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C H A P T E R 1

Fully Actuated vs. Underactuated
Systems

Robots today move far too conservatively, and accomplish only a fraction of the
tasks and achieve a fraction of the performance that they are mechanically capable of. In
many cases, we are still fundamentally limited by control technology which matured on
rigid robotic arms in structured factory environments. The study of underactuated robotics
focuses on building control systems which use the natural dynamics of the machines in an
attempt to achieve extraordinary performance in terms of speed, efficiency, or robustness.

1.1 MOTIVATION

Let’s start with some examples, and some videos.

1.1.1 Honda’s ASIMO vs. Passive Dynamic Walkers

The world of robotics changed when, in late 1996, Honda Motor Co. announced that they
had been working for nearly 15 years (behind closed doors) on walking robot technology.
Their designs have continued to evolve over the last 12 years, resulting in a humanoid robot
they call ASIMO (Advanced Step in Innovative MObility). Honda’s ASIMO is widely con-
sidered to be the state of the art in walking robots, although there are now many robots with
designs and performance very similar to ASIMO’s. We will dedicate effort to understand-
ing a few of the details of ASIMO in chapter 5... for now I just want you to become familiar
with the look and feel of ASIMO’s movements [watch asimo video now1].

I hope that your first reaction is to be incredibly impressed with the quality and
versatility of ASIMO’s movements. Now take a second look. Although the motions are
very smooth, there is something a little unnatural about ASIMO’s gait. It feels a little
like an astronaut encumbered by a heavy space suit. In fact this is a reasonable analogy...
ASIMO is walking like somebody that is unfamiliar with his/her dynamics. It’s control
system is using high-gain feedback, and therefore considerable joint torque, to cancel out
the natural dynamics of the machine and strictly follow a desired trajectory. This control
approach comes with a stiff penalty. ASIMO uses roughly 20 times the energy (scaled)
that a human uses to walk on the flat (measured by cost of transport)[25]. Also, control
stabilization in this approach only works in a relatively small portion of the state space
(when the stance foot is flat on the ground), so ASIMO can’t move nearly as quickly as a
human, and cannot walk on unmodelled or uneven terrain.

For contrast, let’s now consider a very different type of walking robot, called a pas-
sive dynamic walker. This “robot” has no motors, no controllers, no computer, but is still
capable of walking stably down a small ramp, powered only by gravity. Most people will
agree that the passive gait of this machine is more natural than ASIMO’s; it is certainly

1http://world.honda.com/ASIMO/
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4 Chapter 1 Fully Actuated vs. Underactuated Systems

more efficient. [watch PDW videos now2]. Passive walking machines have a long history
- there are patents for passively walking toys dating back to the mid 1800’s. We will dis-
cuss, in detail, what people know about the dynamics of these machines and what has been
accomplished experimentally. This most impressive passive dynamic walker to date was
built by Steve Collins in Andy Ruina’s lab at Cornell.

Passive walkers demonstrate that the high-gain, dynamics-cancelling feedback ap-
proach taken on ASIMO is not a necessary one. In fact, the dynamics of walking is beau-
tiful, and should be exploited - not cancelled out.

1.1.2 Birds vs. modern aircraft

The story is surprisingly similar in a very different type of machine. Modern airplanes
are extremely effective for steady-level flight in still air. Propellers produce thrust very
efficiently, and today’s cambered airfoils are highly optimized for speed and/or efficiency.
It would be easy to convince yourself that we have nothing left to learn from birds. But, like
ASIMO, these machines are mostly confined to a very conservative, low angle-of-attack
flight regime where the aerodynamics on the wing are well understood. Birds routinely
execute maneuvers outside of this flight envelope (for instance, when they are landing on a
perch), and are considerably more effective than our best aircraft at exploiting energy (eg,
wind) in the air.

As a consequence, birds are extremely efficient flying machines; some are capable
of migrating thousands of kilometers with incredibly small fuel supplies. The wandering
albatross can fly for hours, or even days, without flapping its wings - these birds exploit the
shear layer formed by the wind over the ocean surface in a technique called dynamic soar-
ing. Remarkably, the metabolic cost of flying for these birds is indistinguishable from the
baseline metabolic cost[6], suggesting that they can travel incredible distances (upwind or
downwind) powered almost completely by gradients in the wind. Other birds achieve effi-
ciency through similarly rich interactions with the air - including formation flying, thermal
soaring, and ridge soaring. Small birds and large insects, such as butterflies and locusts,
use ‘gust soaring’ to migrate hundreds or even thousands of kilometers carried primarily
by the wind.

Birds are also incredibly maneuverable. The roll rate of a highly acrobatic aircraft
(e.g, the A-4 Skyhawk) is approximately 720 deg/sec[73]; a barn swallow has a roll rate
in excess of 5000 deg/sec[73]. Bats can be flying at full-speed in one direction, and com-
pletely reverse direction while maintaining forward speed, all in just over 2 wing-beats and
in a distance less than half the wingspan[86]. Although quantitative flow visualization data
from maneuvering flight is scarce, a dominant theory is that the ability of these animals to
produce sudden, large forces for maneuverability can be attributed to unsteady aerodynam-
ics, e.g., the animal creates a large suction vortex to rapidly change direction[87]. These
astonishing capabilities are called upon routinely in maneuvers like flared perching, prey-
catching, and high speed flying through forests and caves. Even at high speeds and high
turn rates, these animals are capable of incredible agility - bats sometimes capture prey on
their wings, Peregrine falcons can pull 25 G’s out of a 240 mph dive to catch a sparrow in
mid-flight[89], and even the small birds outside our building can be seen diving through a
chain-link fence to grab a bite of food.

Although many impressive statistics about avian flight have been recorded, our un-

2http://www-personal.engin.umich.edu/˜shc/robots.html
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Section 1.2 Definitions 5

derstanding is partially limited by experimental accessibility - it’s is quite difficult to care-
fully measure birds (and the surrounding airflow) during their most impressive maneuvers
without disturbing them. The dynamics of a swimming fish are closely related, and can
be more convenient to study. Dolphins have been known to swim gracefully through the
waves alongside ships moving at 20 knots[87]. Smaller fish, such as the bluegill sunfish,
are known to possess an escape response in which they propel themselves to full speed
from rest in less than a body length; flow visualizations indeed confirm that this is accom-
plished by creating a large suction vortex along the side of the body[90] - similar to how
bats change direction in less than a body length. There are even observations of a dead fish
swimming upstream by pulling energy out of the wake of a cylinder; this passive propul-
sion is presumably part of the technique used by rainbow trout to swim upstream at mating
season[10].

1.1.3 The common theme

Classical control techniques for robotics are based on the idea that feedback can be used to
override the dynamics of our machines. These examples suggest that to achieve outstand-
ing dynamic performance (efficiency, agility, and robustness) from our robots, we need to
understand how to design control system which take advantage of the dynamics, not cancel
them out. That is the topic of this course.

Surprisingly, there are relatively few formal control ideas that consider “exploiting”
the dynamics. In order to convince a control theorist to consider the dynamics (efficiency
arguments are not enough), you have to do something drastic, like taking away his control
authority - remove a motor, or enforce a torque-limit. These issues have created a formal
class of systems, the underactuated systems, for which people have begun to more carefully
consider the dynamics of their machines in the context of control.

1.2 DEFINITIONS

According to Newton, the dynamics of mechanical systems are second order (F = ma).
Their state is given by a vector of positions, q, and a vector of velocities, q̇, and (possibly)
time. The general form for a second-order controllable dynamical system is:

q̈ = f(q, q̇,u, t),

where u is the control vector. As we will see, the forward dynamics for many of the robots
that we care about turn out to be affine in commanded torque, so let’s consider a slightly
constrained form:

q̈ = f1(q, q̇, t) + f2(q, q̇, t)u; . (1.1)

DEFINITION 1 (Fully-Actuated). A control system described by equation 1.1 is
fully-actuated in configuration (q, q̇, t) if it is able to command an instantaneous
acceleration in an arbitrary direction in q:

rank [f2(q, q̇, t)] = dim [q] . (1.2)

DEFINITION 2 (Underactuated). A control system described by equation 1.1 is un-
deractuated in configuration (q, q̇, t) if it is not able to command an instantaneous
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6 Chapter 1 Fully Actuated vs. Underactuated Systems

acceleration in an arbitrary direction in q:

rank [f2(q, q̇, t)] < dim [q] . (1.3)

Notice that whether or not a control system is underactuated may depend on the state of
the system, although for most systems (including all of the systems in this book) underac-
tuation is a global property of the system.

In words, underactuated control systems are those in which the control input can-
not accelerate the state of the robot in arbitrary directions. As a consequence, unlike
fully-actuated systems, underactuated system cannot be commanded to follow arbitrary
trajectories.

EXAMPLE 1.1 Robot Manipulators

2

2

lg

m

l

θ

1

θ
m

1

1

2

FIGURE 1.1 Simple double pendulum

Consider the simple robot manipulator il-
lustrated in Figure 1.1. As described in
Appendix A, the equations of motion for
this system are quite simple to derive, and
take the form of the standard “manipulator
equations”:

H(q)q̈ + C(q, q̇)q̇ + G(q) = B(q)u.

It is well known that the inertial matrix,
H(q) is (always) uniformly symmetric
and positive definite, and is therefore in-
vertible. Putting the system into the form
of equation 1.1 yields:

q̈ =H−1(q) [C(q, q̇)q̇ + G(q)]

+ H−1(q)B(q)u.

Because H−1(q) is always full rank, we
find that a system described by the manipulator equations is fully-actuated if and only if
B(q) is full row rank.

For this particular example, q = [θ1, θ2]T and u = [τ1, τ2]T , and B(q) = I2×2. The
system is fully actuated. Now imagine the somewhat bizarre case that we have a motor to
provide torque at the elbow, but no motor at the shoulder. In this case, we have u = τ2, and
B(q) = [0, 1]T . This system is clearly underactuated. While it may sound like a contrived
example, it turns out that it is exactly the dynamics we will use to study the compass gait
model of walking in chapter 5.

The matrix f2 is equation 1.1 always has dim[q] rows, and dim[u] columns. There-
fore, as in the example, one of the most common cases for underactuation, which trivially
implies that f2 is not full row rank, is dim[u] < dim[q]. But this is not the only case. The
human body, for instance, has an incredible number of actuators (muscles), and in many
cases has multiple muscles per joint; despite having more actuators that position variables,
when I jump through the air, there is no combination of muscle inputs that can change
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Section 1.3 Feedback Linearization 7

the ballistic trajectory of my center of mass (barring aerodynamic effects). That control
system is underactuated.

A quick note about notation. Throughout this class I will try to be consistent in
using q and q̇ for positions and velocities, respectively, and reserve x for the full state
(x = [q, q̇]T ). Unless otherwise noted, vectors are always treated as column vectors.
Vectors and matrices are bold (scalars are not).

1.3 FEEDBACK LINEARIZATION

Fully actuated systems are dramatically easier to control than underactuated systems. The
key observation is that, for fully-actuated systems with known dynamics (e.g., f1 and f2
are known), it is possible to use feedback to effectively change a nonlinear control problem
into a linear control problem. The field of linear control is incredibly advanced, and there
are many well-known solutions for controlling linear systems.

The trick is called feedback linearization. When f2 is full row rank, it is invertible.
Consider the nonlinear feedback law:

u = π(q, q̇, t) = f−1
2 (q, q̇, t) [u′ − f1(q, q̇, t)] ,

where u′ is some additional control input. Applying this feedback controller to equa-
tion 1.1 results in the linear, decoupled, second-order system:

q̈ = u′.

In other words, if f1 and f2 are known and f2 is invertible, then we say that the system is
“feedback equivalent” to q̈ = u′. There are a number of strong results which generalize
this idea to the case where f1 and f2 are estimated, rather than known (e.g, [75]).

EXAMPLE 1.2 Feedback-Linearized Double Pendulum

Let’s say that we would like our simple double pendulum to act like a simple single pen-
dulum (with damping), whose dynamics are given by:

θ̈1 = −g
l

cos θ1 − bθ̇1
θ̈2 = 0.

This is easily achieved3 using

u = B−1

[
Cq̇ + G + H

[
− gl c1 − bq̇1

0

]]
.

This idea can, and does, make control look easy - for the special case of a fully-
actuated deterministic system with known dynamics. For example, it would have been just
as easy for me to invert gravity. Observe that the control derivations here would not have
been any more difficult if the robot had 100 joints.

3Note that our chosen dynamics do not actually stabilize θ2 - this detail was left out for clarity, but would be
necessary for any real implementation.
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8 Chapter 1 Fully Actuated vs. Underactuated Systems

The underactuated systems are not feedback linearizable. Therefore, unlike fully-
actuated systems, the control designer has no choice but to reason about the nonlinear
dynamics of the plant in the control design. This dramatically complicates feedback con-
troller design.

1.4 INPUT AND STATE CONSTRAINTS

Although dynamic constraints due to underactuation are the constraints which embody
the spirit of this course, many of the systems we care about could be subject to other
constraints, as well. For example, the actuators on our machines may only be mechanically
capable of producing some limited amount of torque, or their may be a physical obstacle
in the free space which we cannot permit our robot to come into contact with.

DEFINITION 3 (Input and State Constraints). A dynamical system described by
ẋ = f(x,u, t) may be subject to one or more constraints described by φ(x,u, t) ≤ 0.

In practice it can useful to separate out constraints which depend only on the input, e.g.
φ(u) ≤ 0, such as actuator limits, as they can often be easier to handle than state con-
straints. An obstacle in the environment might manifest itself as one or more constraints
that depend only on position, e.g. φ(q) ≤ 0.

Although distinct from underactuation constraints, these constraints can complicate
control design in similar ways (i.e., the robot cannot follow arbitrary trajectories), and often
require similar tools to find a control solution.

1.5 UNDERACTUATED ROBOTICS

The control of underactuated systems is an open and interesting problem in controls -
although there are a number of special cases where underactuated systems have been con-
trolled, there are relatively few general principles. Now here’s the rub... most of the inter-
esting problems in robotics are underactuated:

• Legged robots are underactuated. Consider a legged machine with N internal joints
andN actuators. If the robot is not bolted to the ground, then the degrees of freedom
of the system include both the internal joints and the six degrees of freedom which
define the position and orientation of the robot in space. Since u ∈ <N and q ∈
<N+6, equation 1.3 is satisfied.

• (Most) Swimming and flying robots are underactuated. The story is the same here
as for legged machines. Each control surface adds one actuator and one DOF. And
this is already a simplification, as the true state of the system should really include
the (infinite-dimensional) state of the flow.

• Robot manipulation is (often) underactuated. Consider a fully-actuated robotic arm.
When this arm is manipulating an object w/ degrees of freedom (even a brick has
six), it can become underactuated. If force closure is achieved, and maintained, then
we can think of the system as fully-actuated, because the degrees of freedom of
the object are constrained to match the degrees of freedom of the hand. That is, of
course, unless the manipulated object has extra DOFs. Note that the force-closure
analogy has an interesting parallel in legged robots.
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Section 1.6 Goals for the course 9

Even fully-actuated control systems can be improved using the lessons from under-
actuated systems, particularly if there is a need to increase the efficiency of their motions
or reduce the complexity of their designs.

1.6 GOALS FOR THE COURSE

This course is based on the observation that there are new tools from computer science
which be used to design feedback control for underactuated systems. This includes tools
from numerical optimal control, motion planning, machine learning. The goal of this class
is to develop these tools in order to design robots that are more dynamic and more agile
than the current state-of-the-art.

