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LQG in continuous time

Recall that for problems with dynamics and cost

dx = (a(x)+B(x)u)dt+C(x)dw

C(x,u) = q(x)+ %uTR (x)u
the optimal control law is u* = —R~!BTvy and the HJB equation is

1 1
-0 =q+ aTvx + 5 tr (CCTUXX> — EUIBR*BTUX

We now impose further restrictions (LQG system):

dx = (Ax+ Bu)dt+ Cdw
I T
l(x,u) = 5X Qx—l—Zu Ru
1
qr (x) = ixTQTX
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Continuous-time Riccati equations

Substituting the LQG dynamics and cost in the HJB equation yields
1 1 1 -
—or = X Qx+xTATo + St (cchxx) — oV BR'B o,
We can now show that v is quadratic:
1
v (xt) = ExTV () x+a(t)

At the final time this holds with « (T) = 0and V (T) = Q7. Then

I O O U ¢ T AT 1 T L Topp—1pT

b= ox T Vx = oxTQx+xTATVx+ S tr (cc V) 5x"VBR'BT Vx
Using the fact that x" AT Vx = x" VAx and matching powers of x yields

Theorem (Riccati equation)

-V = Q+A"V+VA-VBR BTV
o1 T
i = Etr(cc v)
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Linear feedback control law

When v (x,t) = IxTV (t)x+a (t), the optimal control u* = —R~!BT oy is

u* (x,t) = —L(#)x
L(t) R7IBTV (1)

(>

The Hessian V () and the matrix of feedback gains L (t) are independent of
the noise amplitude C. Thus the optimal control law u* (x, t) is the same for
stochastic and deterministic systems (the latter is called LQR).
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Linear feedback control law

When v (x,t) = IxTV (t)x+a (t), the optimal control u* = —R~!BT oy is

u* (x,t)

, —L(t)x
L(t)

R7IBTV (1)

>

The Hessian V () and the matrix of feedback gains L (t) are independent of
the noise amplitude C. Thus the optimal control law u* (x, t) is the same for
stochastic and deterministic systems (the latter is called LQR).

Example:
dx = udt+0.2dw v (¥, 1) u*(x, 1)
C(x,u) = 0.5u
gr (x) = 25x%
10 .
& %
20 ” 3 @ ”
© 73 position (x) position (x)
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LQG in discrete time

Consider an optimal control problem with dynamics and cost
Xg+1 = Axg+ Bug

l(x,u) = %XTQX + %uTRu

Substituting in the Bellman equation vy (x) = miny {¢ (x,u) + 41 (x')} and
making the ansatz vy (x) = Ix' Vjx yields

; -'—ka—mm{1 TQx+;uTRu+ (Ax+Bu)' Vi (Ax+Bu)}

-1
The minimum is uj (x) = —Lyx where Ly = (R + BTVkHB) BTV, 1A.

Theorem (Riccati equation)

Vi = Q+AT Vi (A—BLy)
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Summary of Riccati equations

@ Finite horizon

e Continuous time
—V=Q+A"V4+VA-VBR BTV
o Discrete time
Vi=Q+A"ViA— ATV 1B (R + BTVkHB) BTV A

@ Average cost

e Continuous time ("care’ in Matlab)
0=Q+A"V+VA—VBR'B'V
o Discrete time (‘dare’ in Matlab)
-1
V=Q+ATVA—ATVB (R + BTVB) BTVA

@ Discounted cost is similar; first exit does not yield Riccati equations.
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Relation between continuous and discrete time

The continuous-time system

x = Ax+Bu
1 1
l(x,u) = EXTQx—i— EuTRu
can be represented in discrete time with time-step A as
Xpr1 = (I =+ AA) X + ABuk
A A
l(x,u) = EXTQx—l- EuTRu

In the limit A — 0 the discrete Riccati equation reduces to the continuous one:
Vo= AQ+(I+AA)TV(I+AA)
T T L ART
— (I+AA)T VAB (AR +AB VAB) ABTV (I+ AA)
-1
V = AQ+V+AATV +AVA— AVB (R + ABTVB) B"V+o (AZ)

0 = Q+ATV+VA-VB (R + ABTVB) Ty %0 (AZ)
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Encoding targets as quadratic costs

The matrices A, B, Q, R can be time-varying, which is useful for specifying
reference trajectories x;, and for approximating non-LQG problems.

The cost ||x; — x} ||* can be represented in the LQG framework by augmenting

the state vector as
~ X ~ A 0
x—[l], A_[O 1], etc.

and writing the state cost as

%~TQk§ - %iT (D,{Dk) X

where Dy = [I, —x}| and so DX = X — X}

If the target x* is stationary we can instead include it in the state, and use
D = [I, —I]. This has the advantage that the resulting control law is
independent of x* and therefore can be used for all targets.
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Optimal estimation in linear-Gaussian systems

Consider the partially-observed system

Xer1 = Axg+ Cwy
yr = Hxg+ Degg

with hidden state x, measurement yy, and noise &, wy ~ N (0,I).

Given a Gaussian prior xg ~ N (Xp, £) and a sequence of measurements
Y0, Y1, - - Yk, We want to compute the posterior prq (Xg41)-

We can show by induction that the posterior is Gaussian at all times.
Let px (xx) be N (Xk, Z¢). This will act as a prior for estimating xj 1.
Now xx;1 and yy are jointly Gaussian, with mean and covariance

o[5] - %]
Yk Hxy
Con | X1 ] _ CCT +AZ AT A HT
Vi HZ, AT DDT + HE HT
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Kalman filter

If u, v are jointly Gaussian with means U,V and covariances Lyy, vy, Lav = Zlu,
then u given v is Gaussian with mean and covariance

Efulv] = G+ ZywZey (v—¥)
Cov[ulv] = Zyu— ZuvZeywZvu

Applying this to our problem with u = x;1 and v = y; yields

Theorem (Kalman filter)

The mean X and covariance ¥. of the Gaussian posterior satisfy

X1 = Axg+ Ky (yr — HX)
Yip1 = CCT 4+ (A—-KH)ZAT

-1
K, 2 ARH' (DDT +H2kHT)
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Duality of LQG control and Kalman filtering

LQG controller
State dynamics:
X1 = (A — BLg) x¢ + Cé
Gain matrix:
T 1ot
L = (R+B Vk+1B) BTV A
Backward Riccati equation:

Vi=Q+A Vi1 (A—BL)
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Kalman filter

Estimated state dynamics:
Xir1 = (A — KeH) Xic + Ky

Gain matrix:

K, = ASHT (DDT + szHT) -

Forward Riccati equation:

Yip1 = CCT + (A — KH) AT
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Duality of LQG control and Kalman filtering

LQG controller Kalman filter
State dynamics: Estimated state dynamics:

Xt1 = (A — BLg) i + Cey Xir1 = (A — KeH) Xic + Ky
Gain matrix: Gain matrix:

L = (R +BT Vk+1B) TBVA K= ASHT (DDT + szHT) -
Backward Riccati equation: Forward Riccati equation:
Vi=Q+ATVi 1 (A—BL) Tpi1 = CCT + (A — KeH) AT
This form of duality does not generalize to non-LQG systems. However there is a

different duality which does generalize (see later). It involves an information filter,
computing £ ! instead of X.
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