
Adding Structure to Unstructured Data

Peter Buneman 1 and Susan Davidson 1 and Mary Fernandez 2 and Dan Suciu 2

1 University of Pennsylvania, USA (pe te r , susan}Qcis.upsnn, edu
2 AT&T Labs -- Research, USA (ruff, suciu}@research, art. tom

A b s t r a c t . We develop a new schema for unstructured data. Traditional
schemas resemble the type systems of programming languages. For un-
structured data, however, the underlying type may be much less con-
strained and hence an alternative way of expressing constraints on the
data is needed. Here, we propose that both data and schema be repre-
sented as edge-labeled graphs. We develop notions of conformance be-
tween a graph database and a graph schema and show that there is a
natural and ei:iiciently computable ordering on graph schemas. We then
examine certain subclasses of schemas and show that schemas are closed
under query applications. Finally, we discuss how they may be used in
query decomposition and optimization.

1 I n t r o d u c t i o n

The ability to represent and query data with little or no apparent structure arises
in several areas: biological databases, database integration, and query systems for
the World-Wide Web[PGMW95, TMD92, BDHS96a, MMM96, QRS+95, KS95,
CM90]. The general approach is to represent data as a labeled graph. Data values
and schema information, such as field and relation names, are kept in one data
structure, blurring the distinction between schema and instance.

Although these models merge schema and data, distinguishing between them
is important , because schemas are useful for query decomposition and optimiza-
tion and for describing a database's structure to its users. The biological database
system ACeDB [TMD92] allows flexible representation of data, but also has a
schema-definition language that limits the type and number of edges stored
in a database. The OEM [PGMW95] model supports database integration by
providing a structure in which most traditional forms of data (relational, object-
oriented, etc.) can be modeled. Even the World-Wide Web, which appears to be
completely unstructured, contains structured subgraphs. Fig. 1 depicts a frag-
ment of the web site h t t p : / / ~ r u ~ . u c s d , edu, in which pages connecting schools,
departments, and people are structured. Queries applied to this graph's link
structure can benefit from structural information, for example, by knowing there
exists at most one department on any path from the root to a leaf and that every
paper is reachable from a department.

We describe a new notion of schema appropriate for an edge-labeled graph
model of data. We use this model to formulate, optimize, and decompose queries
for unstructured data [BDS95, BDHS96a, Suc96]. Informally, a database is an
edge-labeled graph, and a schema is a graph whose edges are labeled with for-
mulas. A database DB conforms to a schema S if there is a correspondence
between the edges in DB and S, such that whenever there is an edge labeled
a in DB, there is a corresponding edge labeled with predicate p in S such that

337

www.cs.ucsd.edu

r $

Fig. 1. A fragment of h t t p : / / u v w , ucsd . edu.

p(a) holds. This notion of conformance is a generalization of similarity [HHK95].
We investigate the properties of such schemas, and show that there is a natural
subsumption ordering on schemas - a generalization of similarity. We then inves-
tigate a "deterministic" subclass of schemas and argue that it is appropriate to
have deterministic schemas although data may be "nondeterministic". Finally,
we examine queries on a database with a known schema and consider when we
can compute a schema for the result of the query. We also discuss how schemas
can improve the optimization and decomposition of queries in UnQL [BDHS96a].

2 B a s i c D e f i n i t i o n s

Let/4 be the universe of all constants (/4 = IntUStringUBoolU...) . We adopt the
data model of [BDHS96a], where a graph database is a rooted graph with edge
labels in/4. Formally, D B = (V, E, vo), where V is a set of nodes, E C V x/4 x V,
and v0 E V is a distinguished root. Fig. 1 is an example of a graph database.
This model is powerful enough to encode relational databases, as illustrated in
Fig. 2(a), which encodes a relation R(A : Int, B : Int, C : String), but flexible
enough to represent unstructured data, like Fig. 2(b) and (c). Sets, records, and
variant nodes are equivalent in this model. Graphs may have arbi t rary cycles
and sharing. Two graphs are considered equal if they are bisimilar [BDHS96b].
Briefly, D B and DB t are bisimilar if there exists a binary relation ,~, from the
nodes of D B to those of DB' such that (1) v0 ,~, v~) where Vo,V~ are the two
roots, and (2) whenever u ,~, u ~, then for every u ~ v in DB, there exists u ~ --~ v ~
in DB ~ such that v ,~ v ~, and for every u ~ --~ v ~ in D B ~, there exists u --~ v in
D B such that v ~ v ~.

In earlier work [BDHS96a], we introduced a notation for specifying graphs,
e.g., the tree database in Fig. 2(c) is written as {tup =~ {A, {D ::~ {3}}}}. Also,
we defined a union operation on two graph databases in which their two roots
are collapsed (Fig. 3(a)). For example, in Fig. 3(b) DB1 = {a ~ {b}, c}, DB2 =
{a =.~ {d}}, and DB1 U DB2 = {a =~ {b}, c, a ~ {d}}.

338

(a) (b) (c)

Fig. 2. Three examples of graph databases.

(a) (b)

DB1 U D ~

Fig. 3. Union of graph databases.

To define graph schema, consider a set of base predicates over/4, P1, P2,. . . ,
such that the first order theory T generated by/4 (i.e. the first order sentences
true in /4) is decidable. A unary formula is a formula with at most one free
variable.

Definition 1. A graph schema is a rooted, labeled graph, in which the edges
are labeled with unary formulas.