The target audience for the class includes both computer science and mechani-
cal/aero students pursuing research in robotics. Although I assume a comfort with lin-
ear algebra, ODEs, and MATLAB, the course notes will provide most of the material and
references required for the course.

c© Russ Tedrake, 2009
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C H A P T E R 2

The Simple Pendulum

2.1 INTRODUCTION

Our goals for this chapter are modest: we’d like to understand the dynamics of a pendulum.
Why a pendulum? In part, because the dynamics of a majority of our multi-link robotics
manipulators are simply the dynamics of a large number of coupled pendula. Also, the
dynamics of a single pendulum are rich enough to introduce most of the concepts from
nonlinear dynamics that we will use in this text, but tractable enough for us to (mostly)
understand in the next few pages.

g

θ

m

l

FIGURE 2.1 The Simple Pendulum

The Lagrangian derivation (e.g, [35]) of the equations of motion of the simple pen-
dulum yields:

Iθ̈(t) +mgl sin θ(t) = Q,

where I is the moment of inertia, and I = ml2 for the simple pendulum. We’ll consider
the case where the generalized force, Q, models a damping torque (from friction) plus a
control torque input, u(t):

Q = −bθ̇(t) + u(t).

2.2 NONLINEAR DYNAMICS W/ A CONSTANT TORQUE

Let us first consider the dynamics of the pendulum if it is driven in a particular simple way:
a torque which does not vary with time:

Iθ̈ + bθ̇ +mgl sin θ = u0. (2.1)

These are relatively simple equations, so we should be able to integrate them to obtain
θ(t) given θ(0), θ̇(0)... right? Although it is possible, integrating even the simplest case

12 c© Russ Tedrake, 2009



Section 2.2 Nonlinear Dynamics w/ a Constant Torque 13

(b = u = 0) involves elliptic integrals of the first kind; there is relatively little intuition
to be gained here. If what we care about is the long-term behavior of the system, then we
can investigate the system using a graphical solution method. These methods are described
beautifully in a book by Steve Strogatz[83].

2.2.1 The Overdamped Pendulum

Let’s start by studying a special case, when b
I � 1. This is the case of heavy damping -

for instance if the pendulum was moving in molasses. In this case, the b term dominates
the acceleration term, and we have:

u0 −mgl sin θ = Iθ̈ + bθ̇ ≈ bθ̇.

In other words, in the case of heavy damping, the system looks approximately first-order.
This is a general property of systems operating in fluids at very low Reynolds number.

I’d like to ignore one detail for a moment: the fact that θ wraps around on itself every
2π. To be clear, let’s write the system without the wrap-around as:

bẋ = u0 −mgl sinx. (2.2)

Our goal is to understand the long-term behavior of this system: to find x(∞) given x(0).
Let’s start by plotting ẋ vs x for the case when u0 = 0:

x

ẋ

mgl
b

π-π

The first thing to notice is that the system has a number of fixed points or steady
states, which occur whenever ẋ = 0. In this simple example, the zero-crossings are x∗ =
{...,−π, 0, π, 2π, ...}. When the system is in one of these states, it will never leave that
state. If the initial conditions are at a fixed point, we know that x(∞) will be at the same
fixed point.
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14 Chapter 2 The Simple Pendulum

Next let’s investigate the behavior of the system in the local vicinity of the fixed
points. Examing the fixed point at x∗ = π, if the system starts just to the right of the fixed
point, then ẋ is positive, so the system will move away from the fixed point. If it starts to
the left, then ẋ is negative, and the system will move away in the opposite direction. We’ll
call fixed-points which have this property unstable. If we look at the fixed point at x∗ = 0,
then the story is different: trajectories starting to the right or to the left will move back
towards the fixed point. We will call this fixed point locally stable. More specifically, we’ll
distinguish between three types of local stability:

• Locally stable in the sense of Lyapunov (i.s.L.). A fixed point, x∗ is locally stable
i.s.L. if for every small ε, I can produce a δ such that if ‖x(0) − x∗‖ < δ then ∀t
‖x(t) − x∗‖ < ε. In words, this means that for any ball of size ε around the fixed
point, I can create a ball of size δ which guarantees that if the system is started inside
the δ ball then it will remain inside the ε ball for all of time.

• Locally asymptotically stable. A fixed point is locally asymptotically stable if
x(0) = x∗ + ε implies that x(∞) = x∗.

• Locally exponentially stable. A fixed point is locally exponentially stable if x(0) =
x∗ + ε implies that ‖x(t)− x∗‖ < Ce−αt, for some positive constants C and α.

An initial condition near a fixed point that is stable in the sense of Lyapunov may never
reach the fixed point (but it won’t diverge), near an asymptotically stable fixed point will
reach the fixed point as t→∞, and near an exponentially stable fixed point will reach the
fixed point with a bounded rate. An exponentially stable fixed point is also an asymptoti-
cally stable fixed point, and an asymptotically stable fixed point is also stable i.s.L., but the
converse of these is not necessarily true.

Our graph of ẋ vs. x can be used to convince ourselves of i.s.L. and asymptotic sta-
bility. Exponential stability could potentially be inferred if the function could be bounded
by a negatively-sloped line through the fixed point, but this requires some care. I will
graphically illustrate unstable fixed points with open circles and stable fixed points (i.s.L.)
with filled circles. Next, we need to consider what happens to initial conditions which
begin farther from the fixed points. If we think of the dynamics of the system as a flow on
the x-axis, then we know that anytime ẋ > 0, the flow is moving to the right, and ẋ < 0,
the flow is moving to the left. If we further annotate our graph with arrows indicating
the direction of the flow, then the entire (long-term) system behavior becomes clear: For
instance, we can see that any initial condition x(0) ∈ (π, π) will result in x(∞) = 0. This
region is called the basin of attraction of the fixed point at x∗ = 0. Basins of attraction
of two fixed points cannot overlap, and the manifold separating two basins of attraction is
called the separatrix. Here the unstable fixed points, at x∗ = {..,−π, π, 3π, ...} form the
separatrix between the basins of attraction of the stable fixed points.

As these plots demonstrate, the behavior of a first-order one dimensional system on a
line is relatively constrained. The system will either monotonically approach a fixed-point
or monotonically move toward ±∞. There are no other possibilities. Oscillations, for
example, are impossible. Graphical analysis is a fantastic analysis tool for many first-order
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x

ẋ

mgl
b

nonlinear systems (not just pendula); as illustrated by the following example:

EXAMPLE 2.1 Nonlinear autapse

Consider the following system:

ẋ+ x = tanh(wx) (2.3)

It’s convenient to note that tanh(z) ≈ z for small z. For w ≤ 1 the system has only
a single fixed point. For w > 1 the system has three fixed points : two stable and one
unstable. These equations are not arbitrary - they are actually a model for one of the
simplest neural networks, and one of the simplest model of persistent memory[71]. In the
equation x models the firing rate of a single neuron, which has a feedback connection to
itself. tanh is the activation (sigmoidal) function of the neuron, and w is the weight of the
synaptic feedback.

One last piece of terminology. In the neuron example, and in many dynamical sys-
tems, the dynamics were parameterized; in this case by a single parameter,w. As we varied
w, the fixed points of the system moved around. In fact, if we increase w through w = 1,
something dramatic happens - the system goes from having one fixed point to having three
fixed points. This is called a bifurcation. This particular bifurcation is called a pitchfork
bifurcation. We often draw bifurcation diagrams which plot the fixed points of the system
as a function of the parameters, with solid lines indicating stable fixed points and dashed
lines indicating unstable fixed points, as seen in figure 2.2.

Our pendulum equations also have a (saddle-node) bifurcation when we change the
constant torque input, u0. This is the subject of exercise 1. Finally, let’s return to the
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w

x∗

w = 1

FIGURE 2.2 Bifurcation diagram of the nonlinear autapse.

original equations in θ, instead of in x. Only one point to make: because of the wrap-
around, this system will appear have oscillations. In fact, the graphical analysis reveals
that the pendulum will turn forever whenever |u0| > mgl.

2.2.2 The Undamped Pendulum w/ Zero Torque

Consider again the system
Iθ̈ = u0 −mgl sin θ − bθ̇,

this time with b = 0. This time the system dynamics are truly second-order. We can
always think of any second-order system as (coupled) first-order system with twice as
many variables. Consider a general, autonomous (not dependent on time), second-order
system,

q̈ = f(q, q̇, u).
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This system is equivalent to the two-dimensional first-order system

ẋ1 =x2

ẋ2 =f(x1, x2, u),

where x1 = q and x2 = q̇. Therefore, the graphical depiction of this system is not a line,
but a vector field where the vectors [ẋ1, ẋ2]T are plotted over the domain (x1, x2). This
vector field is known as the phase portrait of the system.

In this section we restrict ourselves to the simplest case when u0 = 0. Let’s sketch
the phase portrait. First sketch along the θ-axis. The x-component of the vector field here
is zero, the y-component is −mgl sin θ. As expected, we have fixed points at ±π, ... Now
sketch the rest of the vector field. Can you tell me which fixed points are stable? Some of
them are stable i.s.L., none are asymptotically stable.

θ

θ̇

Orbit Calculations.
Directly integrating the equations of motion is difficult, but at least for the case when

u0 = 0, we have some additional physical insight for this problem that we can take ad-
vantage of. The kinetic energy, T , and potential energy, U , of the pendulum are given
by

T =
1
2
Iθ̇2, U = −mgl cos(θ),
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18 Chapter 2 The Simple Pendulum

and the total energy is E(θ, θ̇) = T (θ̇) +U(θ). The undamped pendulum is a conservative
system: total energy is a constant over system trajectories. Using conservation of energy,
we have:

E(θ(t), θ̇(t)) = E(θ(0), θ̇(0)) = E

1
2
Iθ̇2(t)−mgl cos(θ(t)) = E

θ̇(t) = ±
√

2
I

[E +mgl cos (θ(t))]

This equation is valid (the squareroot evaluates to a real number) when cos(θ) >
cos(θmax), where

θmax =

{
cos−1

(
E
mgl

)
, E < mgl

π, otherwise.

Furthermore, differentiating this equation with respect to time indeed results in the equa-
tions of motion.

Trajectory Calculations.
Solving for θ(t) is a bit harder, because it cannot be accomplished using elementary

functions. We begin the integration with

dθ

dt
=

√
2
I

[E +mgl cos (θ(t))]∫ θ(t)

θ(0)

dθ√
2
I [E +mgl cos (θ(t))]

=
∫ t

0

dt′ = t

The integral on the left side of this equation is an (incomplete) elliptic integral of the first
kind. Using the identity:

cos(θ) = 1− 2 sin2(
1
2
θ),

and manipulating, we have

t =

√
I

2(E +mgl)

∫ θ(t)

θ(0)

dθ√
1− k2

1 sin2( θ2 )
, with k1 =

√
2mgl

E +mgl
.

In terms of the incomplete elliptic integral function,

F (φ, k) =
∫ φ

0

dθ√
1− k2 sin2 θ

,

accomplished by a change of variables. If E <= mgl, which is the case of closed-orbits,
we use the following change of variables to ensure 0 < k < 1:

φ = sin−1

[
k1 sin

(
θ

2

)]

cos(φ)dφ =
1
2
k1 cos

(
θ

2

)
dθ =

1
2
k1

√
1− sin2(φ)

k2
1

dθ
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we have

t =
1
k1

√
2I

(E +mgl)

∫ φ(t)

φ(0)

dφ√
1− sin2(φ)

cos(φ)√
1− sin2 φ

k2
1

=

√
I

mgl
[F (φ(t), k2)− F (φ(0), k2)] , k2 =

1
k1
.

The inverse of F is given by the Jacobi elliptic functions (sn,cn,...), yielding:

sin(φ(t)) = sn

(
t

√
mgl

I
+ F (φ(0), k2) , k2

)

θ(t) = 2 sin−1

[
k2sn

(
t

√
mgl

I
+ F (φ(0), k2) , k2

)]

The function sn used here can be evaluated in MATLAB by calling

sn(u, k) = ellipj(u, k2).

The function F is not implemented in MATLAB, but implementations can be downloaded..
(note that F (0, k) = 0).

For the open-orbit case, E > mgl, we use

φ =
θ

2
,

dφ

dθ
=

1
2
,

yielding

t =
2I

E +mgl

∫ φ(t)

φ(0)

dφ√
1− k2

1 sin2(φ)

θ(t) = 2 tan−1

 sn
(
t
√

E+mgl
2I + F

(
θ(0)
2 , k1

))
cn
(
t
√

E+mgl
2I + F

(
θ(0)
2 , k1

))


Notes: Use MATLAB’s atan2 and unwrap to recover the complete trajectory.

2.2.3 The Undamped Pendulum w/ a Constant Torque

Now what happens if we add a constant torque? Fixed points come together, towards
q = π

2 ,
5π
2 , ..., until they disappear. Right fixed-point is unstable, left is stable.

2.2.4 The Dampled Pendulum

Add damping back. You can still add torque to move the fixed points (in the same way).
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θ

θ̇

Here’s a thought exercise. If u is no longer a constant, but a function π(q, q̇), then
how would you choose π to stabilize the vertical position. Feedback linearization is the
trivial solution, for example:

u = π(q, q̇) = 2
g

l
cos θ.

But these plots we’ve been making tell a different story. How would you shape the natural
dynamics - at each point pick a u from the stack of phase plots - to stabilize the vertical
fixed point with minimal torque effort? We’ll learn that soon.

2.3 THE TORQUE-LIMITED SIMPLE PENDULUM

The simple pendulum is fully actuated. Given enough torque, we can produce any num-
ber of control solutions to stabilize the originally unstable fixed point at the top (such as
designing a feedback law to effectively invert gravity).

The problem begins to get interesting if we impose a torque-limit constraint, |u| ≤
umax. Looking at the phase portraits again, you can now visualize the control problem.
Via feedback, you are allowed to change the direction of the vector field at each point, but
only by a fixed amount. Clearly, if the maximum torque is small (smaller than mgl), then
there are some states which cannot be driven directly to the goal, but must pump up energy
to reach the goal. Futhermore, if the torque-limit is too severe and the system has damping,
then it may be impossible to swing up to the top. The existence of a solution, and number
of pumps required to reach the top, is a non-trivial function of the initial conditions and the
torque-limits.

Although this problem is still fully-actuated, its solution requires much of the same
reasoning necessary for controller underactuated systems; this problem will be a work-
horse for us as we introduce new algorithms throughout this book.
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PROBLEMS

2.1. Bifurcation diagram of the simple pendulum.

(a) Sketch the bifurcation diagram by varying the continuous torque, u0, in the over-
damped simple pendulum described in Equation (2.2) over the range [−π

2 ,
3π
2 ].

Carefully label the domain of your plot.
(b) Sketch the bifurcation diagram of the underdamped pendulum over the same do-

main and range as in part (a).

2.2. (CHALLENGE) The Simple Pendulum ODE.

The chapter contained the closed-form solution for the undamped pendulum with zero
torque.

(a) Find the closed-form solution for the pendulum equations with a constant torque.
(b) Find the closed-form solution for the pendulum equations with damping.
(c) Find the closed-form solution for the pendulum equations with both damping and

a constant torque.
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C H A P T E R 3

The Acrobot and Cart-Pole

3.1 INTRODUCTION

A great deal of work in the control of underactuated systems has been done in the con-
text of low-dimensional model systems. These model systems capture the essence of the
problem without introducing all of the complexity that is often involved in more real-world
examples. In this chapter we will focus on two of the most well-known and well-studied
model systems - the Acrobot and the Cart-Pole. These systems are trivially underactuated
- both systems have two degrees of freedom, but only a single actuator.

