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Problem formulation

In traditional MDPs the controller chooses actions u which in turn specify the
transition probabilities p (x0jx, u). We can obtain a linearly-solvable MDP
(LMDP) by allowing the controller to specify these probabilities directly:

x0 � u (�jx) controlled dynamics

x0 � p (�jx) passive dynamics

p (x0jx) = 0) u (x0jx) = 0 feasible control set U (x)

The immediate cost is in the form

` (x, u (�jx)) = q (x) + KL (u (�jx) jjp (�jx))

KL (u (�jx) jjp (�jx)) = ∑x0 u (x0jx) log u(x0 jx)
p(x0 jx) = Ex0�u(�jx)

h
log u(x0 jx)

p(x0 jx)

i
Thus the controller can impose any dynamics it wishes, however it pays a
price (KL divergence control cost) for pushing the system away from its
passive dynamics.
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Understanding the KL divergence cost
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Simplifying the Bellman equation (first exit)

v (x) = min
u

n
` (x, u) + Ex0�p(�jx,u)

�
v
�
x0
��o

= min
u(�jx)

�
q (x) + Ex0�u(�jx)

�
log

u (x0jx)
p (x0jx) + log

1
exp (�v (x0))

��
= min

u(�jx)

�
q (x) + Ex0�u(�jx)

�
log

u (x0)
p (x0jx) exp (�v (x0))

��
The last term is an unnormalized KL divergence...

Definitions

desirability function z (x) , exp (�v (x))

next-state expectation P [z] (x) , ∑x0 p (x0jx) z (x0)

v (x) = min
u(�jx)

�
q (x)� logP [z] (x) + KL

�
u (�jx)





p (�jx) z (�)
P [z] (x)

��
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Linear Bellman equation and optimal control law

KL (p1 (�) jjp2 (�)) achieves its global minimum of 0 iff p1 = p2, thus

Theorem (optimal control law)

u�
�
x0jx

�
=

p (x0jx) z (x0)
P [z] (x)

The Bellman equation becomes

v (x) = q (x)� logP [z] (x)
z (x) = exp (�q (x))P [z] (x)

which can be written more explicitly as

Theorem (linear Bellman equation)

z (x) =

(
exp (�q (x))∑x0 p (x0jx) z (x0) : x non-terminal

exp (�qT (x)) : x terminal
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Illustration

z(x’)

p(x’|x)
u*(x’|x) ~ p(x’|x) z(x’)

x’: sampled from u*(x’|x)x
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Summary of results

Let Q = diag (exp (�q)) and Pxy = p (yjx). Then we have

first exit z = exp (�q)P [z] z = QPz

finite horizon zk = exp (�qk)Pk [zk+1] zk = QkPkzk+1

average cost z = exp (c� q)P [z] λz = QPz

discounted cost z = exp (�q)P [zα] z = QPzα

In the first exit problem we can also write

zN = QNNPNN zN + b = (I�QNNPNN )
�1 b

b , QNNPNT exp (�qT )

whereN , T are the sets of non-terminal and terminal states respectively.

In the average cost problem λ = � log (c) is the principal eigenvalue.
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Stationary distribution under the optimal control law

Let µ (x) denote the stationary distribution under the optimal control law
u� (�jx) in the average cost problem. Then

µ
�
x0
�
= ∑x u�

�
x0jx

�
µ (x)

Recall that

u�
�
x0jx

�
=

p (x0jx) z (x0)
P [z] (x) =

p (x0jx) z (x0)
λ exp (q (x)) z (x)

Defining r (x) , µ (x) /z (x), we have

µ
�
x0
�
= ∑x

p (x0jx) z (x0)
λ exp (q (x)) z (x)

µ (x)

λr
�
x0
�
= ∑x exp (�q (x)) p

�
x0jx

�
r (x)

In vector notation this becomes

λr = (QP)T r

Thus z and r are the right and left principal eigenvectors of QP, and µ = z. � r
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Comparison to policy and value iteration
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Application to deterministic shortest paths

Given a graph and a set T of goal states, define the first-exit LMDP

p (x0jx) random walk on the graph

q (x) = ρ > 0 constant cost at non-terminal states

qT (x) = 0 zero cost at terminal states

For large ρ the optimal cost-to-go v(ρ) is dominated by the state costs, since
the KL divergence control costs are bounded. Thus we have

