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Abstract

Modern enterprise applications are forced to deal with
unreliable, inconsistent and imprecise information. Prob-
abilistic databases can model such data naturally, but SQL
query evaluation on probabilistic databases is difficult: pre-
vious approaches have either restricted the SQL queries, or
computed approximate probabilities, or did not scale, and
it was shown recently that precise query evaluation is theo-
retically hard. In this paper we describe a novel approach,
which computes and ranks efficiently the top-k answers to
a SQL query on a probabilistic database. The restriction
to top-k answers is natural, since imprecisions in the data
often lead to a large number of answers of low quality, and
users are interested only in the answers with the highest
probabilities. The idea in our algorithm is to run in parallel
several Monte-Carlo simulations, one for each candidate
answer, and approximate each probability only to the extent
needed to compute correctly the top-k answers.

1 Introduction

A number of applications today need to manage data that
is imprecise. For example imprecisions arise in fuzzy ob-
ject matching across multiple databases, in data extracted
automatically from unstructured text, in automatic schema
alignments, in sensor data, in activity recognition data. In
some cases it is possible to eliminate the imprecisions com-
pletely, but this is usually very costly, like manual removal
of ambiguous matches in data cleaning; in other cases com-
plete removal is not even possible.

A recent approach to manage imprecisions is with a
probabilistic database, which uses probabilities to represent
the uncertainty about the data [5, 6, 7, 8, 21]. A simplistic
definition is that every tuple belongs to the database with
some probability, whose value is between 0 and 1, and, as
a consequence, every tuple returned by a SQL query will
have some probability, reflecting the systems’ confidence in
the answer.

AMZNReviews(asin, title, customer, rating, ...)
AMZNDirector(asin , director) AMZNActor(asin, actor)

IMDBMovie(mid , movieTitle, genre, did, year)
IMDBDirector(did , dirName)
IMDBCast(mid, aid) IMDBActor(aid , actorName)

TitleMatch p(asin, mid, p)

Figure 1. Fragment of IMDB and Amazon
schemas

A major challenge in probabilistic databases is query
evaluation. Dalvi and Suciu [6] have shown recently that
most SQL queries are #P-complete, which rules out effi-
cient evaluation algorithms. Previous approaches to query
evaluation on probabilistic databases have either restricted
the queries [2, 5, 8], or modified the semantics [17], or were
not scalable [10].

In this paper we propose a new approach to query eval-
uation on probabilistic databases, by combining top-k style
queries with approximation algorithms with provable guar-
antees. More precisely, we compute and rank the topk an-
swers (in order of their probabilities) of a SQL query. We
guaranteethe correct ranking of the topk answers, but only
approximate their probabilities to the extent needed to com-
pute their ranking. Thus, the users specifies a SQL query
and a numberk, and the system returns the highest ranked
k answers, which are guaranteed to be correct: the probabil-
ities of these answers are reported too, but they may be ap-
proximate. When managing imprecisions in data the most
meaningful information lies not in the exact values of the
output probabilities but in the ranking of the queries’ an-
swers. Thus, we shift the focus from probabilities to ranks,
and give a new, provably optimal algorithm for computing
the topk answers.

ExampleWe illustrate with an application that integrates
the Internet Movie Database fromimdb.com , with movie
reviews fromamazon.com . Fig. 1 shows a simplified ver-
sion of the real schema; the data has over 10M tuples. Ama-
zon has data on products (DVDs), uniquely identified by
an Amazon Standard Identification Number,asin , while



TitleMatch p

asin mid p
t1 a282 m897 (“Twelve Monkeys”) 0.4
t2 (“12 Monkeys”) m389 (“Twelve Monkeys (1995)”) 0.3
t3 m656 (“Monk”) 0.013
t4 a845 m897 (“Twelve Monkeys”) 0.35
t5 (“Mokey Love”) m845 (“Love Story”) 0.27

Figure 2. Some fuzzy matches in
TitleMatch p. The table stores only the
asin and mid values, but we included the
review tile and movie title for readability.

IMDB has data on movies, directors, and actors.
From Imprecisions to Probabilities The movie titles

in the two databases often don’t match, e.g.Twelve
Monkeys v.s. 12 Monkeys . This is one source of im-
precision, and we illustrate how it can be addressed with
probabilities. The idea is to compute for each pair of movie
title and review title a similarity score, which is a number
between 0 and 1 and is interpret it as the probability that
the two objects match. The similarity scores are stored in
the tableTitleMatch p, Fig. 2. There is a rich litera-
ture on record linkage (also known as de-duplication, or
merge-purge) [1, 4, 9, 11, 14, 15, 22, 23], that offers an
excellent collection of techniques for computing these sim-
ilarity scores. However, the traditional way of using these
scores is to compare them to a threshold and classify objects
into matches and non-matches [1]: this forces the user to
make a difficult choice between high recall (low threshold)
and high precision (high threshold). Instead, a probabilistic
database keeps all potential matches, and uses them during
query processing to compute a probability for each answer
to a SQL query.

