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Abstract

Modern enterprise applications are forced to deal with unreliable, inconsistent and imprecise information. Prob-
abilistic databases can model such data naturally, but SQL query evaluation on probabilistic databases is difficult:
previous approaches have either restricted the SQL queries, or computed approximate probabilities, or did not scale,
and it was shown recently that precise query evaluation is theoretically hard. In this paper we describe a novel ap-
proach, which computes and ranks efficiently the top-k answers to a SQL query on a probabilistic database. The
restriction to top-k answers is natural, since imprecisions in the data often lead to a large number of answers of low
quality, and users are interested only in the answers with the highest probabilities. The idea in our algorithm is to
run in parallel several Monte-Carlo simulations, one for each candidate answer, and approximate each probability
only to the extent needed to compute correctly the top-k answers. The algorithms is in a certain sense provably
optimal and scales to large databases: we have measured running times of 5 to 50 seconds for complex SQL queries
over a large database (10M tuples of which 6M probabilistic). Additional contributions of the paper include several
optimization techniques, and a simple data model for probabilistic data that achieves completeness by using SQL
views.

1 Introduction

A number of applications today need to manage data that is imprecise. For example imprecisions arise in fuzzy
object matching across multiple databases, in data extracted automatically from unstructured text, in automatic
schema alignments, in sensor data, in activity recognition data. In some cases it is possible to eliminate the impre-
cisions completely, but this is usually very costly, like manual removal of ambiguous matches in data cleaning; in
other cases complete removal is not even possible, e.g. in human activity recognition. Modern enterprise applica-
tions are forced to deal with unreliable and imprecise information, but they can often tolerate such imprecisions,
especially in applications like search or business intelligence. A system that tolerates imprecisions needs to be
able rank query results based on the degree of their uncertainty. Our goal is to develop techniques to manage
automatically imprecisions in the data and rank query answers.

For that purpose we use a probabilistic database. A simplistic definition is that every tuple belongs to the
database with some probability, whose value is between 0 and 1. Every tuple is thus a probabilistic event and
tuples may be correlated events. The major difficulty in probabilistic databases consist of evaluating the queries
correctly and efficiently. Dalvi and Suciu [4] have shown recently that most SQL queries have #P-complete data
complexity, which rules out efficient algorithms for exact probabilities.

Our approach in this paper is to combine top-k style queries with approximate algorithms for computing the
probabilities. When managing imprecisions in data, the most meaningful information lies not in the exact values
of the output probabilities but in the ranking of the queries’ answers. Thus, we shift the focus from computing the



AMZNReviews(asin, title, customer, rating, ...)
AMZNDirector(asin, director)
AMZNActor(asin, actor)
IMDBMovie(mid, movieTitle, genre, did, year)
IMDBDirector(did, dirName)
IMDBCast(mid, aid)
IMDBActor(aid, actorName)
TitleMatchp(asin, mid, p)

Figure 1. Schema fragment of IMDB and Amazon database, and a fuzzy match table

output probabilities to finding and ordering the top k answers. Restricting to just the first k answers is justified in
the context of dealing with imprecisions in data, since here many tuples in the query answer are of very low quality
(probability), and users are interested in seeing only the most highly ranked answers. Under this approach, we
develop a novel query evaluation algorithm for computing the top-k answers with provable theoretical guarantees.

Thus, the problem we address here is the following. We are given a SQL query and a number k, and we have to
return to the user the k highest ranked answers sorted by their output probabilities. To compute the probabilities
we use Luby and Karp’s Monte Carlo simulation algorithm1 [13] (MC), which can compute an approximation
to any desired precision. A naive application of MC would be to run it a sufficiently large number of steps on
each query answer and compute its probability with high precision, then sort the answers and return the top k.
In contrast, we describe here an algorithm called multisimulation (MS), which concentrates the simulation steps
on the top k answers, and only simulates the others a sufficient number of steps to ensure that they are not in
the top k. We prove that MS is theoretically optimal in a very strong sense: it is within a factor of two of a
non-deterministic optimal algorithm, which magically “knows” how many steps to simulate each answer, and no
other deterministic algorithm can be better. There are three variations of MS: computing the set of top k answers,
computing and sorting the set of top k answers, and an any time algorithm, which outputs the answers in the
order 1, 2, 3, . . . , k, . . . and can be stopped at any time. Our experiments show that MS exploits gracefully k (the
running times are essentially linear in k) and that MS is dramatically more efficient than a naive application of
MC.

We make two additional contributions in this paper. The first is to complement MS with two optimizations. One
pushes some of the probabilistic processing to the query engine, when it is safe to do so: for example independent
probabilities can be multiplied, while disjoint probabilities can be added, and both can be done in the SQL engine.
We give precise conditions under which such computations can be pushed in the engine. The other optimization
prunes the number of candidate answers that need to be simulated by computing a lower and an upper bound for
each probability. Both optimizations provably correct, i.e. they preserve the probabilistic semantics of the queries.

The second additional contribution is to show that by adding SQL views to probabilistic tables one obtains a
representation formalism that is complete for possible worlds semantics. In this formalism the database consists
of some probabilistic tables (similar to those in Barbara et al. [2]) plus some SQL views over probabilistic and/or
deterministic tables. A prerequisite to such a representation system is a query processor that can evaluate effi-
ciently complex SQL queries over probabilistic databases, because such queries arise inevitably when the views
are expanded in the user queries; hence, this complete representation system is a direct application of the query
evaluation method described in this paper.

1.1 Challenges

We illustrate here the challenges faced by query evaluation on probabilistic databases with an application that
integrates the Internet Movie Database from imdb.com, with movie reviews from amazon.com; there are over 10M
tuples in the integrated database. A simplified schema is shown in Fig. 1, and we will use it as our running example
in the paper. Amazon products (DVDs in our case) are identified by a unique Amazon Standard Identification
Number, asin, and each DVD object has several subobjects: customer reviews, actors, director, etc. The IMDB
schema is self explanatory. The value of integrating the two data sources lies in combining the detailed movie data
in IMDB with customers ratings in AMZN.

1Any other approximation algorithms can be substituted.
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TitleMatchp

asin mid p
t1 a282 m897 (“Twelve Monkeys”) 0.4
t2 (“12 Monkeys”) m389 (“Twelve Monkeys (1995)”) 0.3
t3 m656 (“Monk”) 0.013
t4 a845 m897 (“Twelve Monkeys”) 0.35
t5 (“Mokey Love”) m845 (“Love Story”) 0.27

Figure 2. Some fuzzy matches in TitleMatchp. The table stores only the asin and mid values, but we
included the review tile and movie title for readability.

From Imprecisions to Probabilities One source of imprecision in integrating the two sources is that their
movie titles often don’t match, e.g. Twelve Monkeys v.s. 12 Monkeys or Who Done it? v.s. The Three Stooges:
Who Done it. The problem of detecting when two representations denote the same object has been intensively
studied, and referred to as deduplication, record linkage, or merge-purge [18, 19, 10, 7, 11, 9, 1, 3]. Perfect object
matching is sometimes impossible, and when it is possible it is often very costly, since it requires specialized,
domain specific algorithms. Our approach is to rely on existing domain independent methods, and change the
way their outputs are used. Currently, all fuzzy match methods use a thresholded similarity function approach [1],
which relies on a threshold value to classify objects into matches and non-matches. This is a compromise that can
lead to false positives (when the threshold value is too low) or to false negatives (when it’s too high). In contrast,
in our approach the system retains all similarity scores and handles them as probabilistic data. We computed a
similarity score between each pair of movie title and review title by comparing their sets of 3-grams: this resulted in
a number p between 0 and 1, which we interpret as the confidence score and stored it in a table called TitleMatchp.
Fig. 2 shows a very simplified fragment of TitleMatchp, consisting of five tuples t1, . . . , t5. Each tuple contains
an asin value (a review in amazon) and a mid value (a movie in IMDB). The amazon review with asin = a282
refers to a movie with title 12 Monkeys, and this can be one of three movies in the IMDB database: either Twelve
Monkeys, or to Twelve Monkeys (1995), or to Monk. Thus, only one of the tuples t1, t2, t3 can be correct, i.e. they
are exclusive, or disjoint, and their probabilities are p1 = 0.4, p2 = 0.3, and p3 = 0.013 respectively. Note that
p1 + p2 + p3 ≤ 1, which is a necessary condition since the three tuples are exclusive events: we normalized the
similarity scores to enforce this condition. Similarly, the movie review about Monkey Love can refer to one of two
IMDB movies, with probabilities p4 = 0.35 and p5 = 0.27 respectively. We assume that any of the three matches
for the first review is independent from any of the two matches of the second review. This summarizes how we
mapped fuzzy object matches to probabilities. We will discuss briefly other types of imprecisions in Sec. 6.1.