Although our results apply to every decidable theory, we use theories gen-
erated by unary predicates, with equality and with names for all constants in
our universe. Typical predicates include Int(x), String(x), Nat(x), and Bool(x),
which denote x E Int, x E String, x E Nat, and x E Boo1, and user-defined
unary predicates, P(x). The theory has an equality operator, so we have predi-
cates such as x = 5 and x = "abcdq Such a theory is decidable, because it admits
quantifier elimination: e.g. 3y.(Int(x) A Int(y) A x ¢ y) is equivalent to Int(x).

Fig. 4 (a) depicts a graph schema S. By convention, we drop the free variable
from unary formulas which are boolean combinations of unary predicates, thus
writing A and IntV String instead of x = A and Int(x) V String(x). Intuitively, a
graph schema captures some knowledge about the structure of a graph database.
In particular, the graph schema S says that a graph database that conforms
to S has only tup-edges emerging from the root, possibly followed by A, B,
or C edges, and these possibly followed by integers or strings respectively. The
graph database encoding a relational database in Fig. 2(a) conforms to this graph
schema, but the graph in Fig. 2(c) does not. The database in Fig. 2(b) also
conforms to this schema, although it does not encode any relational database.

In schemas (c), (d), (e), (f) in Fig. 4, isnept(x) and isPaper(x) are user-
defined predicates testing whether x is a string denoting a department (e.g.,
"Computer Science Department" or "Electrical Engineering Department") or a
paper. Schema (d) says that there is at most one department on every path

339

Int String
(a)

isDept

not(i~
(d)

(b) not(J~

(e)

• n°t(i~dPt)
(//not(lsPaper) ~ pt)

m fsDep~ ~ IsDept
.ot~ ,P,q,~r) ~ \

f "N~ not(isDept) f . , ,"~. ,

net(isPaper)
(c)

~ t Dept) (lsPaper)

pt)
(f)

Fig. 4. Six examples of graph schema.

starting at the root, while that in (e) says that no paper edge may occur before
a department edge. The database in Fig. 1 conforms to both these schemas.

D e f i n i t i o n 2. A database D B conforms to a graph schema S, D B ~ S, if there
exists a simulation from D B to S, i.e. a binary relation ~ from the nodes of D B
to those of S satisfying: (1) the root nodes of D B and S are in the relation _~,
(2) whenever u ~ u ~ and u -~ v is an edge labeled a in D B , then there exists

some edge u ~ ~ v ° in S such that p(a) is true and v ~ v *.

A graph schema cannot enforce the presence of some label. This is consistent
with the notion of schema in ACeDB [TMD92]. In particular, the empty database
(one node, no edges) conforms to any graph schema S, i.e., 0 -~ S. A graph
schema cannot model variants, nor can it prevent a node from having several
outgoing edges with the same label, as occurs in Fig. 2(b). Finally, any database
D B can be viewed as a schema, by replacing every label a with the unary formula
x = a, which gives us a notion of simulation between databases, D B _~ D B ~.

In keeping with our view that two graphs are considered equal if they are
bisimilar, we can show that if D B ~ S and D B and D B ' are bisimilar, then
D B ~ ~ S. However, note that D B - ~ D B ~ and D B ~ ~ D B does not necessarily
imply that D B , D B ~ are bisimilar.

Graph schemas can be viewed as infinite databases. For example, we view

an edge u ._~t v in S, as representing infinitely many edges, u -~ v, u -~ v, u -~
v, We call the expansion of S, denoted S ~ , the (possibly infinite) database
obtained from replicating each edge in S once for every constant in the universe

340

U satisfying the unary formula on that edge. See Fig. 5 for an example. If any of
the schema edges is labeled with the formula fa/se, that edge disappears in S °°.

Nat A Nat

0 0

Fig. 5. A graph schema S and its infinite expansion S °°.

One can easily check that for any database DB and graph schema S, DB ~ S
iff DB ~ S °°. The latter relation is a simulation between two databases, one of
which may be infinite.

3 C o m p l e x i t i e s

Palge and Tarjan [PT87] give an O(m log n) algorithm for the relational coarsest
partition problem, which computes a bisimulation relation on a graph, where
n is the number of nodes and m the number of edges. The algorithm tests
whether two rooted graphs G1 and G2 are bisimilar: take their disjoint union
G, compute a bisimulation ,~ on G, then test whether the two roots of G1 and
G2 are in ~. Although bisimulation and simulation are related, they require
different algorithms. Henzinger, Henzinger, and Kopke [HHK95] have recently
found an O(mn) time algorithm to compute the simulation between two graphs
with labeled nodes.

Neither algorithm applies directly to our framework, because they asso-
ciate labels with nodes, not edges. We can reduce the problem of finding a
(bi)simulation of two edge-labeled graphs with a total of n nodes and m edges
to that of finding a (bi)simulation between two node-labeled graphs with a to-
tal of m + n nodes and 2m edges. We split each labeled edge x ~ y into two
unlabeled edges x ~ z ~ y, in which z is a new node labeled a, and we label
all other nodes with a new, unique label. Finally, we compute a (bi)simulation
for the new graphs, in time O(2mlog(m + n)) = O(mlogm) for bisimulation,
or O((m + n)2m) = O(m 2) for simulation. We may assume m > n, because the
graphs G1, G2 are connected, but unlike in [HHK95], we no longer necessarily
have m < n 2. This still does not allow us to test DB ~ S, because when we
expand S into a database we get an infinite graph. We can, however, adapt the
algorithm in [HHK95] to get:

P ropos i t ion 3. Suppose one can test validity of sentences of the theory T in
time t. Then there exists an algorithm for checking whether DB ~ S that runs
in time O(m2t). Here m is the total number of edges in DB and S, which are
each assumed to be connected.