SQL Queries The query in Fig. 3 retrieves all direc-
tors that produced a lowly rated comedy and a highly rated
drama less than five years apart. There are 1415 answers
to this query: Fig. 4 shows the top 5 (in decreasing or-
der of their probabilities). Consider one such answer, say
Stanley Donen . The system computed its probability
0.88 by considering all low ranking reviews that may match
one of his comedies, and all high ranking reviews that may
match one of his dramas, and accounting for the probabili-
ties of these matches: the exact semantics is based onpos-
sible worlds, and is reviewed in Sec. 2.1. Note that, un-
like the threshold approach, a poor match between a movie
by Donen and a review is not automatically discarded, but
kept and used during query processing: its low probability
however is taken into account when rankingDonen in the
query’s answer.

Challenges Query evaluation poses two major chal-
lenges. The first is that computing the exact output prob-
abilities is computationally hard: the query in Fig. 3 is #P-
complete (based on results in [6]), meaning that any al-

SELECT DISTINCT d.dirName AS Director
FROM AMZNReviews a, AMZNReviews b,

TitleMatch ax, TitleMatch by,
IMDBMovie x, IMDBMovie y,
IMDBDirector d

WHERE a.asin=ax.asin and b.asin=by.asin
and ax.mid=x.mid and by.mid=y.mid
and x.did=y.did and y.did=d.did
and x.genre=’comedy’ and y.genre=’drama’
and abs(x.year - y.year) <= 5
and a.rating<2 and b.rating>4

Figure 3. A SQL query: Finding directors with
a highly rated Drama and low rated comedy.

gorithm computing the output probabilities needs to iter-
ate through all possible worlds (in this case: all possible
subsets ofTitleMatch p). Previous work on probabilistic
databases avoided this issue in several ways. Barbara [2]
requires the SQL queries to include all keys in all tables in
theSELECTclause, thus disallowing duplicate elimination.
In Fig. 3 the user has to include the keys of all seven tables,
hence each director is returned multiple times, making rank-
ing of the directors impossible. Lakshmanan [17] computes
probability intervals instead of exact probabilities. How-
ever, unlike our approach based on Luby and Karp’s algo-
rithm [16] which can approximate the probabilities to an
arbitrary precision, the precision in [17] isfixed: the more
complex the query, the wider the approximation intervals
end up, and may become [0,1] in complex queries, making
them impractical for ranking purposes. Fuhr [10] uses an
exponential time algorithm that essentially iterates over all
possible worlds that support a given answer. This is again
impractical in our setting. Recent work [19], handles the
problem of computing Top-K queries when the uncertain
data is specified by “generation rules”, in our case the com-
plexity from the complexity of queries over the uncertain
data. Finally, Dalvi [6] only considers “safe” queries, while
our query is not safe.

The second challenge is that the number of potential an-
swers for which we need to compute a probability is large:
in our example, there aren = 1415 such answers. Many of
them have very low probability, and exists only because of
some highly unlikely matches between movies and reviews.
Even if the system spends large amounts of time computing
all 1415 probabilities precisely, the user is likely to end up
inspecting just the first few of them.

Our Approach focuses the computation only on the top
k answers, in the order of probabilities. A naive top k
method is to compute alln probabilities, then select the top
k. Instead, we approximate probabilities only to the degree
needed to guarantee that (a) the top k answers are the correct
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Rank Director p
1 Frank Capra 0.99
2 Charles Chaplin 0.98
3 Robert (I) Altman 0.93
4 Stanley Donen 0.88
5 Joseph H. Lewis 0.86

. . . . . .

Figure 4. Top 5 answers (out of n = 1415)

ones, and (b) the ranking of these top k answers is correct.
In our running example, we will run an approximation al-
gorithm for many steps on the, say, topk = 10 answers,
in order to identify and rank them, but will run only a few
steps on the remaining1415 − 10 = 1405 answers, and
approximate their probabilities only as much as needed to
guarantee that they are not in the top 10. This method turns
out to be orders of magnitude more efficient than the naive
approach.

Contributions This work introduces the multisimulation
algorithm which enables efficient processing of probabilis-
tic queries with provable error guarantees.

Limitations In this paper we restrict ourselves to a data
model where probabilities are listed explicitly. For example,
if one has aPerson table withsalary andage attributes
whose values are correlated probability distributions, then
in our model one needs to enumerate explicitly all combina-
tions of salary andage , e.g. (Smith, 20, 1000,
0.3) , (Smith, 20, 5000, 0.1) , (Smith, 40,
5000, 0.6) . This allows for correlated attributes as long
as the joint distribution is represented explicitly. Graphi-
cal models like Bayesian Networks and Probabilistic Rela-
tional Models can represent such distributions much more
concisely. Also, we do not handle continuous attribute val-
ues [8, 5].

Other Related Work The statistics literature has con-
sidered thestatistical selection problem, where the problem
is to find the “best” (i.e. highest mean) of a finite set of al-
ternatives: see [3, 12] for recent surveys: this corresponds
to our setting withk = 1 and smalln (say2 . . . 5). The
focus of that work is on tight probabilistic guarantees for
a variety of concrete probabilistic distributions; our work
assumes simpler distributions but emphasizes the algorithm
complexity (since ourn is in the range of thousands and
k = 10 . . . 50).

2 Preliminaries

2.1 Probabilistic Databases

We introduce here a basic probabilistic data model. It
corresponds to ?-sets and or-sets in [7, 13].

