∼µ [X = 2,Y = 2] = PT∼µ [X = 2,Y = 2|X + Y = 4]PT∼µ [X + Y = 4] ≥ εPT∼µ [X = 2,Y = 2|X + Y = 4]

Thus we need to show that PT∼µ [X = 2,Y = 2|X + Y = 4] ≥ α/4 min( 1
2e ,

β−1
eβ−1 ). Let γ := α/4 min( 1

2e ,
β−1
eβ−1 ).

Theorem 6.13 implies that,

PT∼µ [X = 2,Y = 2|X + Y = 4]2
≥ PT∼µ [X = 3,Y = 1|X + Y = 4]PT∼µ [X = 1,Y = 3|X + Y = 4]

Note that in general both of the terms in the RHS could be zero (e.g. when we have X = 2,Y = 2
with high probability. Thus we prove PT∼µ [X ≥ 2|X + Y = 4] ≥ 2γ (it can be proved similarly that
PT∼µ [Y ≥ 2|X + Y = 4] ≥ 2γ). Note that this essentially implies PT∼µ [X = 2,Y = 2|X + Y = 4] ≥ γ.
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Equivalently we can show that PT∼µ [Y ≤ 2|X + Y = 4] ≥ 2γ. Since X ≥ 2 and Y ≤ 2 are an
upward (resp. downward) event, Theorem 6.17 implies that

PT∼µ [X ≥ 2|X + Y = 4] ≥ PT∼µ [X ≥ 2|X + Y = 3] (11)
PT∼µ [Y ≤ 2|X + Y = 4] ≥ PT∼µ [Y ≤ 2|X + Y = 5] ≥ PT∼µ [Y ≤ 2|X + Y = 6] ≥ . . .

Note that inequality (11) is valid once the event X + Y = 3 is well defined. For this moment
suppose this is the case, as we will see throughout the proof the other case is much simpler. These
inequalities imply the following:

PT∼µ [Y ≤ 2|X + Y = 4] ≥ PT∼µ [Y ≤ 2|X + Y ≥ 4] (12)

By equations (11), (12) to prove the lemma it is sufficient to show that

PT∼µ [Y ≤ 2|X + Y ≥ 4] + PT∼µ [X ≥ 2|X + Y = 3] ≥ 4γ. (13)

Let us consider the event Y ≤ 2, we have

PT∼µ [Y ≤ 2] = PT∼µ [Y ≤ 2|X + Y ≥ 4]PT∼µ [X + Y ≥ 4] + PT∼µ [Y ≤ 2|X + Y ≤ 3]PT∼µ [X + Y ≤ 3]
≤ PT∼µ [Y ≤ 2|X + Y ≥ 4] + PT∼µ [X + Y ≤ 3] (14)
= PT∼µ [Y ≤ 2|X + Y ≥ 4] + PT∼µ [X = 2,Y = 1] + PT∼µ [X = 1,Y ≤ 2]
≤ PT∼µ [Y ≤ 2|X + Y ≥ 4] + PT∼µ [X ≥ 2|X + Y = 3] + PT∼µ [X = 1,Y ≤ 2] . (15)

Note that since X and Y are indicator for all of the edges adjacent to u and v, we always have X ≥ 1
and Y ≥ 1, thus X+Y ≥ 2. Therefore, if the event X+Y = 3 is not defined (i.e. PT∼µ [X + Y ≤ 3] = 0),
by equation (14) we obtain α ≤ PT∼µ [Y ≤ 2|X + Y ≥ 4] and we are done.

From Fact 6.9 and using equation (10) we have

ET∼µ [X|Y ≤ 2] ≥ ET∼µ [X] ≥ β > 1.

Since Y ≥ 1, theorem 6.5 implies that the measure {µ : Y ≤ 2} is strongly Rayleigh. Therefore,
we can apply Theorem 6.13 or Lemma 6.14 to upperbound PT∼µ [X = 1|Y ≤ 2].

If β ≥ 2, by Theorem 6.13 the mode of the distribution {X|Y ≤ 2} is at least 2, thus PT∼µ [X = 1|Y ≤ 2] ≤
1
2 . On the other hand, if β ≤ 2, by Lemma 6.14

PT∼µ [X = 2|Y ≤ 2] ≥ B(β, 2) = min{e−β+1(β − 1),
e−ββ2

2
} ≥ min{

β − 1
eβ−1

,
1
2e
},

and PT∼µ [X = 1|Y ≤ 2] ≤ 1 −min( β−1
eβ−1 ,

1
2e ). Putting them together we obtain that

PT∼µ [X = 1,Y ≤ 2] = PT∼µ [X = 1|Y ≤ 2]PT∼µ [Y ≤ 2] ≤
(
1 −min(

1
2e
,
β − 1
eβ−1

)
)
PT∼µ [Y ≤ 2]

Putting this with equation (15) we obtain:

min(
1
2e
,
β − 1
eβ−1

)PT∼µ [Y ≤ 2] ≤ PT∼µ [Y ≤ 2|X + Y ≥ 4] + PT∼µ [X ≥ 2|X + Y = 3] .

Finally using equation (9) we obtain equation (13). �
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Corollary 6.20. Let u and v be two vertices of G of fractional degree 2. Let X := |T ∩ dv(u)|,
Y := |T ∩ du(v)|, and Z := |T ∩ {(u, v)}|. If x(u, v) ≤ 1

2 + 1
5 , and PT∼µ [X + Y = 4|Z = 0] ≥ ε, then

P [X = 2, Y = 2, Z = 0] ≥ ε/100.

Proof. Let µ1 = {µ|Z = 0} be the measure obtained from µ conditioned on Z = 0. We show that
µ1 satisfies all of the conditions of Lemma 6.19. Since Pµ1 [X + Y = 4] ≥ ε, the first condition is
satisfied. Since ET∼µ [X] = ET∼µ [Y] = 2 − x(u, v), Fact 6.9 implies that

1.5 −
1
5
≤ Eµ1 [X] ≤ 2

1.5 −
1
5
≤ Eµ1 [Y] ≤ 2

Now it is straightforward to see that α ≥ 1
3 using Markov’s inequality, and β ≥ 1.5 − 1

5 , this implies
corollary. �

An identical argument to Lemma 6.19 gives the following lemma and its corollary. The proofs
are deferred to the appendix.

Lemma 6.21. Let A and B be two sets of edges such that A∩B = ∅. Define X := |T∩A|, Y := |T∩B|.
If the following conditions are satisfied then PT∼µ [X = 1,Y = 1] ≥ εα

4 min(1/2, βe−β):

ε ≤ PT∼µ [X + Y = 2] (16)
α ≤ PT∼µ [X ≤ 1] , PT∼µ [Y ≤ 1] (17)
β ≤ ET∼µ [X] , ET∼µ [Y] (18)

Corollary 6.22. Let u and v be two vertices of G of fractional degree 2, and e = (u, v). Let
X := |T∩dv(u)|, Y := |T∩du(v)|, and Z := |T∩{e}|. If x(u, v) ≥ 1

2 −
1
5 , and PT∼µ [X + Y = 2|Z = 1] ≥ ε,

then P [X = 1, Y = 1, Z = 1] ≥ ε
100 .

In the following lemma we show that if x(u, v) ' 1/2 and x(v,w) ' 1/2 then with a constant
probability either u and v will have an even degree, or v and w will have an even degree and
therefore one of the edges (u, v) or (v,w) will be even with constant probability.

Lemma 6.23. Let u, v,w be three vertices of the fractional graph G, and suppose 1
2−ε ≤ x(u, v), x(v,w) ≤

1
2 + ε, and ε ≤ 1

8000 . Then, either we have PT∼µ [E(u, v)] ≥ ε
100 or PT∼µ [E(v,w)] ≥ ε

100 .

Proof. Let Xe(X f ) be the indicator random variable for the edge e = (u, v) (resp. f = (v,w)). Also
let W := |T ∩ dv(u)|,Y := |T ∩ du(v) ∩ dw(v)|,Z := |T ∩ dv(w)| be the random variables indicating the
number of edges of dv(u), du(v)∩ dw(v), dv(w) sampled in T (e.g. note that E [W] ' E [Z] ' 1.5, and
E [Y] ' 1).

If Xe is highly negatively correlated with W + Y + X f , i.e., if

E
[
W + Y + X f |Xe = 0

]
> E

[
W + Y + X f

]
+ 4ε ≥ 3 + 2ε

then similar to the proof of Proposition 6.18 we get P
[
W = 2,Y + X f = 2|Xe = 0

]
≥

ε
100 therefore

e is good and we are done. Similarly, if

E
[
Y + Z + Xe|X f = 0

]
> E [Y + Z + Xe] + 4ε ≥ 3 + 2ε
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then f is good and we are done.
Otherwise we have that conditioning on Xe = 0/1 or X f = 0/1 does not change the probability

of other edges adjacent to their endpoints. In particular, we have

E
[
W + Y + X f

]
≤ E

[
W + Y + X f |Xe = 0

]
≤ E

[
W + Y + X f

]
+ 4ε (19)

E [Y + Z + Xe] ≤ E
[
Y + Z + Xe|X f = 0

]
≤ E [Y + Z + Xe] + 4ε (20)

Observe that above equation also imply that and therefore,

E
[
X f |Xe = 0

]
≤ E

[
X f

]
+ 4ε (21)

E
[
X f |Xe = 1

]
≥ E

[
X f

]
− 4ε. (22)

Here, for the sake of brevity we ignored the error term of O(ε2) in (22). We first show that if
Xe is not highly negatively correlated with Z, or if X f is not highly correlated with W then also we
are done.

Claim 6.24. We have the following.

1. If ET∼µ [Z|Xe = 0] ≤ ET∼µ [Z] + 1
5 , then P

[
E( f )

]
≥ P

[
Y = 1,Z = 1,X f = 1,Xe = 0

]
≥

1
5000 and

f is good.

2. If ET∼µ
[
W|X f = 0

]
≤ ET∼µ [W] + 1

5 , then P [E(e)] ≥ P
[
Y = 1,W = 1,Xe = 1,X f = 0

]
≥

1
5000

and e is good.

Proof. We prove the first statement; the second statement follows identically. Let µ1 = {µ|Xe = 0}
be the measure obtained from µ conditioned on Xe = 0, and let µ2 = {µ|Xe = 0,X f = 1}. By the
conditional probability axioms we have:

PT∼µ
[
Y = 1,Z = 1,Xe = 0,X f = 1

]
= PT∼µ

[
Y = 1,Z = 1|Xe = 0,X f = 1

]
PT∼µ

[
X f = 1|Xe = 0

]
PT∼µ [Xe = 0]

≥
1
5
PT∼µ2 [Y = 1,Z = 1] .

Thus it is sufficient to show that PT∼µ2 [Y = 1,Z = 1] ≥ 1/1000. By the claim’s assumption and
equation (19) we have

1
2
− 7ε ≤ ET∼µ2 [Y] ≤ 1 + 6ε

1 − 6ε ≤ ET∼µ2 [Z] ≤ 1.7 + ε.

Therefore, using Lemma 6.14, and ε < 1/1000 we have

PT∼µ2 [Y + Z = 2] ≥ B(ET∼µ2 [Y + Z] , 2) ≥
1
5
.

Using Markov’s inequality, we have PT∼µ2 [Y ≤ 1] ,PT∼µ2 [Z ≤ 1] ≥ 1
10 . Hence, applying Lemma 6.21,

for α∗ = 1
10 , β∗ = 1

2 − 7ε and ε∗ = 1
5 , we obtain that PT∼µ2 [Y = 1,Z = 1] ≥ 1

1000 and f is good. �
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Thus suppose Xe is highly negatively correlated with Z and X f is highly negatively correlated
with W. We show that this implies a large negative correlation between Xe and X f , which contradicts
with equations (22) and (21).

First note that for a binary random variable B, and a random variable X, we can write

Cov(B,X) = E [BX] − E [B]E [X] = P [B] (E [X|B = 1] − E [X]).

Therefore, using the above claim we get:

Cov(Xe,Z) = P [Xe] (E [Z|Xe = 1] − E [Z]) ≤ −
1

10
(23)

Cov(X f ,W) = P
[
X f

]
(E

[
W|X f = 1

]
− E [W]) ≤ −

1
10
, (24)

where the lower order terms of O(ε) are ignored. In the rest of the proof we show the above
equations imply that Cov(Xe,X f ) ≤ −4ε. But using equation (22) we have:

Cov(Xe,X f ) = P [Xe] (P
[
X f |Xe = 1

]
− P

[
X f

]
) ≥ −2ε,

which is a contradiction.
It remains to compute Cov(Xe,X f ).
Theorem 6.1 implies that we have Cov(Xe,X f ) = −ie( f )i f (e) where ie( f ) is the current through

edge f when a unit current is imposed between the endpoints of e . In the next claim we show that
ie( f ) ≥ −Cov(Xe,Z)/4. Similarly, we have i f (e) ≥ −Cov(X f ,W)/4. Therefore, using equations (23)
and (24), and ε < 1/8000 we obtain:

Cov(Xe,X f ) ≤ −
−Cov(Xe,Z)

4

−Cov(X f ,W)

4
≤ −1/1600 ≤ −4ε.