4 E x p r e s s i v e n e s s o f g r a p h s c h e m a s

Graph schemas differ from relational or object-oriented schemas. A relational
database has only one schema. A graph database, however, may conform to

341

several graph schemas such as those in Fig. 4 (d) and (e). Moreover, there exists
a schema ST (Fig. 4 (b)) to which all graph databases conform. Since graph
schemas are meant to capture partial information about the structure of data
with the purpose of optimizing queries, we could store multiple graph schemas
for the same data and offer multiple "hints" to a query optimizer.

The relationship between graph database and graph schemas raises several
questions. First, given two graph schemas S and S I, how do we know if S says
more about some database than S~? How do we know that graph schemas S
and S * are "equivalent", i.e. DB ~ S iff DB ~ S ~, for any DB? For example,
the graph schema in Fig. 4(f) captures more information about a database than

either schema in (d) or (e). Formally, if IS] ~ f {DB [DB -~ S}, then we want
to check whether IS] C IS'] and IS] = IS']. We show that both IS] C IS'] and
IS] = IS 1 can be checked in polynomial time.

Second, given two graph schemas S and S ~, which express different con-
straints on a database, can we describe with a single graph schema S" their com-
bined constraints ? We want some graph schema S" such that DB ~ S A D B ~ S ~
iff DB -~ S ' . We show that S" always exists. For example, when S, S ~ are those
in Fig. 4 (d), (e), then S" is the schema in (f).

Last, when DB 2~ S, what "fragment" DBo of DB does conform to S? This
question is important if we wish to use graph schema as data guides [Abi97].
Assume we optimize queries based on the assumption that the Web site in Fig. 1
follows schema S in Fig. 4 (d) as a guide. Since the schema does not enforce
conformance it is unclear what the optimized query means. We show here that
for any database DB and schema S there exists a canonical "fragment" DBo of
DB that conforms to S. Moreover, whenever DB .~ S, then DBo is DB. We can
now state what we expect from an optimizer. Given a query Q and schema S, we
expect a correct optimizer to produce an optimized query Qopt such that for any
database DB, Qopt(DB) = Q(DBo). This implies that Qopt(DB) = Q(DB)
whenever D B _~ S.

4.1 Subsumption of graph schemas

We define schema subsumption and equivalence as follows.

De f in i t i on4 . Given two graph schemas S ,S ~ we say that S subsumes S ~, in
notation S ~ S ~, if there exists a binary relation ~ between the nodes of S and
S' such that: (1) v0 ~ v~, where v0, v~ are the roots of S, S', (2) whenever u ~ u',
for every labeled edge u --~ v in S and every a E U s.t. 1/4 ~ p(a), there exists an

edge u' ~ v' in S' s.t. U ~ p'(a) and v :~ v'. S and S' are equivalent if S Z~ S'
and S I _~ S.

The subsumption relation, S ~ S I, naturally extends the simulation relation
between databases. Recall that a graph schema S represents its possibly infinite
expansion, S °°, i.e., an edge x ~ y represents infinitely many edges, one for
each a for which U ~ p(a). Each such edge may be simulated in S I by some

unary formula. First, we choose a E ///, then decide which edge x * -~ y~ in
S ~ will "mimic" the edge x ~ y in S. For example, let S = {Int V String
{5 D , S' = {Int ~ {Int}, String =~ {Int}}, then S ~ S', because Va e U for which
Int(a) V String(a) there is a corresponding edge in S *.

342

Proposition h. S "< S' iff S ~ ~ S '°°.
between (possibly infinite) databases.

The latter is the simulation relation

In particular, a database DB conforms to a graph schema S, DB ~ S, iff
DB when viewed as a graph schema subsumes S, for which we use the same
notation D B _~ S.

We now determine whether S _< S *. From [HHK95], this problem is decidable.
Moreover, our algorithm in Fig. 6 checks whether S _~ S ~ in polynomial time.

Let R ({(~,~') I~ e nodes(S),u' • nodes(S')}
while any change do

find (u, u') • R and edge u ~ v in S
such that H ~ 3a.p(a) A (Ai=l,k -upS(a))

where u' ~ v[, i = 1, k are all edges from u' in S'
R R -

r e t u r n ((vo,v~) • R)

Fig. 6. An algorithm checking whether S ~ S *.

P r o p o s i t i o n 6 . The algorithm in Fig. 6 checks in time m°(1)t whether S <_ S',
where t is the time needed to check validity of a sentence in the theory T.

We want to use this algorithm to check whether IS] c [Sq. Corollary 8,
which says that IS] c [Sq is equivalent to S ~ S *, allows us to do that. To prove
it, we observe that the subsumption relation ~ on graph schemas is preorder
(from Proposition 5), and this allows us to define the least upper bound of a
set of graph schemas, as in any preordered set. We review here the definition
for completeness. Let 79 be a set of graph schemas. S is a least upper bound
for D if (1) VS0 E D, So .~ S, and (2) when another graph schema S' has this
property, it follows that S -~ S '. We use LJ D for the set of least upper bounds of
79. Since ~ is a preorder rather than an order relation, U D may have more than
one element, but all are equivalent, i.e. S, S ~ E U 79 ~ S ~ S ~ and S ~ ~ S.
This justifies abbreviations like U 79 ~ s ' for 3S E U 79, s -~s ' . The following
theorem relates the order relation ~ to the meaning of a graph schema, IS]:

T h e o r e m 7. I] 79 = [51 then S E L] 79.