Possible Worlds Fix a relational schemaS, consist-
ing of relation namesR1, R2, . . . , Rm, a set of attributes
Attr(Ri) and a keyKey(Ri) ⊆ Attr(Ri) for eachi =

TitleMatch p

asin mid p
t1 a282 m897 p1
t2 a282 m389 p2
t3 a282 m656 p3
t4 a845 m897 p4
t5 a845 m845 p5

Mod(TitleMatch p):
i Wi P(Wi)
1 ∅ (1-p1-p2-p3) (1-p4-p5)
2 t1 p1(1-p4-p5)
3 t2 p2(1-p4-p5)
4 t3 p3(1-p4-p5)
5 t4 (1-p1-p2-p3)p4
6 t1t4 p1p4
7 t2t4 p2p4
8 t3t4 p3p4
9 t5 (1-p1-p2-p3)p5

10 t1t5 p1p5
11 t2t5 p2p5
12 t3t5 p3p5

Figure 5. Illustration for Example 2.3

1,m. We define a probabilistic database to be a probability
distribution on instances ofS.

Definition 2.1. A probabilistic database over schemaS
is a pair (W,P) whereW = {W1, . . . ,Wn} is a set of
database instances overS, andP : W → [0, 1] is a proba-
bility distribution (i.e.

∑
j=1,n P(Wj) = 1). Each instance

Wj for whichP(Wj) > 0 is called a possible world.

The intuition is that the exact state of the database is un-
certain: we have several possible instances, and for each
such instance we have a probability.

RepresentationOf course, it is impractical to enumerate
all possible worlds and their probabilities. Instead, we rep-
resent a probabilistic database by using a modified schema
Sp, calledprobabilistic schema, where some tablesRi are
replaced with probabilistic tablesRp

i , that have an explicit
probability attribute: Attr(Rp

i ) = Attr(Ri) ∪ {p}, and
Key(Rp

i ) = Attr(Ri). We impose the constraints thatp
is in [0, 1] and for every values̄a of theKey(Ri) attributes,
sum(Πp(σKey(Ri)=ā(Rp

i ))) ≤ 1: the intuition is that the
set of tuples that share the same valuesā represent exclu-
sive choices (called “or-tuples” in [7]) hence their proba-
bilities sum to≤ 1. Each instanceJp over schemaSp rep-
resents a probabilistic database over the schemaS, denoted
Mod(Jp), defined as follows. Assume for illustration that
S has a single relation name,R(A1, . . . , Am, B1, . . . , Bn),
in notationR(Ā, B̄) (hereKey(R) = {A1, . . . , Am} = Ā),
henceJp is an instance of the tableRp(Ā, B̄, p). The pos-
sible worldsW = {W1, . . . ,Wn} are defined as all sub-
setsWj of ΠĀ,B̄(Jp) s.t. the attributesĀ form a key.
For each possible worldWj its probability is defined as
P(Wj) =

∏
ā∈ΠĀ(Jp) pWj (ā), where:

pWj
(ā) =

{
p if ∃b̄ s.t. (ā, b̄) ∈ Wj and(ā, b̄, p) ∈ Jp

1− sum(Πp(σĀ=ā(Jp))) otherwise

Definition 2.2. LetJp be a database instance over schema
Sp. ThenMod(Jp) is the probabilistic database(W,P)
over the schemaS obtained as described above.
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Example 2.3 Continuing our motivating example, consider
the tableTitleMatch p: we illustrate the possible worlds
semantics in Fig. 5. There are 12 possible worlds (shown
on the right), namely all subsets ofTitleMatch p (left)
whereasin is a key. Note that we must havep1, . . . , p5 ∈
[0, 1], p1 + p2 + p3 ≤ 1, p4 + p5 ≤ 1.

DNF Formulas over TuplesLet (W,P) be a probabilis-
tic database and lett1, t2, . . . be all the tuples in all possible
worlds. We interpret each tuple as a boolean propositional
variable, and each possible worldW as a truth assignment
to these propositional variables, as follows:ti = true if
ti ∈ W , andti = false if ti 6∈ W . Consider now a DNF
formulaE over tuples: clearlyE is true in some worlds and
false in others. Define its probabilityP(E) to be the sum
of P(W ) for all worldsW whereE true. Continuing our
example, the expressionE = (t1∧t5)∨t2 is true in the pos-
sible worldsW3,W7,W10,W11, and its probability is thus
P(E) = P(W3) + P(W7) + P(W10) + P(W11).

2.2 Queries

SyntaxWe consider SQL queries of the form:

q = TOP k

SELECT B, agg 1(A1), agg 2(A2), . . . (1)

FROMR WHERE C GROUP-BYB

The aggregate operators can besum, count (which is
sum(1) ), min andmax; we do not supportavg .

Possible Worlds SemanticsA principled semantics to
a query with aggregates was given in [6], and consists of
computing the query on all possible worlds, and adding up
the probabilities of those worlds where a certain tuple oc-
curs as an answer. Formally, given a probabilistic database
({W1, . . . ,Wn} ,P), the answer to the queryq in (1) is a
table like this:

B1 B2 . . . agg 1(A 1) agg 2(A 2) . . . p
b11 b12 . . . e11 e12 . . . p1

b21 b22 . . . e21 e22 . . . p2

. . . . . . . . . . . . . . . . . . . . .

