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Pontryagin’s maximum principle

For deterministic dynamics ẋ = f (x, u) we can compute extremal open-loop
trajectories (i.e. local minima) by solving a boundary-value ODE problem
with given x (0) and λ (T) = ∂

∂x qT (x), where λ (t) is the gradient of the
optimal cost-to-go function (called costate).

Definition (deterministic Hamiltonian)

H (x, u, λ) , ` (x, u) + f (x, u)T λ

Theorem (continuous-time maximum principle)
If x (t) , u (t), 0 � t � T is the optimal state-control trajectory starting at x (0), then
there exists a costate trajectory λ (t) with λ (T) = ∂

∂x qT (x) satisfying

ẋ = Hλ (x, u, λ) = f (x, u)

�λ̇ = Hx (x, u, λ) = `x (x, u) + fx (x, u)T λ

u = arg mineu H (x, eu, λ)
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Derivation from the HJB equation (continuous time)

For deterministic dynamics ẋ = f (x, u) the optimal cost-to-go in the
finite-horizon setting satisfies the HJB equation

�vt (x, t) = min
u

n
` (x, u) + f (x, u)T vx (x, t)

o
= min

u
H (x, u, vx (x, t))

If the optimal control law is π (x, t), we can set u = π and drop the ’min’:

0 = vt (x, t) + ` (x, π (x, t)) + f (x, π (x, t))T vx (x, t)

Now differentiate w.r.t. x and suppress the dependences for clarity:

0 = vtx + `x +πT
x `u +

�
fTx +πT

x fTu
�

vx + vxxf

Using the identity v̇x = vtx + vxxf and regrouping yields

0 = v̇x + `x + fTx vx +πT
x

�
`u + fTu vx

�
= v̇x +Hx +πT

x Hu

Since u is optimal we have Hu = 0, thus �λ̇ = Hx (x, π, λ) where λ = vx.
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Derivation via Largrange multipliers (discrete time)

Optimize total cost subject to dynamics constraints xk+1 = f (xk, uk).
Define the Lagrangian L (x�, u�, λ�) as

L = qT (xN) +∑N�1
k=0 ` (xk, uk) + (f (xk, uk)� xk+1)

T λk+1

= qT (xN)� xTNλN + xT0 λ0 +∑N�1
k=0 H (xk, uk, λk+1)� xTk λk

Setting Lx = Lλ = 0 and explicitly minimizing w.r.t. u yields

Theorem (discrete-time maximum principle)
If xk, uk, 0 � k � N is the optimal state-control trajectory starting at x0, then there
exists a costate trajectory λk with λN =

∂
∂x qT (xN) satisfying

xk+1 = Hλ (xk, uk, λk+1) = f (xk, uk)

λk = Hx (xk, uk, λk+1) = `x (xk, uk) + fx (xk, uk)
T λk+1

uk = arg mineu H (xk, eu, λk+1)
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Gradient of the total cost

The maximum principle provides an efficient way to evaluate the gradient of
the total cost w.r.t. u, and thereby optimize the controls numerically.

Theorem (gradient)
For given control trajectory uk, let xk, λk be such that

xk+1 = f (xk, uk)

λk = `x (xk, uk) + fx (xk, uk)
T λk+1

with x0 given and λN =
∂
∂x qT (xN). Let J (x�, u�) be the total cost. Then

∂

∂uk
J (x�, u�) = Hu (xk, uk, λk+1) = `u (xk, uk) + fu (xk, uk)

T λk+1

Note that xk can be found in a forward pass (since it does not depend on λ),
and then λk can be found in a backward pass.
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Proof by induction

The cost accumulated from time k until the end can be written recursively as

Jk (xk���N, uk���N�1) = ` (xk, uk) + Jk+1 (xk+1���N, uk+1���N�1)

Noting that uk affects future costs only through xk+1 = f (xk, uk), we have

∂

∂uk
Jk = `u (xk, uk) + fu (xk, uk)

T ∂

∂xk+1
Jk+1

We need to show that λk =
∂

∂xk
Jk. For k = N this holds because JN = qT .

For k < N we have

∂

∂xk
Jk = `x (xk, uk) + fx (xk, uk)

T ∂

∂xk+1
Jk+1

which is identical to λk = `x (xk, uk) + fx (xk, uk)
T λk+1.
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Enforcing terminal states

The final state x (T) is usually different from the minimum of the final
cost qT , because it reflects a trade-off between final and running cost.
We can enforce x (T) = x as a boundary condition and remove the
boundary condition on λ (T).
Once the solution is found, we can construct a function qT such that
λ (T) = ∂

∂x qT (x (T)). However if λ (T) 6= 0 then x (T) is not the
minimum of this qT .
We can also define the problem as infinite horizon average cost, in which
case it is usually suboptimal to have an asymptotic state different from
the minimum of the state cost function. The maximum principle does not
apply to infinite horizon problems, so one has to use the HJB equations.
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More tractable problems

When the dynamics and cost are in the restricted form

ẋ = a (x) + Bu

` (x, u) = q (x) +
1
2

uTRu

the Hamiltonian can be minimized analytically, which yields the ODE

ẋ = a (x)� BR�1BTλ

�λ̇ = qx (x) + ax (x)
T λ

with boundary conditions x (0) and λ (T) = ∂
∂x qT (x). If B, R depend on x,

the second equation has additional terms involving the derivatives of B, R.

We have Hu = R (x)u+ B (x)T λ and Huu = R (x) � 0. Thus the maximum
principle here is both a necessary and a sufficient condition for a local
minimum.
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Pendulum example

Passive dynamics:

a (x) =

�
x2

k sin (x1)

�
ax (x) =

�
0 1

k cos (x1) 0

�
Optimal control:

u = �r�1λ2

ODE (with q = 0):

ẋ1 = x2

ẋ2 = k sin (x1)� r�1λ2

�λ̇1 = k cos (x1) λ2

�λ̇2 = λ1

Cost-to-go and trajectories:

Control law (from HJB):
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