Before proving this result, we prove a corollary:

Corol la ry 8. S "~ S' iff IS] C [Sq. Hence S, S' are equivalent iff IS] = IS'].

Proof. Obviously, S ~ S' ~ IS] c [S']. The converse follows from Theorem 7,
because IS] c IS ~] implies U[S] ~ U[S'], hence S .~ S'.

Together, Corollary 8 and Proposition 6 imply that [S] c_ IS'] and [51 = [Sq
are decidable in polynomial time. The rest of this subsection contains the proof of

343

Theorem 7, in which we approximate graph databases with trees. A tree database
is a database whose graph is a finite tree. For a database DB, the approximations
of DB is the set appt (DB) = { T D B] T D B a TDB ~ DB}. When DB is
cycle-free, then appr (DB) is a finite set; when DB is a tree database itself,
then DB Eappr (DB). When DB has cycles, appr (DB) is infinite, and can be
thought of as the set of all finite unfoldings of DB. Approximations allow us to
infer simulations:

P r o p o s i t i o n 9 . appr (DB) C_appr (DB') i~ DB ~ DB'.

Proof. DB -~ DB ~ implies appr (DB) C_appr (DB~). For the converse, let u
be some node in DB, and DBu be the same graph database DB, but whose
root is u. More precisely, when DB = (V, E, vo) then DBu = (V, E,u). We
define the relation ~ from the nodes of DB to those of DB ~ to be u _~ u ~ iff appr
(DBu) C appr (DB~,). Obviously, vo -~ v~, where v0, v~ are the roots of DB, DB ~
respectively. Now we have to prove that ~ is a simulation. Assume u ~ u ~ and
let u ~ v be an edge in DB. The tree ({u, v}, {(u, a, v)}, u) (consisting of a
single edge u --~ v with root u) is in appr (DBu), hence it is in appr (DB~,),
so there exists at least one a-labeled edge leaving u ~. Let u ~ ~ v~ , . . . , u ~ ~ v~
be the set of all such edges, k > 1. We use the fact that this set is finite and

I show that there exists some i s.t. appr (DBv) C_appr (DB~v;), implying v ~ vi.
Suppose by contradiction that this is not true: then for each i = 1, k there exists
some tree database TDB~ Eappr (DBv) s.t. TDBi Cappr (DB*v~). Consider the

tree T D B = {a :-~ (TDB1 U . . . U TDBk)}. We have T D B Eappr (DBu), but
T D B Cappr (DB' u,) - a contradiction.

This proposition also holds for some infinite databases. Let us call some infinite
database, DB, label finite if for any node u and label a, the set of outgoing edges
u --~ is finite. From the proof of Proposition 9, we derive:

C o r o l l a r y 10. Let appr (DB) C appr (DB'), with DB, DB' possibly infinite
databases, but with DB ~ label-finite. Then DB _~ DB ~.

Example 1. Let DB = {a=*. {0, 1, 2 , . . . }} and DB' = {a=V.to, a=~t l , a=:~t2,. . .},
where tk = {0, 1 , . . . , k - 1, k + 1, k -4- 2 , . . .} . Then appr (DB) =appr (DB') but
DB ~ DB ~, proving that Corollary 10 fails when DB ~ is not label finite.

We now prove Theorem 7 using Proposition 9. We extend the notat ion appr
to graph schemas, i.e. appr (S) = { T D B i T D B ~ S, T D B is a tree d.b.} =appr
(S°°). Suppose S ~ satisfies VDB E T), DB ~ S~: we have to prove S ~ S ~. First
we show appr (S) C appr iS'): T D B -~ S ==*. T D B E l) ==*. T D B ~ S'
T D B Eappr (S~). Now we observe that S *°° is label-finite, hence Corollary 10
implies S °° ~ S ~c¢. Finally Proposition 5 implies S _~ S *.

4.2 GLB's and LUB's of graph schemas

Next, we show how to construct a schema S that expresses the combined con-
straints of two graph schemas $1 and $2. Given two schemas $1 and $2, we show
that there exists a schema S s.t. [51 = [$1] t3 [$2]. Take the nodes of S to be pairs

(Ul, U2), with ui a node in Si, i = 1, 2, and take edges to be (Ul, U2) plAT2 (•1, V2),

344

for any two edges ui ~ v~ in Si, i = 1, 2. One can show [51 = [$1] n [$2]. It fol-
lows that S is the greatest lower bound of $1 and $2, in notation $1 n $2. For
example, when $1, $2 are given by Fig. 4(d) and (e), then $1 M $2 is given by the
schema in (c) which is equivalent to that of if), assuming the predicates isDept
and isPaper are disjoint.