Consider one possible world,Wj . If we were to evaluate
the SQL queryq onWj , the answerq(Wj) is a set of tuples
(b̄, ā). Fix a tuplēb and define the predicateCb̄ and function
Fb̄ on possible worlds:

Cb̄(Wj) = (∃ā.(b̄, ā) ∈ q(Wj))

Fb̄(Wj) =
{

ā if exists ā s.t. (b̄, ā) ∈ q(Wj)
undefined otherwise

Recall the standard definitions of the probability of a
predicate, and the conditional expected value:

P(Cb̄) =
∑

j|Cb̄(Wj)=true
P(Wj)

E(Fb̄ | Cb̄) =
∑

j|Cb̄(Wj)=true
Fb̄(Wj)P(Wj)/P(Cb̄)

Definition 2.4. The “possible worlds seman-
tics” of a query q on a probabilistic database
(W,P) is given by: q(W,P) = {(b̄, ē, p) |
∃Wj .Cb̄(Wj), ē = E(Fb̄ | Cb̄), p = P(Cb̄)}

Semantics based on DNF FormulasThe possible
worlds semantics is not practical for deriving a query eval-
uation algorithm, so we present an equivalent semantics
which reduces the query evaluation problem to computing
the probabilities of certain DNF formulas. First, modify the
SQL queryq to obtain anexpandedqueryqe , by removing
theGROUP BYclause and returning* :

qe = SELECT* FROMR WHERE C

whereR̄ = R1, . . . , Rr andC are the same as in Eq.(1).
Evaluateqe on the probabilistic instanceJp (using any
SQL engine) and denote the answerET . Each tuplet ∈
ET has the formt = (t1, . . . , tr), wheret1 ∈ Rp

1, . . . , t
r ∈

Rp
r . Define the following boolean expression associated to

t:

t.E = t1 ∧ t2 ∧ . . . ∧ tr (2)

Note thatP(t.E) can be computed easily: eliminate dupli-
cate tuples then multiply their probabilities; or, if any two
tuples are exclusive, thenP(t.E) = 0.

Next, partition the setET by theGROUP-BYattributes
B: ET = G1 ∪ G2 ∪ . . . ∪ Gn. For each groupG ∈
{G1, . . . , Gn}, G = {t1, . . . , tm}, define the following
DNF boolean expression:

G.E =
∨
t∈G

t.E = t1.E ∨ . . . ∨ tm.E (3)

The query’s semantics can be phrased in terms of the DNF
formulas (3): namely, each groupG in ET determines
one probabilistic tuple in the answer, and the probability
is P(G.E). Formally, denotingG.B the tuplet.B for some
t ∈ G (it is independent on the choice oft ∈ G), we have
the following alternative semantics:

Theorem 2.5. q(Jp) consists of all tuples(b̄, ē, p) s.t.:

b̄ = G.B for someG ∈ {G1, . . . , Gn}
p = P(G.E)

ei =
∑
t∈G

P(t.E)∗t.Ai/p if AGGi=sum(A i)

ei =
∑
t∈G

(1−P(
∨

t′∈G|t′.Ai≥t.Ai

t′.E))∗t.Ai/p if AGGi=max(A i)
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Thus, we have reduced the query answering problem to
the problem of evaluating probability expressions for DNF
formulas, in particularP(G.E): the other expressions in
Theorem 2.5 are either easy to compute or other DNF for-
mulas. However, Valiant [20] has shown that computing the
probabilityP(G.E) is #P-complete in general.

Example 2.6 Consider the queryq in Fig. 3. The extended
query qe is obtained by removing the group-by clause
(removingDISTINCT ) and replacing theSELECTclause
with * :

SELECT * FROM (...same 7 tables...)
WHERE ...

Thus, each answer returned byqe contains the
seven tuple variables defined in theFROM clause:
(a,b,ax p,by p,x,y,d) . Of these onlyax p,by p are
probabilistic tuples, and the superscriptp indicates that
they range overTitleMatch p. Thus, each rowt returned
by qe defines a boolean formulat.E = ax p ∧ by p, and its
probabilityP(t.E) is given by:

P(t.E) =


ax p.p if ax p.asin =by p.asin and

ax p.mid =by p.mid
0 if ax p.asin =by p.asin and

ax p.mid 6=by p.mid
ax p.p * by p.p if ax p.asin 6=by p.asin

Next, we group the rows by their directors, and for each
groupG = {(ax p

1, by p
1), . . . , (ax p

m, by p
m)} construct the

DNF formula: G.E = ax p
1 ∧ by p

1 ∨ . . . ∨ ax p
m ∧ bx p

m.
The director’s probability give byP(G.E): this is a 2DNF
(computing its probability is still #P-hard).

In summary, we have rephrased the query evaluation
problem to the problem of evaluating, for each query an-
swer, the probability of one or more DNF formulas,p =
P(G.E), given by Eq.(3). We need to rank the tuples byp,
and return the topk.