Claim 6.25. We have ie( f ) ≥ −Cov(Xe,Z)/4.

Proof. Suppose we impose a unit current between the endpoints of e (i.e. insert a unit current at
u and extract it from v). First we show

∑
g∈dv(w) ie(g) ≥ −Cov(Xe,Z). Note that ie(g) is the absolute

value of the current in edge g; thus it is always non-negative. Then we show that at least a quarter
of the currents in edges adjacent to w belongs to the edge f . Let Zg be the indicator random
variable for edges g ∈ dv(w), Then:

Cov(Xe,Z) =
∑

g∈dv(w)

Cov(Xe,Zg) =
∑

g∈dv(w)

−ie(g)ig(e) ≥ −
∑

g∈dv(w)

ie(g),

where the last inequality holds by the fact that ig(e) ≤ 1 for any two edges e and g.
Let Iw = 1

2
∑

g∈d(w) ie(g) be the total current that comes into the vertex w, this current finally
will be extracted at v. In the next claim we show that at least Iw/2 of it goes through edge f .
The reason simply follows from the fact that i f ( f ) ' 1/2; If we impose a unit current between the
endpoints of f , roughly half of it crosses f . Therefore, when a current Iw is transferred from w to
v, at least half of it should go through f

Since
∑

g∈d(w) ie(g) = 2Iw, we get:

ie( f ) ≥
Iw

2
≥

1
4

∑
g∈d(w)

ie(g) ≥
−Cov(Xe,Z)

4
.

�
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Claim 6.26. Suppose we insert a unit current at u and extract it from v. If Iw of it enters w, then
we have ie( f ) ≥ i f ( f )Iw

Proof. We construct a unit current flow θ′ from w to v in a network with smaller conductances
λ′ ≤ λ, such that θ′( f ) = ie( f )/Iw. Then by Thompson’s Principle (cf. e.g. [29, Chapter 2]), θ′

must consume more energy than i f . This implies that the voltage difference of v and w must be
larger in θ′, thus ie( f )/Iw = θ′( f ) ≥ i f ( f ).

Let Pw,v be the set of paths from w to v, and for any P ∈ Pw,v let θP be the amount of current that
goes through P when sending a unit current from u to v. By claim’s assumption

∑
P∈Pw,v

θP = Iw.
Also for any flow i, let i(g) be the amount of flow that goes through an edge g. Note that θ(g) ≤ ie(g)
for all edges g, but θ( f ) = ie( f ).

We construct another electrical network with a different assignment of conductances in which
θ is the electrical current from w to v. It is sufficient to decrease the conductance of each edge g
such that the difference of the voltages of its endpoints remains the same i.e., define λ′g = λg ∗ θ(g)

ie(g) .

Now let θ′ := 1
Iw
θ be the unit current from w to v in the new network.

Since we only decreased the conductance of the edges, by Thompson’s principle we have
Energy(θ′) ≥ Energy(i f ). On the other hand, since θ′, i f are unit current flows from w to v
we have:

Energy(θ′) = λ′fθ
′( f ) = λ f

ie( f )
Iw

,

Energy(i f ) = λ f i f ( f ),

It follows that ie( f ) ≥ i f ( f )Iw. �

This completes the proof of the Lemma. �

6.3 Inside Good Edges

In this subsection we show the following two lemmas which will lower bound the number of good
edges assigned to cyclic cut classes. See subsection 5.2 For the definition of cyclic cut classes.

Lemma 6.27. If e = (u, v) be an inside edge of a cyclic cut class Ci then PT∼µ [E(e)] ≥ 1
2000 .

Since each cut class has a large fraction of inside or trivial edges if its degree in Γ(C) is small,
we get the following bound on the good edges assigned to the cut class.

Lemma 6.28. Let Ci be a cyclic cut class and the degree of Ci in Γ(C) is k, then the sum of the
fraction of good edges assigned to Ci is least (1 − κ(Ci))

⌈
|φ(Ci)|−2k

2

⌉
.

Suppose that we have an edge e which is an inside edge of a cyclic cut class. Although e may
occur in many (Ω(τ2)) near min-cuts, we still manage to argue that E(e) occurs with a constant
probability. This is possible with the help of the following probabilistic arguments.

Let us start with a simple averaging argument that proves for a set of vertices U ⊂ V of the graph
G = (V,E, x), if (U,U) is a near minimum cut, and |U| ≤ |U|, then there is a constant probability
that the sampled tree is also a spanning tree inside U (see Corollary 6.31).
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Definition 6.29. For S ⊆ E of a graph G = (V,E), let r(S) be the rank of the graphical matroid
defined on S. In other words, r(S) = |V| − 1 − #comp(S), where #comp(S) is the number of connected
components of the subgraph (V,S).

Recall that in the λ-uniform measure on spanning trees of G = (V,E, x), for any edge e ∈ E, we
have P [e ∈ T] = ze = (1− 1

n )xe. In the following, we show that if z(S) is close to r(S) for S ⊂ E, then
|T ∩ S| = r(S) with high probability:

Proposition 6.30. If for a set S, z(S) > r(S) − 1, then

PT∼µ [|T ∩ S| = r(S)] ≥ 1 + z(S) − r(S),

where z(S) :=
∑

e∈S ze.

Proof. The proof is simply followed by the matroidal property of spanning trees. Indeed for any
spanning tree in G we have |T ∩ S| ≤ r(S). Let p be the probability that |T ∩ S| = r(S). We have:

z(S) = ET∼µ [|T ∩ S|] ≤ p · r(S) + (1 − p) · (r(S) − 1)
= r(S) + p − 1.

Therefore p ≥ 1 + z(S) − r(S). �

Suppose U ⊂ V is small (say |U| = O(1)), and (U,U) is a near minimum cut of G. The next
corollary shows that with high probability the random spanning tree T chosen by the algorithm is
also a spanning tree inside U. Even if |U| ' n/2, this probability is still roughly 1/2 when δ is small
enough.

Corollary 6.31. If (U,U) is a (1 + δ) near minimum cut with respect to x, and |U|/n + δ < 1, then

PT∼µ [|T ∩ E(U)| = |U| − 1] ≥ 1 −
|U|
n
− δ

Proof. Since the fractional degree of each vertex with respect to x is 2, and x(d(U)) ≤ 2 + 2δ, we
have

x(E(U)) ≥
1
2

(2|U| − 2 − 2δ) = |U| − 1 − δ.

Hence
z(E(U)) ≥ (1 − 1/n)(|U| − 1 − δ) ≥ |U| −

|U|
n
− 1 − δ.

Therefore, the statement follows from Proposition 6.30, by setting S := E(U), and noting that
r(E(U)) ≤ |U| − 1. �

Now, we are ready to prove the main result of the section. We will show that with constant
probability, all the near minimum cuts of any cyclic (small) cut class are even. This is done by
showing that T is a Hamiltonian cycle in G(φ(Ci)) with constant probability. Lemma 6.27 and
Lemma 6.28 now follow simply and are proven after the proof of the Lemma 6.32.

Lemma 6.32. If Ci is cyclic then all of the near minimum cuts in Ci will have an even number of
edges in the tree T, with probability at least 1/2000.
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Proof. Since κ(Ci) ≤ 1, by proposition 5.20, Ci does not have any inside atoms. Let φ(Ci) =
{a1, a2, . . . , ak} and assume that they are placed around the polygon in the order of their labels. Let
E(G(φ(Ci))) be the set of edges with endpoints in different atoms in Ci. Let A be the event that T
contains exactly k edges from E(G(φ(Ci))) with the property that |T∩E(ai, ai+1)| = 1 for all adjacent
pair of atoms. In other words, A is the event T is a Hamiltonian cycle in G(φ(Ci)).Since the near
minimum cuts in Ci are just the representing diagonals of the polygon, if A occurs, then T contains
exactly two edges in each of the cuts in Ci. Thus it is sufficient to show that P [A] = 1

2000 .
Let a1 be the father-connector of Ci. Observe that a1 contains at least n

2 vertices. Let F :=⋃k
i=2 E(ai) be the set of edges inside all small atoms, I1 :=

⋃
2≤i<k E(ai, ai+1) be the set of edges

between the consecutive small atoms, and I2 := E(ak, a1)∪E(a1, a2) be the set of edges from a1 to its
adjacent atoms in the cyclic ordering. Finally, let I3 := E(G(φ(Ci))) \ I1 \ I2 be the rest of the edges.

We compute the probability of A in the following steps: first we condition on |T ∩ I3| = 0, and
|T ∩ F| = r(F). The latter imply that T contains a spanning tree inside each of the atoms a2, . . . , ak.
Conditioned on |T∩F| = r(F), T can select at most one edge between each consecutive pair of small
atoms. Next we condition on |T ∩ I1| = k − 2, which implies that T is a Hamiltonian path from a2
to ak in G(φ(Ci)). In the last step we contract the whole Hamiltonian path as a single vertex v∗,
and we show that with constant probability, T contains exactly one edge from each of E(a1, a2) and
E(ak, a1).

First by Lemma 5.20 (3), we have

x(I1) + x(I2) ≥ k(1 − κ(Ci)) ≥ k −
1
20
,

where the last inequality follows since Ci is cyclic and therefore |φ(Ci)|κ(Ci) ≤ 1/20. Since by
Corollary 4.15, x(E(G(φ(Ci)))) ≤ k(1 + 3δ), we have

z(I3) ≤ x(I3) ≤ k(1 + 3δ) − x(I1) − x(I2) ≤ 3kδ +
1
20
≤

1
10
.

Therefore by Markov’s inequality,

PT∼µ [|T ∩ I3| = 0] ≥ 9/10. (25)

Let µ1 := {µ | |T ∩ I3| = 0}. This conditioning can only increase the probability of other edges.
Now let us compute the probability that T ∼ µ1, contains a spanning tree in all of the small atoms.
First note that

z(F) = (1 −
1
n

)x(F) ≥ (1 −
1
n

)

 k∑
i=2

[|ai| − 1 − κ(Ci)]

 (26)

≥

k∑
i=2

|ai| −

∑k
i=2 |ai|

n
− (k − 1)(1 + κ(Ci))

≥

k∑
i=2

(|ai| − 1) −
1
2
−

1
20
, (27)

where equation (26) follows from second part of Proposition 5.20, and equation (27) follows from
the fact that |a1| ≥ n/2. Since r(F) ≤

∑k
i=2(|ai) − 1), by Proposition 6.30, with probability at least
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1/2 − 1/20, T contains an spanning tree inside each atom a2, . . . , ak:

PT∼µ1 [|T ∩ F| = r(F)] = PT∼µ1

 k∧
i=2

|T ∩ E(ai)| = |ai| − 1

 ≥ 9
20
. (28)

Let µ2 := {µ1 | ∀2 ≤ i ≤ k : |T ∩ E(ai)| = |ai| − 1}. Fact 6.9 implies that this may decrease the
probability of subset of edges not containing an edge from I3 ∪ F by at most 1/2 − 1/20. Hence we
have

ET∼µ2 [|T ∩ I1] ≥ z(I1) −
1
2
−

1
20
≥ k − 2 −

3
5
.

Since any spanning tree T ∼ µ2 can have at most one edge between any consecutive pair of small
atoms, |T ∩ I1| = k − 2 implies that T contains a Hamiltonian path through the small atoms. From
Markov’s inequality, this happens with probability at least 2/5:

PT∼µ2 [|T ∩ I1| = k − 2] = PT∼µ2

k−1∧
i=2

|T ∩ E(ai, ai+1)| = 1

 ≥ 2
5
. (29)

Finally, let µ3 := {µ2 | |T∩ I1| = k− 2} therefore, under µ3 probability of any subset of edges not
containing an edge in I1 ∪ F ∪ I3 will decrease by at most 3

5 using Fact 6.9. It remains to find the
probability that |T∩E(ak, a1)| = 1 and |T∩E(a1, a2)| = 1. Since any tree T ∼ µ3, contains a spanning
tree on V \ a1, we can contract these vertices to a new vertex v∗. The two cuts (ak, a1) and (a1, a2)
then correspond to two set of edges incident to v∗ (these are the only non-zero edges adjacent to
v∗). Observe that

1 +
1
10
≥ ET∼µ3 [|T ∩ E(ak, a1)|] ≥ 1 − κ(Ci) −

3
5
≥

3
10

1 +
1
10
≥ ET∼µ3 [|T ∩ E(a2, a1)|] ≥ 1 − κ(Ci) −

3
5
≥

3
10

2 +
1
10
≥ ET∼µ3 [|T ∩ E(ak, a1)| + |T ∩ E(a1, a2)|] ≥ 2 − 2κ(Ci) −

3
5
≥

13
10
.

From Lemma 6.14 we obtain

PT∼µ3 [|T ∩ E(ak, a1)| + |T ∩ E(a1, a2)| = 2] ≥ B(ET∼µ3 [|T ∩ E(ak, a1)| + |T ∩ E(a1, a2)|] , 2) ≥
1
5
.