A similar fact does not hold for union or complement. Let us say that a se t /)
of databases is representable if it is of the form/) = IS] for some graph schema
S. Then it is easy to show that any representable se t /) is an ideal [Gun92], i.e.:
(1) /) is nonempty, (2) /) is downwards closed, i.e. D B ~ DB' and DB" E /)
implies D B E /), and (3) /) is directed, i.e. DBi , DB2 E /) implies 3DB E /)
s.t. DB1 ~ DB and DB2 ~ DB. It follows immediately that, if/)1 and/)2
are representable, then the complement of/)1 and/)1 U/)2 are, in general, not
representable. Let idl(/)) denote the ideal generated by the set /) , i.e. idl(/)) =
{ D B i U . . . U D B ~ I 3 D S ~ , . . . , D S ~ e /) , s.t. D S ~ D B ~ , i = l , k } . Then we
can prove that when /)1,/)2 are representable, so is idl(/)l U/)2)- For $1,$2
graph schemas representing/)1 and/)2 respectively, we define S to be their
union(Section 2). It follows that IS] = idl([S1] U [$2]) and that S is the least
upper bound of $1, $2, in notation $1 U $2.

4.3 F ragmen t s of da tabases

Finally, we address the problem of finding for some database DB and graph
schema S, a canonical "fragment" DBo of DB such that DBo ~ S. This is
important if we wish to use graph schemas as data guides [Abi97]. Instead of
insisting that a database DB strictly conforms to some schema S, we require
that there be a "large fragment" of DB which conforms to S. By "fragment" we
mean a database DBo s.t. DBo .~ DB. The name "fragment" is justified, because
whenever DBo ~ DB, there exists some graph D B t which is bisimilar to D B
(hence, D B and DB' denote the same data) of which DBo is a subgraph. E.g.
consider the graph schema S in Fig. 4 (a), and let D B = {tup=~ {A, D =~ {3}}}
be the database in Fig. 2(c). Then DBo = {tup ::~ {A}}.

We observe that for any DB, S, the empty database 0 Cone node, no edges)
is a fragment satisfying the requirement above, i.e. 0 ~ D B and 0 .~ S. This
is not the "canonical" fragment we want, because it is not the largest fragment

under the simulation relation ~. By taking DBo deJ D B n S we can prove:

Proposition 11. For any graph database D B and graph schema S, there exists
some database DBo s.t. (1) DBo _~ D B and DBo -~ S, and (2) for any other
database D B~ satisl~ying this property, D B~ ~ D Bo. Moreover D Bo can be com-
puted in PTIME, and if D B -~ S then DBo is bisimilar to DB. We call DBo
the canonical fragment of DB satis]ying S.

5 D e t e r m i n i s m

Nodes in a schema have the potential to classify nodes in a database. This
could be useful, for example, in a distributed environment, where we could use
a schema to describe how such a database is distributed.. For example, suppose
that the database DB in Fig. 1 is distributed on two sites, such that all nodes
before a department edge are located on site 1, while those after a department

345

edge are on site 2. We could describe this formally using the schema in Fig. 4(d),
which has two nodes u',v': database nodes conforming to u' will be on site 1,
while those conforming to v ~ on site 2. However, the schema in Fig. l(e) does not
classify the nodes uniquely, because whenever we encounter an edge u ~ v in

DB such that isDept(a), we may either follow the edge u ~ isDe~t v, or the edge

u, not(:_~aper)'~-- u~ in the schema. We say that the first schema is deterministic,
while the second one is not.

In object-based graph database models, determinism is natural. For example,
the semantics of ACeDB trees imposes that instance databases be determinis-
tic, and in the Tsimmis data model, each node has a unique object identifier
making the instance database deterministic. In our graph model, however, a de-
terministic representation of relational databases requires adding unnecessary
object identifiers to sets. For example, in order to make the tree representation
of a relational database in Fig. 2(a) deterministic we would use a different object
identifier for every tup edge, say tupl, tup2, tup3. Determinism for graph schemas
in any model, however, is natural. Note that the tree representation of the rela-
tional graph schema in Fig. 4 (a) for the database of Fig. 2(a) is deterministic.

We show that certain nondeterministic schemas are not equivalent to any de-
terministic ones. A natural question arises then: given a nondeterministic schema
S, how can we best approximate it with a deterministic schema Sd ? We show
here that a canonical Sd always exists.

We call an edge-labeled graph G deterministic if for every node x and label
a, there exists at most one edge labeled a going out of x. This definition is not
invariant under bisimulation 3. A database DB is deterministic if there exists
some deterministic graph bisimilar to it. Similarly, we call a graph schema S
deterministic iff S °° is deterministic. The following is a sufficient condition for
checking if a graph schema S is deterministic:

P r o p o s i t i o n l 2 . Let S be a graph schema. S is deterministic if for any node u

and any two distinct edges u -+ v ,u ~ v', we have Lt ~ -~(3x.p(x) ^ f (x)) .

Deterministic graph schemas are important because of the following:

P r o p o s i t i o n 13. Let S be deterministic and T D B a tree database s.t. T D B _~
S~ Then T D B conforms to S "in a unique way". More precisely there exists a
function ~ from the nodes of T D B to those o r s s.t. for any simulation -~ from
T D B to S, and for every node u off T D B , u 5 ~(u).

This follows from the observation that nodes in a tree database are in 1-1
correspondence with sequences of labels, al . . . an. Such a sequence is mapped
uniquely into some node in S, because S is deterministic, and this defines the
function qo. qo(u) classifies nodes: u and v are in the same class iff ~(u) = qo(v).