3.2 THE ACROBOT

The Acrobot is a planar two-link robotic arm in the vertical plane (working against gravity),
with an actuator at the elbow, but no actuator at the shoulder (see Figure 3.1). It was
first described in detail in [61]. The companion system, with an actuator at the shoulder
but not at the elbow, is known as the Pendubot[76]. The Acrobot is so named because
of its resemblence to a gymnist (or acrobat) on a parallel bar, who controls his motion
predominantly by effort at the waist (and not effort at the wrist). The most common control
task studied for the acrobot is the swing-up task, in which the system must use the elbow
(or waist) torque to move the system into a vertical configuration then balance.

τ

m  ,I1
θ

θ2

1

ll
1c1

1

2

g

m  ,I2

FIGURE 3.1 The Acrobot

The Acrobot is representative of the primary challenge in underactuated robots. In
order to swing up and balance the entire system, the controller must reason about and
exploit the state-dependent coupling between the actuated degree of freedom and the un-
actuated degree of freedom. It is also an important system because, as we will see, it
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closely resembles one of the simplest models of a walking robot.

3.2.1 Equations of Motion

Figure 3.1 illustrates the model parameters used in our analysis. θ1 is the shoulder joint
angle, θ2 is the elbow (relative) joint angle, and we will use q = [θ1, θ2]T , x = [q, q̇]T .
The zero state is the with both links pointed directly down. The moments of inertia, I1, I2
are taken about the pivots1. The task is to stabilize the unstable fixed point x = [π, 0, 0, 0]T .

We will derive the equations of motion for the Acrobot using the method of La-
grange. The kinematics are given by:

x1 =
[
l1s1
−l1c1

]
, x2 = x1 +

[
l2s1+2

−l2c1+2

]
. (3.1)

The energy2 is given by:

T = T1 + T2, T1 =
1
2
I1q̇

2
1 (3.2)

T2 =
1
2

(m2l
2
1 + I2 + 2m2l1lc2c2)q̇21 +

1
2
I2q̇

2
2 + (I2 +m2l1lc2c2)q̇1q̇2 (3.3)

U = −m1glc1c1 −m2g(l1c1 + l2c1+2) (3.4)

Entering these quantities into the Lagrangian yields the equations of motion:

(I1 + I2 +m2l
2
1 + 2m2l1lc2c2)q̈1 + (I2 +m2l1lc2c2)q̈2 − 2m2l1lc2s2q̇1q̇2 (3.5)

−m2l1lc2s2q̇
2
2 + (m1lc1 +m2l1)gs1 +m2gl2s1+2 = 0 (3.6)

(I2 +m2l1lc2c2)q̈1 + I2q̈2 +m2l1lc2s2q̇
2
1 +m2gl2s1+2 = τ (3.7)

In standard, manipulator equation form, we have:

H(q) =
[
I1 + I2 +m2l

2
1 + 2m2l1lc2c2 I2 +m2l1lc2c2

I2 +m2l1lc2c2 I2

]
, (3.8)

C(q, q̇) =
[
−2m2l1lc2s2q̇2 −m2l1lc2s2q̇2
m2l1lc2s2q̇1 0

]
, (3.9)

G(q) =
[
(m1lc1 +m2l1)gs1 +m2gl2s1+2

m2gl2s1+2

]
, B =

[
0
1

]
. (3.10)

3.3 CART-POLE

The other model system that we will investigate here is the cart-pole system, in which the
task is to balance a simple pendulum around its unstable unstable equilibrium, using only
horizontal forces on the cart. Balancing the cart-pole system is used in many introductory
courses in control, including 6.003 at MIT, because it can be accomplished with simple
linear control (e.g. pole placement) techniques. In this chapter we will consider the full
swing-up and balance control problem, which requires a full nonlinear control treatment.

1[77] uses the center of mass, which differs only by an extra term in each inertia from the parallel axis theorem.
2The complicated expression for T2 can be obtained by (temporarily) assuming the mass in link 2 comes from

a discrete set of point masses, and using T2 =
∑

i
miṙ

T
i ṙi, where li is the length along the second link of point

ri. Then the expressions I2 =
∑

i
mil

2
i and lc2 =

∑
i
mili∑
i
mi

, and c1c1+2 + s1s1+2 = c2 can be used to

simplify.
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f
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x

l

m c

g

θ
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FIGURE 3.2 The Cart-Pole System

Figure 3.2 shows our parameterization of the system. x is the horizontal position of
the cart, θ is the counter-clockwise angle of the pendulum (zero is hanging straight down).
We will use q = [x, θ]T , and x = [q, q̇]T . The task is to stabilize the unstable fixed point
at x = [0, π, 0, 0]T .

3.3.1 Equations of Motion

The kinematics of the system are given by

x1 =
[
x
0

]
, x2 =

[
x+ l sin θ
−l cos θ

]
. (3.11)

The energy is given by

T =
1
2

(mc +mp)ẋ2 +mpẋθ̇l cos θ +
1
2
mpl

2θ̇2 (3.12)

U =−mpgl cos θ. (3.13)

The Lagrangian yields the equations of motion:

(mc +mp)ẍ+mplθ̈ cos θ −mplθ̇
2 sin θ = f (3.14)

mplẍ cos θ +mpl
2θ̈ +mpgl sin θ = 0 (3.15)

In standard form, using q = [x, θ]T , u = f :

H(q)q̈ + C(q, q̇)q̇ + G(q) = Bu,

where

H(q) =
[
mc +mp mpl cos θ
mpl cos θ mpl

2

]
, C(q, q̇) =

[
0 −mplθ̇ sin θ
0 0

]
,

G(q) =
[

0
mpgl sin θ

]
, B =

[
1
0

]
In this case, it is particularly easy to solve directly for the accelerations:

ẍ =
1

mc +mp sin2 θ

[
f +mp sin θ(lθ̇2 + g cos θ)

]
(3.16)

θ̈ =
1

l(mc +mp sin2 θ)

[
−f cos θ −mplθ̇

2 cos θ sin θ − (mc +mp)g sin θ
]

(3.17)
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In some of the follow analysis that follows, we will study the form of the equations of
motion, ignoring the details, by arbitrarily setting all constants to 1:

2ẍ+ θ̈ cos θ − θ̇2 sin θ = f (3.18)

ẍ cos θ + θ̈ + sin θ = 0. (3.19)

3.4 BALANCING

For both the Acrobot and the Cart-Pole systems, we will begin by designing a linear con-
troller which can balance the system when it begins in the vicinity of the unstable fixed
point. To accomplish this, we will linearize the nonlinear equations about the fixed point,
examine the controllability of this linear system, then using linear quadratic regulator
(LQR) theory to design our feedback controller.

3.4.1 Linearizing the Manipulator Equations

Although the equations of motion of both of these model systems are relatively tractable,
the forward dynamics still involve quite a few nonlinear terms that must be considered in
any linearization. Let’s consider the general problem of linearizing a system described by
the manipulator equations.

We can perform linearization around a fixed point, (x∗,u∗), using a Taylor expan-
sion:

ẋ = f(x,u) ≈ f(x∗,u∗)+
[
∂f
∂x

]
x=x∗,u=u∗

(x−x∗)+
[
∂f
∂u

]
x=x∗,u=u∗

(u−u∗) (3.20)

Let us consider the specific problem of linearizing the manipulator equations around a
(stable or unstable) fixed point. In this case, f(x∗,u∗) is zero, and we are left with the
standard linear state-space form:

ẋ =
[

q̇
H−1(q) [Bu−C(q, q̇)q̇−G(q)]

]
, (3.21)

≈A(x− x∗) + B(u− u∗), (3.22)

where A, and B are constant matrices. If you prefer, we can also define x̄ = x− x∗, ū =
u− u∗, and write

˙̄x = Ax̄ + Bū.

Evaluation of the Taylor expansion around a fixed point yields the following, very simple
equations, given in block form by:

A =
[

0 I
−H−1 ∂G

∂q −H−1C

]
x=x∗,u=u∗

(3.23)

B =
[

0
H−1B

]
x=x∗,u=u∗

(3.24)

Note that the term involving ∂H−1

∂qi
disappears because Bu−Cq̇−G must be zero at the

fixed point. Many of the Cq̇ derivatives drop out, too, because q̇∗ = 0.
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26 Chapter 3 The Acrobot and Cart-Pole

Linearization of the Acrobot.
Linearizing around the (unstable) upright point, we have:

C(q, q̇)x=x∗ = 0, (3.25)[
∂G
∂q

]
x=x∗

=
[
−g(m1lc1 +m2l1 +m2l2) −m2gl2

−m2gl2 −m2gl2

]
(3.26)

The linear dynamics follow directly from these equations and the manipulator form of the
Acrobot equations.

Linearization of the Cart-Pole System.
Linearizing around the (unstable) fixed point in this system, we have:

C(q, q̇)x=x∗ = 0,
[
∂G
∂q

]
x=x∗

=
[
0 0
0 −mpgl

]
(3.27)

Again, the linear dynamics follow simply.

3.4.2 Controllability of Linear Systems

Consider the linear system
ẋ = Ax + Bu,

where x has dimension n. A system of this form is called controllable if it is possible to
construct an unconstrained control signal which will transfer an initial state to any final
state in a finite interval of time, 0 < t < tf [65]. If every state is controllable, then the sys-
tem is said to be completely state controllable. Because we can integrate this linear system
in closed form, it is possible to derive the exact conditions of complete state controllability.

The special case of non-repeated eigenvalues.
Let us first examine a special case, which falls short as a general tool but may be

more useful for understanding the intution of controllability. Let’s perform an eigenvalue
analysis of the system matrix A, so that:

Avi = λivi,

where λi is the ith eigenvalue, and vi is the corresponding (right) eigenvector. There will
be n eigenvalues for the n × n matrix A. Collecting the (column) eigenvectors into the
matrix V and the eigenvalues into a diagonal matrix Λ, we have

AV = VΛ.

Here comes our primary assumption: let us assume that each of these n eigenvalues takes
on a distinct value (no repeats). With this assumption, it can be shown that the eigenvectors
vi form a linearly independent basis set, and therefore V−1 is well-defined.

We can continue our eigenmodal analysis of the linear system by defining the modal
coordinates, r with:

x = Vr, or r = V−1x.
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In modal coordinates, the dynamics of the linear system are given by

ṙ = V−1AVr + V−1Bu = Λr + V−1Bu.

This illustrates the power of modal analysis; in modal coordinates, the dynamics diagonal-
ize yeilding independent linear equations:

ṙi = λiri +
∑
j

βijuj , β = V−1B.

Now the concept of controllability becomes clear. Input j can influence the dynamics
in modal coordinate i if and only if βij 6= 0. In the special case of non-repeated eigenval-
ues, having control over each individual eigenmode is sufficient to (in finite-time) regulate
all of the eigenmodes[65]. Therefore, we say that the system is controllable if and only if

∀i,∃j such that βij 6= 0.

Note a linear feedback to change the eigenvalues of the eigenmodes is not sufficient to
accomplish our goal of getting to the goal in finite time. In fact, the open-loop control
to reach the goal is easily obtained with a final-value LQR problem5, and (for R = I) is
actually a simple function of the controllability Grammian[21].

A general solution.
A more general solution to the controllability issue, which removes our assumption

about the eigenvalues, can be obtained by examining the time-domain solution of the linear
equations. The solution of this system is

x(t) = eAtx(0) +
∫ t

0

eA(t−τ)Bu(τ)dτ.

Without loss of generality, lets consider the that the final state of the system is zero. Then
we have:

x(0) = −
∫ tf

0

e−AτBu(τ)dτ.

You might be wondering what we mean by eAt; a scalar raised to the power of a matrix..?
Recall that ez is actually defined by a convergent infinite sum:

ez = 1 + z +
1
2
x2 +

1
6
z3 + ....

The notation eAt uses the same definition:

eAt = I + At+
1
2

(At)2 +
1
6

(At)3 + ....

Not surprisingly, this has many special forms. For instance, eAt = VeΛtV−1, where
A = VΛV−1 is the eigenvalue decomposition of A [82]. The particular form we will use
here is

e−Aτ =
n−1∑
k=0

αk(τ)Ak.
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This is a particularly surprising form, because the infinite sum above is represented by this
finite sum; the derivation uses Sylvester’s Theorem[65, 21]. Then we have,

x(0) =−
n−1∑
k=0

AkB
∫ tf

0

αk(τ)u(τ)dτ

=−
n−1∑
k=0

AkBwk, where wk =
∫ tf

0

αk(τ)u(τ)dτ

=−
[
B AB A2B · · · An−1B

]
n×n


w0

w1

w2

...
wn−1


The matrix containing the vectors B, AB, ... An−1B is called the controllability ma-
trix. In order for the system to be complete-state controllable, for every initial condition
x(0), we must be able to find the corresponding vector w. This is only possible when the
columns of the controllability matrix are linearly independent. Therefore, the condition of
controllability is that this controllability matrix is full rank.

Although we only treated the case of a scalar u, it is possible to extend the analysis
to a vector u of size m, yielding the condition

rank
[
B AB A2B · · · An−1B

]
n×(nm)

= n.

In Matlab3, you can obtain the controllability matrix using Cm = ctrb(A,B), and eval-
uate its rank with rank(Cm).

Controllability vs. Underactuated.
Analysis of the controllability of both the Acrobot and Cart-Pole systems reveals

that the linearized dynamics about the upright are, in fact, controllable. This implies that
the linearized system, if started away from the zero state, can be returned to the zero state
in finite time. This is potentially surprising - after all the systems are underactuated. For
example, it is interesting and surprising that the Acrobot can balance itself in the upright
position without having a shoulder motor.

The controllability of these model systems demonstrates an extremely important,
point: An underactuated system is not necessarily an uncontrollable system. Underactuated
systems cannot follow arbitrary trajectories, but that does not imply that they cannot arrive
at arbitrary points in state space. However, the trajectory required to place the system into
a particular state may be arbitrarly complex.

The controllability analysis presented here is for LTI systems. A comparable analysis
exists for linear time-varying (LTV) systems. One would like to find a comparable analysis
for controllability that would apply to nonlinear systems, but I do not know of any general
tools for solving this problem.

3using the control systems toolbox
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3.4.3 LQR Feedback

Controllability tells us that a trajectory to the fixed point exists, but does not tell us which
one we should take or what control inputs cause it to occur? Why not? There are potentially
infinitely many solutions. We have to pick one.

The tools for controller design in linear systems are very advanced. In particular, as
we describe in 6, one can easily design an optimal feedback controller for a regulation task
like balancing, so long as we are willing to define optimality in terms of a quadratic cost
function:

J(x0) =
∫ ∞

0

[
x(t)TQx(t) + u(t)Ru(t)

]
dt, x(0) = x0,Q = QT > 0,R = RT > 0.

The linear feedback matrix K used as

u(t) = −Kx(t),

is the so-called optimal linear quadratic regulator (LQR). Even without understanding the
detailed derivation, we can quickly become practioners of LQR. Conveniently, Matlab has
a function, K = lqr(A,B,Q,R). Therefore, to use LQR, one simply needs to obtain the
linearized system dynamics and to define the symmetric positive-definite cost matrices, Q
and R. In their most common form, Q and R are positive diagonal matrices, where the
entries Qii penalize the relative errors in state variable xi compared to the other state
variables, and the entries Rii penalize actions in ui.

Analysis of the close-loop response with LQR feedback shows that the task is indeed
completed - and in an impressive manner. Often times the state of the system has to move
violently away from the origin in order to ultimately reach the origin. Further inspection
reveals the (linearized) closed-loop dynamics have right-half plane zeros - the system in
non-minimum phase (acrobot had 3 right-half zeros, cart-pole had 1).