From Lemma 6.21, setting A = E(a1, a2) and B = E(a1, ak), α = 1
2 −

1
20 , β = 3

10 , ε = 1/5, we obtain
that T will contain an edge in each of the cuts (a1, a2) and (ak, a1) with probability at least 1/300.
Therefore by equations (25), (28), and (29):

PT∼µ [A] = PT∼µ
[
A

∣∣∣ |T ∩ I3| = 0
]
PT∼µ [|T ∩ I3| = 0]

≥
9
10
PT∼µ1

[
A

∣∣∣|T ∩ F| = r(F)
]
PT∼µ1 [|T ∩ F| = r(F)]

≥
9
10

9
20
PT∼µ2

[
A

∣∣∣ |T ∩ I1| = k − 2
]
PT∼µ2 [|T ∩ I1| = k − 2]

≥
9
10

9
20

2
5
PT∼µ3 [|T ∩ E(ak, a1)| = 1, |T ∩ E(a1, a2)| = 1] ≥

1
2000

.

�
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Proof of Lemma 6.27. Since (u, v) is an inside edge of Ci, u and v are singleton atoms of Ci and the
only near minimum cuts containing e are diagonals of Ci and the trivial cuts ({u}, {u}) and ({v}, {v}).
Lemma 6.32 implies that with probability 1/2000, T is a Hamiltonian cycle when each of the atoms
of Ci are contracted. Thus the degree of u and v is even and also each of the diagonal cut of Ci
contains exactly two edges of T. �
Proof of Lemma 6.28. Recall that an atom is connecting if it coincides with an atom of another
cut class in a vertex of K(C). Since the number of connecting atoms is at most the degree of Ci,
Ci has at most k connecting atoms. Since κ(Ci) < 1, by proposition 5.20 it does not contain any
inside atoms. Let φ(Ci) = {a1, a2, . . . , am}, and assume that they are placed around the polygon in
the order of their labels. Let (ai1 , ai1+1), . . . , (aim′ , aim′+1), be m′ disjoint consecutive pair of atoms,
such that none of the ai j ’s are connecting. Observe that we can choose m′ ≥ dm−2k

2 e. We show that
each such pair corresponds to good edges of fraction at least 1 − κ(Ci) assigned to Ci.

Consider a pair (ai j , ai j+1), if they both are singletons (say ai j = {u} and ai j+1 = {v}) then by
proposition 5.20 the inside edge (u, v) has fraction at least 1 − κ(Ci) and by Definition 4.23 it is
assigned to Ci. Since Ci is cyclic, by Lemma 6.27 the inside edge (u, v) is a good edge and we are
done.

Otherwise, without loss of generality, suppose ai j is not a singleton. Since ai j is not a connecting
atom the edges between the vertices inside ai j are only included in trivial minimum cuts, and they
are all assigned to Ci by Definition 4.23. By proposition 5.20, x(d(ai j)) ≤ 2(1 + κ(Ci)). Thus if
ai j = {u, v} we have x(u, v) ≥ 1 − κ(Ci), and by Proposition 4.17 it is a good edge. Otherwise there
are at least 3 − (1 + κ(Ci)) edges between the vertices of ai j and at least half of them are good by
Proposition 4.17. �

Corollary 6.33. Let Ci be a cyclic cut class which is a leaf of Γ(C). Then Ci is assigned good edges
of fraction at least 1 − κ(Ci).

Proof. If |φ(Ci)| > 2, then we are done by Lemma 6.28. Otherwise, suppose φ(Ci) = {a1, a2}, and
suppose a1 is the father-connector of Ci. Since Ci is a non-trivial cut class, a2 is not a singleton.
Also since Ci is a leaf, a2 is not a connecting atom. Therefore, the edges between the vertices of a2
are trivial and at least 1−κ(Ci) of them are good and assigned to Ci as in proof of Lemma 6.28. �

6.4 Threads and Good Edges

In this subsection we prove Proposition 4.25. Let P ∈ πε∗ , be an unbalanced thread with parameter
ε∗ < 1/25. We show that it will be assigned good edges of fraction at least ε∗/4. If P is assigned
trivial or inside edges of total fraction at least ε∗/4 we are done. Therefore, in the proof we assume
the sum of the fraction of trivial/inside good edges assigned to P is less then ε∗/4 (it can be zero).
It turns out that this will eliminate many possible cases. First we show that if P contains a cut
class Ci with |φ(Ci)| , 2, 4, then it will be assigned trivial or inside good edges of fraction at least
3/4.

By Lemma 6.28, any cut class with |φ(Ci)| > 4 of degree 2, will be assigned good edges of
fraction at least 1 − κ(Ci) > 3/4. Since all of the small cut classes in P has degree 2 in Γ(C), if P
contains a cut class of more than 4 atoms, it will be assigned good edges of fraction 3/4. Note that
by definition 4.12 we always have |φ(Ci)| , 3. Since P is assigned less than ε∗

4 < 1
100 trivial/inside

good edges, all of the cut classes in P must have either 2 or 4 atoms.
We prove the theorem by Lemmas 6.36 and 6.38. In lemma 6.36 we show that if P contains

6 consecutive cut classes of 2 atoms then it will be assigned good edges of fraction ε∗

4 . In Lemma
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6.38 we show that if P contains 3 consecutive cut classes such that the third one has 4 atoms then
it will be assigned good edges of fraction ε∗

4 . Putting them together it is straightforward that if P
has at least 8 cut classes, then at least one of the two cases occurs.

Before proving the lemmas, let us describe another classes of trivial edges that is assigned to
P. This special case would make the proofs of the two lemmas much simpler. Let us define some
notations first: Let Ci,Ci+1 be two consecutive cut classes in P. We use the notation Ci → Ci+1 to
describe Ci+1 is the child of Ci. Note that since the degree of each cut class in P is 2, Ci has a unique
child in Γ(C). Moreover, it has exactly 2 connecting atoms. One of them is the father-connector
that connects Ci to its father (see Definition 4.21), the other, call it child-connector, connects Ci
to its only child (Ci+1).

Claim 6.34. Let P ∈ π0, and C1 → C2 ∈ P be cut classes with at most 4 atoms. Let a ∈ φ(C1)
be the child connector of C1, and b ∈ φ(C2) be the father-connector of C2. If |a \ b| > 2, then P is
assigned good edges of fraction 3

8 . Otherwise, if |a \ b| = 2 and the two vertices are connected by an
edge of fraction at least ε, then P is assigned good edges of fraction at least ε.

Proof. Since C2 is the child of C1, by definition 4.12 we have a∪b = V(G), thus b ⊆ a. Let S := a\b.
Since the edges between the vertices of S are not contained in C1 nor C2, they are only contained
in trivial cuts. Also, by definition 4.23 these edges are assigned to C1 (and thus to P). Therefore,
it is sufficient to show that they are good and they have a large fraction.

Suppose |S| ≥ 3. Since C1,C2 have at most 4 atoms, by Lemma 5.20 part 2, the fractional degree
of their atoms are at most 2(1+2δ). Hence, we have x(a), x(b) ≤ 2(1+2δ). Since each vertex of S has
degree 2, and |S| ≥ 3, there is at least 1−3δ edges between the vertices of S, and by proposition 4.17
at least half of these trivial edges are good. Therefore C1 will be assigned good edges of fraction
at least 3/8.

Now suppose S = {u, v}, and x(u, v) > 0. If x(u, v) is bounded away from 1/2, then by Proposition
4.17 it is a good edge. Otherwise, since (a, a) and (b, b) are (1 + 2δ) near minimum cuts, by Lemma
G.1 (u, v) is a good edge. Therefore, if x(u, v) ≥ ε, then C1 will be assigned good edges of fraction
at least ε. �

Corollary 6.35. Let P ∈ π(0), C1 → C2 ∈ P, a is the child-connector of C1, b is the father connector
of C2, and S = a \ b. If P is assigned trivial/inside good edges of fraction less than ε∗

4 , then |S| ≤ 2.
In addition, if we also have S = {u}, then x(u, a), x(u, b) ≥ 1 − 4δ. Otherwise, if we have S = {u, v},
then

x(u, v) <
ε∗

4

x(u, a), x(u, b), x(v, a), x(v, b) > 1 − 4δ −
ε∗

4

Proof. Since P is assigned trivial/inside good edges of fraction less than ε∗

4 , all cut classes in P have
at most 4 atoms; thus by claim 6.34, we certainly have |S| ≤ 2 and if S = {u, v}, then x(u, v) < ε∗

4 .
Since x(a) ≤ 2(1+2δ), and x(b) ≤ 2(1+2δ), if S = {u}, then by algebraic calculations we observe that
u must have edges of fraction at least 1 − 4δ to both a, b; Otherwise, if S = {u, v}, since x(u, v) ≤ ε∗

4 ,
both of them must have edges of fraction at least 1 − 4δ − ε∗

4 to a, b. �

In the next lemma we show that if P contains 6 consecutive cut classes of 2 atoms then it will
be assigned good edges of fraction ε∗

4 .
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Lemma 6.36. Let P ∈ π∗ε, C1 → C2 → . . . → C6 ∈ P, be cut classes of 2 atoms, with child-
connectors a1, . . . , a6 respectively. If ε∗ > 60δ, then P is assigned good edges of fraction at least ε∗

4 ,
that are even with probability at least ε∗3

100000 .

a3
. . .

a2

b3

a1

b2

. . .

b1

u

v

C3

C2

C1

e

Figure 5: Cut classes
C1,C2,C3 as described
in Lemma 6.37. Dashed
edges represent deleted
trivial cut classes. Con-
necting atoms are repre-
sented in the same cir-
cle.

First we show that if there is v ∈ ai \ ai+1, and u ∈ ai+1 \ ai+2, where
x(u, v) > 0 then e = (u, v) is a good edge.

Lemma 6.37. Let P ∈ π∗ε, C1 → C2 → C3 ∈ P be cut classes each
with 2 atoms, with child-connectors a1, a2, a3 respectively. Let u ∈ a2 \ a3,
v ∈ a1 \ a2, and x(u, v) > 0. If ε∗ > 60δ, and P is assigned less than ε∗

4
fraction of trivial/inside good edges, then

PT∼µ [E(u, v)] =
ε∗3

100000
.

Proof. We show that edge e = (u, v) will be even with a constant prob-
ability. As shown in Figure 5 e is contained in 3 near minimum cuts: 2
trivial degree cut, and the near minimum cut defined by cut class C2,
(a2, a2). We show that with a constant probability all of these 3 cuts will
have even number of edges in the sampled tree T ∼ µ.

We show that with constant probability T is a spanning tree when
restricted to a2. Conditioned on this event, random variables which are
functions of edges inside a2 are independent of functions of edges outside
a2. We first show that u has degree one inside a2 with constant probability.
Observe that rest of the two min cuts do not have any edges in a2. We
then show that the event that degree of v and the size of cut (a2, a2) are
both two, and the degree of u restricted to a2 is one occur with constant
probability. By the independence of the two events, all three cuts are
even with constant probability completing the proof of the lemma.

Define X := |T ∩ E(a2)|. Since (a2, a2) is a (1 + δ) near minimum cut,
by corollary 6.31, PT∼µ [X = |a2| − 1] ≥ 1 − |a2|

n − δ. Since a2 is not the
father-connector of C2, we get |a2| ≤ n/2. Define µ1 := {µ| X = |a2| − 1}.
We get:

Pµ [E(e)] = Pµ1 [E(e)]Pµ [X = |a2| − 1] ≥ (
1
2
− δ)Pµ1 [E(e)]

Thus, it is sufficient to show that PT∼µ1 [E(e)] = Ω(1). We show the following two inequalities

PT∼µ1 [T ∩ E(u, a2)| = 1] = Ω(1) (30)
PT∼µ1

[
T ∩ E(a2, a2) = 2, degT(v) = 2, |T ∩ E(u, a2)| = 1

]
= Ω(1) (31)

Since the above two events are independent under µ1, we are done.
By Corollary 6.35 we have 9

10 ≤ x(E(u, a2)) ≤ 11
10 . From Lemma 6.10 and Fact 6.9 we have

9
10
≤ ET∼µ1 [|T ∩ E(u, a2)|] ≤

16
10
⇒ PT∼µ1 [|T ∩ E(u, a2)| = 1] ≥ B(

16
10
, 1) ≥

3
10
. (32)

where the last inequality follows from Lemma 6.14. This proves inequality (30).
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Now we prove inequality (31). Since restricted to a2, T is a spanning tree, we contract a2 to get
a single vertex u′. In Lemma G.2, set u := u′, v := v, N1(u) = E(u, a2), N2(u) = E(a2 \ u, a2) and
ε = ε∗

3 . Observe that the Lemma G.2 implies inequality (31). We now verify the conditions of the
lemma. By Corollary 6.35, we have

1 − 4δ −
ε∗

4
≤ x(v, a2), x(v, a2), x(u, a2) ≤ 1 + 4δ +

ε∗

4

1 − 4δ −
ε∗

4
≤ x(a2 \ u, a2) ≤ 1 + 6δ +

ε∗

4
2 ≤ x(u, a2) + x(a2 \ u, a2) ≤ 2(1 + δ)