Possible Worlds Semantics The table TitleMatchp is only a representation of a probabilistic database:
the superscript p indicates that it is a representation, and that it contains explicit probabilities. Its meaning
is a probability distribution on possible instances (possible worlds) over a table TitleMatch(asin, mid). A
possible instance consists of a subset of the tuples in TitleMatchp that does not contain two tuples with the
same asin, and its probability is computed in a natural fashion. For example, the set of tuples {t2, t4} is one
possible world, and its probability is P({t2, t4}) = p2p4 = 0.3 × 0.35 = 0.105, while the probability of {t2} is
P({t2}) = p2(1 − p4 − p5) = 0.3∗0.48 = 0.144. In our example there are 4∗3 = 12 possible worlds that can be
obtained from t1, t2, t3, t4, t5. Note that asin is a key in TitleMatch, but is not a key in TitleMatchp, since we
need to store multiple possible matches for each asin.

SQL Queries We consider SQL queries using standard syntax but with a modified semantics. To illustrate,
consider the query “find all directors that produced both a highly rated comedy and a low rated drama less than
five years apart”, whose SQL expression is in Fig. 3. Since it is evaluated on a probabilistic database each of its
answers has a confidence score p, as show in Fig. 4 which lists the 5 answers with the highest probabilities, out of
a total of 1415 answers. The semantics of these probabilities is as follows. The probability of the answer Woody
Allen is the sum of the probabilities of all possible worlds in which Woody Allen is an answer to the query. Thus,
the probability score represents our confidence that Woody Allen is an answer to the query, given the imprecisions
in the data. Since the input probabilities were computed using heuristics, there is very little semantics in the actual
values of these probabilities, however, the ranking of the results is meaningful, e.g. Woody Allen is a more likely
answer than George Cukor, who is a more likely answer than, say, the 1000’th ranked answer.
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SELECT DISTINCT d.dirName AS Director
FROM AMZNReviews a, AMZNReviews b,
TitleMatch ax, TitleMatch by,
IMDBMovie x, IMDBMovie y,
IMDBDirector d

WHERE a.asin=ax.asin and b.asin=by.asin
and ax.mid=x.mid and by.mid=y.mid
and x.did=y.did and y.did=d.did
and x.genre=’comedy’ and y.genre=’drama’
and abs(x.year - y.year) <= 5
and a.rating>4 and b.rating<2

Figure 3. Query retrieving all directors that produced both a highly rated comedy and a low rated
drama less than five years apart.

Rank Director p
1 Woody Allen 0.9998
2 Ralph Senensky 0.715017
3 Fred Olen Ray 0.701627
4 George Cukor 0.665626
5 Stewart Raffill 0.645483

. . . . . .

Figure 4. Top 5 query answers, out of 1415

Challenges Query evaluation poses two major challenges. The first is that computing the exact output prob-
abilities is computationally hard. The data complexity for the query in Fig.3 is #P-complete (this can be shown
using results in [4]), meaning that any algorithm computing the probabilities exactly essentially needs to iterate
through all possible worlds. Previous work on probabilistic databases avoided this issue in several ways. Barbara [2]
requires the SQL queries to include all keys in all tables, thus disallowing duplicate elimination. This rules out our
query in Fig. 3, because this query does not include any of the keys of the seven tables in the FROM clause. If we
included all these keys in the SELECT clause, then each director in the answer would be listed multiple times, once
for each pair of movies that satisfies the criterion: in our example each of the 1415 directors would have occurred
on average 234.8 times. This makes it impossible to rank the directors. Lakshmanan [14] computes probability
intervals instead of exact probabilities. However, unlike Luby and Karp’s algorithm which can approximate the
probabilities to an arbitrary precision, the precision in [14] cannot be controlled. In fact, the more complex the
query, the wider the approximation intervals end up, since the strategies in [14] have to conservatively account for a
wide range of possible correlations between the input probabilities. For example, when combining the (on average)
234.8 different probabilities to compute the probability of a single director, the resulting interval degenerates to
[0, 1] for most directors. One can still use this method in order to rank the outputs, (by ordering them based
on their intervals’ midpoints) but this results in low precision. Fuhr [8] uses an exponential time algorithm that
essentially iterates over all possible worlds that support a given answer. This is again impractical in our setting.
Finally Dalvi [4] only considers “safe” queries, while our query is not safe.

The second challenge is that the number of potential answers for which we need to compute the probabilities
is large: in our example, there are 1415 such answers. Many of them have very low probability, and exists only
because of some highly unlikely matches between movies and reviews. Even if the system spends large amounts of
time computing all 1415 probabilities precisely, the users is likely to end up inspecting just the first few of them.

Our Approach focuses the computation on the top k answers with the highest probabilities. A naive way
to find the top k probabilities is to compute all probabilities then select the top k. Instead, we approximate
probabilities only to the degree needed to guarantee that (a) the top k answers are the correct ones, and (b) the
ranking of these top k answers is correct. In our running example, we will run an approximation algorithm for
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many steps on the, say, top k = 10 answers, in order to identify them and rank them, but will run only a few
steps on the remaining 1415− 10 = 1405 answers, and approximate their probabilities only as much as needed to
guarantee that they are not in the top 10. This turns out to be orders of magnitude more efficient than the naive
approach. The major challenge is that we don’t know which tuples are in top 10 before we know their probabilities:
the solution to this is the main contribution in this paper.

Limitations In this paper we restrict to a data model where probabilities are listed explicitly. For example,
if one has a Person table with salary and age attributes whose values are correlated probability distributions,
then in our model one needs to enumerate explicitly all combinations of salary and age, e.g. (Smith, 20, 1000,
0.3), (Smith, 20, 5000, 0.1), (Smith, 40, 5000, 0.6). This allows for correlated attributes as long as the
joint distribution is represented explicitly. In contrast, Bayesian Networks, and their extensions to Probabilistic
Relational Models allow such correlations to be expressed much more concisely. We also do not handle continuous
attribute values, e.g. we cannot handle the case where the attribute temperature has a normal distribution with
mean 40, as done in [6].

Organization Sec. 2 describes the basic probabilistic data model; the MS algorithm is described in Sections 3
and the two optimizations are in Sec. 4. We extend the data model in Sec. 5, report experiments in Sec. 6, and
conclude in Sec. 7.

2 Background

2.1 Probabilistic Databases

We introduce here a basic probabilistic data model and will extend it in Sec. 5.
Possible Worlds Fix a relational schema S, consisting of relation names R1, R2, . . . , Rm, a set of attributes

Attr(Ri) and a key Key(Ri) ⊆ Attr(Ri) for each relation name Ri, i = 1,m. We define a probabilistic database
to be a probability distribution on possible worlds over S.

Definition 2.1. A probabilistic database over schema S is a pair (W,P) where W = {W1, . . . ,Wn} is a set of
database instances over S, and P : W → [0, 1] is a probability distribution (i.e.

∑
j=1,n P(Wj) = 1). Each instance

Wj for which P(Wj) > 0 is called a possible world.

The intuition is that the exact state of the database is uncertain: we have several possible instances, and for
each such instance we have a probability.

Representation Of course, it is impractical to enumerate all possible worlds and their probabilities. We
represent a probabilistic database by using a modified schema Sp, called probabilistic schema, which contains
explicit probabilities (hence the superscript p). Sp consists of modified relation names Rp

1, . . . , R
p
m, such that for

each i = 1,m: (1) either Rp
i has the same schema as Ri (in this case Rp

i is deterministic), or (2) Attr(Rp
i ) =

Attr(Ri) ∪ {p}, and Key(Rp
i ) = Attr(Ri). In the second case Rp

i is probabilistic, and we impose the following
two constraints on its p attribute: (a) the values are real numbers in [0, 1], (b) for every values ā of the Key(Ri)
attributes, sum(Πp(σKey(Ri)=ā(Rp

i ))) ≤ 1. We define next (following [4]) how a database instance Jp over schema
Sp represents a probabilistic database over the schema S, denoted Mod(Jp). To simplify the discussion we
assume that S consists of a single relation name, R(A1, . . . , Am, B1, . . . , Bn), in notation R(Ā, B̄) (here Key(R)
= {A1, . . . , Am} = Ā), and consider an instance Jp of the table Rp(Ā, B̄, p). Note that the key in Rp consists of
all attributes Ā, B̄, not just Ā. We define the possible worlds W = {W1, . . . ,Wn} to consists of all subsets Wj of
ΠĀ,B̄(Jp) where the attributes Ā form a key. For each such Wj define its probability P(Wj) =

∏
ā∈ΠĀ(Jp) pWj (ā),

where pWj (ā) is defined as follows. If there exists a tuple (ā, b̄) ∈ Wj then pWj (ā) is the unique probability p of
that tuple in Jp (i.e. p is such that (ā, b̄, p) ∈ Jp). If there is no such tuple, then pWj (ā) is 1−sum(Πp(σĀ=ā(Jp))).