Monte Carlo (MC) Simulation An MC algorithm re-
peatedly chooses at random a possible world, and computes
the truth value of the boolean expressionG.E (Eq.(3)); the
probabilityp = P(G.E) is approximated by the frequency
p̃ with whichG.E was true. Luby and Karp have described
the variant shown in Algorithm 2.2.1, which has better guar-
antees than a naive MC. For our purposes the details of
the Luby and Karp algorithm are not important: what is
important is that, after running forN steps, the algorithm
guarantees with high probability thatp is in some interval
p ∈ [aN , bN ] that shrinks asN increases. Formally:

Theorem 2.7. [16] Let δ > 0, m = number of disjuncts
(see Eq.(3)) andN the number of steps executed by the Luby
and Karp algorithm. Define:

ε =
√

4m log(2/δ)/N aN = p̃− ε bN = p̃ + ε

Algorithm 2.2.1 Luby-Karp algorithm for computing the
probability of a DNF formulaG.E (Eq.(3)).

fix an order on the disjuncts:t1, t2, . . . , tm
C := 0
repeat

Choose a random disjunctti ∈ G
Choose a random truth assignment s.t.ti.E = true
if forall j < i tj .E = false then C := C + 1

until N times
return p̃ = C/N

Then1:

P(p ∈ [aN , bN ]) > 1− δ (4)

3 Top-k Query Evaluation

We now describe our algorithm. We are given a query
q as in Eq.(1) and an instanceJp stored in a SQL database
engine, and we have to compute the top k answers inq(Jp).
Evaluation has two parts: (1) evaluating the extended SQL
queryqe in the engine and grouping the answer tuples, (2)
running a Monte Carlo simulation on each group in the mid-
dleware to compute the probabilities, then returning the top
k probabilities. The goal is to minimize the total number of
simulation steps.

3.1 Multisimulation (MS)

We model the problem as follows. We are given a set
G = {G1, . . . , Gn} of n objects, with unknown proba-
bilities p1, . . . , pn, and a numberk ≤ n. Our goal is to
find a set ofk objects with the highest probabilities, de-
notedTopK ⊆ G: we discuss below how to also sort this
set. The way we observe the objects’ probabilities is by
means of a simulation algorithm that, after runningN steps
on an objectG, returns an approximation interval[aN , bN ]
for its probabilityp, with aN < bN (we assumeaN = bN

can never happen). We make the following four assump-
tions about the simulation algorithm and about the unknown
probabilities:

Convergence : limN→∞ aN = limN→∞ bN .

Precision : ∀N.p ∈ [aN , bN ].

Progress : ∀N.[aN+1, bN+1] ⊆ [aN , bN ].

Separation : ∀i 6= j, pi 6= pj .

1In the original paper the bound is given as| p− p̃ |≤ εp. Sincep ≤ 1
this implies our bounds.
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Example Empty critical region
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Figure 6. Illustration of MS; k = 2. Intervals
represent uncertainty about the value of a tu-
ple’s probability score.

The separation assumption implies thatTopK has a unique
solution (no ties) and the other three imply that the solution
can be found naively by a round robin algorithm. In our
setting each objectG is a group of tuples, its probability
is p = P(G.E) (Eq. (3)), and the simulation algorithm is
Luby-Karp. Only convergence holds: we revisit below the
other three assumptions.

Intuition Any algorithm that computesTopK can only
do this by running simulations on the objects. It initializes
the intervals to[a1, b1] = [a2, b2] = . . . = [an, bn] = [0, 1],
then repeatedly chooses to simulate someGi for one step.
At each point in the execution, objectGi has been simulated
Ni steps, and thus its interval is[aNi

i , bNi
i ] = [ai, bi] (we

omit the superscript when it is clear). The total number of
steps over all groups isN =

∑n
i=1 Ni. Consider the top

left figure in Fig. 6, where fork = 2. Here we have already
simulated each of the five groups for a while: clearlyG3 is
in the top 2 (it may be dominated only byG2), although we
don’t know if it is 1st or 2nd. However, it is unclear who the
other object in top 2 is: it might beG1, G2, or G4. It is also
certain thatG5 is not among the top 2 (it is belowG2, G3).

Given two intervals[ai, bi], [aj , bj ], if bi ≤ aj then we
say that the first isbelow, and the second isabove. We
also say that the two intervals areseparated: in this case we
know pi < pj (even ifbi = aj , due to the “separation” as-
sumption). We say that the set ofn intervals isk-separated
if there exists a setT ⊆ G of exactlyk intervals s.t. any
interval inT is above any interval not inT . Any algorithm
searching for theTopK must simulate the intervals until it
finds ak-separation (otherwise we can prove thatTopK is
not uniquely determined); in that case it outputsTopK = T .
The cost of the algorithm is the number of stepsN at termi-
nation.

Our golden standard will be the following nondetermin-
istic algorithm, OPT, which is obviously optimal. OPT
“knows” exactly how many steps to simulateGi, namely
Nopt

i steps, such that the following holds (a) the intervals

[aNopt
1

1 , b
Nopt

1
1 ], . . ., [aNopt

n
n , b

Nopt
n

n ] arek-separated, and (b)
the sumNopt =

∑
i Nopt

i is minimal. Clearly such an ora-
cle algorithm cannot be implemented in practice. Our goal
is to derive adeterministicalgorithm that comes close to
OPT.