Since z(e) ' x(e) the expectation under µ of the above values are nearly equal to their x-values.
Since P ∈ π∗ε we have |a2| ≥ n( 1

2 + ε∗), and |a2| ≤ n( 1
2 − ε

∗). Therefore, by negative association,
conditioning on X = |a2| − 1 may decrease the probability of edges outside of a2 no more than
1
2 − ε

∗ + δ. Thus the LHS of the above equations can be decreased by at most 1
2 − ε

∗ + δ and the
conditions of the Lemma G.2 are satisfied. Hence,

PT∼µ1

[
T ∩ E(a2, a2) = 2, degT(v) = 2, |T ∩ E(u, a2)| = 1

]
≥

ε∗3

10000
,

⇒ Pµ [E(e)] ≥ (
1
2
− δ)

3
10

ε∗3

10000
≥

ε∗3

100000

�

Now we are ready to prove Lemma 6.36:
Proof of Lemma 6.36. Let si := ai \ ai+1, for 1 ≤ i ≤ 5. By corollary 6.35 we have |si| ≤ 2 for all
i ≤ 5. First note that if |si| = 2, for some i, then there is edge of fraction at least 1/3 between a
pair of vertices in si and si+1; thus by Lemma 6.37 P will be assigned good edges of fraction at least
1
3 ≥

ε∗

4 .
So suppose all of si’s contain only one vertex, say si = {ui} (see Figure 6). By lemma 6.37

if two consecutive vertices are connected by an edge of fraction 1
100 ≥

ε∗

4 , then that edge will be
good and we are done. Thus, suppose ∀1 ≤ i ≤ 5 : x(ui,ui+1) ≤ 1

100 . We show that in this case
x(u2,u4) ≥ 19

20 , and it will be even with a constant probability. Since this edge is assigned to C4, P
is assigned good edges of fraction at least ε∗

4 . Edge (u2,u4) is included in 4 near minimum cuts: 2
degree cuts, and the cuts corresponding to the cut classes C3 and C4 (i.e., (a3, a3) and (a4, a4)); thus
we need to show all these 4 cuts are even with a constant probability. We prove that the 3 edges
(u1,u3), (u2,u4), (u3,u5) all have a large fraction, then by union bound all of them will be sampled in
spanning tree T ∼ µ, and thus the 2 cuts (a3, a3) and (a4, a4) are even. Finally, we use Lemma 6.21
to show that the degree of u2 and u4 is even with a constant probability.

By Corollary 6.35 we have

1 − 4δ −
2ε∗

4
≤ x(u3, a2), x(u2, a1),

1 − 4δ −
ε∗

4
≤ x(u1, a2)
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Hence x(u1,u3) ≥ 1 − 6δ − 3ε∗
4 ≥

19
20 . Similarly, it can be shown that x(u3,u5), x(u2,u4) ≥ 19

20 . Let
e1 = (u1,u3), e2 = (u2,u4), e3 = (u3,u5). Define

X := |T ∩ {(a3, a3) ∪ (a4, a4)} \ {e1, e2, e3}|,

and let E1,E2,E3 be the indicator random variables for the edges e1, e2, e3 respectively.

a6
. . .

a5

b6

a4

b5

a3

b4

a2

b3

a1

b2

. . .

b1

u5

u4

u3

u2

u1

C6

C5

C4

C3

C2

C1

e1

e2

e3

Figure 6: Cut classes
C1, . . . ,C6 as described in
Lemma 6.36

Let µ1 := {µ|X = 0}. Since

ET∼µ [X] ≤ 4(1 + δ) − xe1 − 2xe2 − xe3 ≤
1
5

+ 4δ,

by Lemma 6.10, this can only increase the probability of other edges
by at most 1

5 + 4δ. Now let µ2 = {µ1| E1 = 1,E2 = 1,E3 = 1}. By
Fact 6.9 we have:

ET∼µ1 [E1 + E2 + E3] ≥ ET∼µ [E1 + E2 + E3] ≥ 3 −
3
20
.

Therefore,

PT∼µ [E(e2)] = PT∼µ1 [E(e2)]PT∼µ [X = 0]

≥
4
5
PT∼µ2 [E(e2)]PT∼µ1 [E1 = 1,E2 = 1,E3 = 1]

≥
16
25
PT∼µ2 [E(e2)]

Thus it is sufficient to show PT∼µ2 [E(e2)] is a constant. In
any tree T ∼ µ2, there are exactly 2 edges in the cuts (a3, a3)
and (a4, a4). It remains to show that u2 and u4 also have an
even degree. Since e2 is sampled in T ∼ µ2, we need to
show PT∼µ2

[
|T ∩ du4(u2)| = 1, |T ∩ du2(u4)| = 1

]
= Ω(1). By Corol-

lary 6.10, the expected number of edges sampled from du4(u2) or
du2(u4) in T ∼ µ2 is between 3

5 and 7
5 . This implies that

8
5
≤ ET∼µ2

[
|T ∩ du4(u2)| + |T ∩ du2(u4)|

]
≤

12
5

⇒ PT∼µ2

[
|T ∩ du4(u2)| + |T ∩ du2(u4) = 2

]
≥

1
4
,

where the last inequality follows from Lemma 6.14. Thus by ap-
plying Lemma 6.21, setting A := du4(u2),B := du2(u4), ε := 1

4 , α :=
3
10 , β := 3

5 , we obtain that

PT∼µ2 [E(e2)] = PT∼µ2

[
|T ∩ du4(u2)| = 1, |T ∩ du2(u4)| = 1

]
=

1
200

.

Therefore Pµ [E(e2)] ≥ 1
500 . �

It remains to consider the cases where P contains cut classes with 4 atoms. Let Ci ∈ P, be a
cut class with 4 atoms. Using the proof of Lemma 6.28, observe that if Ci has a non-connecting
non-singleton atom, or a consecutive pair of singletons, it will be assigned good edges of fraction
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at least 3/4. In particular, suppose φ(Ci) = {a1, a2, a3, a4} and the atoms placed in the polygon
representation according to their labels, and a1 is the father-connector. Then Ci will be assigned
good edges of fraction 3/4, unless a2 and a4 are (non-connecting) singletons and a3 is the child-
connector. It is immediate that each of the edges x(ai, ai+1) ≥ 1 − 2δ. We call such a cut class
exceptional 4-cut class.

Lemma 6.38. Let C1 → C2 → C3 ∈ P, be 3 cut classes with child-connectors a1, a2, a3, father-
connectors b1, b2, b3, such that C3 has 4 atoms. If all of classes with 4 atoms in P are exceptional
4-cut class, ε∗ > 216δ, and δ < 1

1000 , then P is assigned good edges of fraction at least ε∗

4 , that are
even with probability at least ε∗3

100000 .

First we show that if |a2 \ a3| > 2 (or equivalently b3 , a2) then we are done.

Lemma 6.39. Let ε∗ > 216δ, and δ < 1/2000, P ∈ πε∗, C1 → C2 ∈ P, be 2 cut classes with child
connectors a1, a2, father connectors b1, b2 such that C2 is an exceptional 4-cut class with u and v the
two singletons of C2. Moreover, let 1 ≤ |a1 \ a2 \ {u, v}| ≤ 2. For any w ∈ a1 \ a2 \ {u, v}, if x(u,w) > 0
then event that E(u,w) ∩ |T ∩ E(b2, b2)| = 2 occurs with probability at least ε∗3

100000 .

Proof. From Corollary 6.35, we have x(w, {u, v}) ≥ 1− 8δ− ε∗

4 . Let e = (u, v). It is sufficient to show
that with a constant probability T ∼ µ selects a Hamiltonian cycle on the atoms of C2, and w has
an even degree. Let A denote this event.

We use the proof strategy of Lemma 6.37. First we condition on T be an spanning tree on a2
and contains exactly one edge from each of E(u, a2), and E(v, a2). Then we contract the vertices in
{u, v, a2} and get a new vertex u′. Finally, we use Lemma G.2 to show that u′ and w will have an
even degree in the new measure and also that |T ∩ E(u, b2)| = 1 and |T ∩ E(v, b2)| = 1 with constant
probability.

Let X := |T∩ ((u, v)∪E(a2, b2))|, Y := |T∩E(a2)|, and Z := |T∩ (E(u, a2)∪E(v, a2))|. Observe that

0 ≤ ET∼µ [X] ≤ 10δ,

|a2| − 1 −
1
2
− 4δ ≤ ET∼µ [Y] ≤ |a2| − 1,

2 − 4δ ≤ ET∼µ [Z] ≤ 2,

where the second equation holds by the fact that |a2| ≤
n
2 . Define µ1 := {µ| X = 0,Y = |a2| − 1}. By

Corollary 6.10, conditioning on X = 0,Y = |a2| − 1 can only decrease ET∼µ [Z] by 1
2 + 4δ. Observe

that under measure µ1, Z can take a maximum value of two. Thus Z = 2 is an upward event and
when Z = 2, we must have |T ∩ E(u, a2)| = |T ∩ E(v, a2)| = 1. Let µ2 := {µ1| Z = 2}. We have

PT∼µ [A] = PT∼µ1 [A]PT∼µ [X = 0,Y = |a2| − 1]

≥ (
1
2
− 14δ)PT∼µ2 [A]PT∼µ1 [Z = 2]

≥
1
3

(
1
2
− 18δ)PT∼µ2 [A]

It suffices to show PT∼µ2 [A] = Ω(1). Observe that any tree T ∼ µ2 contains a spanning tree inside
{u, v, a2}. Let us contract these vertices, and let u′ be the new contracted vertex. If the event
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{deg(u′) = 2 ∩ |T ∩ E(u, b2)| = 1} occurs for T ∼ µ2, then we get a Hamiltonian cycle inside C2.
Therefore, it is sufficient to show that:

PT∼µ2 [A] ≥ PT∼µ2

[
deg(w) = 2, deg(u′) = 2, |T ∩ (u, b2)| = 1

]
= Ω(1).

Similar to Lemma 6.37, we use Lemma G.2. We set u := u′, v := w, N1(u) := E(u, b2), N2(u) :=
E(v, b2), ε := ε∗

3 . We now check the conditions of the Lemma G.2. Observe, under µ2, ET∼µ2 [|T ∩ E(a2, b2)|] =
0. By corollary 6.35 we have

1 − 8δ −
ε∗

4
≤ x(w,u′), x(w, b2), x(u, b2), x(v, b2) ≤ 1 + 8δ +

ε∗

4
2 − 4δ ≤ x(u, b2) + x(v, b2) ≤ 2 + 4δ

The expectation of the above values are equal to their x-values (within O( 1
n ) error). Since P ∈ πε∗

we have |b2| ≥ n( 1
2 +ε∗), and |a2| ≤ n( 1

2−ε
∗). Therefore, by Corollary 6.10, conditioning on Y = |a2|−1

may decrease the probability of edges outside of a2 no more than 1
2 − ε

∗ + 4δ. Also conditioning on
Z = 2 may decrease it by at most 4δ. Thus the LHS of the above equations can be decreased by
at most 1

2 − ε
∗ + 8δ. Moreover, the RHS can be increased by at most 10δ and since ε∗ ≥ 216δ, the

conditions of Lemma G.2 are satisfied. Therefore,

PT∼µ2

[
deg(w) = 2, deg(u′) = 2, |T ∩ E(u, b2)| = 1

]
≥

ε∗3

10000

⇒ Pµ [A] ≥
1
3

(
1
2
− 18δ)

ε∗3

10000
≥

ε∗3

100000
.

�

The lemma implies the following Corollary.

Corollary 6.40. Let P ∈ π0, C1 → C2 → C3 be 3 cut classes
with child-connectors a1, a2, a3, and father-connectors b1, b2, b3. If
C3 is an exceptional 4-cut class, C2 is a 2-cut class, |a2 \ a3| = 2,
1 ≤ |a1 \ a2| ≤ 2, and ε∗ > 216δ, δ < 1

1000 , then P is assigned good
edges of fraction at least ε∗

4 .

Proof. Observe that 3 ≤ |a1 \ a3| ≤ 4. Since C2 contains two atoms
and |a2\a3| = 2, the cuts (a2, b2) and (b3, b3) are the same. Therefore,
if |T ∩ E(b3, b3)| is even, |T ∩ E(a2, b2)| is also even. Thus, we can
ignore C2 and assume C1 → C3 and apply Lemma 6.39. Therefore,
the edges connecting the singleton of C3 to vertices in a1 \ a2 are
good. �

a2
. . .

u2 v2

a1

b2

u1 v1

...

b1

C2

C1

Figure 7: Exceptional
4 Cut classes C1,C2 de-
scribed in Lemma 6.41

Now suppose |a2 \ a3| = 2 (or equivalently b3 = a2). In the next lemma
we show that if C2 also is an exceptional 4-cut class then we are done.