Deterministic schemas are less "expressive" than nondeterministic ones. For
example, the nondeterministic graph schema S = {a ~ {b}, a ~ {c}} is not
equivalent to any deterministic graph schema, i.e. [S] # [Sd] for any deterministic
graph schema Sd. The "closest" we can get is the deterministic graph schema

a The tree {a} is deterministic and bisimilar to the tree {a, a}; but the latter is not
deterministic.

346

Sd = {a ~ {b, e}}. In general, for any nondeterministic graph schema S, there
exists a "closest" deterministic graph schema Sd. The latter is constructed in a
way reminiscent of the DFA equivalent to an NDFA:

Proposition 14. For any graph schema S, there exists some deterministic graph
schema Sd with the following properties: (1) S _~ Sd, (2) whenever S .~_ S* and
S ~ is deterministic then Sd _~ f t .

The proof is based on a standard powerset construction and is given in [BDFS96].
An interesting case is when S is a database (i.e. all unary formulas on its edges

are equalities with constants); then Sa is precisely the deterministic automata
obtained from S. For the example in which S = (a ~ (b),a ~ {c}}, we get
Sd • (a ~ {b, c}}.

In general, the number of nodes in Sd is exponential in that of S. But when
S is a tree database, then the number of nodes in Sd is less than or equal to
that of S [Per90, pp.7]. When we generalize to unary formulas, then the number
of nodes in Sd may be exponential, even when S is a tree. For example, let
S = (Pl,P2,. . . ,Pn}, then Sd : (r0 , r l , . . . ,r2--1}, where each ri = Vj=0,n--1 qJ,
with qj = pj or qj = -~pj, depending on whether the j ' s bit in the binary
representation of i is 1 or 0. Such arbitrary sets of unary formulas Pl, P2, . . . , Pn
rarely occur in practice, because the base predicates are either constants, or
taken from a list of disjoint predicates, like Int, String, Boo1, Nat, isDept. The
graph schemas in Figure 4 have this property. Then we can prove:

Proposition 15. Let S be a tree schema in which for every two distinct unary
formulas p(x),p'(x), either is a constant (i.e. of the form x = a), or they are
disjoint (i.e. II ~ -~3x.(p(x) A p'(x))). Then S d has at most as many nodes as
S, and can be computed in polynomial time.

6 G r a p h S c h e m a s a n d Q u e r i e s

In [BDHS96a], we propose UnQL, a language for querying and restructuring
graph databases. UnQL is compositional, has a simple select . . . where . . . con-
struct, supports flexible path expressions, and can express complex restructuring
of the graph database. Consider the simple UnQL query Q:

select {x ~ {x}} where \x <-- DB

Q takes a graph database of the form (al ~ t l , . . . , an :=~ tn} and returns the
graph database (a i ~ (a l } , . • • , an ~ (an)} , i.e., Q doubles each edge in the first
level of edges in DB.

Recall from Section 2 that graph schemas can be thought of as finite descrip-
tions of infinite sets of databases, i.e. S defines the set [S] = (D B [DB _~ S}. We
consider whether, given a schema S and an UnQL query Q, we can describe the
set (Q(DB) [DB _~ S} by a schema S *. This question is important for two rea-
sons. First, we use graph schemas in query optimization of UnQL. Since UnQL

is compositional, when we optimize a composed query Q(DB) d=ef Q2(Qi (DB))
whose input conforms to some graph schema, DB _~ S, we first optimize Qt
according to graph schema S, then optimize Q2 according to the graph schema

347

of the set (Qi(DB) I DB ~ S}, hence the need to compute the latter. Sec-

ond, UnQL queries can be used to define views, like V de f Q(DB). Given that
DB ~ S, we want to optimize queries against the view. This requires a graph
schema for the set {Q(DB) I DB ~ S}.

Given a graph schema S and a query Q, there is a natural way to compute
a graph schema Q(S), with the property: (,) VDB ~ S, Q(DB) ~ Q(S). Since
UnQL queries are just graph transformations, we can compute Q(S) much in the
same way in which we compute Q(DB). Where the construct is less obvious, we
take a conservative action. For example, for a subquery Q(DB) = {x ~ DB},
having a free variable x bound in a surrounding context, we define Q(S) to
be {true:=~S}, or if any predicate P(x) is known about the variable x (e.g. Q
occurs in the then branch of an if P(x) then . . . else . . . construct), then we take
Q(S) = {P ~ S}. This ensures that (.) holds, but Q(S) may not necessarily get
the tightest description of the set {Q(DB) I DB ~ S}.

We omit the full description of Q(S) from this abstract, but mention that
Q(S) can be computed in PTIME, and that it satisfies (*). But (,) can be
trivially satisfied by taking Q(S) = ST (Fig. 4 (b)), which is a maximal element
in the partial order L<. We would like to make the claim Q(S) = U{Q(DB) I
DB ~ s}S}: thus showing that Q(S) describes precisely the set T) de=f {Q(DB) I
DB L< Unfortunately, this does not hold. Worse, there are examples of simple
queries Q and graph schema S for which U D does not exist. Consider the graph
schema S = {Nat} and the UnQL query Q from above. This query doubles
every label in the database, e.g. on the database DB = {2, 4,5} Q returns
{2 =~ {2}, 4 =~ {4}, 5 ~ {5}}. Our method computes the graph schema S' = Q(S)
to be {Nat ~ {Nat}}, but this is not UT). The sequence of graph schemas
$i, 32, • • • where S, = {0 =~ {0}, 1 =~ {I},..., n =~ {n},p, ~ {Nat} }, with p, (x) =
(x # 0 A . . . A x # n A Nat(x)), forms an infinite, strictly descending chain of
graph schemas, each offering a better approximation of :D. In fact, we can prove
directly t h a t /) has no least upper bound.

