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LQG in continuous time

Recall that for problems with dynamics and cost

dx = (a (x) + B (x)u) dt+ C (x) dω

` (x, u) = q (x) +
1
2

uTR (x)u

the optimal control law is u� = �R�1BTvx and the HJB equation is

�vt = q+ aTvx +
1
2

tr
�

CCTvxx

�
� 1

2
vTx BR�1BTvx

We now impose further restrictions (LQG system):

dx = (Ax+ Bu) dt+ Cdω

` (x, u) =
1
2

xTQx+
1
2

uTRu

qT (x) =
1
2

xTQT x
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Continuous-time Riccati equations
Substituting the LQG dynamics and cost in the HJB equation yields

�vt =
1
2

xTQx+ xTATvx +
1
2

tr
�

CCTvxx

�
� 1

2
vTx BR�1BTvx

We can now show that v is quadratic:

v (x, t) =
1
2

xTV (t) x+ α (t)

At the final time this holds with α (T) = 0 and V (T) = QT . Then

�α̇� 1
2

xTV̇x =
1
2

xTQx+ xTATVx+
1
2

tr
�

CCTV
�
� 1

2
xTVBR�1BTVx

Using the fact that xTATVx = xTVAx and matching powers of x yields

Theorem (Riccati equation)

�V̇ = Q+ATV+VA�VBR�1BTV

�α̇ =
1
2

tr
�

CCTV
�
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Linear feedback control law

When v (x, t) = 1
2 xTV (t) x+ α (t), the optimal control u� = �R�1BTvx is

u� (x, t) = �L (t) x

L (t) , R�1BTV (t)

The Hessian V (t) and the matrix of feedback gains L (t) are independent of
the noise amplitude C. Thus the optimal control law u� (x, t) is the same for
stochastic and deterministic systems (the latter is called LQR).

Example:

dx = udt+ 0.2dω

` (x, u) = 0.5u2

qT (x) = 2.5x2
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LQG in discrete time

Consider an optimal control problem with dynamics and cost

xk+1 = Axk + Buk

` (x, u) =
1
2

xTQx+
1
2

uTRu

Substituting in the Bellman equation vk (x) = minu f` (x, u) + vk+1 (x0)g and
making the ansatz vk (x) = 1

2 xTVkx yields

1
2

xTVkx = min
u

�
1
2

xTQx+
1
2

uTRu+
1
2
(Ax+ Bu)T Vk+1 (Ax+ Bu)

�

The minimum is u�k (x) = �Lkx where Lk ,
�

R+ BTVk+1B
��1

BTVk+1A.

Theorem (Riccati equation)

Vk = Q+ATVk+1 (A� BLk)
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Summary of Riccati equations

Finite horizon
Continuous time

�V̇ = Q+ATV+VA�VBR�1BTV

Discrete time

Vk = Q+ATVk+1A�ATVk+1B
�

R+ BTVk+1B
��1

BTVk+1A

Average cost
Continuous time (’care’ in Matlab)

0 = Q+ATV+VA�VBR�1BTV

Discrete time (’dare’ in Matlab)

V = Q+ATVA�ATVB
�

R+ BTVB
��1

BTVA

Discounted cost is similar; first exit does not yield Riccati equations.
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Relation between continuous and discrete time
The continuous-time system

ẋ = Ax+ Bu

` (x, u) =
1
2

xTQx+
1
2

uTRu

can be represented in discrete time with time-step ∆ as

xk+1 = (I+ ∆A) xk + ∆Buk

` (x, u) =
∆
2

xTQx+
∆
2

uTRu

In the limit ∆ ! 0 the discrete Riccati equation reduces to the continuous one:

V = ∆Q+ (I+ ∆A)T V (I+ ∆A)

� (I+ ∆A)T V∆B
�

∆R+ ∆BTV∆B
��1

∆BTV (I+ ∆A)

V = ∆Q+V+ ∆ATV+ ∆VA� ∆VB
�

R+ ∆BTVB
��1

BTV+ o
�

∆2
�

0 = Q+ATV+VA�VB
�

R+ ∆BTVB
��1

BTV+
1
∆

o
�

∆2
�
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Encoding targets as quadratic costs

The matrices A, B, Q, R can be time-varying, which is useful for specifying
reference trajectories x�k , and for approximating non-LQG problems.

The cost


xk � x�k



2 can be represented in the LQG framework by augmenting
the state vector as

ex = � x
1

�
, eA = � A 0

0 1

�
, etc.

and writing the state cost as

1
2
exT eQkex = 1

2
exT �DT

k Dk

�ex
where Dk =

�
I, �x�k

�
and so Dkexk = xk � x�k .

If the target x� is stationary we can instead include it in the state, and use
D = [I, �I]. This has the advantage that the resulting control law is
independent of x� and therefore can be used for all targets.
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Optimal estimation in linear-Gaussian systems
Consider the partially-observed system

xk+1 = Axk + Cωk

yk = Hxk +Dεk

with hidden state xk, measurement yk, and noise εk, ωk � N (0, I).

Given a Gaussian prior x0 � N (bx0, Σ0) and a sequence of measurements
y0, y1, � � � yk, we want to compute the posterior pk+1 (xk+1).

We can show by induction that the posterior is Gaussian at all times.
Let pk (xk) be N (bxk, Σk). This will act as a prior for estimating xk+1.
Now xk+1 and yk are jointly Gaussian, with mean and covariance

E
�

xk+1
yk

�
=

�
Abxk
Hbxk

�
Cov

�
xk+1
yk

�
=

�
CCT +AΣkAT AΣkHT

HΣkAT DDT +HΣkHT

�
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Kalman filter

Lemma
If u, v are jointly Gaussian with means bu, bv and covariances Σuu, Σvv, Σuv = ΣTvu,
then u given v is Gaussian with mean and covariance

E [ujv] = bu+ ΣuvΣ�1
vv (v� bv)

Cov [ujv] = Σuu � ΣuvΣ�1
vv Σvu

Applying this to our problem with u = xk+1 and v = yk yields

Theorem (Kalman filter)
The mean bx and covariance Σ of the Gaussian posterior satisfy

bxk+1 = Abxk + Kk (yk �Hbxk)

Σk+1 = CCT + (A� KkH)ΣkAT

Kk , AΣkHT
�

DDT +HΣkHT
��1
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Duality of LQG control and Kalman filtering

LQG controller

State dynamics:

xk+1 = (A� BLk) xk + Cεk

Gain matrix:

Lk =
�

R+ BTVk+1B
��1

BTVk+1A

Backward Riccati equation:

Vk = Q+ATVk+1 (A� BLk)

Kalman filter

Estimated state dynamics:

bxk+1 = (A� KkH)bxk + Kkyk

Gain matrix:

Kk = AΣkHT
�

DDT +HΣkHT
��1

Forward Riccati equation:

Σk+1 = CCT + (A� KkH)ΣkAT

This form of duality does not generalize to non-LQG systems. However there is a
different duality which does generalize (see later). It involves an information filter,
computing Σ�1 instead of Σ.
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