Lemma 6.41. Let P ∈ π0, C1 → C2, be exceptional 4-cut classes with
child connectors a1, a2 and father-connectors b1, b2.If |a1\a2| = 2, ε∗ > 50δ,
and δ < 1

10000 , then T is a Hamiltonian cycle in G(φ(C1)) and G(φ(C2))
with a probability 1

4000 , thus P is assigned good edges of fraction at least
3/2.
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Proof. Let u1, v1 be the singletons of C1, and u2, v2 be the two singletons of C2 (see Figure 7). Since
|a1\a2| = 2, we have a1 = a2∪{u2, v2}, and a1 = b2. Hence, x(u1, a1) = x(u1, b2) and x(v1, a1) = x(v1, b2).
Thus:

1 − 2δ ≤ x(u1, b2), x(v1, b2) ≤ 1 + 2δ
1 − 2δ ≤ x(u2, b2), x(v2, b2) ≤ 1 + 2δ.

Since x(d(b2)) ≤ 2(1 + 2δ), we obtain x({u2, v2}, {u1, v1}) ≥ 2 − 8δ. Let A be the event that T is a
Hamiltonian cycle in both G(φ(C1)) and G(φ(C2)). We show that A occurs with probability at least

1
4000 , thus all edges in the cut ({u2, v2}, {u1, v1} are good.

The proof is basically a generalization of Lemma 6.32. Let X := |T ∩ (E(a1, b1) ∪ (u1, v1))}| and
Y := |T ∩ E(a2, b2) ∪ (u2, v2)}|, be the indicator random variables for the edges between the non-
consecutive atoms of C1 and C2. Observe that Eµ [X] ,Eµ [Y] ≤ 8δ. Let A2 be the event that T
contains a Hamiltonian path through atoms of {u2}, a2, {v2} and |T∩E(a2)| = |a2| − 1 and Y = 0. The
proof is structured as follows: first we condition on X = 0, then on A2. Since u1, v1 are singletons
in C1, and T contains a spanning tree in a2 ∪ {u2, v2}, T must have exactly two edges in the cut
({u2, v2}, {u1, v1}), one (wlog) (u2,u1), and the other (v2, v1). Finally, we show that exactly one edge
is sampled from each of E(u1, b1) and E(v1, b1) and we are done.

Let µ1 : {µ| X = 0}. Since 8δ < 1
1000 , following the proof of Lemma 6.32, A2 occurs with

probability 9
10

9
20

2
5 . In particular, let µ2 := {µ1 | A2}, Since any tree T ∼ µ2 contains a spanning

tree in b2 = a2 ∪ {u2, v2} we may contract all these vertices as a new vertex u′. Since X = 0,
T does not have any edge in cut (u′, b1), thus u′ is only connected to u1 and v1. Therefore
PT∼µ2

[
deg(u′) ≤ 2

]
= 1. Moreover, u′ can have at most one edge to each of the vertices u1, v1.

Hence the event deg(u′) = 2 is an upward closed event, which implies T has exactly one edge in all
of the 4 edge sets E(u2, b2),E(v2, b2),E(u1, a1),E(v1, a1).

Define µ3 := {µ2|deg(u′) = 2}. Since,

3
2
− 12δ ≤ ET∼µ2

[
deg(u′)

]
≤ 2.

Therefore, by Markov’s inequality PT∼µ2

[
deg(u′) = 2

]
= Ω(1). It remains to show that

PT∼µ3 [|T ∩ E(u1, b1)| = 1, |T ∩ E(v1, b1)| = 1]

is a constant. By Corollary 6.10, the probability of the edges in E(G) \ E(a1) ∪ {u1, v1}) can only
be decreased by 1

2 + 12δ under the measure µ2. Now we use Lemma 6.21 to show that the event
|T ∩ E(u1, b1)| = 1, |T ∩ E(v1, b1)| = 1 also occurs with a constant probability, and we have spanning
tree that has a Hamiltonian cycle through the atoms of C1 and C2 with a constant probability. Set
A := E(u1, b1), B := E(v1, b1), α = 1

3 , β = 1
2 − 12δ, ε = 1

5 from Lemma 6.14. This implies that

PT∼µ3 [|T ∩ E(u1, b1)| = 1, |T ∩ E(v1, b1)| = 1] ≥
1

300
⇒ Pµ [A] ≥

1
4000

�

The lemma implies the following Corollary.

Corollary 6.42. Let P ∈ π0, C1 → C2 → C3 where C1 and C3 are exceptional 4-cut classes with
child connectors a1, a3 and father-connectors b1, b3 and C2 is a 2-cut class with child-connector a2.If
|a1 \ a3| = 2 and ε∗ > 50δ, and δ < 1

10000 , the P is assigned even edges of fraction at least 1
3 .
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Proof. Observe that |a1 \ a3| = 2 implies that a2 = a1. We ignore C2 and assume C1 → C3 and apply
Lemma 6.41. Since T is a Hamiltonian cycle on C1 and C3 with constant probability, the edges
connecting the singleton atoms of C1 and C3 are good. �

Now we are ready to prove Lemma 6.38:
Proof of Lemma 6.38. If |a2 \ a3| > 4 then we are done since the thread is assigned at least 1

3 trivial
good edges. If 3 ≤ |a2 \ a3| ≤ 4 then applying Lemma 6.39 we are done. Hence, suppose |a2 \ a3| = 2.
If C2 has four atoms then we are done by Lemma 6.41. Thus suppose that C2 has two atoms. Now
we do a case analysis depending on the value of |a1 \ a2|.

If |a1 \a2| = 0. Since C1 , C2, we have C1 is an exceptional 4-cut class and |a1 \a3| = 2. Applying
Corollary 6.42, we are done.

Now suppose 1 ≤ |a1 \ a2| ≤ 2. Now applying Corollary 6.40, we are done.
�
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A Christofides Algorithm and Subtour Elimination LP

In this section we prove the following lemma for completeness.

Lemma A.1. [39, 37] Let H be the Eulerian subgraph returned by the Christofides algorithm. Then
c(H) ≤ 3

2 c(x) where x is the optimal solution to Held-Karp linear program.

Proof. Observe that H = F ∪ J where F is the minimum spanning tree and J is the minimum cost
matching on the odd-degree vertices of F. The lemma follows from the following two claims.

Claim A.2. c(F) ≤ c(x).

Proof. Since (1 − 1
n )x is in the spanning tree polyhedron, we have c(F) ≤ (1 − 1

n )c(x) ≤ c(x). �

Claim A.3. Let T be any set of even number of vertices and let J be the minimum cost T-join on
T. Then c(J) ≤ c(x).

Proof. It follows from Edmonds and Johnson [18] that the integrality gap of the T-join polytope is
1. Therefore, the minimum cost T-join on T is the optimum solution to to LPT− join (see Figure 1).

Since x/2 is a feasible solution to the LPT− join since x(d(S))/2 ≥ 1 for each set S ⊂ V. Thus
c(J) ≤ c(x)/2. �

This completes the proof of the lemma. �

B Proof of Theorem 1.1

In this section, we prove Theorem 1.1 using Theorem 3.1.

Case 1: x has at least ε1n good edges.

Lemma B.1. The expected cost of F is at most c(x).

Proof. Since P [e ∈ F] = ze ≤ xe, we have E [c(F)] =
∑

e∈E∗ c(e)P [e ∈ F] ≤ c(x). �

Hence, we need to bound the cost of the T-join. The rest of the argument depends on which
case of Theorem 3.1 holds.

Lemma B.2. Let x be a fractional solution of (LPsubtour), E∗ ⊂ E be the set of good edges. If there
are a lot of good edges, that is if x(E∗) ≥ ε1n, then the expected cost of the smallest Eulerian tour is
at most 3/2 − ε1δρ

4(1+δ) .

Proof. We provide a fractional solution to the (LPT− join) (Figure 1 to make it Eulerian. For any
edge e ∈ E if e is contained in at least one odd (1 + δ) near minimum cut (S,S), set ye = xe/2,
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otherwise set ye = xe/2(1 + δ)). Observe that a cut (S,S) is odd in F iff |S ∩ T| is odd. Therefore, y
is indeed a fractional solution of (LPT− join). Now, to bound the cost of y in Step 3 note:

E
[
c(y)

]
≤

c(x)
2
−

∑
e∈E

xec(e)P [e < odd near minimum cuts]
(

1
2
−

1
2(1 + δ)

)
≤

c(x)
2
−

δ
2(1 + δ)

∑
e∈E∗

xeρ

≤ c(x)(
1
2
−

ε1δρ

4(1 + δ)
).

The second inequality holds because c(e) ≥ 1 for all e ∈ E, and the last one because c(x) ≤ 2n. Since
the T-join polytope is integral [18], the minimum cost integral T-join costs at most c(y). By adding
the edges of minimum T-join to F we obtain an Eulerian tour of expected total weight at most
c(x)( 3

2 −
ε1δρ

4(1+δ) ). �

The above argument bounds the cost of the tour in expectation. By sampling a tree log n times
and choosing the best solution, one can obtain an Eulerian tour of cost at most c(x)( 3

2 −
ε1δρ

4(1+δ) ) with
high probability.

Case 2: x is nearly integral. In this case, we bound the cost of the tree F and T-join J together
and prove the following lemma. The construction of the fractional T-join in the lemma is similar
to a construction by Monma, Munson and Pulleyblank [30].

Lemma B.3. Let x be a fractional solution of (LPsubtour). If x contains at least (1 − ε2)n edges of
fraction greater than 1−γ, then the tour computed in Algorithm 2, step 5 is at most c(x)( 4

3 +2ε2+4γ).

Proof. Let I′ = {e | xe > 1 − γ} be the set of nearly integral edges, and let F′ be the minimum cost
spanning graph that contains I′. Since G0 is connected, I′ can be augmented into a connected graph
using only edges of cost 1. Hence, we have c(F′) = c(I′) + |F′ \ I′| ≤

∑
e∈I′ c(e)xe

1−γ + |F′ \ I′|.
Recall that F is a minimum cost spanning subgraph of F′. Because of the constraints of LP

and since γ < 1/3, it is easy to see that I′ consists of disjoint cycles and paths and the length of
each cycle is at least 1

γ . Therefore, F will have at least n(1 − ε2)(1 − γ) edges from I′. Therefore,
|F \ I′| ≤ n(ε2 + γ). Let us set I = I′ ∩ F.

Let T denote the set of odd vertices in F. Again, we bound the cost of T-join by constructing a
fractional solution to the LPT− join, and then invoking the integrality of the T-join polytope.

Let 
ye = xe

3(1−γ) if e ∈ I

ye = 1 if e ∈ F \ I
ye = xe otherwise.

We first show that y is feasible for LPT− join. Let (U,U) be any cut which has an odd number
of vertices of T in U (equivalently, a cut that has an odd number of edges of F). If there exists
an e ∈ (F \ S) ∩ E(U,U), then y(d(U)) ≥ ye ≥ 1 and the constraint is satisfied. Otherwise, we have
E(U,U) ∩ F ⊆ S. Therefore since (U,U) has an odd number of edges F, and I ⊂ F, (U,U) must
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contain an odd number of edges of I. By the values assigned to the edges in y, we havey(d(U)) ≥ x(d(U) \ I) ≥ 1 if |I ∩ E(U,U)| = 1
y(d(U)) ≥ y(d(U) ∩ I) ≥ 3 1

3(1−γ) (1 − γ) = 1 if |I ∩ E(U,U)| ≥ 3

thus y is a feasible solution of (LPT− join).
Now we bound the cost of the final Eulerian subgraph which will be at most c(F) + c(y)

c(F) + c(y) ≤
c(x(I))
1 − γ

+ c(F \ I) + c(F \ I) + c(x(E \ F)) +
c(x(I))

3(1 − γ)

≤
4c(x(I))
3(1 − γ)

+ n(2ε2 + 2γ) + c(x(E \ I))

≤
4c(x)

3(1 − γ)
+ c(x)(2ε2 + 2γ) ≤ c(x)(

4
3

+ 2ε2 + 4γ).

The one to the last inequality follows from the fact that c(x) ≥ n, and the last inequality follows
from γ < 1/3. �

C Proofs from Section 4

First we prove the following simple claim which is useful in later proofs.

Lemma C.1. Any collection of cuts satisfies the following statements:

1. Among any set S = {Ci1 ,Ci2 , . . . ,Cil} of cut classes, we can find a set M of atoms such that
the atoms in M are pairwise disjoint, and

|M| ≥ −2(l − 1) +

l∑
j=1

|φ(Ci j)|.

2. If C is the set of (1 + δ) near minimum cuts of G = (V,E, x), and δ < 1/10, then any edge e
contained in a cut class Ci is contained in at most |φ(Ci)|2 cuts of Ci.

Proof. The first statement can be proved by considering the properties of the cactus defined on
cut classes of C. Let’s consider the tree Γ(C) (see Definition 4.21) on the cycles of the cactus (cut
classes) and let’s make one of the classes of S to be the root of the tree. Starting from the root let’s
traverse the tree (e.g. using Depth First Search), and keep the invariant that M always contain a
set of atoms that are pairwise disjoint. At the first step we add all of the atoms of the root to M.
At the time of visiting a cut class Ci j ∈ S, it is not hard to see that all except one of the atoms of
φ(Ci j) are a subset of an atom of M. Therefore, we can add all except one of its atoms to M and
remove their superset from M. Since each time we add |φ(Ci)| − 1 atoms and we delete one of the
previous atoms, after l − 1 steps we have |M| ≥ −2(l − 1) +

∑
Ci j
|φ(Ci)|.