Definition 2.2. Let Jp be a database instance over schema Sp. Then Mod(Jp) is the probabilistic database (W,P)
over the schema S obtained as described above.

Example 2.3 For a simple illustration, consider the schema Sp in Fig. 1. All tables AMZNReviews, IMDBDirector,
. . . are deterministic, except for TitleMatchp(asin, mid, p), which represents possible worlds for TitleMatch(asin,
mid). The instance of TitleMatchp (same as Fig. 2) and its 12 possible worlds are illustrated Fig. 5. The restric-
tions are:
p1, . . . , p5 ∈ [0, 1], p1 + p2 + p3 ≤ 1, p4 + p5 ≤ 1.
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TitleMatchp

asin mid p

t1 a282 m897 p1

t2 a282 m389 p2

t3 a282 m656 p3

t4 a845 m897 p4

t5 a845 m845 p5

Mod(TitleMatchp):

i Wi P(Wi)
1 ∅ (1-p1-p2-p3)(1-p4-p5)
2 t1 p1(1-p4-p5)
3 t2 p2(1-p4-p5)
4 t3 p3(1-p4-p5)
5 t4 (1-p1-p2-p3)p4

6 t1t4 p1p4

7 t2t4 p2p4

8 t3t4 p3p4

9 t5 (1-p1-p2-p3)p5

10 t1t5 p1p5

11 t2t5 p2p5

12 t3t5 p3p5

Figure 5. Illustration for Example 2.3

DNF Formulas over Tuples Let (W,P) be a probabilistic database and let t1, t2, . . . be all the tuples in all
possible worlds. We interpret each tuple as a boolean propositional variable, and each possible world W as a truth
assignment to these propositional variables, as follows: ti = true if ti ∈ W , and ti = false if ti 6∈ W . Consider now a
DNF formula E over tuples: clearly E is true in some worlds and false in others. Define its probability P(E) to be
the sum of P(W ) for all worlds W where E true. Continuing our example, the expression E = (t1 ∧ t5)∨ t2 is true
in the possible worlds W3,W7,W10,W11, and its probability is thus P(E) = P(W3) + P(W7) + P(W10) + P(W11).

2.2 Queries

Syntax We consider SQL queries over the schema S:

q = TOP k

SELECT B, agg1(A1), agg2(A2), . . . (1)
FROM R WHERE C GROUP-BY B

The aggregate operators can be sum, count (which is sum(1)), min and max; we do not support avg. We do not
discuss here a HAVING clause: we study that elsewhere [16].

Semantics We define now the meaning of the query q on a probabilistic database ({W1, . . . ,Wn} ,P). Intuitively,
the answer to query is a table like this:

B1 B2 . . . agg1(A1) agg2(A2) . . . p
b11 b12 . . . e11 e12 . . . p1

b21 b22 . . . e21 e22 . . . p2

. . . . . . . . . . . . . . . . . . . . .
Each answer is of the form (b̄, ē, p) and consists of (1) a tuple b̄ of the group-by attributes; the meaning is that b̄
occurs as answer to q in at least one possible world, (2) a tuple ē of the aggregate attributes; the meaning is that
these are the expected values of those aggregates over all possible worlds that return b̄, (3) the probability p that
b̄ is an answer. For a simple illustration, the query in Fig. 3 is an instance of (1): it has no aggregates (hence the
GROUP-BY becomes DISTINCT), and its answers are shown in Fig. 4. We define query semantics formally next.

Under standard SQL semantics, the answers to q on a possible world Wj are tuples of the form (b̄, ā), where
b̄ are the values of the B attributes and ā are aggregate values. Given b̄, denote Cb̄(Wj) the predicate “q(Wj)
contains at least one answer of the form (b̄, ā)”; denote Fb̄(Wj) the function that returns the unique value ā for
which (b̄, ā) is in q(Wj) when Cb̄(Wj) is true, and which is undefined when Cb̄(Wj) is false. Recall the standard
definitions of the probability of a predicate, and the conditional expected value of a function:

P(Cb̄) =
∑

j|Cb̄(Wj)=true
P(Wj)

E(Fb̄ | Cb̄) =
∑

j|Cb̄(Wj)=true
Fb̄(Wj)P(Wj)/P(Cb̄)
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Definition 2.4. For a probabilistic db (W,P) define:

q(W,P) = {(b̄, ē, p) | ∃Wj .Cb̄(Wj), ē = E(Fb̄ | Cb̄), p = P(Cb̄)}

For a representation Jp we define q(Jp) = q(Mod(Jp)).

Finally, in the context of a top-k query, we return only the tuples (b̄, ē, p) with the k highest probabilities p

2.3 From Queries to DNF Formulas

Our approach to query evaluation q(Jp) is to compute probabilities of certain DNF formulas constructed by
running a modified SQL query, called expanded query qe, over the representation Jp; qe is derived from q by
replacing the SELECT clause with * and removing the GROUP BY clause.

qe = SELECT * FROM R WHERE C

where R̄ = R1, . . . , Rm and C are the same as in Eq.(1). We evaluate qe in the database engine, over the instance
Jp, and obtain a set of answers ET . Each tuple t ∈ ET has the form t = (t1, . . . , tm), where t1 ∈ Rp

1, . . . , tm ∈ Rp
m.

Define the following boolean expression associated to t:

t.E = t1 ∧ t2 ∧ . . . ∧ tm (2)

One may compute P(t.E) by first eliminating duplicate tuples, then multiplying their probabilities (unless two
tuples are exclusive, in which case P(t.E) = 0).

Next, partition ET by the GROUP-BY attributes B: ET = G1 ∪G2 ∪ . . .∪Gn. For each group G ∈ {G1, . . . , Gn}
define following DNF boolean expression:

G.E =
∨
t∈G

t.E (3)

Valiant [17] has shown that computing the probability P(G.E) of a DNF formula like (3) is #P-complete in general.
For a group G, denote G.B the tuple b̄ = t.B for some t ∈ G (it is independent on the choice of t ∈ G). We can
prove:

Theorem 2.5. q(Jp) consists of all tuples (b̄, ē, p) s.t.:

b̄ = G.B for some G ∈ {G1, . . . , Gn}
p = P(G.E)

ei =
∑
t∈G

P(t.E)∗t.Ai/p if AGGi=sum(Ai)

ei =
∑
t∈G

(1−P(
∨

t′∈G|t′.Ai≥t.Ai

t′.E))∗t.Ai/p if AGGi=max(Ai)

Definition 2.4 gives the query’s semantics in terms of possible worlds; this theorem shows how to rephrase it in
terms of DNF expressions over tuples.

Example 2.6 Consider the query q in Fig. 3. The extended query is obtained by removing the group-by clause
(removing DISTINCT) and replacing the SELECT clause with *:

SELECT * FROM (...same 7 tables...) WHERE ...

Thus, each answer returned by qe contains the seven tuple variables defined in the FROM clause: (a,b,axp,byp,x,y,d).
Of these only axp,byp are probabilistic tuples, and we added the superscript p to indicate that they range over
TitleMatchp. Thus, each row t returned by qe defines a boolean formula t.E = axp ∧ byp, and its probability
P(t.E) is given by:
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Algorithm 2.3.1 Luby-Karp algorithm for computing the probability of a DNF formula G.E =
∨

i ti.E (Eq.(3)),
where each ti.E is a disjunct (Eq.(2)).

fix an order on the disjuncts: t1, t2, . . . , tm
C := 0
repeat

Choose randomly one disjunct ti ∈ G
Choose randomly a truth assignment s.t. ti.E = true
if forall j < i tj .E = false then C := C + 1

until N times
return p̃ = C/N

P(t.E) = axp.p if axp.asin=byp.asin ∧ axp.mid=byp.mid
P(t.E) = 0 if axp.asin=byp.asin ∧ axp.mid6=byp.mid
P(t.E) = axp.p*byp.p if axp.asin6=byp.asin ∧ axp.mid6=byp.mid Next, we group the rows by their directors,
and for each group G = {(axp

1, by
p
1), . . . , (ax

p
m, byp

m)} construct the DNF formula: G.E = axp
1∧by

p
1∨. . .∨axp

m∧bxp
m.

The director’s probability give by P(G.E): this is a 2DNF, but computing its probability is still #P-complete.

In summary, we have rephrased the query evaluation problem to the problem of evaluating, for each query
answer, the probability of one or more DNF formulas: p = P(G.E), and any DNF formula occurring in the
expression for max (and similarly for min). From now on we will focus on computing P(G.E), where G.E is given
by Eq.(3).