[To do: Include trajectory example plots here]

Note that LQR, although it is optimal for the linearized system, is not necessarily the
best linear control solution for maximizing basin of attraction of the fixed-point. The theory
of robust control(e.g., [96]), which explicitly takes into account the differences between the
linearized model and the nonlinear model, will produce controllers which outperform our
LQR solution in this regard.

3.5 PARTIAL FEEDBACK LINEARIZATION

In the introductory chapters, we made the point that the underactuated systems are not
feedback linearizable. At least not completely. Although we cannot linearize the full
dynamics of the system, it is still possible to linearize a portion of the system dynamics.
The technique is called partial feedback linearization.

Consider the cart-pole example. The dynamics of the cart are effected by the motions
of the pendulum. If we know the model, then it seems quite reasonable to think that we
could create a feedback controller which would push the cart in exactly the way necessary
to counter-act the dynamic contributions from the pendulum - thereby linearizing the cart
dynamics. What we will see, which is potentially more surprising, is that we can also use a
feedback law for the cart to feedback linearize the dynamics of the passive pendulum joint.
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We’ll use the term collocated partial feedback linearization to describe a controller
which linearizes the dynamics of the actuated joints. What’s more surprising is that it is
often possible to achieve noncollocated partial feedback linearization - a controller which
linearizes the dynamics of the unactuated joints. The treatment presented here follows
from [78].

3.5.1 PFL for the Cart-Pole System

Collocated.
Starting from equations 3.18 and 3.19, we have

θ̈ = −ẍc− s
ẍ(2− c2)− sc− θ̇2s = f

Therefore, applying the feedback control law

f = (2− c2)ẍd − sc− θ̇2s (3.28)

results in

ẍ =ẍd

θ̈ =− ẍdc− s,

which are valid globally.

Non-collocated.
Starting again from equations 3.18 and 3.19, we have

ẍ = − θ̈ + s

c

θ̈(c− 2
c

)− 2 tan θ − θ̇2s = f

Applying the feedback control law

f = (c− 2
c

)θ̈d − 2 tan θ − θ̇2s (3.29)

results in

θ̈ =θ̈d

ẍ =− 1
c
θ̈d − tan θ.

Note that this expression is only valid when cos θ 6= 0. This is not surprising, as we know
that the force cannot create a torque when the beam is perfectly horizontal.
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3.5.2 General Form

For systems that are trivially underactuated (torques on some joints, no torques on other
joints), we can, without loss of generality, reorganize the joint coordinates in any underac-
tuated system described by the manipulator equations into the form:

H11q̈1 + H12q̈2 + φ1 = 0, (3.30)
H21q̈1 + H22q̈2 + φ2 = τ, (3.31)

with q ∈ <n, q1 ∈ <m, q2 ∈ <l, l = n − m. q1 represents all of the passive joints,
and q2 represents all of the actuated joints, and the φ terms capture all of the Coriolis and
gravitational terms, and

H(q) =
[
H11 H12

H21 H22

]
.

Fortunately, because H is uniformly positive definite, H11 and H22 are also positive defi-
nite.

Collocated linearization.
Performing the same substitutions into the full manipulator equations, we get:

q̈1 = −H−1
11 [H12q̈2 + φ1] (3.32)

(H22 −H21H−1
11 H12)q̈2 + φ2 −H21H−1

11 φ1 = τ (3.33)

It can be easily shown that the matrix (H22 −H21H−1
11 H12) is invertible[78]; we can see

from inspection that it is symmetric. PFL follows naturally, and is valid globally.

Non-collocated linearization.

q̈2 = −H+
12 [H11q̈1 + φ1] (3.34)

(H21 −H22H+
12H11)q̈1 + φ2 −H22H+

12φ1 = τ (3.35)

Where H+
12 is a Moore-Penrose pseudo-inverse. This inverse provides a unique solu-

tion when the rank of H12 equals l, the number of passive degrees of freedom in the system
(it cannot be more, since the matrix only has l rows). This rank condition is sometimes
called the property of “Strong Inertial Coupling”. It is state dependent. Global Strong
Inertial Coupling if every state is coupled.

Task Space Linearization.
In general, we can define some combination of active and passive joints that we

would like to control. This combination is sometimes called a “task space”. Consider an
output function of the form,

y = f(q),

with y ∈ <p, which defines the task space. Define J1 = ∂f
∂q1

, J2 = ∂f
∂q2

, J = [J1,J2].

THEOREM 4 (Task Space PFL). If the actuated joints are commanded so that

q̈2 = J̄+
[
v − J̇q̇ + J1H−1

11 φ1

]
, (3.36)

c© Russ Tedrake, 2009



32 Chapter 3 The Acrobot and Cart-Pole

where J̄ = J2 − J1H−1
11 H12. and J̄+ is the right Moore-Penrose pseudo-inverse,

J̄+ = J̄T (J̄J̄T )−1,

then we have
ÿ = v. (3.37)

subject to
rank

(
J̄
)

= p, (3.38)

Proof. Differentiating the output function we have

ẏ = Jq̇

ÿ = J̇q̇ + J1q̈1 + J2q̈2.

Solving 3.30 for the dynamics of the unactuated joints we have:

q̈1 = −H−1
11 (H12q̈2 + φ1) (3.39)

Substituting, we have

ÿ =J̇q̇− J1H−1
11 (H12q̈2 + φ1) + J2q̈2 (3.40)

=J̇q̇ + J̄q̈2 − J1H−1
11 φ1 (3.41)

=v (3.42)

Note that the last line required the rank condition (3.38) on J̄ to ensure that the rows
of J̄ are linearly independent, allowing J̄J̄+ = I.

In order to execute a task space trajectory one could command

v = ÿd + Kd(ẏd − ẏ) + Kp(yd − y).

Assuming the internal dynamics are stable, this yields converging error dynamics, (yd−y),
when Kp,Kd > 0[75]. For a position control robot, the acceleration command of (3.36)
suffices. Alternatively, a torque command follows by substituting (3.36) and (3.39) into
(3.31).

EXAMPLE 3.1 End-point trajectory following with the Cart-Pole system

Consider the task of trying to track a desired kinematic trajectory with the endpoint
of pendulum in the cart-pole system. With one actuator and kinematic constraints, we
might be hard-pressed to track a trajectory in both the horizontal and vertical coordinates.
But we can at least try to track a trajectory in the vertical position of the end-effector.

Using the task-space PFL derivation, we have:

y = f(q) = −l cos θ

ẏ = lθ̇ sin θ

If we define a desired trajectory:

yd(t) =
l

2
+
l

4
sin(t),

c© Russ Tedrake, 2009



Section 3.6 Swing-Up Control 33

then the task-space controller is easily implemented using the derivation above.

Collocated and Non-Collocated PFL from Task Space derivation.
The task space derivation above provides a convenient generalization of the par-

tial feedback linearization (PFL) [78], which emcompasses both the collocated and non-
collocated results. If we choose y = q2 (collocated), then we have

J1 = 0,J2 = I, J̇ = 0, J̄ = I, J̄+ = I.

From this, the command in (3.36) reduces to q̈2 = v. The torque command is then

τ = −H21H−1
11 (H12v + φ1) + H22v + φ2,

and the rank condition (3.38) is always met.
If we choose y = q1 (non-collocated), we have

J1 = I,J2 = 0, J̇ = 0, J̄ = −H−1
11 H12.

The rank condition (3.38) requires that rank(H12) = l, in which case we can write
J̄+ = −H+

12H11, reducing the rank condition to precisely the “Strong Inertial Coupling”
condition described in [78]. Now the command in (3.36) reduces to

q̈2 = −H+
12 [H11v + φ1] (3.43)

The torque command is found by substituting q̈1 = v and (3.43) into (3.31), yielding the
same results as in [78].

3.6 SWING-UP CONTROL

3.6.1 Energy Shaping

Recall the phase portraits that we used to understand the dynamics of the undamped, un-
actuated, simple pendulum (u = b = 0) in section 2.2.2. The orbits of this phase plot were
defined by countours of constant energy. One very special orbit, known as a homoclinic
orbit, is the orbit which passes through the unstable fixed point. In fact, visual inspection
will reveal that any state that lies on this homoclinic orbit must pass into the unstable fixed
point. Therefore, if we seek to design a nonlinear feedback control policy which drives the
simple pendulum from any initial condition to the unstable fixed point, a very reasonable
strategy would be to use actuation to regulate the energy of the pendulum to place it on this
homoclinic orbit, then allow the system dynamics to carry us to the unstable fixed point.

This idea turns out to be a bit more general than just for the simple pendulum. As we
will see, we can use similar concepts of ‘energy shaping’ to produce swing-up controllers
for the acrobot and cart-pole systems. It’s important to note that it only takes one actuator
to change the total energy of a system.

Although a large variety of swing-up controllers have been proposed for these model
systems[30, 5, 94, 79, 54, 12, 61, 49], the energy shaping controllers tend to be the most
natural to derive and perhaps the most well-known.
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3.6.2 Simple Pendulum

Recall the equations of motion for the undamped simple pendulum were given by

ml2θ̈ +mgl sin θ = u.

The total energy of the simple pendulum is given by

E =
1
2
ml2θ̇2 −mgl cos θ.

To understand how to control the energy, observe that

Ė =ml2θ̇θ̈ + θ̇mgl sin θ

=θ̇ [u−mgl sin θ] + θ̇mgl sin θ

=uθ̇.

In words, adding energy to the system is simple - simply apply torque in the same direction
as θ̇. To remove energy, simply apply torque in the opposite direction (e.g., damping).

To drive the system to the homoclinic orbit, we must regulate the energy of the
system to a particular desired energy,

Ed = mgl.

If we define Ẽ = E − Ed, then we have

˙̃E = Ė = uθ̇.

If we apply a feedback controller of the form

u = −kθ̇Ẽ, k > 0,

then the resulting error dynamics are

˙̃E = −kθ̇2Ẽ.

These error dynamics imply an exponential convergence:

Ẽ → 0,

except for states where θ̇ = 0. The essential property is that when E > Ed, we should
remove energy from the system (damping) and when E < Ed, we should add energy
(negative damping). Even if the control actions are bounded, the convergence is easily
preserved.

This is a nonlinear controller that will push all system trajectories to the unstable
equilibrium. But does it make the unstable equilibrium locally stable? No. Small pertur-
bations may cause the system to drive all of the way around the circle in order to once
again return to the unstable equilibrium. For this reason, one trajectories come into the
vicinity of our swing-up controller, we prefer to switch to our LQR balancing controller to
performance to complete the task.
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3.6.3 Cart-Pole

Having thought about the swing-up problem for the simple pendulum, let’s try to apply the
same ideas to the cart-pole system. The basic idea, from [23], is to use collocated PFL
to simplify the dynamics, use energy shaping to regulate the pendulum to it’s homoclinic
orbit, then to add a few terms to make sure that the cart stays near the origin. The collocated
PFL (when all parameters are set to 1) left us with:

ẍ = u (3.44)

θ̈ = −uc− s (3.45)

The energy of the pendulum (a unit mass, unit length, simple pendulum in unit gravity) is
given by:

E(x) =
1
2
θ̇2 − cos θ.

The desired energy, equivalent to the energy at the desired fixed-point, is

Ed = 1.

Again defining Ẽ(x) = E(x)− Ed, we now observe that

˙̃E(x) =Ė(x) = θ̇θ̈ + θ̇s

=θ̇[−uc− s] + θ̇s

=− uθ̇ cos θ.

Therefore, if we design a controller of the form

u = kθ̇ cos θẼ, k > 0

the result is
˙̃E = −kθ̇2 cos2 θẼ.

This guarantees that |Ẽ| is non-increasing, but isn’t quite enough to guarantee that it will
go to zero. For example, if θ = θ̇ = 0, the system will never move. However, if we have
that ∫ t

0

θ̇2(t′) cos2 θ(t′)dt′ →∞, as t→∞,

then we have Ẽ(t)→ 0. This condition is satisfied for all but the most trivial trajectories.
Now we must return to the full system dynamics (which includes the cart). [23] and

[80] use the simple pendulum energy controller with an addition PD controller designed to
regulate the cart:

ẍd = kE θ̇ cos θẼ − kpx− kdẋ.

[23] provided a proof of convergence for this controller with some nominal parameters.
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FIGURE 3.3 Cart-Pole Swingup: Example phase plot of the pendulum subsystem using
energy shaping control. The controller drives the system to the homoclinic orbit, then
switches to an LQR balancing controller near the top.

3.6.4 Acrobot

Swing-up control for the acrobot can be accomplished in much the same way. [79] - pump
energy. Clean and simple. No proof. Slightly modified version (uses arctan instead of sat)
in [77]. Clearest presentation in [80].

Use collocated PFL. (q̈2 = ẍd).

E(x) =
1
2
q̇THq̇ + U(x).

Ed = U(x∗).

ū = q̇1Ẽ.

ẍd = −k1q2 − k2q̇2 + k3ū,

Extra PD terms prevent proof of asymptotic convergence to homoclinic orbit. Proof
of another energy-based controller in [94].

3.6.5 Discussion

The energy shaping controller for swing-up presented here are pretty faithful representa-
tives from the field of nonlinear underactuated control. Typically these control derivations
require some clever tricks for simplifying or canceling out terms in the nonlinear equa-
tions, then some clever Lyapunov function to prove stability. In these cases, PFL was used
to simplify the equations, and therefore the controller design.

These controllers are important, representative, and relevant. But clever tricks with
nonlinear equations seem to be fundamentally limited. Most of the rest of the material pre-
sented in this book will emphasize more general computational approaches to formulating
and solving these and other control problems.

c© Russ Tedrake, 2009



Section 3.7 Other Model Systems 37

3.7 OTHER MODEL SYSTEMS

The acrobot and cart-pole systems are just two of the model systems used heavily in un-
deractuated control research. Other examples include:

• Pendubot

• Inertia wheel pendulum

• Furata pendulum (horizontal rotation and vertical pend)

• Hovercraft

• Planar VTOL
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Walking

Practical legged locomotion is one of the fundamental unsolved problems in robotics.
Many challenges are in mechanical design - a walking robot must carry all of it’s actuators
and power, making it difficult to carry ideal force/torque - controlled actuators. But many
of the unsolved problems are because walking robots are underactuated control systems.

In this chapter we’ll introduce some of the simple models of walking robots, the
control problems that result, and a very brief summary of some of the control solutions
described in the literature. Compared to the robots that we have studied so far, our inves-
tigations of legged locomotion will require additional tools for thinking about limit cycle
dynamics and dealing with impacts.

5.1 LIMIT CYCLES

A limit cycle is an asymptotically stable or unstable periodic orbit1. One of the simplest
models of limit cycle behavior is the Van der Pol oscillator. Let’s examine that first...

EXAMPLE 5.1 Van der Pol Oscillator

q̈ + µ(q2 − 1)q̇ + q = 0

One can think of this system as almost a simple spring-mass-damper system, except that
it has nonlinear damping. In particular, the velocity term dissipates energy when |q| > 1,
and adds energy when |q| < 1. Therefore, it is not terribly surprising to see that the system
settles into a stable oscillation from almost any initial conditions (the exception is the state
q = 0, q̇ = 0). This can be seem nicely in the phase portrait in Figure 5.1(left).

−3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

q

qd
ot

0 5 10 15 20 25 30 35 40 45 50
−4

−3

−2

−1

0

1

2

3

4

t

q

FIGURE 5.1 System trajectories of the Van der Pol oscillator with µ = .2. (Left) phase
portrait. (Right) time domain.

1marginally-stable orbits, such as the closed-orbits of the undamped simple pendulum, are typically not called
limit cycles.
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However, if we plot system trajectories in the time domain, then a slightly different
picture emerges (see Figure 5.1(right)). Although the phase portrait clearly reveals that all
trajectories converge to the same orbit, the time domain plot reveals that these trajectories
do not necessarily synchronize in time.