Nagamochi et al. [31] show that the number of 4/3 near minimum cuts of any graph is at most(n
2
)
. Therefore, the second statement can be proved simply by applying this result to the graph

G(φ(Ci)). �
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Proof of Lemma 4.6. We show that a constant fraction of edges in G are not incident to any of
the atoms of L(τ). By Corollary 4.15, for any cut class Ci, the total fraction of edges in G(φ(Ci)) is
at most |φ(Ci)|(1 + βδ), where β := 3. Thus the total fraction of edges that are contained in at least
one of the large cut classes is no more than

|L(τ)|(1 + βδ) < n(1 − ε)(1 + βδ) ≤ n − n(ε − βδ).

Therefore, since the total sum of the fraction of edges in G is n (i.e. x ∈ LPsubtour) we have
x(ES) ≥ (ε − βδ)n. �
Proof of Lemma 4.4. We show that for any δ < 1

100 , if L(τ) ≥ (1 − ε)n, then x contains at
least n(1 − α

√
δ − 5ε − 12

τ−2 ) ≥ n(1 − α
√
δ − 17ε) edges of fraction 1 − α′

√
δ, where α := 20, α′ := 4.

Observe that for any cut class Ci, a near integral edge in G(φ(Ci)) incident to two singleton atoms
is corresponding to a near integral edge in G. On the other hand, we show that most of the atoms
in L(τ) are singletons. Therefore, most of the near integral edges in G(φ(Ci)) are corresponding to
the near integral edges in G. Since by Corollary 4.15, for any cut class Ci, G(φ(Ci)) contains are at
least |φ(Ci)|(1 − α

√
δ) edges of fraction at least 1 − α′

√
δ, there exists a large number of edges of

fraction 1 − α′
√
δ between the vertices of G.

Let L be the number of large cut classes. By property (1) of Lemma C.1, |L(τ)| ≤ n + 2L. But
then we have Lτ ≤ n + 2L and therefore L ≤ n

τ−2 . By the first property in Lemma C.1, we can find
at least |L(τ)| − 2L ≥ n(1− ε− 2

τ−2 ) atoms in L(τ) that are mutually disjoint. But these atoms define
a partition of the ground set V, therefore at least n(1− 2ε− 4

τ−2 ) of them are singletons. Therefore,
the number of non-singleton atoms of L(τ) is at most n(2ε + 6

τ−2 ).
On the other hand, by Corollary 4.15, there are∑

Ci:|φ(Ci)|≥τ

|φ(Ci)|(1 − α
√

δ) = |L(τ)|(1 − α
√

δ) ≥ n(1 − ε − α
√

δ)

edges of fraction 1 − α′
√
δ in graphs G(φ(Ci)) for large cut classes Ci. Hence, at least n(1 − α

√
δ −

5ε − 12
τ−2 ) of these edges are incident only to singleton atoms. But edges adjacent to two singletons

are corresponding to actual edges of G. We conclude that there are n(1 − α
√
δ − 5ε − 12

τ−2 ) edges of
fraction 1 − α′

√
δ in G. Then lemma follows from the assumption ε > 1

τ−2 . �

D Proof of Theorem 4.26

For simplicity, in the rest of the argument we will not consider root as a special case. Indeed if root
is a large cut class, then similar to other large cut classes, we ignore the edges contained in Cr, and
we do not assign any good edge to it. Otherwise, if it a small cut class, only a constant number of
edges (O(τ)) are included in it, thus removing the good edges contained in the root will not have
a big effect.

We prove this theorem in several steps. Suppose the sum of fraction of edges in EST is very
small (say o(n)). First we prove that this implies x(ESN ) = Ω(n). Then we show that Γ(C) contains
Ω(n) nodes. Finally, we prove that the tree can not have many leaves, thus it should contain many
long paths (or threads).

Lemma D.1. If ε > 32
τ , x(ES) ≥ εn, and x(EST ) < εn

20 , then x(ESN ) ≥ εn
5 .
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Proof. We prove by contradiction, suppose x(ESN ) < εn
5 . Define F := ES \ EST \ ESN . By assumption

x(F) ≥ 3εn
4 . Let us describe the properties of the edges in F. For an edge e ∈ F, since e ∈ ES but

e < ESN , e must only contained in trivial near minimum cuts. Moreover, since e < EST , e is not a
good edge. Therefore, by Proposition 4.17, we have xe = 1

2 ±
1

8000 .
Note that if the graph originally does not have any almost half edges (edges e for which xe is

close to 1/2), we get F = ∅, and we reach to a contradiction. Since by proposition 4.17, from any
adjacent pair of half edges, at least one of them is good, the edges in F are not adjacent to each
other. Let e = (u, v) ∈ F, since there is not any near minimum cut (other than the trivial cuts)
containing e, u and v must be contained in the same atom in all of the non-trivial cut classes. Hence,
we can contract e (and all of the edges in F), without changing the structure of tree hierarchy.

Let U be the contracted set of vertices. Recall that for any vertex u ∈ U, d(u) is the set of edges
adjacent to u. Since u is a contraction of an almost half edge, we have x(d(u)) = 3 ± 1

4000
Let d′(u) ⊆ d(u) be the set of edges adjacent to u that are contained in at least one large cut

class. We have
d(u) \ d′(u) ⊆ ES \ F. (33)

Define W := {u ∈ U : x(d′(u)) ≥ 2.5 − 1
4000 }. We drop this term of 1

4000 in the rest of the
calculations. This affects the constant very slightly. Then

εn
4
≥ x(ES \ F) ≥

1
2

∑
u∈U

(3 − x(d′(u))) ≥
∑

u∈U\W

1
4

=
|U \W|

4
, (34)

where the second inequality holds by equation (33), and noting that each edge e ∈ ES \ F can be
counted at most twice in the RHS. Since x(F) ≥ 3εn

4 , we get |U| = |F| ≥ 6εn
4 . Using equation (34) we

get |W| ≥ εn
2 . We show that this implies the existence of large degree atoms in large cut classes and

we reach to a contradiction with Corollary 4.15.
For a set S of atoms let D(S) :=

∑
a∈S x(d(a)) be sum of fraction of edges adjacent to the atoms

in S. To reach a contradiction, we use a double counting argument for the value D(L(τ)). Since by
Corollary 4.15, D(φ(Ci)) = x(E(G(φ(Ci)))) ≤ 2(1 + 3δ)|φ(Ci)| for any cut class Ci, we have

D(L(τ)) ≤ 2(1 + 3δ)|L(τ)| (35)

On the other hand, we show that there is a set S∗ ⊂ L(τ) such that D(S∗) ≥ 5εn
4 , while |S∗| ≤

9D(S∗)/20. Since the size of the minimum cut of G is 2, for any a ∈ S, we have x(d(a)) ≥ 2.
Therefore

D(L(τ)) = D(S∗) + D(L(τ) \ S∗) ≥ D(S∗) + 2(|L(τ)| − |S∗|) ≥
D(S∗)

10
+ 2|L(τ)| ≥ 2|L(τ)| +

εn
8
.

This is however a contradiction with equation 35, since |L(τ)| ≤ n, and ε > 48δ.
It remains to show the existence of S∗. Consider the set of large cut classes C1, . . . ,Cl, by

Lemma C.1, part 1, there is a subset S1 ⊂ L(τ) such that atoms in S1 are pairwise disjoint, and
|S1| ≥ |L(τ)| − 2l.

Let S2 := {a ∈ S1 : ∃w ∈W,w ∈ a} be the set of atoms in S1, each contain at least one vertex of
W. Set S∗ = S2 ∪ (L(τ) \ S1). Then

|S∗| = |S2| + |L(τ) \ S1| ≤ |W| + 2l ≤ |W| +
2n
τ
≤

9|W|
8
,
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where the last inequality holds by the fact that τ ≥ 32/ε.
Let w ∈ W, observe that if w is contained in an atom of a ∈ S1, then a is the smallest part

in L(τ) that contains w, thus d′(w) ⊆ d(a). Hence, if an atom a ∈ S2 contains k vertices of W we
have x(d(a)) ≥ 2.5k. If w is not contained in any atoms of S1, then it is contained in some atoms of
L(τ) \ S1, thus the edges in d′(w) will be adjacent to those atoms. Consequently,

D(S∗) ≥
∑
w∈W

x(d′(w)) ≥ 2.5|W|.

Hence D(S∗) ≥ 5εn
4 , while |S∗| ≤ 9D(S∗)/20.

�

Lemma D.2. Let C be the collection of (1 + δ) near minimum cuts, with small non trivial cut
classes C1, . . . ,Cs. If x(ESI ) + x(EST ) ≤ εn

8 , and x(ESN ) ≥ εn, then Γ(C) contains at least εn
6 nodes.

Proof. From Corollary 4.15, it is straightforward to prove that the number of small cut classes is
at least Ω( εnτ ). We prove a much stronger bound here. Since x(ESN ) ≥ εn, the sum of the fraction
edges inside small cut classes is at least εn. By Corollary 4.15:

s∑
i=1

|φ(Ci)| ≥ εn. (36)

We show that each small cut class should have a large fraction of good edges, unless it has a high
degree in Γ(C). The latter implies the sum of the degrees of small cut classes (and thus the number
of edges of Γ(C) is Ω(εn). Since Γ(C) is a tree, it must have at least that many nodes.

For each 1 ≤ i ≤ s, let di be the degree of small cut class Ci in Γ(C), and let yi be the sum of
the fraction of good edges in ESI or EST assigned to Ci. Let Ci be a small cut class; by lemma 6.28
we have yi ≥

3
4

⌈
|φ(Ci)|−2di

2

⌉
. Summing up over all small cut classes we get:

εn
8
≥ x(ESI ) + x(EST ) ≥

s∑
i=1

yi ≥

s∑
i=1

3
4

⌈
|φ(Ci)| − 2di

2

⌉
≥

3
8

s∑
i=1

|φ(Ci)| −
3
4

s∑
i=1

di ≥
3εn

8
−

3
4

s∑
i=1

di,

where the first inequality holds by lemmas assumption, and the last inequality holds by equation
(36). Therefore,

∑s
i=1 di ≥

εn
3 . Thus Γ(C) contains at least εn

6 edges, and at least this many nodes.
In other words, we have at least εn

6 cut classes. �

Lemma D.3. If Γ(C) contains at least εn nodes, ε > 820
τ and x(ESI ) + x(EST ) ≤ εn

64 , then |π εn
80
| ≥

εn
40 .

Proof. We show that Γ(C) must contain small number of leaves. This implies that it should contain
many nodes of degree 2. Let L be the number of leaves of Γ(C). By corollary 6.33, any small cut
class which is a leaf is assigned good edges of fraction at least 3/4. Since x(ESI ) + x(EST ) ≤ εn

64 , the
number of leaves which are a small cut class is no more than εn

48 . Also the number of large cut
classes which are a leaf is no more than n/τ since L(τ) ≤ n. Hence:

L ≤
εn
48

+
n
τ
≤
εn
41

Since in any tree, the number of nodes of degree more than 2 is at most the number of leaves, we
get the number of small cut class of degree strictly more than 2 is at most L.

56



Let Γ′(C) be the tree obtained by contracting each thread (or equivalently, each small cut class
of degree 2 except the root). The number of nodes of Γ′(C) is no more than 2L + n/τ ≤ εn

20 . Since
each edge of Γ′(C) is corresponding to a thread in Γ(C), and Γ(C) contains at least εn vertices, it
must have at least εn

20 , disjoint threads of length 10. Note that if the father-connector atom of a cut
class contains at least m vertices, the father-connector atom of its descendants contain at least m
vertices too. Therefore, by Lemma F.2 at least half of these threads are unbalanced with parameter
εn
80 . �

This finishes the proof of Theorem 4.26.

E Proofs from Section 5

We prove a crucial lemma which shows that the minimum cut of any subset of the inside vertices
of H is very small.
Proof of Lemma 5.15. We assume that |T| > 1, otherwise the lemma is trivial. We prove by
contradiction, suppose for any non-empty set S ⊂ T, we have |E(S,T \ S)| > 6δc. The idea is to find
a k-cycle (say C), such that at least one (but no more than a constant number) of its cut sides
crosses T. Then we may argue that at least one of those cut sides (say (C j,C j)) should have a large
number of edges (Ω(δc)) to vertices in T that are not included in any of the cut sides of C. We
reach to a contradiction by showing that (C j,C j) can not be a near minimum cut using the fact
that a cut side should have a large number of edges ((1 − δ) c

2) to its adjacent cut sides in C.
Since (T,T) is a non-trivial cut, there exists at least one near minimum cut that crosses (T,T).

Among the set of near minimum cuts of H that crosses the set T, let (D,D) be the cut that
maximizes |D∩T|. Note that since (D,D) crosses T, we have D∩T , ∅. Let v∗ ∈ D∩T be an inside
vertex. Since v∗ is an inside vertex, there exists a k-cycle C for it. Let {C1,C2, . . . ,Ck} be the cut
sides of C. Recall that by definition none of the cut sides contain v∗. In the next claim we show
that there is another cycle for v∗ that contains a set with properties similar to D as one of the cut
sides, or exactly two adjacent cut sides that cross D.