Monte Carlo Simulation A Monte Carlo algorithm repeatedly chooses at random a possible world, and
computes the truth value of the boolean expression G.E (Eq.(3)); the probability p = P(G.E) is approximated by
the frequency p̃ with which G.E was true. Luby and Karp have described the variant shown in Algorithm 2.3.1,
which has better guarantees than a naive MC. For our purposes the details of the Luby and Karp algorithm are not
important: what is important is that, after running for N steps, the algorithm guarantees with high probability
that p is in some interval [a, b], whose width shrinks as N increases. Formally:

Theorem 2.7. [13] Let δ > 0 and define ε =
√

4m log(2/δ)/N , where m = |G| represents the number of tuples
in the group G (i.e. number of disjuncts in the DNF formula) and N is the number of steps executed by the Luby
and Karp algorithm. Let a = p̃− ε and b = p̃ + ε. Then the value p belongs to [a, b] with probability ≥ 1− δ, i.e.2:

P(p ∈ [a, b]) > 1− δ (4)

3 Top-k Query Evaluation

We now describe our algorithm. We are given a query q as in Eq.(1) and an instance Jp stored in a SQL
database engine, and we have to compute the top k answers in q(Jp). Evaluation has two parts: (1) evaluating
the extended SQL query qe in the engine and grouping the answer tuples, (2) running a Monte Carlo simulation
on each group in the middleware to compute the probabilities, then returning the top k probabilities. We describe
here the basic algorithm, and discuss optimizations in the next section.

3.1 Multisimulation (MS)

We model the problem as follows. We are given a set G = {G1, . . . , Gn} of n objects, with unknown probabilities
p1, . . . , pn, and a number k ≤ n. Our goal is to find a set of k objects with the highest probabilities, denoted TopK
⊆ G: we discuss below how to also sort this set. The way we observe the objects’ probabilities is by means of a
simulation algorithm that, after running N steps on an object G, returns an approximation interval [aN , bN ] for
its probability p, with aN < bN (we assume aN = bN can never happen). We make the following four assumptions
about the simulation algorithm and about the unknown probabilities:

2In the original paper the bound is given as | p− p̃ |≤ εp. Since p ≤ 1 this implies our bounds.
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Figure 6. Illustration of MS; k = 2.

Convergence : limN→∞ aN = limN→∞ bN .

Precision : ∀N.p ∈ [aN , bN ].

Progress : ∀N.[aN+1, bN+1] ⊆ [aN , bN ].

Separation : ∀i 6= j, pi 6= pj .

By the separation assumption TopK has a unique solution, i.e. there are no ties, and by the other three
assumptions the solution can be found naively by a round robin algorithm.

In our setting each object G is a group of tuples, and its probability is p = P(G.E) (Eq. (3)). The simulation
algorithm is Luby-Karp. Only the first assumption holds strictly (convergence): we revisit below how to address
the other three.

Intuition Any algorithm that computes TopK can only do this by running simulations on the objects. It
initializes the intervals to [a1, b1] = [a2, b2] = . . . = [an, bn] = [0, 1], then repeatedly chooses to simulate some
Gi for one step. At each point in the execution, object Gi has been simulated Ni steps, and thus its interval
is [aNi

i , bNi
i ] = [ai, bi] (we omit the superscript when it is clear). The total number of steps over all groups is

N =
∑n

i=1 Ni. Consider the top left figure in Fig. 6, where for k = 2. Here we have already simulated each of the
five groups for a while: clearly G3 is in the top 2 (it may be dominated only by G2), although we don’t know if it
is 1st or 2nd. However, it is unclear who the other object in top 2 is: it might be G1, G2, or G4. It is also certain
that G5 is not among the top 2 (it is below G2, G3).

Given two intervals [ai, bi], [aj , bj ], if bi ≤ aj then we say that the first is below, and the second is above. We
also say that the two intervals are separated: in this case we know pi < pj (even if bi = aj , due to the “separation”
assumption). We say that the set of n intervals is k-separated if there exists a set T ⊆ G of exactly k intervals s.t.
any interval in T is above any interval not in T . Any algorithm searching for the TopK must simulate the intervals
until it finds a k-separation (otherwise we can prove that TopK is not uniquely determined); in that case it outputs
TopK = T . The cost of the algorithm is the number of steps N at termination.

Our golden standard will be the following nondeterministic algorithm, OPT, which is obviously optimal. OPT
“knows” exactly how many steps to simulate Gi, namely Nopt

i steps, such that the following holds (a) the intervals

[aNopt
1

1 , b
Nopt

1
1 ], . . ., [aNopt

n
n , b

Nopt
n

n ] are k-separated, and (b) the sum Nopt =
∑

i Nopt
i is minimal. When there are

multiple optimal solutions, OPT chooses one arbitrarily. Clearly such an oracle algorithm cannot be implemented
in practice. Our goal is to derive a deterministic algorithm that comes close to OPT.

Example 3.1 To see the difficulties, consider two objects G1, G2 and k = 1 with probabilities p1 < p2, and the
current intervals (say, after simulating both G1 and G2 for one step) are [a1, b1], [a2, b2] s.t. a1 = p1 < a2 < b1 <
p2 = b2. The correct top-1 answer is G2, but we don’t know this until we have separated them: all we know is
p1 ∈ [a1, b1], p2 ∈ [a2, b2] and it is still possible that p2 < p1. Suppose we decide to simulate repeatedly only
G2. This clearly cannot be optimal. For example, G2 may require a huge number of simulation steps before a2

increases above b1, while G1 may take only one simulation step to decrease b1 below a2: thus, by betting only
on G2 we may perform arbitrarily worse than OPT, which would know to choose G1 to simulate. Symmetrically,
if we bet only on G1, then there are cases when we perform much worse than OPT. Round robin seems a more
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reasonable strategy, i.e. we simulate alternatively G1 and G2. Here, the cost is twice that of OPT, in the following
case: for N steps a2 and b1 move very little, s.t. their relative order remains unchanged, a1 < a2 < b1 < b2. Then,
at the N + 1’th step, b1 decreases dramatically, changing the order to a1 < b1 < a2 < b2. Round robin finishes
in 2N + 1 steps. The N steps used to simulate G2 were wasted, since the changes in a2 were tiny and made no
difference. Here OPT chooses to simulate only G1, and its cost is N + 1, which is almost half of round robin. In
fact, no deterministic algorithm can be better than twice the cost of OPT. However, round robin is not always
a good algorithm: sometime it can perform much worse than OPT. Consider n objects G1, . . . , Gn and k = 1.
Round robin may perform n times worse than OPT, since there are cases in which (as before) choosing the right
object on which to bet exclusively is optimal, while round robin wastes simulation steps on all the n objects, hence
its cost is n ·Nopt.

Notations and definitions Given n non-negative numbers x1, x2, . . . , xn, not necessarily distinct, let us define
topk(x1, . . . , xn) to be the k’s largest value. Formally, given some permutation s.t. xi1 ≥ xi2 ≥ . . . ≥ xin , topk is
defined to be xik

. We set topn+1 = 0.

Definition 3.2. The critical region, top objects, and bottom objects are:

(c, d) = (topk(a1, . . . , an), topk+1(b1, . . . , bn)) (5)
T = {Gi | d ≤ ai}
B = {Gi | bi ≤ c}

One can check that B∩TopK = ∅ and T ⊆ TopK: e.g. bi ≤ c implies (by definition of c) that there are k intervals
[aj , bj ] above [ai, bi], which proves the first claim. Fig. 6 illustrates four critical regions.

The important property of the critical region is that the intervals have a k-separation iff the critical region is
empty, i.e. c ≥ d (proof is omitted for lack of space), in which case we can return TopK = T . This is illustrated in
the upper right of Fig. 6, where the top 2 objects are clearly those to the right of the critical region. We therefore
assume c < d from now on. Call an object Gi a crosser if [ai, bi] contains the critical region, i.e. ai ≤ c, d ≤ bi.
There are always at least two crossers. Indeed, there are k + 1 intervals [ai, bi] s.t. d ≤ bi. and at most k − 1 of
them may satisfy c < ai; hence, the others (at least two) satisfy ai ≤ c, and are crossers. Given a crosser [ai, bi]
we call it an upper crosser if d < bi, a lower crosser if ai < c, and a double crosser if it is both.

The Algorithm is shown in Algorithm 3.1.1. At each step it picks one or two intervals to simulate, according
to three cases (see Fig 6). First, it tries a double crosser [ai, bi] ; if there is none then it tries to find an upper
crosser, lower crosser pair; if none exists then it means that either all crossers have the same left endpoint ai = c
or all have the same right endpoint d = bi. In either case there exists a maximal crosser, i.e. one that contains all
other crossers: pick one and simulate it (there may be several, since intervals may be equal). After each iteration
re-compute the critical region; when it becomes empty, stop and return the set T of intervals above the critical
region. Based on our previous discussion the algorithm is clearly correct: i.e. it returns TopK when it terminates.
From the convergence assumption it follows that the algorithm terminates.