Example 3.1 To see the difficulties, consider two objects
G1, G2 andk = 1 with probabilitiesp1 < p2. The current
intervals (say, after simulating bothG1 andG2 for one step)
are [a1, b1], [a2, b2] s.t. a1 = p1 < a2 < b1 < p2 = b2.
The correct top-1 answer isG2, but we don’t know this un-
til we have separated them: all we know isp1 ∈ [a1, b1],
p2 ∈ [a2, b2] and it is still possible thatp2 < p1. Suppose
we decide to simulate repeatedly onlyG2. This clearly can-
not be optimal. For example,G2 may require a huge num-
ber of simulation steps beforea2 increases aboveb1, while
G1 may take only one simulation step to decreaseb1 below
a2: thus, by betting only onG2 we may perform arbitrarily
worse than OPT, which would know to chooseG1 to sim-
ulate. Symmetrically, if we bet only onG1, then there are
cases when we perform much worse than OPT. Round robin
seems a more reasonable strategy, i.e. we simulate alterna-
tively G1 andG2. Here, the cost is twice that of OPT, in the
following case: forN stepsa2 andb1 move very little, s.t.
their relative order remains unchanged,a1 < a2 < b1 < b2.
Then, at theN+1’th step,b1 decreases dramatically, chang-
ing the order toa1 < b1 < a2 < b2. Round robin finishes
in 2N + 1 steps. TheN steps used to simulateG2 were
wasted, since the changes ina2 were tiny and made no dif-
ference. Here OPT chooses to simulate onlyG1, and its cost
is N + 1, which is almost half of round robin. In fact, no
deterministic algorithm can be better than twice the cost of
OPT. However, round robin is not always a good algorithm:
sometime it can perform much worse than OPT. Considern
objectsG1, . . . , Gn andk = 1. Round robin may performn
times worse than OPT, since there are cases in which (as be-
fore) choosing the right object on which to bet exclusively
is optimal, while round robin wastes simulation steps on all
then objects, hence its cost isn ·Nopt.

Notations and definitionsGiven n non-negative num-
bersx1, x2, . . . , xn, not necessarily distinct, let us define
topk(x1, . . . , xn) to be thek’s largest value. Formally,
given some permutation s.t.xi1 ≥ xi2 ≥ . . . ≥ xin

, topk is
defined to bexik

. We settopn+1 = 0.

Definition 3.2. Thecritical region, top objects, andbottom
objectsare:

(c, d) = (topk(a1, . . . , an), topk+1(b1, . . . , bn)) (5)

T = {Gi | d ≤ ai}
B = {Gi | bi ≤ c}

Fig. 6 illustrates four critical regions.
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One can check that alwaysB ∩ TopK = ∅ andT ⊆
TopK. Moreover, there is ak-separation iff the critical re-
gion is empty, i.e.c ≥ d, in which caseTopK = T . This is
illustrated in the upper right of Fig. 6, where the top 2 ob-
jects are clearly those to the right of the critical region. We
therefore assumec < d from now on, and callGi acrosser
if [c, d] ⊆ [ai, bi]. Further:

Gi is a double crosserif ai < c, d < bi

Gi is a lower(upper) crosser if ai < c (d < bi)

The Algorithm is shown in Algorithm 3.1.1. At each
step it picks one or two intervals to simulate, according
to three cases (see Fig 6). First, it tries a double crosser
[ai, bi] ; if there is none then it tries to find an upper crosser,
lower crosser pair; if none exists then it means that either
all crossers have the same left endpointai = c or all have
the same right endpointd = bi. In either case there exists
a maximal crosser, i.e. one that contains all other crossers:
pick one and simulate it (there may be several, since inter-
vals may be equal). After each iteration re-compute the crit-
ical region; when it becomes empty, stop and return the set
T of intervals above the critical region. We prove in [18]:

Algorithm 3.1.1 The Multisimulation Algorithm

MS TopK(G, k) : /* G = {G1, . . . , Gn} */
Let [a1, b1] = . . . = [an, bn] = [0, 1], (c, d) = (0, 1)
while c ≤ d do

Case 1:choose a double crosser to simulate
Case 2:choose upper and lower crosser to simulate
Case 3:choose a maximal crosser to simulate
Update(c, d) using Eq.(5)

end while
return TopK = T = {Gi | d ≤ ai}

Theorem 3.3. (1) The algorithm always terminates and re-
turns the correctTopK. (2) Its cost is< 2Nopt. (2) For any
deterministic algorithm computing the topk and for any
c < 2 there exists an instance on which its cost is≥ cNopt.

Corollary 3.4. Let A be any deterministic algorithm
for finding TopK. Then (a) on any instance the cost of
MS TopK is at most twice the cost ofA, and (b) for any
c < 1 there exists an instance where the cost ofA is greater
thanc times the cost ofMS TopK .

3.2 Discussion

Variations and extensionsWe show now how to ex-
tend MS to computeand rank the top k answers: we
call the extensionMS RankK . First, compute the topk,

Tk = MS TopK(G, k). Next, compute the following sets,
in this sequence2:

Tk−1 = MS TopKni(Tk, k − 1)
Tk−2 = MS TopKni(Tk−1, k − 2)

. . .