Claim E.1. Let (D,D) be a near minimum cut that crosses T and maximizes |D ∩ T|, and let v∗ ∈
T \D. Then, there is a cycle C for the vertex v∗ which either contains Ci such that |Ci∩T| = |D∩T|,
or has at most two other cut sides which cross D.

Proof. Let C = {C1, . . . ,Ck} be the shortest cycle for v∗ as described above which maximizes
maxi |Ci ∩ D ∩ T|. Observe that if this maximum equals |D ∩ T|, then we are done. Hence, as-
sume that Ci ∩ D ∩ T ( D ∩ T for all 1 ≤ i ≤ k. Let t denote the number of cut sides Ci whose
intersection with D is non-empty. Since each near minimum cut corresponds to a diagonal in the
polygon representation, and D * Ci for any i, we must have t > 1. Moreover, the set of cut sides
intersecting D must occur consecutively in the cycle C. Let Cx,Cy be the first, and the last cut
sides that are crossing D, respectively.

If t ≥ 3, then consider the cycle C′ = {C1, . . . ,Cx,D,Cy,Cy+1, . . . ,Ck}. It is easy to verify that it
is a valid cycle for v∗. Moreover either it is shorter or improves maxi |Ci ∩D ∩ T|.

Else t = 2, then we cannot have Ci ⊂ D for any i. Therefore, both cut sides intersecting with D
(i.e., Cx,Cy) cross D. �

Let O :=
⋂

j C j be the set of inside vertices that are not included in any of the cut-sides of C
(note that we have v∗ ∈ O and thus O , ∅).
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In the next claim we show that there exists a cut side C j such that |E(C j,O)| > 2δc.

Claim E.2. Consider the cycle C = {C1, . . . ,Ck} be a k-cycle for v∗ as given by Claim E.1. Then C
contains a cut side C j such that |E(C j,O)| > 2δc.

Proof. In the first case, let C2 denote the cut side such that |C2∩T| = |D∩T| and in the second case
let C1 and C2 denote the sides which intersect D. We show that only the cut sides C1,C2,C3 may
cross T. Then since C2∩T , ∅, and v∗ < C1∪C2∪C3, we have C1∪C2∪C3 crosses T. Therefore, by
lemma’s assumption we have |E(C1 ∪C2 ∪C3,T \ (C1 ∪C2 ∪C3))| > 6δc. But since all of the vertices
of T are in one of the four sets C1,C2,C3 or O, we have O = T \ (C1 ∪ C2 ∪ C3), which implies that
|E(C1 ∪ C2 ∪ C3,O)| > 6δc. Therefore, we obtain that |E(C j,O)| > 2δc for some 1 ≤ j ≤ 3, which
completes the proof.

It remains to show that only the first three cut-sides may cross T. First consider the case that
|C2∩T| = |D∩T|. Then for all near minimum cuts (S,S) crossing T, we have |C2∩T| ≤ |S∩T| ≤ |C2∩T|.
Therefore, for all 3 < j, we either have C j∩T = ∅ (i.e. (C j,C j) does not cross T), or |C j∩T| ≥ |C2∩T|.
If the former occurs we are fine. So suppose the latter occurs for some j > 3. Since C is a k-cycle,
and j > 3, we have C j ∩ C2 = ∅. Since (C j,C j) crosses T we get

|C2 ∩ T| + |C j ∩ T| ≥ |C2 ∩ T| + |C2 ∩ T| = |T|.

But we know that v∗ is not in any of them, thus we must have C2 ∩ T ∩ C j , ∅, which is a
contradiction. Therefore none of the cut sides C j crosses T for j > 3.

In the other case, let the cut sides intersecting D be C1 and C2. Following the argument in the
previous proof, we claim that C j ∩T = ∅ for all j , 1, 2. Suppose that is not the case and there is a
j > 2 such that C j∩T , ∅. Since we have D∩C j = ∅, and |D∩T| ≤ |C j∩T| ≤ |D∩T| as before there
must be a common element in C j and D which is a contradiction. Thus there exists a cut side C j

for 1 ≤ j ≤ 2 such that |E(C j,O)| > 6δc
2 > 2δc. �

By Lemma 5.3, we have |E(C j,C j−1 \ C j)| ≥ (1 − δ) c
2 and |E(C j,C j+1 \ C j)| ≥ (1 − δ) c

2 . Therefore,
|d(C j)| > c(1 − δ) + 2δc = c(1 + δ) which is a contradiction. �

F On the Properties of Tree Hierarchies

In this section we explain some basic properties of tree hierarchies.

Lemma F.1. Let C be the collection of (1 + δ) near minimum cuts of fractional graph G, with cut
classes C1, . . . ,Cl. In all except one of the cut classes there is an atom which is a subset of at least
n/2 of the vertices of G.

Proof. The proof follows from the fact that the union of two connecting atoms is V. Therefore, at
least one of them must have at least n/2 vertices.

Let Cr be a cut class such that all of its atoms have less than n/2 vertices. Then any cut class
Ci which is adjacent to Cr in Γ(C) contains an atom with n/2 vertices (see Definition 4.21). In fact
since Ci is adjacent to Cr there is an atom b ∈ φ(Ci) that coincide with an atom a ∈ φ(Cr) in a
vertex of K(C). Since all atoms of Cr have less than n/2 vertices, b must have at least n/2 vertices.

Similarly, it can be shown that all cut classes C j that are adjacent to Ci (and in general all cut
classes at distance 2 from Cr) must contain an atom with n/2 vertices. In particular, suppose an
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atom c ∈ φ(C j) coincides with an atom b′ ∈ φ(Ci). Since C j is at distance 2 from Cr we must have
b′ , b. Moreover, since |b| ≥ n/2, the rest of the atoms of Ci has at most n/2 vertices. Therefore
|b′| ≤ n/2, thus |c| ≥ n/2. By using a simple induction on the set of cut classes at distance k from Cr
it can be seen that all of the cut classes other than Cr contain an atom with at least n/2 vertices. �

Lemma F.2. Let C be the collection of (1 + δ) near minimum cuts of fractional graph G. Let
Γ(C) be the rooted tree defined in 4.21. If l < n

6 , then for any set of cut classes C1, . . . ,C4l, the
father-connector atom of at least 2l of them has at least n

2 + l vertices.

Proof. We prove that for any l < n
6 in all except at most 2l cut classes, the father-connector contains

at least n
2 + l vertices. Let f (Ci) be the father-connector of the cut class Ci. Let S := {Ci : | f (Ci)| <

n
2 + l. We first show that the cut classes in S form an (undirected) path in Γ(C). Since Cr ∈ S, the
undirected path is made of two directed path that starts from the root. Therefore there is a directed
path that starts at root of length at least |S|/2. In Claim F.5 we show that the father-connector
of the cut classes at distance k from the root has at least n

2 + k vertices. Since father-connectors of
cut classes in S have less than n

2 + l vertices, we must have |S| ≤ 2l.
Since the father-connectors of the descendants of a cut class Ci in Γ(C) can only have more

vertices than f (Ci), the set of cut classes in S forms a connected subgraph of Γ(C). In other words,
for any Ci ∈ S, all of the ancestors of Ci must be in S too. Thus we need to show that this subgraph
is a path.

In the next claim we show that it is not possible that 3 atoms of 3 different cut class in S
coincide in a vertex of K(C). Using this in Claim F.4 we show that each cut class in S is adjacent
to at most 2 other cut classes of S.

Claim F.3. Let C1,C2,C3 be 3 cut classes such that there is a ∈ φ(C1), b ∈ φ(C2), c ∈ φ(C3) such
that a, b, c coincides in a vertex of K(C). If l < n

6 , then at least one of the three cut classes is not in
S.

Proof. The proof follows from the fact that the union of atoms that coincide in a vertex K(C) is V.
Hence we have a ∪ b = a ∪ c = b ∪ c = V. Wlog suppose |a| ≥ |b|. Since |a ∪ b| = n we have

|a| ≥ |a ∩ b| +
n − |a ∩ b|

2
=

n + |a ∩ b|
2

.

Therefore, if |a ∩ b| ≥ 2l we get |a| ≥ n
2 + l and we get C1 < S. Thus suppose |a ∩ b| < 2l. Since

|a ∪ b| = n, we have
|a \ b| + |b \ a| = n − |a ∩ b| ≥ n − 2l >

n
2

+ l,

where the last inequality follows from the fact that l < n
6 . On the other hand, since a ∪ c = V, and

a ∪ b = V, we have b \ a ⊆ c. Similarly, a \ b ⊆ c. Hence,

|c| ≥ |a \ b| + |b \ a| >
n
2

+ l.

Therefore c = f (C3) and C3 < S. �

In the next claim we show that the cut classes in S must form a path in Γ(C):

Claim F.4. If l < n
6 , then any cut class C1 ∈ S can be connected to at most 2 other cut classes of

S in the tree Γ(C).
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Proof. Suppose C1 ∈ S is adjacent to 3 cut classes C2,C3,C4 in Γ(C). We show that the father
connector of at least one of them must have more than n

2 + l vertices. Let a2, a3, a4 ∈ φ(C1) be the
atoms that coincide with b2 ∈ φ(C2), b3 ∈ φ(C3), b4 ∈ φ(C4). By Claim F.3 we must have a2, a3, a4
are three different atoms in φ(Ci). Since a2 ∪ a3 ∪ a4 ⊆ V, we have |a2 ∪ a3 ∪ a4| ≤ n. Since the three
atoms are disjoint wlog we have |a2| ≤

n
3 <

n
2 − l. Since b2 coincide with a2 we have a2∪ b2 = V, thus

|b2| ≥
n
2 + l. This implies that b2 = f (C2) and C2 < S. �

Therefore, S forms a path in Γ(C). Hence there is a directed path of the cut classes in S of
length |S|

2 that starts at Cr. The following claim implies that the father-connector of a cut class at
distance k from the root must have at least n

2 + k vertices. This implies that |S| ≤ 2l:

Claim F.5. Let C2 be a child of C1, and C3 be a child of C2 which is not adjacent to C1. Then we
either have | f (C2)| ≥ | f (C1)| + 1, or | f (C3)| ≥ | f (C1)| + 2.

Proof. The proof follows from a simple case analysis. Let a ∈ φ(C1) be the atom coincides with
f (C2). First suppose |φ(C1)| > 2; since we do not have any cut class with 3 atoms, we must have
|φ(C1)| ≥ 4. Since the atoms form a partitioning of the vertices, we have |a| ≤ | f (C1)| − 2. Finally,
a ∪ f (C2) = V, thus we must have | f (C2)| ≥ | f (C1)| + 2.

Now suppose |φ(C1)| = 2. If |φ(C2)| = 2, then since C1 , C2 we must have | f (C2)| ≥ | f (C1)| + 1
and we are done. It remains the case where |φ(C1)| = 2 and |φ(C2)| > 2 (note that in this case
we can have | f (C1)| = | f (C2)|. By the argument in the previous paragraph in this case we have
| f (C3)| ≥ | f (C2)| + 2. Therefore, | f (C1)| ≥ | f (C3)| + 2 and we are done. �

�

G Proofs from Section 6.2

Proof of Lemma 6.21. The proof strategy is similar to Lemma 6.19. By equation (16), we have:

PT∼µ [X = 1,Y = 1] = PT∼µ [X = 1,Y = 1|X + Y = 2]PT∼µ [X + Y = 2] ≥ εPT∼µ [X = 1,Y = 1|X + Y = 2]

Thus we need to show that PT∼µ [X = 1,Y = 1|X + Y = 2] ≥ α/4 min(1/2, βe−β). Let γ := α/4 min(1/2, βe−β).
By ULC theorem we have:

PT∼µ [X = 1,Y = 1|X + Y = 2]2
≥ PT∼µ [X = 2,Y = 0|X + Y = 2]PT∼µ [X = 0,Y = 2|X + Y = 2]

Note that in general both of the terms in the RHS could be zero (e.g. when we have X = 1,Y = 1 with
probability 1). Thus we prove PT∼µ [X ≥ 1|X + Y = 2] ≥ 2γ (and similarly PT∼µ [Y ≥ 1|X + Y = 2] ≥
2γ). This is equivalent to PT∼µ [Y ≤ 1|X + Y = 2] ≥ 2γ. Since X ≥ 1 and Y ≤ 1 are an upward (resp.
downward) event, by Theorem 6.17 we have

PT∼µ [X ≥ 1|X + Y = 2] ≥ PT∼µ [X ≥ 1|X + Y = 1] (37)
PT∼µ [Y ≤ 1|X + Y = 2] ≥ PT∼µ [Y ≤ 1|X + Y = 3] ≥ PT∼µ [Y ≤ 1|X + Y = 4] ≥ . . .