The Van der Pol oscillator clearly demonstrates what we would think of as a stable
limit cycle, but also exposes the subtlety in defining this limit cycle stability. Neighboring
trajectories do not necessarily converge on a stable limit cycle. In contrast, defining the
stability of a particular trajectory (parameterized by time) is relatively easy.

Let’s make a few quick points about the existence of closed-orbits. If we can define a
closed region of phase space which does not contain any fixed points, then it must contain
a closed-orbit[83]. By closed, I mean that any trajectory which enters the region will stay
in the region (this is the Poincare-Bendixson Theorem). It’s also interesting to note that
gradient potential fields (e.g. Lyapunov functions) cannot have a closed-orbit[83], and
consquently Lyapunov analysis cannot be applied to limit cycle stability without some
modification.

5.2 POINCARÉ MAPS

One definition for the stability of a limit cycle uses the method of Poincaré. Let’s consider
an n dimensional dynamical system, ẋ = f(x). Define an n − 1 dimensional surface of
section, S. We will also require that S is tranverse to the flow (i.e., all trajectories starting
on S flow through S, not parallel to it). The Poincaré map (or return map) is a mapping
from S to itself:

xp[n+ 1] = P(xp[n]),

where xp[n] is the state of the system at the nth crossing of the surface of section. Note
that we will use the notation xp to distinguish the state of the discrete-time system from
the continuous time system; they are related by xp[n] = x(tc[n]), where tc[n] is the time
of the nth crossing of S.

EXAMPLE 5.2 Return map for the Van der Pol Oscillator

Since the full system is two dimensional, the return map dynamics are one dimensional.
One dimensional maps, like one dimensional flows, are amenable to graphical analysis. To
define a Poincare section for the Van der Pol oscillator, let S be the line segment where
q̇ = 0, q > 0.

If P(xp) exists for all xp, then this method turns the stability analysis for a limit cycle
into the stability analysis of a fixed point on a discrete map. In practice it is often difficult
or impossible to find P analytically, but it can be obtained quite reasonably numerically.
Once P is obtained, we can infer local limit cycle stability with an eigenvalue analysis.
There will always be a single eigenvalue of 1 - corresponding to perturbations along the
limit cycle which do not change the state of first return. The limit cycle is considered
locally exponentially stable if all remaining eigenvalues, λi, have magnitude less than one,
|λi| < 1.

In fact, it is often possible to infer more global stability properties of the return map
by examining, P. [44] describes some of the stability properties known for unimodal maps.
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FIGURE 5.2 (Left) Phase plot with the surface of section, S drawn with a black dashed
line. (Right) The resulting Poincare first-return map (blue), and the line of slope one (red).

A particularly graphical method for understanding the dynamics of a one-
dimensional iterated map is with the staircase method. Sketch the Poincare map and also
the line of slope one. Fixed points are the crossings with the unity line. Asymptotically sta-
ble if |λ| < 1. Unlike one dimensional flows, one dimensional maps can have oscillations
(happens whenever λ < 0).

[insert staircase diagram of van der Pol oscillator return map here]

5.3 THE BALLISTIC WALKER

One of the earliest models of walking was proposed by McMahon[59], who argued that hu-
mans use a mostly ballistic (passive) gait. COM trajectory looks like a pendulum (roughly
walking by vaulting). EMG activity in stance legs is high, but EMG in swing leg is very
low, except for very beginning and end of swing. Proposed a three-link ”ballistic walker”
model, which models a single swing phase (but not transitions to the next swing nor sta-
bility). Interestingly, in recent years the field has developed a considerably deeper appre-
ciation for the role of compliance during walking; simple walking-by-vaulting models are
starting to fall out of favor.

McGeer[55] followed up with a series of walking machines, called “passive dynamic
walkers”. The walking machine by Collins and Ruina[26] is the most impressive passive
walker to date.

5.4 THE RIMLESS WHEEL

The most elementary model of passive dynamic walking, first used in the context of walk-
ing by [55], is the rimless wheel. This simplified system has rigid legs and only a point
mass at the hip as illustrated in Figure 5.3. To further simplify the analysis, we make the
following modeling assumptions:

• Collisions with ground are inelastic and impulsive (only angular momentum is con-
served around the point of collision).

• The stance foot acts as a pin joint and does not slip.

• The transfer of support at the time of contact is instantaneous (no double support
phase).
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FIGURE 5.3 The rimless wheel. The orientation of the stance leg, θ, is measured clockwise
from the vertical axis.

• 0 ≤ γ < π
2 , 0 < α < π

2 , l > 0.

Note that the coordinate system used here is slightly different than for the simple pendulum
(θ = 0 is at the top, and the sign of θ has changed).

The most comprehensive analysis of the rimless wheel was done by [24].

5.4.1 Stance Dynamics

The dynamics of the system when one leg is on the ground are given by

θ̈ =
g

l
sin(θ).

If we assume that the system is started in a configuration directly after a transfer of support
(θ(0+) = γ − α), then forward walking occurs when the system has an initial velocity,
θ̇(0+) > ω1, where

ω1 =
√

2
g

l
[1− cos (γ − α)].

ω1 is the threshold at which the system has enough kinetic energy to vault the mass over
the stance leg and take a step. This threshold is zero for γ = α and does not exist for
γ > α. The next foot touches down when θ(t) = γ + α, at which point the conversion of
potential energy into kinetic energy yields the velocity

θ̇(t−) =
√
θ̇2(0+) + 4

g

l
sinα sin γ.

t− denotes the time immediately before the collision.

5.4.2 Foot Collision

The angular momentum around the point of collision at time t just before the next foot
collides with the ground is

L(t−) = −ml2θ̇(t−) cos(2α).
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The angular momentum at the same point immediately after the collision is

L(t+) = −ml2θ̇(t+).

Assuming angular momentum is conserved, this collision causes an instantaneous loss of
velocity:

θ̇(t+) = θ̇(t−) cos(2α).

The deterministic dynamics of the rimless wheel produce a stable limit cycle solu-
tion with a continuous phase punctuated by a discrete collision, as shown in Figure 5.4.
The red dot on this graph represents the initial conditions, and this limit cycle actually
moves counter-clockwise in phase space because for this trial the velocities were always
negative. The collision represents as instantaneous change of velocity, and a transfer of the
coordinate system to the new point of contact.
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FIGURE 5.4 Phase portrait trajectories of the rimless wheel (m = 1, l = 1, g = 9.8, α =
π/8, γ = 0.08).

5.4.3 Return Map

We can now derive the angular velocity at the beginning of each stance phase as a func-
tion of the angular velocity of the previous stance phase. First, we will handle the case
where γ ≤ α and θ̇+n > ω1. The “step-to-step return map”, factoring losses from a single
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collision, the resulting map is:

θ̇+n+1 = cos(2α)
√

(θ̇+n )2 + 4
g

l
sinα sin γ.

where the θ̇+ indicates the velocity just after the energy loss at impact has occurred.
Using the same analysis for the remaining cases, we can complete the return map.

The threshold for taking a step in the opposite direction is

ω2 = −
√

2
g

l
[1− cos(α+ γ)].

For ω2 < θ̇+n < ω1, we have
θ̇+n+1 = −θ̇+n cos(2α).

Finally, for θ̇+n < ω2, we have

θ̇+n+1 = − cos(2α)
√

(θ̇+n )2 − 4
g

l
sinα sin γ.

Notice that the return map is undefined for θ̇n = {ω1, ω2}, because from these
configurations, the wheel will end up in the (unstable) equilibrium point where θ = 0 and
θ̇ = 0, and will therefore never return to the map.

This return map blends smoothly into the case where γ > α. In this regime,

θ̇+n+1 =


cos(2α)

√
(θ̇+n )2 + 4 gl sinα sin γ, 0 ≤ θ̇+n

−θ̇+n cos(2α), ω2 < θ̇+n < 0

− cos(2α)
√

(θ̇+n )2 − 4 gl sinα sin γ, θ̇+n ≤ w2

.

Notice that the formerly undefined points at {ω1, ω2} are now well-defined transitions with
ω1 = 0, because it is kinematically impossible to have the wheel statically balancing on a
single leg.

5.4.4 Fixed Points and Stability

For a fixed point, we require that θ̇+n+1 = θ̇+n = ω∗. Our system has two possible fixed
points, depending on the parameters:

ω∗stand = 0, ω∗roll = cot(2α)
√

4
g

l
sinα sin γ.

The limit cycle plotted in Figure 5.4 illustrates a state-space trajectory in the vicinity of
the rolling fixed point. ω∗stand is a fixed point whenever γ < α. ω∗roll is a fixed point
whenever ω∗roll > ω1. It is interesting to view these bifurcations in terms of γ. For small
γ, ωstand is the only fixed point, because energy lost from collisions with the ground is not
compensated for by gravity. As we increase γ, we obtain a stable rolling solution, where
the collisions with the ground exactly balance the conversion of gravitational potential
to kinetic energy. As we increase γ further to γ > α, it becomes impossible for the
center of mass of the wheel to be inside the support polygon, making standing an unstable
configuration.
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FIGURE 5.5 Limit cycle trajectory of the rimless wheel (m = 1, l = 1, g = 9.8, α =
π/8, γ = 0.15). All hatched regions converge to the rolling fixed point, ω∗roll; the white
regions converge to zero velocity (ω∗stand).

5.5 THE COMPASS GAIT

The rimless wheel models only the dynamics of the stance leg, and simply assumes that
there will always be a swing leg in position at the time of collision. To remove this assump-
tion, we take away all but two of the spokes, and place a pin joint at the hip. To model
the dynamics of swing, we add point masses to each of the legs. For actuation, we first
consider the case where there is a torque source at the hip - resulting in swing dynamics
equivalent to an Acrobot (although in a different coordinate frame).
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FIGURE 5.6 The compass gait
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In addition to the modeling assumptions used for the rimless wheel, we also assume
that the swing leg retracts in order to clear the ground without disturbing the position of the
mass of that leg. This model, known as the compass gait, is well studied in the literature
using numerical methods [36, 81], but relatively little is known about it analytically.

The state of this robot can be described by 4 variables: θst, θsw, θ̇st, and θ̇sw. The
abbreviation st is shorthand for the stance leg and sw for the swing leg. Using q =
[θsw, θst]T and u = τ , we can write the dynamics as

H(q)q̈ + C(q, q̇)q̇ + G(q) = Bu,

with

H =
[

mb2 −mlb cos(θst − θsw)
−mlb cos(θst − θsw) (mh +m)l2 +ma2

]
C =

[
0 mlb sin(θst − θsw)θ̇st

mlb sin(θst − θsw)θ̇sw 0

]
G =

[
mbg sin(θsw)

−(mhl +ma+ml)g sin(θst)

]
,

B =
[

1
−1

]
and l = a+ b. These equations come straight out of [37].

The foot collision is an instantaneous change of velocity governed by the conserva-
tion of angular momentum around the point of impact:

Q+(α)q̇+ = Q−(α)q̇−,

where

Q−(α) =
[
−mab −mab+ (mhl

2 + 2mal) cos(2α)
0 −mab

]
Q+(α) =

[
mb(b− l cos(2α)) ml(l − b cos(2α) +ma2 +mhl

2

mb2 −mbl cos(2α)

]
and α = θsw−θst

2 .
Numerical integration of these equations reveals a stable limit cycle, plotted in Fig-

ure 5.7. The cycle is composed of a swing phase (top) and a stance phase (bottom), punc-
tuated by two instantaneous changes in velocity which correspond to the ground collisions.
The dependence of this limit cycle on the system parameters has been studied extensively
in [37].

The basin of attraction of the stable limit cycle is a narrow band of states surrounding
the steady state trajectory. Although the simplicity of this model makes it analytically
attractive, this lack of stability makes it difficult to implement on a physical device.

5.6 THE KNEED WALKER

To achieve a more anthropomorphic gait, as well as to acquire better foot clearance and
ability to walk on rough terrain, we want to model a walker that includes knee[41]. For
this, we model each leg as two links with a point mass each.
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FIGURE 5.7 Limit cycle trajectory of the compass gait. (m = 5kg,mh = 10kg,a = b =
0.5m,φ = 0.03deg. x(0) = [0, 0, 2,−0.4]T ). θlP itch is the pitch angle of the left leg,
which is recovered from θst and θsw in the simulation with some simple book-keeping.
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FIGURE 5.8 The Kneed Walker

At the beginning of each step, the system is modeled as a three-link pendulum, like
the ballistic walker[59, 58, 81]. The stance leg is the one in front, and it is the first link of
a pendulum, with two point masses. The swing leg has two links, with the joint between
them unconstrained until knee-strike. Given appropriate mass distributions and initial con-
ditions, the swing leg bends the knee and swings forward. When the swing leg straightens
out (the lower and upper length are aligned), knee-strike occurs. The knee-strike is mod-
eled as a discrete inelastic collision, conserving angular momentum and changing veloci-
ties instantaneously.
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After this collision, the knee is locked and we switch to the compass gait model with
a different mass distribution. In other words, the system becomes a two-link pendulum.
Again, the heel-strike is modeled as an inelastic collision. After the collision, the legs
switch instantaneously. After heel-strike then, we switch back to the ballistic walker’s
three-link pendulum dynamics. This describes a full step cycle of the kneed walker, which
is shown in Figure 5.9.

2-link dynamics

3-link dynamics

Knee-strike Heel-strike

FIGURE 5.9 Limit cycle trajectory for kneed walker

By switching between the dynamics of the continuous three-link and two-link pendu-
lums with the two discrete collision events, we characterize a full point-feed kneed walker
walking cycle. After finding appropriate parameters for masses and link lengths, a stable
gait is found. As with the compass gait’s limit cycle, there is a swing phase (top) and a
stance phase (bottom). In addition to the two heel-strikes, there are two more instanta-
neous velocity changes from the knee-strikes as marked in Figure 5.10. This limit cycle is
traversed clockwise.
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switch to stance
phase (heel−strike)

stance leg while
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switch to swing
phase (heel−strike)

swing leg while
knee strikes

FIGURE 5.10 The Kneed Walker
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5.7 NUMERICAL ANALYSIS

A note on integrating hybrid systems and/or evaluating return maps. The dynamics are
often very sensitive to the switching plane. Often a good idea to back up integration to
attempt to find collisions and transitions very accurately. MATLAB can handle this nicely
with zero-crossings in the ODE solvers.

5.7.1 Finding Limit Cycles

You can find asymptotically stable limit cycles by integrating forward the ODE (until
t → ∞), as long as you can guess an initial condition inside the basin of attraction. This
convergence rate will depend on the convergence rate around the fixed point and could be
inefficient for complex systems, and guessing initial conditions is difficult for systems like
the compass gait. This method won’t work for finding unstable limit cycles.

Remember that a fixed point on the Poincare map:

xp[n+ 1] = P(xp[n]),

is simply a zero-crossing of the (vector-valued) function

P(xp[n])− xp[n+ 1].

Therefore, an efficient way to obtain the fixed points numerically is to use an algorithm
which finds the zero-crossings by a Newton method[16, 67]2. These methods can be dra-
matically more efficient if one can efficiently estimate the gradient of the Poincare map.