T1 = MS TopKni(T2, 1)

After stepj, Tj is the set of topj answers; by computing
next the topj − 1 objects in this set, we have identified the
j’s ranked object. Thus, the ranks of the topk objects are
found in reverse order. This algorithm is also “optimal” i.e.
within a factor of two of an optimal oracle. A useful varia-
tion is anany-timealgorithm, which computes and returns
the top answers in order 1, 2, 3, . . . , and can be stopped at
any time: this algorithm isnotoptimal for finding the topk.

Reviewing the assumptionsPrecision holds in a prob-
abilistic sense at each step:P(p ∈ [aN , bN ]) > 1 − δ.
However, the user chooses someδ0 and wants a guarantee
that precision holds throughout the execution of the sim-
ulation algorithm with probability> 1 − δ0: we call this
global precision. Let N be an upper bound on the total
number of steps required by the algorithm. Defineδ s.t.
(1− δ)N ≥ 1− δ0, henceδ0 ≈ δ0/N and useδ in the MC
algorithm: now global precision holds. Note that this af-
fects only slightly the width of the intervals (and, hence, the
convergence ratio), sincebN − aN = 2

√
4m log(2/δ)/N .

Progress fails in general: after stepN of the Monte
Carlo algorithm the midpoint̃p can move (left or right) by
≈ 1/N , while the width of the interval shrinks by only
O(1/

√
N−1/

√
N + 1) = O(N−3/2) and[aN+1, bN+1] is

not contained in[aN , bN ] becauseN−1 > N−3/2. Our so-
lution here is to run the Monte Carlo algorithm for

√
N iter-

ation at each step of the multisimulation algorithm, instead
of just one step: we show in [18] that∀α, τ ∈ (0, 1),∃N0

s.t. ∀N ≥ N0 the midpointp̃ moves between stepsN and
N+Nα by≤ Nτ−1 with very high probability. At the same
time the interval shrinks byO(1/

√
N − 1/

√
N + Nα) =

O(Nα−3/2): thus, we have progress forα ≥ 1/2, and
we show that the progress is global progress (at all steps).
The resulting multisimulation algorithm runs in at most
2(Nopt +

√
Nopt) steps, which asymptotically has a com-

petitive ratio of2.
The separation assumption also fails in practice since

probabilities are often equal or very close to each other.
Here we simply rely on a second parameterε > 0 and stop
the simulation when the critical region becomes less thanε.

Optimizations We have added two optimizations to the
multisimulation algorithm. We present them here only at a
very high level for lack of space, and refer the reader to [18]

2MS TopKni refers toMS TopK without the initialization on the first
line.
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Probabilistic #Tuples #exclusive tuples
Table Name Avg. Max
MovieToAsin 339095 4 13
AmazonReviews 292680 1 1
ActorMatch 6758782 21 2541
DirectorMatch 18832 2 36

Figure 7. Data used in experiments

Query # of Avg Max # of
name groups group group prob.

(n) sizem size tables
no SP SP no SP SP (m)

SS 33 20.4 8.4 63 26 2
SL 16 117.7 77.5 685 377 4
LS 3259 3.03 2.2 30 8 2
LL 1415 234.8 71.0 9088 226 4

Figure 8. Query Stats w/o and w/ S(afe) P(lan)

for details. The first optimization initializes the intervals
[ai, bi] to better estimates than [0,1]: this eliminates many
low ranking objects from the start. In the second optimiza-
tion, safe plan rewriting, we identify subqueries for which
the probabilities can be computed inside of the SQL engine
(this expands ideas in [6]). For example if a group of the
subquery consists of events with probabilitiesp1, . . . , pn,
then the probability of the entire group isp1+. . .+pn (when
all events are disjoint) or1− (1− p1)(1− p2) . . . (1− pn)
(when all events are independent), and both expressions can
be computed in SQL. We refer to [18] for details.

4 Experiments

In this section we evaluate our approach experimentally.
We address four questions: (1) how does our new query
evaluation method compare to the current state of the art
query processing on probabilistic databases; (2) how effec-
tive is the multisimulation (MS) over a naive application of
Monte Carlo (3) how effective are the optimizations; and
(4) how sensitive is the system’s performance on the choice
of δ0 andε (Sec. 3)

Setup Our experiments were run on a dual processor
Intel Xenon 3GHz Machine with 8G RAM and 2 400GB
disks. The operating system used was Linux with kernel
version 2.6.12 high-mem build. The database was DB2
UDB Trial Edition, 8.2. Due to licensing restrictions DB2
was only one able to use one of the cores. Indexes and con-
figuration parameters such as buffer pools were tuned by
hand.

Data consists of an integration of the IMDB movie
database with reviews from Amazon, as described in a sim-
plified form in Sec. 1. The sources of imprecisions are
fuzzy object matches (for titles, actors, and directors), and
the confidence in the Amazon reviews (“how many people

found this review useful”). Some statistics are shown in
Fig. 7.

Queries We report experiments on four queries that il-
lustrate different scales for the number of groups and the
average size of each group (n andm in Sec. 3): each of
n andm can be small (S) or large (L) resulting in the four
queries below, whose statistics are shown in Fig. 8:

SS In which years didAnthony Hopkinsappear in a highly
rated movie?

SL Find all actors who were in Pulp Fiction who were in
two very bad movies in the five years before Pulp Fic-
tion.

LS Find all directors who had a low rated movie between
1980 and 1989.