Note that inequality (37) is valid once the event X+Y = 1 is well defined. For this moment suppose
this is the case, as we will see throughout the proof the other case is much simpler. The second
inequality implies the following:

PT∼µ [Y ≤ 1|X + Y = 2] ≥ PT∼µ [Y ≤ 1|X + Y ≥ 2] (38)
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By equations (37), (38) to prove the lemma it is sufficient to show that

PT∼µ [Y ≤ 1|X + Y ≥ 2] + PT∼µ [X ≥ 1|X + Y = 1] ≥ 4γ. (39)

Let us consider the event Y ≤ 1, we have

PT∼µ [Y ≤ 1] = PT∼µ [Y ≤ 1|X + Y ≥ 2]PT∼µ [X + Y ≥ 2] + PT∼µ [Y ≤ 1|X + Y ≤ 1]PT∼µ [X + Y ≤ 1]
≤ PT∼µ [Y ≤ 1|X + Y ≥ 2] + PT∼µ [X + Y ≤ 1] (40)
= PT∼µ [Y ≤ 1|X + Y ≥ 2] + PT∼µ [X = 1,Y = 0] + PT∼µ [X = 0,Y ≤ 1]
≤ PT∼µ [Y ≤ 1|X + Y ≥ 2] + PT∼µ [X ≥ 1|X + Y = 1] + PT∼µ [X = 0,Y ≤ 1] . (41)

Therefore, if the event X + Y ≤ 1 is not defined (i.e. PT∼µ [X + Y ≤ 1] = 0), by equation (40) we
obtain α ≤ PT∼µ [Y ≤ 1|X + Y ≥ 2] and we are done.

By Fact 6.9, and using equation (18) we have

ET∼µ [X|Y ≤ 1] ≥ ET∼µ [X] ≥ β.

Since by Theorem 6.17, the measure {µ : Y ≤ 1} is strongly Rayeligh, we can apply Theorem 6.13
and Lemma 6.14 to upper bound PT∼µ [X = 0|Y ≤ 1].

If β ≥ 1, then by theorem 6.13 the mode of the distribution {µ : Y ≤ 1} is at least 1, thus
PT∼µ [X = 0|Y ≤ 1] ≤ 1

2 . On the other hand, if β ≤ 1, by Lemma 6.14

PT∼µ [X = 1|Y ≤ 1] ≥ B(β, 1) = βe−β,

and PX=0|Y≤1 [≤] 1 − βe−β. Putting them together we obtain

PT∼µ [X = 0,Y ≤ 1] = PT∼µ [X = 0|Y ≤ 1]PT∼µ [Y ≤ 1] ≤
(
1 −min(

1
2
, βe−β)

)
PT∼µ [Y ≤ 1]

Putting this with equation (41) we obtain:

min(
1
2
, βe−β)PT∼µ [Y ≤ 1] ≤ PT∼µ [Y ≤ 1|X + Y ≥ 2] + PT∼µ [X ≥ 1|X + Y = 1] .

Finally using equation (17) we obtain equation (39). �
Proof of Corollary 6.22. Let µ1 = {µ|Z = 1} be the measure obtained from µ conditioned on Z = 1.
We show that µ1 satisfies all of the conditions of Lemma 6.21. Since Pµ1 [X + Y = 2] ≥ ε, the first
condition is satisfied. Since ET∼µ [X] = ET∼µ [Y] = 1 − x(u, v), By the negative association between
the edges we have:

1 ≤ Eµ [X] ≤ 1.5 +
1
5

1 ≤ Eµ [Y] ≤ 1.5 +
1
5

Now it is straightforward to see that α ≥ 3
20 , and β ≥ 1, this implies corollary. �
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G.1 Proofs from Section 6.4

Lemma G.1. Let u, v ∈ V be two vertices of G = (V,E, x) and suppose that there exists a set
S1 ⊂ V \ {u, v}, and S2 := V \ {u, v} \S1 such that both (S1,S1), and (S2,S2) are (1+δ′)-near minimum
cuts, for δ′ < 1/1000. If (u, v) is a trivial edge and |x(u, v) − 1

2 | ≤
1

200 , then PT∼µ [E(u, v)] ≥ 1/2000.

Proof. Let D := E({u, v}, {u, v}), be the set of edges separating u and v from the rest of the graph. By
Corollary 6.22, we have PT∼µ [E(u, v)] is a constant, unless the size of the cut |T ∩D| = 3 with high
probability. Here we show that this can not be the case, and indeed there is a constant probability
that |T ∩D| = 2.

Observe that by lemma’s assumption we should have

x(D ∩ E({u, v},S1)) = 1.5 ±
1

100
,

x(D ∩ E({u, v},S2)) = 1.5 ±
1

100
.

Let X := |T ∩D ∩ E({u, v},S1)|,Y := |T ∩D ∩ E({u, v},S2)|, and Z := |T ∩ (u, v)|.
We show that with a constant probability T contains the edge (u, v) and a spanning tree in-

side S1 (or S2). This implies that PT∼µ [X + Y = 2|Z = 1] ≥ 1/20 which finishes the proof using
Corollary 6.22.

Let µ1 = {µ|Z = 1} be the measure obtained from µ conditioned on Z = 1. By negative
association this can only decrease the probability of other edges. Let F := E(S1) ∪ E(S2). From
Fact 6.9, we have:

ET∼µ1 [|T ∩ F|] ≥ z(F) − 0.5 −
1

200

≥ (1 −
1
n

)(|S1 ∪ S2| − 2 − 2δ′) − 0.5 −
1

200

≥ |S1| + |S2| − 3.5 − 2δ′ −
1

200

Dropping the 1
200 term and δ′ terms for simplicity, we either have ET∼µ1 [|T ∩ E(S1)|] ≥ |S1| − 1.75,

or ET∼µ1 [|T ∩ E(S2)|] ≥ |S2| − 1.75. Wlog suppose the former happens. By Proposition 6.30 we have
PT∼µ1 [|T ∩ S1| = |S1| − 1] ≥ 0.25.

Let µ2 = {µ1

∣∣∣ |T∩S1| = |S1| −1}. Again by Fact 6.9 this can only decrease the probability of the
edges in D. Hence, ET∼µ2 [Y] ≤ 1.5. Since the sets S1 and {u, v} act as a single vertex in the trees
sampled from µ2, any such tree can have at most one edge from D∩E({u, v},S1), thus ET∼µ2 [X] ≤ 1.
Therefore,

1.5 ≤ ET∼µ2 [X + Y] ≤ 2.5⇒ PT∼µ2 [X + Y = 2] ≥
1
5
,

where the RHS follows from Lemma 6.14. Hence,

Pµ [X + Y = 2|Z = 1] = PT∼µ1

[
X + Y = 2

∣∣∣ |T ∩ S1| = |S1| − 1
]
PT∼µ1 [|T ∩ S1| = |S1| − 1] ≥

1
20
.

Hence, by applying Corollary 6.22, we get P [E(u, v)] ≥ 1
2000 . �
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Lemma G.2. Let u, v be two vertices in G and let d(u) = d1(u) ∪ d2(u) be a partitioning of edges
adjacent to u (different parts of an edge can be divided too). Also let X := |T ∩ d1(u)|,Y := |T ∩
d2(u)|,Z := |T∩du(v)|. Also let We be the indicator for the edge e = (u, v). If the following conditions
are satisfied for 1

10 > ε > 0, then PT∼µ [Z = 1,We = 1,X = 1,Y = 1] = ε3

1000 :

1
2

+ ε ≤ ET∼µ [Z] ,ET∼µ [We] ≤ 1 +
ε
2

(42)

ET∼µ [X + Y −We] ≤ 1 +
ε
2

(43)

ET∼µ [X] ,ET∼µ [Y] ≤ 1 +
ε
2

(44)

3
2

+ ε ≤ ET∼µ [X + Y] (45)

5
2

+ ε ≤ ET∼µ [X + Y + Z] (46)

Proof. Let us define X1 := |T ∩ d1(u) ∩ {e}|, Y1 := |T ∩ d2(u) ∩ {e}|, and X2 = X − X1,Y2 = Y − Y1.
Wlog suppose

ET∼µ [Y2] ≥
1
2
ET∼µ [X2 + Y2] . (47)

We prove by conditioning on X1 = 1, and then on X2 = 0. First note that

ET∼µ [X1] + 1 +
ε
2
≥ ET∼µ [X1] + ET∼µ [Y1 + Y2] ≥

1
2

(ET∼µ [X + Y] + ET∼µ [X1 + Y1]) ≥ 1 + ε,

where the first inequality holds by condition (44), and the last one holds by condition (42) and
(45). Let µ1 := {µ|X1 = 1} be the measure obtained from µ conditioned on X1 = 1. Since we always
have E = X1 + Y1 ≤ 1, we get ET∼µ1 [Y1] = 0. Therefore,

PT∼µ [Z = 1,E = 1,X = 1,Y = 1] ≥ PT∼µ1 [X2 = 0,Y2 = 1,Z = 1]PT∼µ [X1 = 1]

≥
ε
2
PT∼µ1 [X2 = 0,Y2 = 1,Z = 1] (48)

It is sufficient to show that PT∼µ1 [X2 = 0,Y2 = 1,Z = 1] is a constant. By Fact 6.9, we have

ET∼µ1 [X2] ≤ ET∼µ [X2] ≤
1
2
ET∼µ [X2 + Y2] ≤

1
2

+
ε
4
.

Let µ2 := {µ1|X2 = 0}. We have

PT∼µ1 [X2 = 0,Y2 = 1,Z = 1] = PT∼µ2 [Y2 = 1,Z = 1]PT∼µ1 [X2 = 0] ≥
1
3
PT∼µ2 [Y2 = 1,Z = 1] . (49)

Hence, we only need to show that PT∼µ2 [Y2 = 1,Z = 1] is a constant. We use Lemma 6.21. First
note that conditioning on X1 = 1 may decrease ET∼µ [X2 + Y2 + Z] by at most 1 − ET∼µ [X1 + Y1]
using the fact that conditioned on X1 + Y1 = 1, the random variables X1 and Z are independent.
Hence using condition (42) we get

ET∼µ2 [Z] ≥ ET∼µ1 [Z] ≥ ET∼µ [Z] − (1 − ET∼µ [X1 + Y1]) ≥ 2ε.

ET∼µ2 [Y2] ≥ ET∼µ [Y2] − (1 − ET∼µ [X1 + Y1]) ≥
1
2

(ET∼µ [X + Y] + ET∼µ [X1 + Y1]) − 1 ≥ ε.
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Also,

ET∼µ2 [Y2 + Z] ≥ ET∼µ [X + Y + Z] −
1
2
ET∼µ [X2 + Y2] − 1 ≥ 1 +

ε
2
,

where the last inequality holds by conditions (43) and (46). On the other hand, by negative
association conditioning on X2 = 0 may increase ET∼µ [Y2 + Z] by at most 1

2 + ε
4 . Therefore, using

equations (44) and (42) we get

ET∼µ2 [Z] ,ET∼µ2 [Y2] ≤ 1.5 + ε

ET∼µ2 [Y2 + Z] ≤ 2.5 + ε.

Hence, by Lemma 6.14, we have

P [Y2 + Z = 2] ≥ B(Eµ2 [Y2 + Z] , 2) ≥ B(1 +
ε
2
, 2) ≥

ε
4
.

By Markov’s inequality, Pµ2 [Y2 ≤ 1] ,Pµ2 [Z ≤ 1] = 1
5 . Therefore, from Lemma 6.21 setting ε :=

ε
4 , α = 1

5 , β = ε we obtain that PT∼µ2 [Y2 = 1,Z = 1] = ε2

160 . Putting this together with equations
(48) and (49) we conclude that: Pµ [Z = 1,E = 1,X = 1,Y = 1] ≥ ε3

1000 . �

H Constants

In this section, we summarize the discussion about constants.

1. We will fix δ at the end to be very small.

2. We set τ = 1
20
√
δ

from Proposition 4.19.

3. To set ε in L(τ) to be more or less than (1− ε)n, Lemma 4.4 needs ε > 1
τ−2 and Theorem 4.26

needs ε > 4920
τ . We set ε = 5000

τ = 105
√
δ.

4. Now we obtain ε2 in the algorithm to be at least 20
√
δ + 17ε = (17 · 105 + 20)

√
δ from

Lemma 4.4. We set it to be 2 · 106
√
δ.

5. We set ρ := ε310−16 from Proposition 4.25 which gives the smallest probability for an edge to
be even.

6. ε1 in Theorem 1.1 is set by Theorem 4.26. We have ε1 = min{ ε
3840 ,

ε2

6·107 } =
ε2

6·107 ' 3000δ.

7. Now we compute δ. We also need 2ε2 ≤ 0.1 for Lemma B.3. This implies δ ≤ 6.25 · 10−16. We
set δ = 6.25 · 10−16.

8. Finally, ε0 the improvement of the algorithm can be computed by Lemma B.2 and set to
ε0 := ε1δρ

4(1+δ) .

Hence, finally we have

1. δ = 6.25 · 10−16.

2. τ = 2 · 106.
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3. ε = 2.5 · 10−3.

4. ρ = 1.5 · 10−24.

5. ε2 = 0.05.

6. ε1 = 18.75 · 10−13.

7. ε0 = 4 · 10−52.
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