Graph schemas cannot describe all sets of the form {Q(DB) I DB ~ S},
because they cannot impose equality constraints on edges in the database. We
can partially fix this by extending the notion of graph schema to allow equality
constraints between certain values on edges. Formally, we define an extended
graph schema with variables Z l , . . . , zn to be a rooted graph (V, E, vo), in which
the edges are labeled with formulas as explained below, and with n > 0 distin-
guished subgraphs, denoted Gzl,... , Gz.. Each subgraph Gz is called-the scope
of the variable z, and is given by (1) a set of nodes Vz C V, (2) a set of edges
Ez c E, s.t. for every edge u ~ v in Ez, both u and v are in Vz, (3) a set of
input nodes Iz C Vz, and (4) a set of output nodes Oz C Vz. We impose several
conditions on extended graph schemas: (1) For every edge u ~ v entering some
graph Gz (i.e. u ~ Vz and v 6 Vz), v is one of the inputs of Gz. (2) Similarly,
every edge u ~ v leaving some graph Gz exits from an output node, u 6 Oz.
(3) Each formula labeling some edge in the scope of k variables z l , . . . , zk may
have k + 1 free variables: z l , . . . , zk and a distinguished variable x as before. (4)
The scopes of variables follow traditional rules in programming languages: for
z ~ z', either Gz C Gz,, or Gz, C Gz, or Gz and Gz, are disjoint.

Graph schemas are particular cases of extended graph schemas with no vari-
ables (n = 0). As with graph schemas, an extended graph schema S can be
modeled by its infinite expansion S °°. Each graph Gz is replicated once for each
value z 6/4, and their input and output nodes are collapsed. Fig. 7 contains two

348

examples of extended graph schemas with one variable z. Iz has a single node
in both (a) and (b); Oz is empty in (a) and has one node in (b). The expansion
in (b) is incomplete: not(O) should be further expanded with all atoms a E H,
a # 0, etc. Unlike graph schemas, S °° may have infinitely many nodes. Some
care is needed when collapsing the input and output nodes. In a formal definition
presented elsewhere, we use e edges to define S ~ (see [BDHS96a] for a definition
of e edges).

Zf...,,' """~ \ .

Ca)

.....,.'

ba

iZ
i no

\

~d N~a~z)

°
, /

(b)
Fig. 7. Two examples of extended graph schemas and their expansions.

Since extended graph schemas are a more sophisticated way of specifying an
infinite graph, we can extend previous results for graph schemas. We can define
what it means for a database DB to conform to an extended graph schema S,
DB ~ S, and for an extended graph schema S to subsume some other extended
graph schema S', S -~ S', etc. From [HHK95], both DB -~ S and S -~ S' are
decidable. Unfortunat-ely, S c¢ is not generally label-finite, and Theore~n 7 fails
in general for extended graph schemas. For example, take S = {a ~ {Nat}}.
Then S °° = DB with DB from Example 1, and IS] =appr (DB). Take S' to be
the graph G = Gz = {u z=a__.~t(z) Nat(z)~xCz

v w} with Iz ~f ~ and Oz = O,
then S '~ = DB' of Example 1, and S' is an upperbound but S 2~ S'.
Intuitively, S' is better than S = {a ~ {Nat}} because it says that after each
a-edge, at least one natural number is missing. Using two variables zl, z2 we
can say that at least two natural numbers are missing, etc. In fact the set [~
does not have a least upper bound in the preordered set of extended schemas.
Fortunately, we can address this problem if we are restricted to deterministic
extended graph schemas. More precisely, we can prove the following theorem,
which is the most complex result of this paper. Here a positive UnQL query
is a query whose translation into UnCAL does not use the only non-monotone
operator in UnCAL, isempty (see [Suc96] for a more detailed discussion).

T h e o r e m 16. Let Q be a positive UnQL query. Then.for every (extended) graph
schema S there exists an extended graph schema Q(S), computable in P T I M E
such that: for every deterministic, extended graph schema S', if VDB ~ S =~
Q(DB) 5 S', then Q(S) ~ S'.

The proof appears in [BDFS96]. For the UnQL query Q at the beginning of this
section and schema S = (Nat}, Q(S) is the schema in Fig. 7 Ca).

349

7 C o n c l u s i o n s a n d F u t u r e W o r k

When querying unstructured data, the ability to use whatever structure is known
about the data can have significant impact on performance. Examples abound
in optimizations for generalized path expression (see [CACS94, CCM96], among
others). We have explored a new notion of a graph schema appropriate for edge-
labeled graph databases. Since the known structure of graph databases may be
weaker than that of a traditional database, we use unary formulas instead of con-
stants for edge labels. We describe how a graph database conforms to a schema
and observe that a graph database may conform to multiple schemas. Since there
is a natural ordering on graph schemas, it is possible to take the least upper
bound of a set of schemas and combine into a single schema all their constraints.
We then describe a "deterministic" subclass of schemas that uniquely classi-
fies nodes of (tree) databases. When optimizing queries for distributed graph
databases, node classification allows us to decompose and specialize the query
for a target site [Suc96].