LL Find all directors who had a low rated drama and a high
rated comedy less than five years apart.

MethodologyFor each running time we perform the ex-
periment 5 times, dropping the highest and the lowest and
average the remaining three runs. The naive simulation
method was capped at 20 minutes. In between each exper-
iment, we force the database to terminate all connections.
The same experiments was not run repeatedly to minimize
caching effects but the cache was allowed to be warm. In
the precision/recall experiments, the precision and recall are
defined as the fraction of the topk answers returned by
method being evaluated that overlap with the “correct” set
of top k answers. In order to compute the latter we had to
compute the exact tuple probabilities, which is intractable.
For that we used the approximate values returned by the
Luby and Karp algorithm with very low settings forε and
δ: ε = 0.001 andδ = 0.01.

Unless otherwise stated, the confidence and precision pa-
rameters wereε = .01, δ0 = .01, and the multisimulation
algorithm run wasMS RankK (Sec. 3.2), which finds the
topk and sorts them.

Comparison with Other MethodsThe state of the art in
query evaluation on probabilistic databases is to either com-
pute each query answer exactly, using a complete Monte
Carlo simulation (we call this method naive (N)), or to ap-
proximate the probabilities using some strategies [17] by
ignoring their correlations. The first results in much larger
running times than multisimulation (MS): see Fig. 9 (a)
(note the logarithmic scale): the naive method timed out for
the LS and LL queries. The approximation method is much
faster than MS, but results in lower precision/recall, due to
the fact that it ignores correlations between imprecisions:
this is shown in Fig. 9 (b). Note that, unlike a Monte Carlo
simulation, where precision and recall can be improved by
running longer, there is no room for further improvement in
the approximate method. Also note that one of the queries
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Figure 9. Experimental Evaluation

(LS) flattened at around 60% precision/recall. The queries
that reached 100% did so only whenk reached the total
number of groups: even then, the answers are much worse
than it looks since their order is mostly wrong. This clearly
shows that one cannot ignore correlations when modeling
imprecisions in data.

Analysis of Multisimulation The main idea of the mul-
tisimulation algorithm is that it tries to spend simulation
steps on only the topk buckets. We tested experimentally
how the total number of simulation steps varies withk, and
in which buckets the simulation steps are spent. We show
here the results for SS. Fig. 9 (c) shows the total number
of simulation steps as a function ofk, both for theTopK
algorithm (which only finds the topk set without sorting it)
and for theRankK algorithm (which findsandsorts the top
k set). First, the graph clearly shows thatRankK benefits

from low values ofk: the number increases linearly withk.
Second, it shows that, forTopK, the number of steps is es-
sentially independent onk. This is because most simulation
steps are spent at the separation line between the topk and
the rest. A deeper views is given by the graph in Fig. 9 (d),
which shows for each group (bucket) how many simulation
steps were spent, fork = 1, 5, 10, 25, and50. For example,
whenk = 1 most simulation steps are spent in buckets 1
to 5 (the highest in the order of the probability). The graph
illustrates two interesting things: thatRankK correctly con-
centrates most simulation steps on the topk buckets, and
that, oncek increases beyond a given bucket’s number, the
number of simulation steps for that bucket does not further
increase. The spikes in both graphs correspond to clusters
of probabilities, where MS had to spend more simulation
steps to separate them. Fig. 9 (e) shows the effect ofk on
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the measured running time of each query. As expected, the
running time scales almost linearly ink. The fewer answers
the user requests, the faster they are retrieved.

Effectiveness of the OptimizationsThe more impor-
tant optimization is the safe-plan rewriting (SP), since it is
highly non-trivial. Fig. 9 (a) shows significant improve-
ments (factors of 3 to 4) in the running times when the
buckets are large (SL, LL), and modest improvements in
the other cases. The query time in the engine differed, since
now the queries issued are different: in one case (SL) the
engine time was larger. Fig. 8 shows how the SP optimiza-
tion affects the average group size: this explains the better
running times.

Sensitivity to ParametersFinally, we tested the sys-
tem’s sensitivity to the parametersδ0 andε (see Sec. 3.2).
Recall that the theoretical running time isO(1/ε2) and
O(log(1/(nδ0)). Fig. 9 (f) shows both the precision/recall
and the total running time as a function of1 − ε, for two
queries: LL and LS;k = 20, δ0 = 0.01, and SP is turned
off. The running time are normalized to that of our golden
standard,1 − ε = 0.99. As 1 − ε increases, the preci-
sion/recall quickly approaches the upper values, while the
running time increases too, first slowly, then dramatically.
There is a price to pay for very high precision/recall (which
is what we did in all the other experiments). However, there
is some room to tune1− ε: around0.9 both queries have a
precision/recall of 90%-100% while the running time is sig-
nificantly less than the golden standard. The similar graphs
for δ0 differ, and is much more boring: the precisions/recall
reaches 1 very fast, while the running time is almost inde-
pendent onδ0. (The graphs look almost like two horizontal
lines.) We can chooseδ0 in a wide range without degrading
either precision/recall or performance.

5 Conclusion

In this paper we described a method for answering top-k
queries on probabilistic databases, with applications to im-
precisions in data. We have proven our technique to be near
optimal, and have validated it experimentally.
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