Algorithm 3.1.1 The Mulisimulation Algorithm
MS TopK(G, k) : /* G = {G1, . . . , Gn} */
Let [a1, b1] = . . . = [an, bn] = [0, 1], (c, d) = (0, 1)
while c ≤ d do

Case 1: exists a double crosser: simulate it one step
Case 2: exists an upper crosser and a lower crosser: simulate both one step
Case 3: otherwise: pick a maximal crosser, simulate it one step
Update (c, d) using Eq.(5)

end while
return TopK = T = {Gi | d ≤ ai}

Analysis We now prove that the algorithm is optimal within a factor of two of OPT, and, moreover, that no
deterministic algorithm can be better.

At any point during the algorithm’s execution we say that an interval [ai, bi] has slack if Ni < Nopt
i . If it has

slack then the algorithm can safely simulate it without doing worse than OPT. We have:
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Lemma 3.3. Let [ai, bi] be a crosser. Then, in all cases below, [ai, bi] has slack: (1) If it is an upper crosser and
is not in the top k. (2) If it is a lower crosser and is in the top k. (3) If it is a double crosser. (4) If it contains
all crossers (i.e. it is a maximal crosser).

Proof. To see (1), note that OPT must find k intervals above i; but since [aNi
i , bNi

i ] is an upper crosser, there are
at most k − 1 b

Nj

j ’s s.t. b
Nj

j > b
Nj

i ; hence, OPT can find at most k − 1 intervals (namely the same ones, at most)

that are above bNi
i , i.e. a

Nopt
j

j > bNi
i , because a

Nopt
j

j < b
Nj

j (due to the progress assumption). It follows that OPT

must simulate i at least one more step than Ni to bring b
Nopt

i
i below bNi

i in order to separate it from the top k. (2)
and (3) are similar. To prove (4), we assume that the interval i is in TopK: the other case is symmetric. Consider
the k + 1 intervals that have bj ≥ d: at least one, say [aj , bj ], must be not in TopK, and OPT must separate them
by proving that [aj , bj ] is below [ai, bi]. But ai ≤ aj because either [aj , bj ] is included in [ai, bi], or [aj , bj ] is not
a crosser (hence ai ≤ c ≤ aj). Hence, to separate them, OPT must either reduce [aj , bj ] to a point or further
simulate [ai, bi]. But since we assume that an MC algorithm cannot return a point interval (i.e. aN < bN forall
N), OPT must simulate [ai, bi].

Theorem 3.4. (1) The cost of algorithm MS TopK is < 2Nopt. (2) For any deterministic algorithm computing
the top k and for any c < 2 there exists an instance on which its cost is ≥ cNopt.

Proof. (Sketch) The main idea for (2) is in Example 3.1 and we omit it for lack of space. To prove (1), notice that
at each step the algorithm simulates one or two intervals: it suffices to prove that at least one of them has slack3.
There are three cases. First, a double crosser is simulated: clearly it has slack. Second, an upper and a lower
crosser are simulated: in order for both not to have slack we must have one is in the top k and the other is not in
the top k; but in that case OPT must simulate at least one of them, since they are not separated yet, hence one of
them does have slack after all. Third, there are only upper or only lower crossers and we simulate the largest one:
we have seen that this also has slack.

Corollary 3.5. Let A be any deterministic algorithm for finding TopK. Then (a) on any instance the cost of
MS TopK is at most twice the cost of A, and (b) for any c < 1 there exists an instance where the cost of A is
greater than c times the cost of MS TopK.

3.2 Discussion

Variations and extensions In query answering we need to compute the top k answers and to sort them. The
following variation of MS, which we call MS RankK, does this. First, compute the top k, Tk = MS TopK(G, k).
Next, compute the following sets, in this sequence:

Tk−1 = MS TopKni(Tk, k − 1)
Tk−2 = MS TopKni(Tk−1, k − 2)

. . .

T1 = MS TopKni(T2, 1)

At each step we have a set Tj of the top j answers, and we compute the top j − 1: this also identifies the j’th
ranked object. Thus, all top k objects are identified, in reverse order. Here MS TopKni denotes the algorithm
MS TopK without the first line: that is, it does not initialize the intervals [ai, bi] but continues from where the
previous multisimulation left off. This algorithm is also optimal: we have proved a theorem similar to 3.4, which
we omit for lack of space.

The second variation is an any-time algorithm, which computes and returns the top answers in order, without
knowing k. The user can stop any time. The algorithm starts by identifying the top element T1 = MS TopK(G, 1),
then it finds the remaining groups in decreasing order: Tj+1 = MS TopK(Bj , 1), where Bj = G − (T1 ∪ . . . ∪ Tj).

3This shows that the cost is ≤ 2Nopt; to prove < 2Nopt one notices that at least one iteration simulates a single interval, with
slack.
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Note that for k > 1 this algorithm is not optimal in finding the top k elements; its advantage is in its any-time
nature. Also, it prevents the semi-join optimization discussed below, which requires knowledge of k.

Revisiting the assumptions Precision holds for any MC algorithm, but only in a probabilistic sense. For
example after running Luby-Karp’s algorithm for N steps, P(p ∈ [aN , bN ]) > 1− δ1. The choice of the confidence
δ1 affects the convergence rate: bN − aN = 2

√
4m log(2/δ1)/N , where m is the size of the group. In our context

the user chooses a global parameter δ and requires that all n groups be precise with confidence δ. Assuming equal
confidences, the system sets δ1 for each group to δ/n, since it implies (1− δ1)n ≥ 1− δ. Sill, since it appears under
log, we can choose very small values for δ without affecting significantly the running time (N), hence precision
holds for all practical purposes. The separation assumption is more problematic, since in practice probabilities are
often equal or very close to each other. Here we simply rely on a second parameter ε > 0: when the critical region
becomes less than ε, we stop and rank the uncertain groups based on the midpoints of their intervals. Progress as
stated, does not hold for our monte carlo simulation technique. Lastly, we use progress to make the statement that
OPT’s intervals must be contained in the intervals we see. We observe that for any interval for which precision
holds, a weaker variant of progress suffices ∀N,∃ infinitely many N ′ > N [aN ′

, bN ′
] ⊆ [aN , bN ]. Since the limit

exists (by convergence assumption), this implies our statement. By choosing δ appropriately, we can ensure only a
constant number of errors with high probability. Importantly, these weaker assumptions are satisfied by alg. 2.3.1.
The choice of ε also affects running time and precision/recall. We discuss the system’s sensitivity on δ and ε in
Sec. 6.

Finally, note that our restriction that the intervals never collapse (i.e. aN < bN forall N) is important. This
is always true in practice (for any MC algorithm). As a pure theoretical observation we note here that without
this assumption the proof of Lemma 3.3 (4) fails and, in fact, no deterministic algorithm can be within a constant
factor of OPT. Consider searching for the top k = 1 of n objects; all n intervals start from the initial configuration
[0, 1]. OPT picks the winner object, whose interval, after one simulation step, collapses to [1,1]: OPT finishes in 1
step, while any deterministic algorithm must touch all n intervals at least one.

Further Improvements One may wonder if our adversarial model in which intervals may shrink at arbitrary,
unpredictable rates is too strong. In theory it may be possible to design an algorithm that finds TopK by exploiting
the specific rates at which the intervals shrink (see the bounds in Th. 2.7). However, note that this will result in
at most a factor of 2 improvement over the MS algorithm, due to Corollary 3.5.

4 Optimizations

We present two optimizations: the first reduces the number of groups to be simulated using a simple pruning
technique, the second reduces the sizes of the groups by pushing more of the processing from the middleware to
the engine. Both techniques are provably correct in that they are guaranteed to preserve the query’s semantics.

Pruning The following are two simple upper and lower bounds for the probability of a group G:

m
max
i=1

P(ti.E) ≤ P(
∨m

i=1 ti.E) ≤
m∑

i=1

P(ti.E)

They can be computed easily and allow us to compute the critical region using Eq.(5) and to prune some groups
before even starting MS. As an improvements, when there are no pairs of disjoint tuples in the group (which is a
condition that can be checked statically) then the upper bound can be tighten to 1−

∏
i(1−P(ti.E)).