Gradients of the Poincare map.
The Poincare map is defined by integrating the continuous dynamics,

x(t−c [n+ 1]) = x(t+c [n]) +
∫ t−c [n+1]

t+c [n]

f(x(t))dt, x(t+c [n]) = xp[n]

then applying the (discrete) impact dynamics

xp[n+ 1] = x(t+c [n+ 1]) = F(x(t−c [n+ 1])),

where tc[k] is the time of the kth collision, and t−c indicates just prior to the collision
and t+c is just after the collision. In order to estimate the gradients of the Poincare map,
dxp[n+1]
dxp[n] , we must take a little care in handling the effects of initial conditions on the time

(and therefore the state) of collision (using the chain rule). Linearizing about a trajectory
x0(t),xp0 [n] with impacts at tc0 [n], we have:

dxp[n+ 1]
dxp[n]

=
[
∂F(x)
∂x

[
∂x(t)
∂xp[n]

+ f(x)
dtc[n+ 1]
dxp[n]

]]
t=t−c0 [n+1],x=x0(t

−
c0 [n+1])

The switching dynamics are defined by the zeros of scalar collision function, φ(t,x). Al-
though these dynamics are time-varying in general (e.g., moving obstacles), for the rimless

2I hand it to SNOPT as a constraint.
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wheel the collision function can be as simple as φ(x) = sgn(θ̇)(θ− γ)−α. This collision
function allows us to compute dtc[n+1]

dxp[n] :

dφ(tc[n+ 1],x(t−c [n+ 1])
dxp[n]

= 0 =
[
∂φ(t,x)
∂x

[
dx(t)
dxp[n]

+
∂x(t)
∂t

dtc[n+ 1]
dxp[n]

]
+
∂φ(t,x)
∂t

dtc[n+ 1]
dxp[n]

]
t=t−c0 [n+1],x=x(t−c0 [n+1])

dtc[n+ 1]
dxp[n]

= −

 ∂φ(t,x)
∂x

∂x(t)
∂xp[n]

∂φ(t,x)
∂t + ∂φ(t,x)

∂x f(x)


t=t−c0 [n+1],x=x(t−c0 [n+1])

The final step, computing
[
∂x(t)
∂xp[n]

]
t=t−c0 [n+1]

, can be done with a standard gradient calcu-

lation - see section 12.3.2 for the update.

EXAMPLE 5.3 Fixed points of the rimless wheel

Bifurcation diagram (as a function of slope) from computational search. Show that it agrees
with analytical solution.

EXAMPLE 5.4 Fixed points of the compass gait

Bifurcation diagram (as a function of slope) - computational only.

5.7.2 Local Stability of Limit Cycle

In practice, the local stability analysis of a limit cycle is done by taking the derivatives
around the fixed point of the return map. Again, this is often accomplished using numerical
derivatives. Perturb the system in one direction at a time, evaluate the map and build the
matrix ... From Goswami [37]. The eigenvalues of the derivative matrix of the Poincaré
map, λi are called the characteristic or Floquet multipliers[83].

x∗ + δ1 = P(x∗ + δ0) ≈ P(x∗) +
[
∂P
∂x

]
x∗
δ0.

δ1 ≈
[
∂P
∂x

]
x∗
δ0.

A fixed point is stable if the n− 1 non-trivial eigenvalues of this matrix are |λi| < 1.
Trivial multipliers vs. Non-trivial multipliers. Expect one trivial multiplier of 0, or

1 (which reveal the dynamics of a perturbation along the limit cycle orbit).
A standard numerical recipe for estimating ∂P

∂x is to perturb the system by a very
small amount at least n times, once in each of the state variables, and watching the re-
sponse. Be careful - your perturbation should be big enough to not get into integration
errors, but small enough that it stays in the ”linear regime”. A good way to verify your
results is to perturb the system in other directions, and other magnitudes, in an attempt to
recover the same eigenvalues. In general, the matrix ∂P

∂x can be reconstructed from any
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number of sampled trajectories by solving the equation | | |
δ11 δ21 · · · δm1
| | |

 =
[
∂P
∂x

]
x∗

 | | |
δ10 δ20 · · · δm0
| | |


in a least-squares sense, where δi0 is the i-th perturbation (not a perturbation raised to a
power!).

Lyapunov exponent. There is at least one quantifier of limit cycle (or trajectories,
in general) stability that does not depend on the return map. Like a contraction mapping -
perturb original trajectory in each direction, bound recovery by some exponential[83].

‖δ(t)‖ < ‖δ(0)eAt‖.

The eigenvalues of A are the Lyapunov exponents. Note that for a stable limit cycle,
the largest Lyapunov exponent will be 1 (like the trivial floquet multiplier), and it is the
remaining exponents that we will use to evaluate stability.

PROBLEMS

5.1. (CHALLENGE) Closed-form solution for the rimless wheel.

We have a closed-form expression for the return map, but can you find a solution for the
entire return map dynamics? Given θ̇[0], directly compute θ̇[n] for any n. This would
involve solving the quadratic difference equation.

5.2. (CHALLENGE) Deadbeat control of the compass gait.

Find a hip torque policy that produces a (locally) deadbeat controller.
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C H A P T E R 9

Dynamic Programming

In chapter 2, we spent some time thinking about the phase portrait of the simple
pendulum, and concluded with a challenge: can we design a nonlinear controller to re-
shape the phase portrait, with a very modest amount of actuation, so that the upright fixed
point becomes globally stable? With unbounded torque, feedback linearization solutions
(e.g., invert gravity) can work well, but can also require an unecessarily large amount of
control effort. The energy-based swing-up control solutions presented in section 3.6.2 are
considerably more appealing, but required some cleverness and might not scale to more
complicated systems. Here we investigate another approach to the problem, using compu-
tational optimal control to synthesize a feedback controller directly.

9.1 INTRODUCTION TO OPTIMAL CONTROL

In this chapter, we will introduce optimal control - a control design process using opti-
mization theory. This approach is powerful for a number of reasons. First and foremost,
it is very general - allowing us to specify the goal of control equally well for fully- or
under-actuated, linear or nonlinear, deterministic or stochastic, and continuous or discrete
systems. Second of all, this control formulation permits numerical solutions - we can
harness the power of computational optimization theory to solve analytically intractable
control problems. [13] is a fantastic reference on this material, and the source of a number
of the examples worked out here.

The fundamental idea in optimal control is to formulate the goal of control as the
long-term optimization of a scalar cost function. Optimal control has a long history in
robotics. For instance, there has been a great deal of work on the minimum-time prob-
lem for pick-and-place robotic manipulators, and the linear quadratic regulator (LQR) and
linear quadratic regulator with Gaussian noise (LQG) have become essential tools for any
practicing controls engineer.

In this chapter, we will formulate the deterministic optimal feedback control prob-
lem, considering a system described by the equations:

ẋ(t) = f(x(t),u(t), t).

This structure certainly emcompasses the robots that are the focus of this book (and many
other dynamical systems), but also doesn’t take advantage of the structure of the manipu-
lator equations (that topic will be discussed in chapter ?). In the general formulation, our
goal is to design a feedback policy, π, where

u(t) = π(x, t).

We will define π∗, the optimal feedback policy, as the policy which minimizes the scalar
cost function.
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9.2 FINITE HORIZON PROBLEMS

Some control problems have a natural duration. For example, perhaps it is 1pm and your
robot needs to get to the bank before it closes at 5pm. Or imagine your robot is working on
an assembly room floor, and is allocated a fixed amount of time to complete each assembly
(or pick-and-place) task. As we will see later in the chapter, other problems are more
naturally described independent of the time interval, or over an infinite horizon, and we will
see that the infinite horizon derivations follow naturally from the finite horizon derivations
in this section.

In finite horizon problems, we define a finite time interval, t ∈ [0, T ], where T
is called the horizon time. In general, T can be given, or left as a free-variable to be
optimized. If we run the system from an initial condition, x0, executing policy π then the
system will move through a trajectory [x(t),u(t)]. Using x̄ and ū to denote the entire
continuous system trajectory over [0, T ], or

x̄ = {x(0), ...,x(T )}, ū = {u(0), ...,u(T )},

then we can score the policy π by defining a cost function:

Jπ(x0) = g(x̄, ū), x(0) = x0,u(t) = π(x(t), t).

For general cost functions of this form, finding the optimal policy π for all x0 reduces to
solving a (potentially very complex) nonlinear programming problem.

9.2.1 Additive Cost

It turns out that the optimization problem often becomes a lot more tractable (both analyt-
ically and computationally) if we are willing to design our cost functions with an additive
form. In particular, let us restrict our costs to take the form:

Jπ(x0) = h(x(T )) +
∫ T

0

g(x(t),u(t), t)dt, x(0) = x0.

This form is actually quite general. Before we get into the mechanics of solving for the
optimal policies, let’s get a little intuition by considering some example problem formula-
tions, and intuition about their solutions.

EXAMPLE 9.1 Minimum-time problems

Recall the simple pendulum...

EXAMPLE 9.2 Quadratic regulators

More examples here...

9.3 DYNAMIC PROGRAMMING IN DISCRETE TIME

Now we will begin to develop the machinery for finding and/or verifying an optimal policy.
This machinery can be developed more easily in discrete-time, so let’s temporarily consider
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optimal control problems of the form:

x[n+ 1] = f(x[n],u[n], n) (9.1)

Jπ(x0) = h(x[N ]) +
N−1∑
n=0

g(x[n],u[n], n), x[0] = x0,u[n] = π(x[n], n). (9.2)

Thanks to the additive form of this long-term cost, we can now start systematically solving
for an optimal policy. Let’s consider a subproblem, in which we start from xm and time m
and then continue on until N . Let us define the “cost-to-go” given that we are following
policy π as Jπ(xm,m); it is given by

Jπ(xm,m) = h(x[N ]) +
N−1∑
n=m

g(x[n],u[n]), x[m] = xm,u[n] = π(x, n).

Our original Jπ(x0) is simply the cost-to-go Jπ(x0, 0). For this reason, Jπ is known
as the cost-to-go function or the value function. The cost-to-go function can be written
recursively:

Jπ(x, N) =h(x)
Jπ(x, N − 1) =g(x[N − 1],u[N − 1], N − 1) + h(x[N ])

...
Jπ(x, n) =g(x,u, n) + Jπ(x[n+ 1], n+ 1)

Even more important, the optimal cost-to-go function, J∗ (simply defined as Jπ for π∗),
has almost the same recursive structure:

J∗(x, N) =h(x)
J∗(x, N − 1) = min

u
[g(x[N − 1],u, N − 1) + h(x[N ])]

...
J∗(x, n) = min

u
[g(x,u, n) + J∗(x[n+ 1], n+ 1)] .

Furthermore, the optimal policy is given by:

π∗(x, n) = argmin
u

[g(x,u, n) + J∗(x[n+ 1], n+ 1)] .

This recursion, which starts at the terminal time and works backwards towards time 0, is
known as dynamic programming. It is based on the key observation that for systems with a
scalar additive cost, the cost-to-go function represents everything that the system needs to
know about the future. The optimal action is simply the action which minimizes the sum
of the one-step cost and the future optimal cost-to-go.

9.3.1 Discrete-State, Discrete-Action

For systems with continuous states and continuous actions, dynamic programming is a
mathematical recipe for deriving the optimal policy and cost-to-go. For systems with a
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Algorithm 1: The Dynamic Programming Algorithm.
Input: states S, actions A, horizon time N , dynamics s′ = f(s, a, n), instantaneous

cost g(s, a, n), and terminal cost h(s)
Output: optimal policy π∗(s, n) and optimal cost-to-go J∗(s, n)

foreach state s ∈ S do
J∗(s,N)← h(s) ;

end
for n← N − 1 to 0 do

foreach state s do
J∗(s, n)← mina∈A [g(s, a, n) + J∗(f(s, a, n), n+ 1)] ;
π∗(s, n)← argmina∈A [g(s, a, n) + J∗(f(s, a, n), n+ 1)] ;

end
end

finite, discrete set of states and a finite, discrete set of actions, dynamic programming
also represents a very efficient algorithm which can compute optimal policies (see Algo-
rithm 1). This algorithm uses the states {s1, s2, ...} ∈ S, where S is the finite state space,
and actions as {a1, a2, ...} ∈ A, where A is the finite action space.

Let’s experiment with dynamic programming in a discrete-state, discrete-action,
discrete-time problem to further improve our intuition.

EXAMPLE 9.3 Grid World

Robot living in a grid (finite state) world. Wants to get to the goal location. Possibly has
to negotiate cells with obstacles. Actions are to move up, down, left, right, or do nothing.
[84].

STILL NEED TO FILL IN THIS EXAMPLE WITH PLOTS, ETC.

Dynamic programming and value iteration. Pseudo-code? (or matlab code). Con-
vergence results. Scalability.

9.3.2 Continuous-State, Discrete-Action

Barycentric interpolation. Examples on pendulum, acrobot, cart-pole, ...

9.3.3 Continuous-State, Continous-Actions

For some cost functions, we can solve for minu analytically, and build that into our algo-
rithm.

9.4 INFINITE HORIZON PROBLEMS

9.5 VALUE ITERATION

9.6 VALUE ITERATION W/ FUNCTION APPROXIMATION

Point-based VI
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Insert diagram of the brick with control force here.

FIGURE 9.1 The brick on ice - a mechanical double integrator.

9.6.1 Special case: Barycentric interpolation

see also stochastic optimal control.

9.7 DETAILED EXAMPLE: THE DOUBLE INTEGRATOR

Let’s apply our dynamic progrmming algorithms to get some intuition about optimal con-
trol of the simplest possible second-order dynamical system:

q̈ = u.

This system is most commonly referred to as the double integrator. If you would like a
mechanical analog of the system (I always do), then you can think about this as a unit mass
brick moving along the x-axis on ice (no friction), with a control input which provides a
horizontal force, u. The task is to design a control system, u = π(x, t), x = [q, q̇]T to
regulate this brick to x = [0, 0]T .

9.7.1 Pole placement

There are many ways to investigate and control this simple system. The state space repre-
sentation of this system is

ẋ = Ax + Bu =
[
0 1
0 0

]
x +

[
0
1

]
u.

If we consider simple linear feedback policies of the form

u = −Kx = −
[
k1 k2

]
x = −k1q − k2q̇,

then we have

ẋ = (A + BK)x =
[

0 1
−k1 −k2

]
x.

The closed-loop eigenvalues, λ1 and λ2, and eigenvectors, v1 and v2 of this system are

λ1,2 =
−k2 ±

√
k2
2 − 4k1

2
, v1 =

[
1
λ1

]
, v2 =

[
1
λ2

]
.

The system is exponentially stable when both eigenvalues are strictly negative, e.g., 0 <√
k2
2 − 4k1 < k2. This implies that k1 > 0. The eigenvalues are real when k2

2 ≥ 4k1

(when k2
2 = 4k1, the system is critically damped, when k2

2 < 4k1 it is under-damped, and
when k2

2 > 4k1 it is over-damped). As control designers, if we are to design k1 and k2,
we could choose k1 arbitrarily high, then choose k2 = 2

√
k1 to obtain an arbitrarily fast,

critically damped, convergence.
An alternative way to say this same thing is to take the Laplace transform of the

closed-loop system, q̈ = −k1q − k2q̇ + u′, with the transfer function

H(s) =
1

s2 + k2s+ k1
=

1
(s+ λ1)(s+ λ2)

.
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By the same argument as above, we can easily select k1 = k2
2
4 to keep the poles on the

real-axis, H(s) = 1

(s+
k2
2 )2

, and drive those poles arbitrarily far into the left-half plane

by choosing a large k2. Or, with a more traditional root-locus analysis, we could amplify
the gains k1 and k2 by the same linear multiplier k and see that for low k the system is
underdamped (complex poles), and increasing k causes the poles to meet at the real axis
and move off in opposite directions.

FIGURE 9.2 Phase plot of a double integrator with linear feedback, k1 = 1, k2 = 4.