Theorem
The length of the shortest path from state x to a goal state is

lim
ρ!∞

v(ρ) (x)
ρ
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Internet example

Performance on the graph of Internet routers as of 2003 (data from caida.org)
There are 190914 nodes and 609066 undirected edges in the graph.
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Embedding of traditional MDPs
Given a traditional MDP with controls eu 2 eU (x), transition probabilitiesep (x0jx, eu) and costs è (x, eu), we can construct and LMDP such that the controls
corresponding to the MDPs transition probabilities have the same costs as in
the MDP. This is done by constructing p and q such that for 8x, eu 2 eU (x)

q (x) + KL (ep (�jx, eu) jjp (�jx)) = è (x, eu)
q (x)�∑x0 ep �x0jx, eu� log p

�
x0jx

�
= è (x, eu) + eh (x, eu)

where eh is the entropy of ep (�jx, eu).

The construction is done separately for
every x. Suppressing x, vectorizing over eu and defining s = � log p,

q1+ ePs = eb
exp (�s)T 1 = 1

eP and eb = è+ eh are known, q and s are unknown. Assuming eP is full rank,

y = eP�1eb, s = y� q1, q = � log
�

exp (�y)T 1
�
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Grid world example
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Machine repair example
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Continuous-time limit
Consider a continuous-state discrete-time LMDP where p(h) (x0jx) is the
h-step transition probability of some continuous-time stochastic process, and
z(h) (x) is the LMDP solution. The linear Bellman equation (first exit) is

z(h) (x) = exp (�hq (x))Ex0�p(h)(�jx)

h
z(h)

�
x0
�i

Let z = limh#0 z(h). The limit yields z (x) = z (x),

but we can rearrange as

limh#0
exp (hq (x))� 1

h
z(h) (x) = limh#0

Ex0�p(h)(�jx)

h
z(h) (x0)

i
� z(h) (x)

h

Recalling the definition of the generator L, we now have

q (x) z (x) = L [z] (x)

If the underlying process is an Ito diffusion, the generator is

L [z] (x) = a (x)T zx (x) +
1
2

trace (Σ (x) zxx (x))

Emo Todorov (UW) AMATH/CSE 579, Winter 2014 Winter 2014 15 / 26



Continuous-time limit
Consider a continuous-state discrete-time LMDP where p(h) (x0jx) is the
h-step transition probability of some continuous-time stochastic process, and
z(h) (x) is the LMDP solution. The linear Bellman equation (first exit) is

z(h) (x) = exp (�hq (x))Ex0�p(h)(�jx)

h
z(h)

�
x0
�i

Let z = limh#0 z(h). The limit yields z (x) = z (x), but we can rearrange as

limh#0
exp (hq (x))� 1

h
z(h) (x) = limh#0

Ex0�p(h)(�jx)

h
z(h) (x0)

i
� z(h) (x)

h

Recalling the definition of the generator L, we now have

q (x) z (x) = L [z] (x)

If the underlying process is an Ito diffusion, the generator is

L [z] (x) = a (x)T zx (x) +
1
2

trace (Σ (x) zxx (x))

Emo Todorov (UW) AMATH/CSE 579, Winter 2014 Winter 2014 15 / 26



Linearly-solvable controlled diffusions
Above z was defined as the continuous-time limit to LMDP solutions z(h).
But is z the solution to a continuous-time problem, and if so, what problem?

dx = (a (x) + B (x)u) dt+ C (x) dω

` (x, u) = q (x) +
1
2

uTR (x)u

Recall that for such problems we have u� = �R�1BTvx and

0 = q+ aTvx +
1
2

tr
�

CCTvxx

�
� 1

2
vTx BR�1BTvx

Define z (x) = exp (�v (x)) and write the PDE in terms of z:

vx = �
zx

z
, vxx = �

zxx

z
+

zxzTx
z2

0 = q� 1
z

�
aTzx +

1
2

tr
�

CCTzxx

�
+

1
2z

zTx BR�1BTzx �
1
2z

zTx CCTzx

�
Now if CCT = BR�1BT , we obtain the linear HJB equation qz = L [z].