Safe Subqueries Sometimes the probabilities can be pushed to the engine, by multiplying probabilities (when
the tuples are independent) or by adding them (when the tuples are disjoint). This can be achieved by running a
SQL query, over a subset R′ ⊆ R of the tables in the original query q, like the following (here R

′ = R1, R2, R2):

sq = SELECT B
′
, AGG(R1p.p*R2p.p*R3p.p) as p

FROM R1p, R2p, R3p WHERE C GROUP-BY B
′

where AGG is either sum or prod 1 1:
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sum(p1, . . . , pm) =
∑

i

pi

prod 1 1(p1, . . . , pm) = 1−
∏

i

(1− pi)

The optimization works like this. Given the query q (Eq.(1)) choose a subset of its tables R
′ ⊆ R, and some set

of attributes B
′ (which must include all attributes on which the relations R

′ join with the other relations). Then
construct a subquery like sq above, and use it as a subexpression in q as it were a normal table, with probability
given by p, and its possible-worlds key given by a certain subset S of B′.

Three conditions must be met for this rewriting to be correct. (1) The tuple probability p computed by AGG
must be correct, (2) in the output, tuples having the same value of S must be disjoint tuples and tuples having
different values of S must be independent tuples, and (3) each such probability must be independent of all the
other tuple in the original query that it joins with. Recall that Key(R) denotes the set of key attributes for the
possible worlds for R.

To check (1) we have the following:

Proposition 4.1. Consider the query sq above. Let Attr(R) denote the attributes of relation R (does not include
the p attribute, which technically belongs only to Rp) and Attr(sq) denote the union of Attr(R) for all relations R

in sq.

1. If AGG is sum then p is computed correctly iff ∃R ∈ R
′ s.t. Key(R) ⊆ B

′ and Attr(sq)− B
′ ⊆ Attr(R).

2. If AGG is prod 1 1 then p is computed correctly iff ∀R ∈ R
′, Attr(sq)− B

′ ⊆ Key(R).

To check (2) we have the following:

Proposition 4.2. Consider the query sq above.

1. Two output tuples having the same values of S are disjoint events iff ∃R ∈ R
′ s.t. Key(R) ⊆ S and B

′ − S ⊆
Attr(R).

2. Two output tuples having different values of S are independent events iff ∀R ∈ R
′, B′ − S ⊆ Key(R).

Finally, to check (3) we need to check that the relations used by sq do not occur again the rest of the query q.

Example 4.3 Consider three probabilistic tables:

AmazonHighReviewsp(asin, reviewer, p)
TitleMatchp(asin, imdbid, p)
IMDBHighRatedFilmsp(imdbid, p)

with possible worlds keys

Key(AmazonHighReviews) = {asin, reviewer}
Key(TitleMatch) = {asin}
Key(IMDBHighRatedFilms) = {imdbid}

Note that AmazonHighReviews and IMDBHighRatedFilms contain only independent tuples. Consider the query q:

q = TOP 5 SELECT DISTINCT A.reviewer
FROM AmazonHighReviews A,

TitleMatch T, IMDBHighRatedFilms I
WHERE A.asin = T.asin and T.imdbid = I.imdbid

The query can be optimized by observing that the following subquery is a safe subquery:
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sq = SELECT T.asin, sum(T.p * I.p) as p
FROM TitleMatchp T, IMDBHighRatedFilmsp I
WHERE T.imdbid = I.imdbid
GROUP BY T.asin

The output of this subquery is a table Tmpp(asin, p) that can be treated as a base probabilistic table with
possible world key asin and probability attribute p. To see why, let us verify that this subquery satisfies the three
conditions for safe subquery:

• For condition (1), we use Prop. 4.1(1). Here B
′ = {asin} and Attr(sq) = {asin, imdbid}. We see that

Key(TitleMatch) ⊆ B
′ and Attr(sq)− B

′ ⊆
Attr(TitleMatch), so the condition is met.

• For condition (2), we use Prop. 4.2. Here, S = {asin} since we are claiming that asin is the key for Tmp.
Prop. 4.2(2) holds trivially because B

′ − S = ∅. Prop. 4.2(1) holds because Key(TitleMatch) ⊆ S.

• Condition (3) holds because all event tables outside Tmp are distinct from those inside.

Having verified that the subquery is indeed safe, we rewrite the query q by making sq a subquery:

qsafe-plan = TOP 5 SELECT DISTINCT A.reviewer
FROM AmazonHighReviews A, sq Tmp
WHERE A.asin = Tmp.asin

Thus, the table Tmp(asin,p) is computed inside the engine, and treated like a base query by MS. The rest of
MS remains unchanged. The new query has the same number of groups as the original query, but each group is
much smaller since some of the probabilistic computation has been pushed in the engine.

5 A Complete Probabilistic Model

A complete representation formalism for probabilistic database is one that can represent any probabilistic data,
according to Def. 2.1. The formalism we described in Sec. 2 is based on Barbara et al. [2], and is incomplete,
because it represents only independent or exclusive tuples. Other formalisms described in the literature are either
incomplete, or too complex to be practical. For example the model used by Dalvi and Suciu [4] is a strict subset of
Barbara’s (allows only for independent tuples) and thus is also incomplete. Fuhr and Roellke [8] describe a complete
model, based on c-tables [12], but it is complex and impractical. Widom at al. [5] advance the hypothesis that
every representation formalism is either incomplete or unintuitive (hence impractical), and proposes a two layered
approach with a simple and intuitive, but incomplete model at the top and a complete, but complex model at the
bottom. Here, we show that if we extend the simple representation formalism described in Sec. 2 with SQL views,
then one obtains a complete representation system. Since SQL views are intuitive to database users, we believe
that this system is quite intuitive and practical. However, a prerequisite to such a representation system is a query
processor that can evaluate complex SQL queries over probabilistic databases, because every user query needs to
be expanded with the view definitions and results in a complex expression. Thus, the complete representation
system that we describe here is a direct application of the efficient query processing techniques described in Sec. 3
and 4.

Definition 5.1. A probabilistic schema with views, Spv consists of a probabilistic schema Sp = {Rp
1, . . . , R

p
m}

associated to some deterministic schema S (see Sec. 2.1) and a set of SQL view definitions of the form Vi := qi,
i = 1, k, where Vi is a relation name and qi is a SELECT-DISTINCT SQL query.

An instance of Spv is an instance Jp of Sp, and its meaning, denoted Modv(Jp), is a probability distribution
over possible worlds of schema S ∪ {V1, . . . , Vk}, obtained, intuitively, by first taking the probability distribution
Mod(Jp) = ({W1, . . . ,Wn} ,P) (i.e. ignoring the views), then evaluating the views on each possible world Wj .
Formally, we write V (Wj) for the instance consisting of m + k relations: the m relations R1, . . . , Rm in Wj plus
the k relations V1, . . . , Vk obtained by evaluating the views.
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Probabilistic #Tuples #exclusive tuples
Table Name Avg. Max
MovieToAsin 339095 4 13
AmazonReviews 292680 1 1
ActorMatch 6758782 21 2541
DirectorMatch 18832 2 36
UsenetMatch 134803 5 203
UsenetReview 3159 1 3159
ActivityData 2614480 3 10
HMM 100 10 10

Figure 7. Three Case Studies of Imprecisions

Query # of Avg Max # of
name groups group group prob.

(n) size m size tables
no SP SP no SP SP (m)

SS 33 20.4 8.4 63 26 2
SL 16 117.7 77.5 685 377 4
LS 3259 3.03 2.2 30 8 2
LL 1415 234.8 71.0 9088 226 4

Figure 8. Query Stats w/o and w/ S(afe) P(lan)

Definition 5.2. Modv(Jp) is ({V (W1), . . . , V (Wn),Pv} where Pv(V (Wj)) = P(Wj), j = 1, n.

Users can formulate queries q over the schema Spv. Since an instance Jp of Spv has possible worlds semantics,
the query semantics is simply q(Jp) = q(Modv(Jp)). Moreover, q(Jp) can be computed by first expanding all the
views in the query, then evaluating the rewritten query in the normal way (without views).

We show completeness of this formalism. For two schemas S ⊆ S0 (i.e. S0 consists of all relation names in S,
possibly more) and an instance W of S0, denote ΠS(W ) the instance obtained from W by dropping all tables in
S0 − S. Given a probability distribution (W,P) over schema S0, denote ΠS(W,P) the probability distribution
({ΠS(W ) | W ∈ W},P′), P′(ΠS(W )) =

∑
ΠS(W ′)=ΠS(W ) P(W ′).

Theorem 5.3 (Completeness). Let S be any deterministic schema with m relation names. Then there exists a
probabilistic schema Spv with m+1 relations and m views s.t. for any probability distribution (W,P) over S there
exists an instance Jp of Spv s.t. (W,P) = ΠS(Modv(Jp)).