9.7.2 The optimal control approach

Simple tuning of linear feedback gains can cause an arbitrarily fast convergence to the
goal, but it may have many undesirable qualities. Perhaps the most obvious problem is that
arbitrarily large feedback gains require arbitrarily large forces to implement. In some cases,
we may have hard limits on the amount of force/torque that our actuators can produce. In
other cases, since setting the gains to infinite is not a reasonable solution, we may like
a more principled approach to balancing the cost of exerting large forces with the rate at
which the system gets to the goal. In the remainder of this chapter we will consider to
alternative formulations of optimal control problems for the double integrator to handle
these two cases.

Thanks to the simplicity of the dynamics of this plant, each of the examples worked
out here, will be computed analytically in the next chapters.

9.7.3 The minimum-time problem

Let’s consider the problem of trying to get to the goal as fast as possible in the face of hard
limits on the amount of force we can produce:

q̈ = u, u ∈ [−1, 1].
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Informal derivation.
Before we do the real derivation, let’s use our intuition to think through what the

optimal control solution for this problem might look like.
We believe that the policy which optimizes this control problem is bang-bang; the

control system should acclerate maximally towards the goal until a critical point at which
it should hit the brakes in order to come perfectly to rest at the origin. Here we’ll prove
that this hypothesis is indeed correct.

First, we must define the bang-bang policy. We can do this by trying to figure out
the manifold of states which, when the brakes are fully applied, bring the system to rest
precisely at the origin. Integrating the equations, we have

q̇(t) = ut+ q̇(0)

q(t) =
1
2
ut2 + q̇(0)t+ q(0).

If we require that q(t) = q̇(t) = 0, then these equations define a manifold of initial
conditions (q(0), q̇(0)) which come to rest at the origin:

q̇(0) = −ut, q(0) =
1
2
ut2.

Cancelling t and using the “braking” policy on this manifold, u = sgn(q), we have

q̇ = − sgn(q)
√

2 sgn(q)q.

For all q̇ greater than this switching surface, we apply u = −1, and less than, we apply
u = 1. This policy is cartooned in Figure 9.3. Trajectories of the system executing this
policy are also included - the fundamental characteristic is that the system is accelerated
as quickly as possible toward the switching surface, then rides the switching surfance in to
the origin.

 

 

q

q̇ u=−1
u=1

FIGURE 9.3 Candidate optimal (bang-bang) policy for the minimum-time double integrator
problem.

Performance.
compare phase plots with linear control.
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9.8 THE QUADRATIC REGULATOR

Performance.
compare phase plots with linear control. Moves the poles.

9.9 DETAILED EXAMPLE: THE SIMPLE PENDULUM
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Analytical Optimal Control with the
Hamilton-Jacobi-Bellman Sufficiency
Theorem

10.1 INTRODUCTION

10.1.1 Dynamic Programming in Continuous Time

Discrete time problems permit a simple derivation of dynamic programming. Indeed, for
the numerical studies in the next chapter, and for digital (sampled-data) control systems
in real robotics applications, the discrete-time treatment might be enough. However, for
analytical studies it is often easier, and even more compact, to work directly in continuous
time.

The Hamilton-Jacobi-Bellman Equation.
Let’s develop the continuous time form of the cost-to-go function recursion by taking

the limit as the time between control updates goes to zero.

J∗(x, T ) =h(x)

J∗(x, t) = min
[u(t)...u(T )]

[
h(x(T )) +

∫ T

t

g(x(t),u(t))dt

]
, x(t) = x, ẋ = f(x,u)

= lim
dt→0

min
u

[g(x,u)dt+ J(x(t+ dt), t+ dt)]

≈ lim
dt→0

min
u

[
g(x,u)dt+ J∗(x, t) +

∂J∗

∂x
ẋdt+

∂J∗

∂t
dt

]
Simplifying, we are left with

0 = minu

[
g(x,u) + ∂J∗

∂x f(x,u) + ∂J∗

∂t

]
. (10.1)

This equation is well-known as the Hamilton-Jacobi-Bellman (HJB) equation.

Sufficiency theorem. The HJB equation assumes that the cost-to-go function is
continuously differentiable in x and t, which is not necessarily the case. It therefore cannot
be satisfied in all optimal control problems. It does, however, provide a sufficient condition
for optimality.
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Suppose we have found a policy, π(x, t), and a cost-to-go function, Jπ(x, t).
Suppose that π minimizes the right-hand-side of the HJB for all x and all t ∈
[0, T ], and that this minimum is zero for all x and all t ∈ [0, T ]. Furthermore,
suppose that Jπ(x, T ) = h(x). Then we have that

Jπ(x, t) = J∗(x, t), π(x, t) = π∗(x, t).

A more formal treatment of this theorem, including it’s proof, can be found in
[13].

The HJB provides limited utility for constructing optimal policies and value functions, but
does provide a relatively inexpensive way to verify optimality if one is able to “guess” a
solution.

Examples. The best way to get started using the HJB sufficiency theorem is to
work through some examples.

EXAMPLE 10.1 First-order Regulator

Let’s reconsider on of the first problems from this chapter:

ẋ = u, |u| ≤ 1,

h(x) =
1
2
x2, g(x, u, t) = 0.

Our candidate for an optimal policy was simply π(x, t) = − sgn(x). To prove that this
policy is optimal, we must first evaluate the policy to obtain Jπ . The dynamics here are
particularly simple (x moves one unit per second with maximal actuation), and we can
quickly see that executing policy π from x(0) will produce:

x(T ) =


x(0)− T x(0) > T

0 −T ≤ x(0) ≤ T
x(0) + T x(0) < −T.

A similar expression can be written, involving T−t, for all starting times t < T . Therefore,
we have

Jπ(x, t) =


1
2 [x− (T − t)]2 x > (T − t)
0 −(T − t) ≤ x ≤ (T − t)
1
2 [x+ (T − t)]2 x < −(T − t).

.

Notice that, although the expression is written piecewise, this value function is continu-
ously differentiable in both x and t. It can be summarized as

Jπ(x, t) = max{0, 1
2

[|x| − (T − t)]2},

and it’s derivatives are ...

∂Jπ

∂x
= sgn(x) max{0, |x| − (T − t)}

∂Jπ

∂t
= max{0, |x| − (T − t)}.
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Substituting into the HJB, we have

0 = min
u

[0 + sgn(x)umax{0, |x| − (T − t)}+ max{0, |x| − (T − t)}]

= min
u

[(1 + sgn(x)u) max{0, |x| − (T − t)}].

As we hoped, the policy u = − sgn(x) does minimize this quantity, and the minimum is
zero. By the sufficiency theorem, π(x, t) = − sgn(x) is an optimal policy.

EXAMPLE 10.2 The Linear Quadratic Regulator (LQR)

The linear quadratic regulator is clearly the most important and influential result in optimal
control theory to date. Consider systems governed by an LTI state-space equation of the
form

ẋ = Ax + Bu,

and a finite-horizon cost function with

h(x) = xTQfx, Qf = QT
f ≥ 0

g(x,u, t) = xTQx + uTRu, Q = QT ≥ 0,R = RT > 0

Writing the HJB, we have

0 = min
u

[
xTQx + uTRu +

∂J∗

∂x
(Ax + Bu) +

∂J∗

∂t

]
.

Due to the positive definite quadratic form on u, we can find the minimum by setting the
gradient to zero:

∂

∂u
= 2uTR +

∂J∗

∂x
B = 0

u∗ = π∗(x, t) = −1
2
R−1BT ∂J

∗

∂x

T

In order to proceed, we need to investigate a particular form for the cost-to-go function,
J∗(x, t). Let’s try a solution of the form:

J∗(x, t) = xTS(t)x, S(t) = ST (t) > 0.

In this case we have
∂J∗

∂x
= 2xTS(t),

∂J∗
∂t

= xT Ṡ(t)x,

and therefore

u∗ = π∗(x, t) = −R−1BTS(t)x

0 = xT
[
Q− S(t)BR−1BTS(t) + 2S(t)A + Ṡ(t)

]
x.

All of the matrices here are symmetric, except for S(t)A. But since xTS(t)Ax =
xTATS(t)x, we can equivalently write the symmetric form (which we assumed):

0 = xT
[
Q− S(t)BR−1BTS(t) + S(t)A + ATS(t) + Ṡ(t)

]
x.
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Therefore, S(t) must satisfy the condition (known as the continuous time Riccati equation):

Ṡ(t) = −S(t)A−ATS(t) + S(t)BR−1BTS(t)−Q,

and the terminal condition
S(T ) = Qf .

Since we were able to satisfy the HJB with the minimizing policy, we have met the suffi-
ciency condition, and have found the optimal policy and optimal cost-to-go function.

The dependence on time in both the value function and the feedback policy might
surprise readers who have used LQR before. The more common usage is actually the
infinite-horizon version of the problem, which we will develop in Example 6.

EXAMPLE 10.3 Linear Quadratic Optimal Tracking

For completeness, we consider a slightly more general form of the linear quadratic regu-
lator. The standard LQR derivation attempts to drive the system to zero. Consider now the
problem:

ẋ = Ax + Bu

h(x) = (x− xd(T ))TQf (x− xd(T )), Qf = QT
f ≥ 0

g(x,u, t) = (x− xd(t))TQ(x− xd(t)) + (u− ud(t))TR(u− ud(t)),

Q = QT ≥ 0,R = RT > 0

Now, guess a solution

J∗(x, t) = xTS2(t)x + xT s1(t) + s0(t), S2(t) = S2
T (t) > 0.

In this case, we have

∂J∗

∂x
= 2xTS2(t) + s1

T (t),
∂J∗

∂t
= xT Ṡ2(t)x + xT ṡ1(t) + ṡ0(t).

Using the HJB,

0 = min
u

[
(x− xd(t))TQ(x− xd(t)) + (u− ud(t))TR(u− ud(t)) +

∂J∗

∂x
(Ax + Bu) +

∂J∗

∂t

]
,

we have

∂

∂u
= 2(u− ud(t))TR + (2xTS2(t) + s1

T (t))B = 0,

u∗(t) = ud(t)−R−1BT

[
S2(t)x +

1
2
s1(t)

]
The HJB can be satisfied by integrating backwards

−Ṡ2(t) =Q− S2(t)BR−1BTS2(t) + S2(t)A + ATS2(t)

−ṡ1(t) =− 2Qxd(t) +
[
AT − S2BR−1BT

]
s1(t) + 2S2(t)Bud(t)

−ṡ0(t) =xd(t)TQxd(t)− 1
4
s1
T (t)BR−1BT s1(t) + s1(t)TBud(t),
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from the final conditions

S2(T ) =Qf

s1(T ) =− 2Qfxd(T )

s0(T ) =
[
xd(T )

]T
Qf

[
xd(T )

]
.

Notice that the solution for S2 is the same as the simpler LQR derivation, and is symmetric
(as we assumed). Note also that s0(t) has no effect on control (even indirectly), and so can
often be ignored.

A quick observation about the quadratic form, which might be helpful in debugging.
We know that J(x, t) must be uniformly positive. This is true iff S2 > 0 and s0 >
1
4sT1 S−1

2 s1, which comes from evaluating the function at xmin defined by ∂
∂x = 0.

EXAMPLE 10.4 Minimum-time Linear Quadratic Regulator

ẋ = Ax + Bu

h(x) = xTQfx, Qf = QT
f ≥ 0

g(x,u, t) = 1 + xTQx + uRu,

Q = QT ≥ 0,R = RT > 0

EXAMPLE 10.5 Linear Final Boundary Value Problems

The finite-horizon LQR formulation can be used to impose a strict final boundary value
condition by setting an infinite Qf . However, integrating the Riccati equation backwards
from an infinite initial condition isn’t very practical. To get around this, let us consider
solving for P(t) = S(t)−1. Using the matrix relation dS−1

dt = −S−1 dS
dt S
−1, we have:

−Ṗ(t) = −P(t)QP(t) + BR−1B−AP(t)−P(t)AT ,

with the final conditions
P(T ) = 0.

This Riccati equation can be integrated backwards in time for a solution.
It is very interesting, and powerful, to note that, if one chooses Q = 0, therefore

imposing no position cost on the trajectory before time T , then this inverse Riccati equation
becomes a linear ODE which can be solved explicitly. These relationships are used in the
derivation of the controllability Grammian, but here we use them to design a feedback law.

10.2 INFINITE-HORIZON PROBLEMS

Limit as T →∞. Value function converges (or blows up).
Examples and motivations.
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10.2.1 The Hamilton-Jacobi-Bellman

For infinite-horizon, all dependence of J on t drops out, and the HBJ reduces to:

0 = min
u

[
g(x,u) +

∂J

∂x
f(x,u)

]
.

10.2.2 Examples

EXAMPLE 10.6 The Infinite-Horizon Linear Quadratic Regulator

Consider again a system in LTI state space form,

ẋ = Ax + Bu,

but now consider the infinite-horizon cost function given by

g(x,u) = xTQx + uTRu, Q = QT ≥ 0,R = RT > 0.

Since we know that the optimal value function cannot depend on time in the infinite-
horizon case, we will guess the form:

J∗(x) = xTSx.

This yields the optimal policy

u∗ = π∗(x) = −R−1BTSx = −Kx.

In fact, this form can also be marched through the HJB and verified. The solution, not
surprisingly, is the steady-state solution of the Riccati equation described in the finite-
horizon problem. Setting Ṡ(t) = 0, we have

0 = SA + ATS− SBR−1BTS + Q.

Note that this equation is not linear in S, and therefore solving the equation is non-trivial
(but well understood). Both the optimal policy and optimal value function are available
from MATLAB by calling

[K,S]=lqr(A,B,Q,R).
It is worth examining the form of the optimal policy more closely. Since the value

function represents cost-to-go, it would be sensible to move down this landscape as quickly
as possible. Indeed, −Sx is in the direction of steepest descent of the value function.
However, not all directions are possible to achieve in state-space. −BTSx represents
precisely the projection of the steepest descent onto the control space, and is the steepest
descent achievable with the control inputs u. Finally, the pre-scaling by the matrix R−1

biases the direction of descent to account for relative weightings that we have placed on
the different control inputs. Note that although this interpretation is straight-forward, the
slope that we are descending (in the value function, S) is a complicated function of the
dynamics and cost.

EXAMPLE 10.7 Second-order Quadratic Regulator

Let’s use the LQR result to solve for the optimal regulator of our trivial linear system:

q̈ = u.
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EXAMPLE 10.8 The Overdamped Pendulum

PROBLEMS

10.1. (CHALLENGE) Optimal control of the simple pendulum.

Find the optimal policy for the minimum-time problem on the simple pendulum de-
scribed by the dynamics:

q̈ = u− sin(q).
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Trajectory Optimization

So far, we have discussed a number of ways to solve optimal control problems via
state space search (e.g., Dijkstra’s and Dynamic Programming/Value Iteration). These
methods have the drawback that they force you to discretize, typically both the state and
action spaces. The resulting policy is optimal for the discretized system, but is only an
approximation to the optimal solution for the continuous system. Today we’re going to
introduce a different type of algorithm which searches in the space of control policies, in-
stead of in state space. These methods typically have the advantage that they scale (much)
better to higher dimensional systems, and do not require any discretizations of state or
action spaces. The disadvantage of this class of algorithms is that we must sacrifice guar-
antees of global optimality - they only guarantee local optimality, and can be subject to
local minima.

12.1 THE POLICY SPACE

The fundamental idea is policy search methods is that, instead of discretizing an searching
directly for the optimal policy, we define a class of policies by describing some parame-
terized control law. Then we search direcly for a setting of these parameters that (locally)
optimize the cost function.