Emo Todorov (UW) AMATH/CSE 579, Winter 2014 Winter 2014 16 / 26



Linearly-solvable controlled diffusions
Above z was defined as the continuous-time limit to LMDP solutions z(h).
But is z the solution to a continuous-time problem, and if so, what problem?

dx = (a (x) + B (x)u) dt+ C (x) dω

` (x, u) = q (x) +
1
2

uTR (x)u

Recall that for such problems we have u� = �R�1BTvx and

0 = q+ aTvx +
1
2

tr
�

CCTvxx

�
� 1

2
vTx BR�1BTvx

Define z (x) = exp (�v (x)) and write the PDE in terms of z:

vx = �
zx

z
, vxx = �

zxx

z
+

zxzTx
z2

0 = q� 1
z

�
aTzx +

1
2

tr
�

CCTzxx

�
+

1
2z

zTx BR�1BTzx �
1
2z

zTx CCTzx

�
Now if CCT = BR�1BT , we obtain the linear HJB equation qz = L [z].

Emo Todorov (UW) AMATH/CSE 579, Winter 2014 Winter 2014 16 / 26



Quadratic control cost and KL divergence

The KL divergence between two Gaussians with means µ1, µ2 and common
full-rank covariance Σ is 1

2 (µ1 � µ2)
T Σ�1 (µ1 � µ2).

Using Euler discretization of the controlled diffusion, the passive and
controlled dynamics have means x+ ha, x+ ha+ hBu and covariance hCCT .
Thus the KL divergence control cost is

1
2

huTBT
�

hCCT
��1

hBu =
h
2

uTBT
�

BR�1BT
��1

Bu =
h
2

uTRu

This is the quadratic control cost accumulated over time h.

x

passive

controlled

hBu

Here we used CCT = BR�1BT

and assumed that B is full rank.
If B is rank-defficient, the same
result holds but the Gaussians are
defined over the subspace spanned
by the columns of B.
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Summary of results

discrete time : continuous time :

first exit exp (q) z = P [z] qz = L [z]
finite horizon exp (qk) zk = Pk [zk+1] qz� zt = L [z]
average cost exp (q� c) z = P [z] (q� c) z = L [z]
discounted cost exp (q) z = P [zα] z log (zα) = L [z]

The relation between P [z] and L [z] is

P [z] (x) = Ex0�p(�jx)
�
z
�
x0
��

L [z] (x) = limh#0
Ex0�p(h)(�jx) [z (x

0)]� z (x)

h
= limh#0

P (h) [z] (x)� z (x)
h

P (h) [z] (x) = z (x) + hL [z] (x) + o
�

h2
�
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Path-integral representation
We can unfold the linear Bellman equation (first exit) as

z (x) = exp (�q (x))Ex0�p(�jx)
�
z
�
x0
��

= exp (�q (x))Ex0�p(�jx)
h
exp

�
�q
�
x0
��

Ex00�p(�jx0)
�
z
�
x00
��i

= � � �
= Ex0=x

xk+1�p(�jxk)

h
exp

�
�qT

�
xtfirst

�
�∑tfirst�1

k=0 q (xk)
�i

This is a path-integral representation of z. Since KL (pjjp) = 0, we have

exp
�

Eoptimal [�total cost]
�
= z (x) = Epassive [exp (�total cost)]

In continuous problems, the Feynman-Kac theorem states that the unique
positive solution z to the parabolic PDE qz = aTzx +

1
2 tr

�
CCTzxx

�
has the

same path-integral representation:

z (x) = Ex(0)=x
dx=a(x)dt+C(x)dω

h
exp

�
�qT (x (tfirst))�

R tfirst
0 q (x (t)) dt

�i
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Model-free learning

The solution to the linear Bellman equation

z (x) = exp (�q (x))Ex0�p(�jx)
�
z
�
x0
��

can be approximated in a model-free way given samples (xn, x0n, qn = q (xn))
obtained from the passive dynamics x0n � p (�jxn).