Proof. We prove for m = 1, i.e. S =
{
R(Ā)

}
(the general case is similar). Define Sp =

{
Wp(wid, p), T(wid, Ā)

}
,

where the key in the corresponding deterministic counterpart W(wid) is defined to be empty, Key(W) = ∅, while T
is deterministic and has key {wid} ∪ Key(R). Define the view:

R := SELECT DISTINCT t.Ā FROM W x, T t WHERE x.wid = t.wid

To prove the claim, let W = {W1, . . . ,Wn} be a set of possible worlds over S (each Wj is an instance of R) and
let p1, . . . , pn be their probabilities. Construct Jp as follows. Create n distinct identifiers w1, . . . , wn: the Wp

table in Jp is {(w1, p1), . . . , (wn, pn)} (these represent the n worlds and are exclusive tuples since Key(W) =
∅). The T table in Jp is

⋃
j {wj} × Wj . It follows immediately that the possible worlds in Modv(Jp) are

{({w1} , T,W1), . . . , ({wn} , T,Wn)} (each world consisting of a W table, a T table, and an R table), and their
probabilities are p1, . . . , pn, which proves the theorem.

6 Experiments

In this section we evaluate our approach experimentally. We address five questions: (1) what is the scale of
probabilistic databases when modeling imprecisions; (2) how does our new query evaluation method compare to
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the current state of the art; (3) how effective is the multisimulation (MS) over a naive approach (4) how effective
are the optimizations; and (5) how sensitive is the system’s performance on the choice of δ and ε.

Setup Our experiments were run on a dual processor Intel Xenon 3GHz Machine with 8G RAM and 2 400GB
disks. The operating system used was Linux with kernel version 2.6.12 high-mem build. The database was DB2
UDB Trial Edition, v. 8.2. Due to licensing restrictions DB2 was only one able to use one of the cores. Indexes
and configuration parameters such as buffer pools were tuned by hand.

Methodology For each running time we perform the experiment 5 times, dropping the highest and the lowest
and average the remaining three runs. The naive simulation method was capped at 20 minutes. In between each
experiment, we force the database to terminate all connections. The same experiments was not run repeatedly to
minimize caching effects but the cache was allowed to be warm. In the precision/recall experiments, the precision
and recall are defined as the fraction of the top k answers returned by method being evaluated that overlap with
the “correct” set of top k answers. In order to compute the latter we had to compute the exact tuple probabilities,
which is intractable. For that we used the approximate values returned by the simulation algorithm with very low
settings for ε and δ: ε = 0.001 and δ = 0.01.

6.1 Case Studies

In an empirical study we modeled imprecisions in three application domains. The first integrates the IMDB
movie database with reviews from Amazon, as described in a simplified form in Sec. 1.1, and the sources of
imprecisions are fuzzy object matches (for titles, actors, and directors), and the confidence in the amazon reviews
(“how many people found this review useful”). The second application integrates IMDB with reviews collected from
a USENET site4. These reviews were in free text and we had to use information extraction techniques to retrieve
for each review (a) the movie and (b) the rating. The imprecisions here were generated by information extraction
tools. In the third application we used human activity recognition data obtained from body-worn sensors [15]. The
data was first collected from eight different sensors (accelerometer, audio, IR/visible light, high-frequency light,
barometric pressure, humidity, temperature, and compass) in a shoulder mounted multi-sensor board, collected at a
rate of 4 per second, then classified into into N = 10 classes of human activity A1, A2, . . . , AN , one for each subject
and each time unit. The classes where: riding elevator up or down, driving car, riding bicycle, walking stairs up
or down, jogging, walking, standing, sitting. The imprecisions here come from the classification procedure, which
results in probability distribution on the N activities.

Fig. 7 shows brief summaries of the probabilistic data in each of these applications. Each required between two
and four base probabilistic tables, and between one to three SQL views for complex probabilistic correlations. In
addition to the probabilistic data IMDB had some large deterministic tables (over 400k movies, 850k actors, and
3M casts, not shown in the figure), which are part of the query processor’s input in the experiments below, hence
they are important for our evaluation.

6.2 Query Performance

We report below measurements only from the first data set (IMDB-Amazon integration), which was the largest
and richest. The processor’s performance was mostly affected by two query parameters: the number of groups
(denoted n in Sec. 3) and the average size of each group. In additional experiments (not shown) we noticed that
the performance was less affected by the number of probabilistic tables in the query (m in Sec. 3), which roughly
corresponds to the number of sources of evidence in the imprecise data.

By choosing each parameter to be small (S) or large (L) we obtained four classes of queries denote SS, SL, LS,
and LL respectively; we chose one query form each class, and show it in Fig. 8. The queries are:

SS In which years did Anthony Hopkins appear in a highly rated movie? (Our system returns the top answer
2001, the year he was in Hannibal)

SL Find all actors who were in Pulp Fiction who were in two very bad movies in the five years before Pulp Fiction.
(Top 2 Answers: Samuel L Jackson and Christopher Walken)

4ftp://ftp.uu.net/usenet/rec.arts.movies.reviews/
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Figure 9. Experimental Evaluation

LS Find all directors who had a low rated movie between 1980 and 1989. (Top 2 Answers: Richard C. Sarafian
for Gangster Wars and Tim King for Final Run)

LL Find all directors who had a low rated drama and a high rated comedy less than five years apart. (Top Answer:
Woody Allen)

Unless otherwise stated, the confidence and precision parameters were ε = .01, δ = .01, and the multisimulation
algorithm run was MS RankK (Sec. 3.2), which finds the top k and sorts them.

Comparison with Other Methods The state of the art in query evaluation on probabilistic databases is to
either compute each query answer exactly, using a complete Monte Carlo simulation (we call this method naive
(N)), or to approximate the probabilities using some strategies [14] by ignoring their correlations. The first results
in much larger running times than multisimulation (MS): see Fig. 9 (a) (note the logarithmic scale): the naive
method timed out for the LS and LL queries. The approximation method is much faster than MS, but results in
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lower precision/recall, due to the fact that it ignores correlations between imprecisions: this is shown in Fig. 9
(b). Note that, unlike a Monte Carlo simulation, where precision and recall can be improved by running longer,
there is no room for further improvement in the approximate method. Note that one of the queries (LS) flattened
at around 60% precision/recall. The queries that reached 100% did so only when k reached the total number of
groups: even then, the answers are much worse then it looks since their order is mostly wrong. This clearly shows
that one cannot ignore correlations when modeling imprecisions in data.

Analysis of Multisimulation The main idea of the multisimulation algorithm is that it tries to spend simu-
lation steps on only the top k buckets. We tested experimentally how the total number of simulation steps varies
with k, and in which buckets the simulation steps are spent. We show here the results for SS. Fig. 9 (c) shows
the total number of simulation steps as a function of k, both for the TopK algorithm (which only finds the top k
set without sorting it) and for the RankK algorithm (which finds and sorts the top k set). First, the graph clearly
shows that RankK benefits from low values of k: the number increases linearly with k. Second, it shows that, for
TopK, the number of steps is essentially independent on k. This is because most simulation steps are spent at the
separation line between the top k and the rest. A deeper views is given by the graph in Fig. 9 (d), which shows
for each group (bucket) how many simulation steps were spent, for k = 1, 5, 10, 25, and 50. For example, when
k = 1 most simulation steps are spent in buckets 1 to 5 (the highest in the order of the probability). The graph
illustrates two interesting things: that RankK correctly concentrates most simulation steps on the top k buckets,
and that, once k increases beyond a given bucket’s number, the number of simulation steps for that bucket does
not further increase. The spikes in both graphs correspond to clusters of probabilities, where MS had to spend
more simulation steps to separate them. Fig. 9 (e) shows the effect of k on the measured running time of each
query. As expected, the running time scales almost linearly in k. That is, the fewer answer the user requests, the
faster they can be retrieved.

Effectiveness of the Optimizations We tested both optimizations: the semijoin pruning and safe query
rewriting. The semijoin pruning was always effective for the queries with a large number of buckets (LS, LL), and
harmless for the other two. We performed the pruning in the middleware, and the additional cost to the total
running time was negligible. The safe-plan rewriting (SP) is more interesting to study, since it is highly non-trivial.
Fig. 9 (a) shows significant improvements (factors of 3 to 4) in the running times when the buckets are large (SL,
LL), and modest improvements in the other cases. The query time in the engine differed, since now the queries
issued are different: in one case (SL) the engine time was larger. Fig. 8 shows how the SP optimization affects the
average group size: this explains the better running times.