In current work, we are using schemas for query optimization and query
decomposition. Consider the following UnQL query Q [Suc96], which selects all
papers in the Computer Science Department in Fig. 1:

select "Papers'.t where _*. "CS-Department"._.. "Papers'.t +- D B

Without any knowledge about the data's structure, one has to search the entire
database. We can exploit knowledge about the structure of the data in order
to prune the search. For example, if we know that the data conforms to the
the schema in Fig. 4(d), we can prune the search after every department edge
that is not a Computer Science Department. This can be described by another
query, Qopt. An interesting question is what happens if the database DB fails
to conform to the schema S, which is likely in unpredictable data sources like the
Web. As discussed in Subsection 4.3, one can still describe the precise semantics
of Qopt(DB), namely as Q(DBo), where DBo is the canonical fragment of DB
conforming to S (Subsection 4.3). Similarly, we plan to address query decom-
position. [Suc96] describes a query decomposition technique that ignores any
information about the structure of the data, or how it is distributed. Assuming
the database DB is distributed on two sites, the technique in [Suc96] poses three
different queries on each site. We plan to use deterministic schemas to describe
data in a distributed environment. For example, we could use the schema in
Fig. 4(d) to describe how the nodes in the database are located on the two sites
and reduce the queries posed at each site from three to one. Maximizing the
benefits of these techniques for query decomposition and optimization is an area
of future work.

The definition of a graph schema we have given is extremely general. For
example, it cannot constrain a graph to be an instance of a relation in the
sense that Fig. 2(a) describes a relation, because multiple edges with the same
attribute name are allowed in the graph instance. Furthermore, our schemas only
place outer bounds on what edges may emanate from a node. In future work,
we may consider a dual notion of schema that places inner bounds on edges
by requiring certain edges to exist. One could consider further constraints that
restrict the number of edges that emanate from a node, as is done in [TMD92]
to model variants.

350

References

[Abi97]
[BDFS96]

[BDHS96a]

[BDHS96b]

[BDS95]

[CACS94]

[CCM96]

[CM90]

[Gun92]

[HHK95]

[KS95]

[MMM96]

[Per90]

[PGMW95]

[PW87]

[QRS+95]

[Suc96]

[TMD92]

Serge Abiteboul. Querying semi-structured data. In ICDT, 1997.
Peter Buneman, Susan Davidson, Mary Fernandez, and Dan Suciu. Adding
structure to unstructured data. Technical Report MS-CIS-96-21, Univer-
sity of Pennsylvania, Computer and Information Science Department, 1996.
Peter Buneman, Susan Davidson, Gerd Hillehrand, and Dan Suciu. A
query language and optimization techniques for unstructured data. In
SIGMOD, 1996.
Peter Buneman, Susan Davidson, Gerd Hillehrand, and Dan Suciu. A
query language and optimization techniques for unstructured data. Tech-
nical Report 96-09, University of Pennsylvania, Computer and Information
Science Department, February 1996.
Peter Buneman, Susan Davidson, and Dan Suciu. Programming constructs
for unstructured data. In Proceedings of DBPL'95, Gubbio, Italy, Septem-
ber 1995.
V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl. From structured
documents to novel query facilities. In Richard Snodgrass and Marianne
Winslett, editors, Proceedings of 1994 ACM SIGMOD International Con-
ference on Management of Data, Minneapolis, Minnesota, May 1994.
V. Christophides, S. Cluet, and G. Moerkotte. Evaluating queries with
generalized path expressions. In Proceedings o/1996 ACM SIGMOD In.
ternational Conference on Management of Data, Montreal, Canada, June
1996.
M. P. Consens and A. O. Mendelzon. Graphlog: A visual formalism for
real life recursion. In Proc. ACM SIGACT-SIGMOD-SIGART Syrup. on
Principles of Database Sys., Nashville, TN, April 1990.
Carl A. Gunter. Semantics of Programming Languages: Structures and
Techniques. Foundations of Computing. MIT Press, 1992.
Monika Henzinger, Thomas Henzinger, and Peter Kopke. Computing sim-
ulations on finite and infinite graphs. In Proceedings of BOth Symposium
on Foundations of Computer Science, pages 453-462, 1995.
David Konopnicki and Oded Shmueli. Draft of W3QS: a query system for
the World-Wide Web. In Proc. of VLDB, 1995.
SuA. Mendelzon, G. Mihaila, and T. Milo. Querying the world wide web.
Manuscript, available from
http:/ / tm~.cs. toronto.edu/ georgem/WebSQL.html, 1996.
D. Perrin. Finite automata. In Formal Models and Semantics, volume B of
Handbook of Theoretical Computer Science, chapter 1, pages 1-57. Elsevier,
Amsterdam, 1990.
Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object exchange
across heterogeneous information sources. In IEEE International Confer-
ence on Data Engineering, March 1995.
Robert Paige and Robert Tarjan. Three partition refinement algorithms.
SlAM Journal of Computing, 16:973-988, 1987.
D. Quass, A. Rajaraman, Y. Sagiv, J. Ullman, and J. Widom. Querying
semistructure heterogeneous information. In International Conference on
Deductive and Object Oriented Databases, 1995.
Dan Suciu. Query decomposition for unstructured query languages. In
VLDB, September 1996.
J. Thierry-Mieg and R. Durbin. Syntactic Definitions for the ACEDB Data
Base Manager. Technical Report MRC-LMB xx.92, MRC Laboratory for
Molecular Biology, Cambridge,CB2 2QH, UK, 1992.