One possibility is a Monte Carlo method based on the path integral
representation, although covergence can be slow:

bz (x) = 1
# trajectories
starting at x

∑ exp (� trajectory cost)

Faster convergence is obtained using temporal difference learning:

bz (xn) (1� β)bz (xn) + β exp (�qn)bz �x0n�
The learning rate β should decrease over time.
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Importance sampling

The expectation of a function f (x)under a distribution p (x)can be
approximated as

Ex�p(�) [f (x)] �
1
N ∑n f (xn)

where fxngn=1���N are i.i.d. samples from p (�).

However, if f (x) has interesting behavior in regions where p (x) is small,
convergence can be slow, i.e. we may need a very large N to obtain an
accurate approximation. In the case of Z learning, the passive dynamics may
rarely take the state to regions with low cost.

Importance sampling is a general (unbiased) method for speeding up
convergence. Let q (x) be some other distribution which is better "adapted" to
f (x), and let fxng now be samples from q (�). Then

Ex�p(�) [f (x)] �
1
N ∑n

p (xn)

q (xn)
f (xn)

This is essential for particle filters.
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Greedy Z learning

Let bu (x0jx) denote the greedy control law, i.e. the control law which would be
optimal if the current approximation bz (x) were the exact desirability function.
Then we can sample from bu rather than p and use importance sampling:

bz (xn) (1� β)bz (xn) + β
p (x0njxn)bu (x0njxn)

exp (�qn)bz �x0n�
We now need access to the model p (x0jx)of the passive dynamics.
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Maximum principle for the most likely trajectory
Recall that for finite-horizon LMDPs we have

u�k
�
x0jx

�
= exp (�q (x)) p

�
x0jx

� zk+1 (x0)
zk (x)

The probability that the optimally-controlled stochastic system initialized at
state x0 generates a given trajectory x1, x2, � � � xT is

p� (x1, x2, � � � xTjx0) = ∏T�1
k=0 u�k (xk+1jxk)

= ∏T�1
k=0 exp (�q (xk)) p (xk+1jxk)

zk+1 (xk+1)

zk (xk)

=
exp (�qT (xT))

z0 (x0)
∏T�1

k=0 exp (�q (xk)) p (xk+1jxk)

Theorem (LMDP maximum principle)
The most likely trajectory under p� coincides with the optimal trajectory for a
deterministic finite-horizon problem with final cost qT (x), dynamics x0 = f (x, u)
where f can be arbitrary, and immediate cost ` (x, u) = q (x)� log p (f (x, u) , x).
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Trajectory probabilities in continuous time
There is no formula for the probability of a trajectory under the Ito diffusion
dx = a (x) + Cdω. However the relative probabilities of two trajectories ϕ (t)
and ψ (t) can be defined using the Onsager-Machlup functional:

OM [ϕ(�) , ψ (�)] , lim
ε!0

p (supt jx (t)�ϕ(t)j < ε)

p (supt jx (t)�ψ (t)j < ε)

It can be shown that

OM [ϕ(�) , ψ (�)] = exp
�Z T

0
L (ψ (t) , ψ̇ (t))� L (ϕ (t) ,ϕ̇ (t)) dt

�
where

L [x, v] , 1
2
(a (x)� v)T

�
CCT

��1
(a (x)� v) +

1
2

div (a (x))

We can then fix ψ (t) and define the relative probability of a trajectory as

pOM (ϕ (�)) = exp
�
�
Z T

0
L (ϕ(t) ,ϕ̇(t)) dt

�
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Continuous-time maximum principle
It can be shown that the trajectory maximizing pOM (�) under the
optimally-controlled stochastic dynamics for the problem

dx = a (x) + B (udt+ σdω)

` (x, u) = q (x) +
1

2σ2 kuk
2

coincides with the optimal trajectory for the deterministic problem

ẋ = a (x) + Bu

` (x, u) = q (x) +
1

2σ2 kuk
2 +

1
2

div (a (x))

Example:

dx = (a (x) + u) dt+ σdω

` (x, u) =
1

2σ2 u2

­5 +50

0

­2

+2

position (x)

a(x)
div(a(x))
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Example

0 5

0

+5

­5
time (t)

po
sit

io
n

(x
)

r(x,t) z(x,t)mu(x,t)

sigma = 0.6

sigma = 1.2
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