Sensitivity to Parameters Finally, we tested the system’s sensitivity to the parameters δ and ε (see Sec. 3.2).
Recall that the theoretical running time is O(1/ε2) and O(log(1/(nδ)). Fig. 9 (f) shows both the precision/recall
and the total running time as a function of 1−ε, for two queries: LL and LS; k = 20, δ = 0.01, and SP is turned off.
The running time are normalized to that of our golden standard, 1−ε = 0.99. As 1−ε increases, the precision/recall
quickly approaches the upper values, while the running time increases too, first slowly, then dramatically. There
is a price to pay for very high precision/recall (which is what we did in all the other experiments). However,
there is some room to tune 1− ε: around 0.9 both queries have a precision/recall of 90%-100% while the running
time is significantly less than the golden standard. The similar graphs for δ differ, and is much more boring:
the precisions/recall reaches 1 very fast, while the running time is almost independent on δ. (The graphs look
almost like two horizontal lines.) We can choose δ in a wide range without degrading either precision/recall or
performance.

7 Conclusion

In this paper we described a method for answering top-k queries on probabilistic databases, with applications
to imprecisions in data. We have proven our technique to be near optimal, and have validated it experimentally.
Two optimization are describe that further improve performance.
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8 Appendix A

The high level goal of this section is to establish that after a negligible number of steps with respect to the
optimal, the progress assumption holds. The result contained here, allows us to show that with extremely high
probability our algorithm takes 2(OPT + o(OPT )) steps, thus achieving our stated competitive ratio of 2.

Progress holds when our estimator jumps a smaller distance than the difference in our bounds. We will see that
with high probability our estimator jumps O( 1

n ) (corrolary 8.3) even after a relatively large number of steps. If we
take nα simulation steps, the difference in our confidence bounds are like nα−3/2 (lemma 8.1), thus progress holds
so long as the following equation holds

1
n

< nα−3/2 iff 1 < nα−1/2 (6)

This tells us, if α > 1
2 with high probability progress holds.

Remark 8.1. As a technical aside, we do not assume anything about the underlying distribution of true probabili-
ties, thus keeping our competitive result free of distributional assumptions. Specifically, in what follows, all random
choices are on the results of the experiment with the underlying probabilities chosen adversarially.

We first introduce some notation and define our random variables, an estimation lemma and prove our main
result.

8.1 Notation and Random Variables

We let n be the number of iterations on the current interval, and consider for a fixed δ what is the probability
that progress is violated after we take n0 steps. We denote the (fixed) true probability p.
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Interval Size Function Let f(n, δ) be the bounding function,

f(n, δ) =
2m√

n
log

2
δ

Random Variables We have two main random variables, ρ(n) and X(n0). ρ(n) represents the value of our
estimator after n draws. X(n0) represents the value of n0 random draws after the n. We observe that all though
we have described them as sequential, they are actually independent random variables because they are sums of
independent trials. We summarize the properties of these random variables below.

r.v. α E[α] As Sums of Indicators
ρ(n) p 1

n

∑n0
i=1 yi

X(n0) n0p
∑n

j=1 xj

Notation An obvious extension is ρ(n+n0), the estimate after n+n0 steps. This random variable can be written
in terms of the other two (independent) rvs as,

ρ(n + n0) =
ρ(n)∗n + X(n0)

n + n0
(7)

And the following decompositions are helpful later

ρ(n + n0)− ρ(n) =
X(n0)− ρ(n)n0

n + n0
(8)

and,

ρ(n)− ρ(n + n0) =
ρ(n)n0 −X(n0)

n + n0
(9)

Progress Conditions Progress is violated when either of two conditions are met

1. ρ(n) < ρ(n + n0) and
ρ(n) + f(n, δ) < ρ(n + n0) + f(n + n0, δ

′)

2. ρ(n) > ρ(n + n0) and
ρ(n)− f(n, δ) > ρ(n + n0)− f(n + n0, δ

′)

8.2 How the bounds shrink

Lemma 8.1. Let n0 = nα and β be a constant such that β > 1. Then the following holds,

1√
n
− 1√

n + n0
∈ Θ(nα−3/2) (10)

Proof. We apply Taylor’s theorem (with remainder) in the form f(x) = f(y) + f ′(y)(x− y) + f ′′(c)(x− y)2/2 with
c ∈ [x, y] on f = 1√

n
= n−1/2 and x = n, y = n + n0.

n−1/2 = (n + n0)−1/2 + n0(n + n0)−3/2 + (c)−5/2n0
2

2

n−1/2 − (n + nα)−1/2 = nα−3/2 + O(n2α−5/2)
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8.3 Chernoff Version of Bounds

Our technical trick is to exponentiate the bounds, i.e. (etX) and then apply a markov inequality. We then
optimize our choice of t to lower the probability.

P[Progress is violated](n, n0, δ) ≤ P[(f(n, δ)− f(n + n0, δ)) < (ρ(n + n0)− ρ(n))] +
P[(f(n, δ)− f(n + n0, δ)) < (ρ(n)− ρ(n + n0))] Union Bound

≤ 2P[−et(f(n,δ)−f(n+n0,δ)) < et(ρ(n+n0)−ρ(n))2 ] Justified below
≤ 2E[et(ρ(n+n0)−ρ(n))]e−t(f(n,δ)−f(n+n0,δ)) Markov after et

Our job is now to select a value of t that minimizes this expression.

8.3.1 The Expectation term

We prove the following lemma, which shows that the terms we wish to control are infact O(1). In other words, for
even a value of t << n we have that the likely error is bounded.

Lemma 8.2. If t << n + n0 then E[et(ρ(n+n0)−ρ(n))] and E[et(ρ(n)−ρ(n+n0))] are both O(1).

Proof. We do the calculation for E[et(ρ(n+n0)−ρ(n))],

E[et(ρ(n+n0)−ρ(n))] = E[et(
X(n0)
n+n0

−n0ρ(n)
n+n0

)] Decomposition in eq. 8

= E[e
tX(n0)
n+n0 ]E[e−

tn0ρ(n)
n+n0 ] independence of X(n0), ρ(n)

Thus we only need toestablish that if t << n + n0 then

1. E[e
tX(n0)
n+n0 ] ∈ O(1)

2. E[e
tn0ρ(n)

n+n0 ] ∈ O(1)

First term: E[e
tX(n0)
n+n0 ]

E[e
tX(n0)
n+n0 ] = E[e

Pn0
i=1

txi
n+n0 ] Definition of X(n0)

=
∏n0

i=1 E[e
txi

n+n0 ] independence of {xi}

=
∏n0

i=1(e
t

n+n0 p + 1− p) Expectation

=
∏n0

i=1((e
t

n+n0 − 1)p + 1) factoring p

<
∏n0

i=1 ee
t

n+n0 −1p 1 + x < ex

= en0p(e
t

n+n0 −1) exp rules

We observe that for t << n + n0, then this term goes to e0 = 1 as desired.

Second Term: E[e
tn0ρ(n)

n+n0 ] We deal with the second expectation term.

E[eρ(n) t
(n+n0) ] = E[e

Pn
i=1 yi

t
n(n+n0) ]

= exp(np(e
t

n(n+n0) − 1)) Same argument

Now, we observe that for t << n(n + n0) this term will also go to 1.
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Corollary 8.3. Let τ > 0. If t << n + n0 then with high probability

ρ(n + n0)− ρ(n) ≤ n−1+τ

Proof. We know from above that E[et(ρ(n+n0)−ρ(n))] ∈ O(1) for all t << n + n0 thus choose t = n1−τ/2, using a
markov bound we have

P[ρ(n + n0)− ρ(n) ≤ n−1+τ ] ≤ E[en1−τ/2(ρ(n+n0)−ρ(n))]e−n1−τ/2n−1+τ

= O(e−nτ/2
)

8.3.2 The Denominator

Lemma 8.4. For any choice of t,

e−t(f(n,δ)−f(n+n0,δ)) ≤ e2tm log 2
δ nα−3/2

Proof.

e−t(f(n,δ)−f(n+n0,δ)) = e2tm log 2
δ (n−1/2−(n+n0)

−1/2)

≤ e2mt log 2
δ nα−3/2

Lemma 8.1

8.3.3 The Punchline

Combining lemma 8.4 and 8.2, we have

t << n + n0 =⇒ P[Progress is violated](n, n0, δ) ≤ 2e2mt log 2
δ nα−3/2

We take t = n0 = nα for α < 1, this satisfies t << n + n0 and substitution yields,

P[Progress is violated](n, n0, δ) ≤ 2e2m log 2
δ n2α−3/2

If we take t = nα = 3
4 + α′, for α′ ∈ [0, 1

4 ) then our probability simplifies to:

P[violation](n, α′, δ) ≤ 2e−2m log 2
δ nα′

(11)

Since this is exponentially small probability, the number and variance of errors are exponentially small. Thus
by applying a Chebyshev inequality we can conclude with exponentially high probability there are no errors after
nα steps from any fixed n.

Theorem 8.5. The probability that progres holds after some negligble number of steps tends to 1 exponentially
quickly.

Remark 8.2. Also as long as α < 1, our optimality ratio is preserved.
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