Notationally, we collect all of the parameters into a single vector, α, and write the
controller (in general form) as πα(x, t). Here are some examples:

• linear feedback law:

u = Kx =

α1 α2 α3 α4

α5 α6

...

x.

• open loop controller

u = αn, where n = floor(t/dt).

Or α could be spline or fourier coefficients of the trajectory u(t).

• Neural networks and general function approximators.

12.2 NONLINEAR OPTIMIZATION

Having defined the policy space, our task is to search over α for the best policy. If the
number of parameters is small, then brute force search may work. More generally, we
must employ tools from nonlinear optimization.
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12.2.1 Gradient Descent

First-order methods in general. Pros/cons of gradient descent. Suffer from:

• local minima

• have to chose a step-size (problems with anisotropy, or the golf-course problem)

• can require many iterations to converge

12.2.2 Sequential Quadratic Programming

Newton’s method, etc. Intro chapter from Betts is a great guide. Powerful software pack-
ages (e.g., SNOPT).

12.3 SHOOTING METHODS

Perhaps the most obvious method for evaluating and optimizing the cost function from a
single initial condition is by defining α as the decision variables and by evaluating Jα(x0)
via forward simulation. Typically, the only way that these shooting methods take advan-
tage of the additive cost structure of the optimal control problem is through efficient cal-
culations of the policy gradient - ∂Jα(x0)

∂α . Computing this gradient explicitly (rather than
through numerical differentiation) greatly improves the performance of the optimization
algorithms. We present two methods for computing this gradient here.

12.3.1 Computing the gradient with Backpropagation through time (BPTT)

Known for a long time in optimal control, but the name backprop-through-time came from
the neural networks [66] community.

• Given the long-term cost function

J(x0) =
∫ T

0

g(x(t),u(t))dt, x(0) = x0.

• Starting from the initial condition x(0), integrate the equations of motion

ẋ = f(x, πα(x, t)) (12.1)

forward in time to t = T . Keep track of x(t).

• Starting from the initial condition y(T ) = 0, integrate the adjoint equations

− ẏ = FTx y −GT
x (12.2)

backward in time until t = 0, where

Fx(t) =
∂f

∂x(t)
+

∂f

∂u(t)
∂πα
∂x(t)

, Gx(t) =
∂g

∂x(t)
+

∂g

∂u(t)
∂πα
∂x(t)

,

evaluated at x(t),u(t).
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• Finally, our gradients are given by

∂J(x0)
∂α

=
∫ T

0

dt
[
GT
α − FTαy

]
, (12.3)

where

Fα(t) =
∂f

∂u(t)
∂πα
∂α

, Gα(t) =
∂g

∂u(t)
∂πα
∂α

,

evaluated at x(t),u(t).

Derivation w/ Lagrange Multipliers.
This algorithm minimizes the cost function

Jα(x0) =
∫ T

0

g(x, πα(x, t))dt

subject to the constraint
ẋ = f(x, πα(x, t)).

We will prove this using Lagrange multipliers and the calculus of variations, but it can also
be shown using a finite-difference approximation of the unfolded network.

Consider the functional (a function of functions)

S[x(t),y(t)] =
∫ T

0

dt
[
g(x, πα(x, t)) + yT [ẋ− f(x, πα(x, t))]

]
.

If x(t) and y(t) are changed by small amounts δx(t) and δy(t), then the change in S is

δS =
∫ T

0

dt

[
δS

δx(t)
δx(t) +

δS

δy(t)
δy(t)

]
.

If δS
δx(t) = 0 and δS

δy(t) = 0 for all t, then δS = 0, and we say that S is at a stationary point
with respect to variations in x and y. To ensure that δx(0) = 0, we will hold the initial
conditions x(0) constant.

Now compute the functional derivatives:

δS

δy(t)
= [ẋ− f(x, πα(x, t))]T .

The forward dynamics of the algorithm gaurantee that this term is zero. To compute δS
δx(t) ,

we first need to integrate by parts to handle the ẋ term:∫ T

0

yT ẋdt = yTx|T0 −
∫ T

0

ẏTxdt.

Rewrite S as

S =
∫ T

0

dt
[
g(x, πα(x, t))− yT f(x, πα(x, t))− ẏTx

]
+ y(T )Tx(T )− y(0)Tx(0).
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Therefore, the function derivative is

δS

δx(t)
= Gx − yTFx − ẏT + y(T )T δ(t− T )− y(0)T δ(t).

By choosing y(T ) = 0, the backward dynamics guarantee that this term is zero (except
for at t = 0, but δx(0) = 0).

The forward and backward passes put us at a stationary point of S with respect
to variations in x(t) and y(t), therefore the only dependence of S on w is the explicit
dependence:

∂S

∂α
=
∫ T

0

dt
[
Gα − yTFα

]
12.3.2 Computing the gradient w/ Real-Time Recurrent Learning (RTRL)

Backpropagating through time requires that the network maintains a trace of it’s activity
for the duration of the trajectory. This becomes very inefficient for long trajectories. Using
Real-Time Recurrent Learning (RTRL), we solve the temporal credit assignment problem
during the forward integration step by keeping a running estimate of the total effect that
parameters α have on the state x. The algorithm is

ẋ = f(x, πα(x, t), t) (12.4)

Ṗ = FxP + Fα (12.5)

d

dt

∂Jα(x0)
∂α

= GxP + Gα (12.6)

These equations are integrated forward in time with initial conditions x(0) = x0, P(0) =
0, ∂J∂α = 0.

This algorithm can be computationally expensive, because we have to storeO(NM)
variables in memory and process as many differential equations at every time step. On the
other hand, we do not have to keep a trace of the trajectory, so the memory footprint does
not depend on the duration of the trajectory. The major advantage, however, is that we do
not have to execute the backward dynamics - the temporal credit assignment problem is
solved during the forward pass.

Derivation.
Once again, we can show that this algorithm performs gradient descent on the cost

function

J(x0) =
∫ T

0

g(x,u, t)dt.

Define

Pij =
∂xi
∂αj

.
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The gradient calculations are straight-forward:

∂J

∂α
=
∫ T

0

dt

[
∂g

∂x(t)
∂x(t)
∂α

+
∂g

∂u(t)
∂πα
∂α

+
∂g

∂u(t)
∂π

∂x(t)
∂x(t)
∂α

]
=
∫ T

0

dt [GxP + Gα]

To calculate the dynamics of p and q, differentiate the equation

ẋ = f(x, πα(x, t), t)

to obtain

d

dt

∂x
∂α

=
[
∂f
∂x

+
∂f
∂u

∂πα
∂x

]
∂x
∂α

+
∂f
∂u

∂πα
∂α

Ṗ = FxP + Fα P(0) = 0

By initializing P(0) = 0, we are simply assuming that the x(0) does not depend on α.

12.3.3 BPTT vs. RTRL

Both methods compute the gradient. So which should we prefer? The answer may be
problem specific. The memory cost of the BPTT algorithm is that you must remember
x(t) on the forward simulation, which is dim(x)× length(T ). The memory cost of RTRL
is storing P which has size dim(x) × dim(α). Moreover, RTRL involves integrating
dim(x) + dim(x) × dim(α) ODEs, where as BPTT only integrates 2 × dim(x) ODEs.
For long trajectories and a small number of policy parameters, RTRL might more efficient
that BPTT, and is probably easier to implement. For shorter trajectories with a lot of
parameters, BPTT would probably be the choice.

Another factor which might impact the decision is the constraints. Gradients of
constraint functions can be computed with either method, but if one seeks to constrain
x(t) for all t, then RTRL might have an advantage since it explicitly stores ∂x(t)

∂α .

12.4 DIRECT COLLOCATION

The shooting methods require forward simulation of the dynamics to compute the cost
function (and its gradients), and therefore can be fairly expensive to evaluation. Addition-
ally, they do not make very effective use of the capabilities of modern nonlinear optimiza-
tion routines (like SNOPT) to enforce, and even take advantage of, constraints.

In the direct collocation approach, we formulate the decision parameters as both α,
which in the open-loop case reduces to u[n], and additionally x[n]. By over-parameterizing
the system with both x and u are explicit decision variables, the cost function and its gra-
dients can be evaluated without explicit simulation of the dynamics. Instead, the dynamics
are imposed as constraints on the decision variables. The resulting formuation is:

min
∀n,x[n],u[n]

J =
N∑
n=1

g(x[n],u[n]), s.t. x[n+ 1] = f(x[n],u[n]).

These methods are very popular today. The updates are fast, and it is very easy to
implement constraints. The most commonly stated limitation of these methods is their
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accuracy, since they use a fixed step-size integration (rather than a variable step solver).
However, methods like BPTT or RTRL can also be used to implement the state-action
constraints if accuracy is a premium.

A less obvious attribute of these methods is that they may be easier to initialize with
trajectories (eg, specifying x0(t) directly) that are in the vicinity of the desired minima.

12.5 LQR TRAJECTORY STABILIZATION

When the policy parameterization is explicitly the open-loop trajectory (utape), then tra-
jectory optimization by shooting methods and/or direct collocation both have the property
that the solution upon convergence satisfies the Pontryagin minimum principle. When the
policy is parameterized with feedback, the story is a little more complicated (but similar).
But there is no reason to believe that the system is stable along these trajectories - execut-
ing the locally optimal open-loop trajectories on the system with small changes in initial
conditions, small disturbances or modeling errors, or even with a different integration step
can cause the simulated trajectories to diverge from the planned trajectory.

In this section we will develop one set of tools for trajectory stabilization. There
are many candidates for trajectory stabilization in fully-actuated sytems (many based on
feedback linearization), but trajectory stabilization for underactuated systems can be eas-
ily implemented using a version of the Linear Quadratic Regulator (LQR) results from
chapter 10.

12.5.1 Linearizing along trajectories

In order to apply the linear quadratic regulator, we must first linearize the dynamics. So far
we have linearized around fixed points of the dynamics... linearizing around a non-fixed
point is just slightly more subtle. Considering the system

ẋ = f(x,u),

if we perform a Taylor expansion around a random point (x0,u0), the result is

ẋ ≈ f(x0,u0) +
∂f
∂x

(x− x0) +
∂f
∂u

(u− u0) = c + A(x− x0) + B(u− u0).

In other words, the resulting dynamics are not linear (but affine) in the coordinates of x.
The simple trick is to change coordinates to

x̄(t) = x(t)− x0(t), ū(t) = u(t)− u0(t),

where [x0(t),u0(t)] is a solution to the dynamics - a feasible trajectory. Then we have

˙̄x(t) = ẋ(t)− ẋ0(t) = ẋ(t)− f(x0(t),u0(t)),

and therefore

˙̄x(t) =
∂f(x0(t),u0(t))

∂x
(x(t)− x0(t)) +

∂f(x0(t),u0(t))
∂u

(u− u0(t))

=A(t)x̄(t) + B(t)ū(t).

In other words, if we are willing to change to a coordinate system that moves along a
feasible trajectory, than the Taylor expansion of the dynamics results in a time-varying
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linear system. Linear time-varying (LTV) systems are a very rich class of systems which
are still amenable to many of the linear systems analysis[21].

The big idea here is that we are using a particular solution trajectory to reparam-
eterize the path through state-space as purely a function of time. [Add cartoon images
here].

12.5.2 Linear Time-Varying (LTV) LQR

Given a linear time-varying approximation of the model dynamics along the trajectory,

˙̄x = A(t)x̄ + B(t)ū,

we can formulate a trajectory stabilization as minimizing the cost function

J(x0, 0) = x̄(tf )TQf x̄(tf ) +
∫ T

0

dt
[
x̄(t)TQx̄(t) + ū(t)TRū(t)

]
.

This cost function penalizes the system (quadratically) at time t for being away from x0(t).
Even with the time-varying components of the dynamics and the cost function, it is still
quite simple to use the finite-horizon LQR solution from 2. If, as before, we guess

J(x̄, t) = x̄TS(t)x̄,

we can satisfy the HJB with:

−Ṡ(t) = Q− S(t)B(t)R−1BTS(t) + S(t)A(t) + AT (t)S(t), S(T ) = Qf .

u∗(t) = u0(t)−R−1BT (t)S(t)x̄(t)

In general, it is also trivial to make Q and R functions of time. It is also nice to observe
that if one aims to stabilize an infinite-horizon trajectory, for which ∀t ≥ tf ,x0(t) =
x0(tf ),u0(t) = u0(tf ), and f(x0(tf ),u0(tf ) = 0, then we can use the boundary con-
ditions S(T ) = S∞, where S∞ is the steady-state solution of the LTI LQR at the fixed
point.

[Add simulation results from the pendulum, with and without feedback, and cart-
pole, using both dircol and shooting?]

[Add image of value function estimates on top of pendulum trajectory]
Notice that, like the LTI LQR, this control derivation should scale quite nicely to high

dimensional systems (simply involves integrating a n × n matrix backwards). Although
dynamic programming, or some other nonlinear feedback design tool, could be used to
design trajectory stabilizers for low-dimensional systems, for systems where open-loop
trajectory optimization is the tool of choice, the LTV LQR stabilizers are a nice match.

12.6 ITERATIVE LQR

The LTV LQR solutions used to stabilize trajectories in the last section can also be modified
to create an algorithm for unconstrained optimization of open-loop trajectories. Iterative
LQR (iLQR), also known as Sequential LQR (SLQ)[74], and closely related to Differential
Dynamic Programming (DDP)[42], can be thought of as almost a drop-in replacement for
a shooting or direct collocation method.
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The instantaneous cost function for trajectory stabilization took the form: x̄TQx̄,
with the result being that states off the desired trajectory are regulated back to the desired
trajectory. But what happens if we use the LQR derivation to optimize a more arbitrary
cost function? Given an instantaneous cost function, g(x,u), we can form a quadratic
approximation of this cost function with a Taylor expansion about x0(t),uo(t):

g(x,u) ≈ g(x0,u0) +
∂g

∂x
x̄ +

∂g

∂u
ū +

1
2
x̄T

∂2g

∂x2
x̄ + x̄

∂2g

∂x∂u
ū +

1
2
ūT

∂2g

∂u2
ū.

By inserting this (time-varying) cost function into the LQR solution, with the time-
varying linearization around a nominal trajectory, we can once again derive an optimal
control policy by integrating a Riccati equation backwards (almost identical to the deriva-
tion in example 3). [ insert official derivation here ]

Given an initial trajectory x0(t),u0(t) (generated, for instance, by choosing u0(t) to
be some random initial trajectory, then simulating to get x0(t)), the cost function no longer
rewards the system for stabilizing the desired trajectory, but rather for driving towards the
minimum of the cost function (which has an interpretation as a different desired trajectory,
xd(t) 6= x0(t)). The LQR solution will use the linearization along x0(t) to try to stabilize
the system on xd(t). Because the LTV model is only valid near x0(t), the resulting con-
troller may do a poor job of getting to xd(t), but will be better than the previous controller.
The algorithm proceeds by replacing u0(t) with the control actions executed by the LQR
feedback policy from the initial conditions, computes the corresponding new x0(t), and
iterates.

[insert implementation snapshots here for intuition.]
Iterative LQR can be thought of as a second-order solution method (like SQP), which

should converge on a trajectory which satisfies the Pontryagin minimum principle in a rel-
atively small number of interations. It will likely require fewer trajectories to be consid-
ered that using BPTT, RTRL, or DIRCOL, because the LQR solution directly computes a
second-order update, whereas the other methods as presented compute only ∂J

∂α , and rely
on SNOPT to approximate the Hessian.

The very popular DDP method[42] is very similar to this solution, although it also
uses a second-order expansion of the equations of motion. Many authors say that they are
using DDP when they are actually using iLQR[1].

12.7 REAL-TIME PLANNING (AKA RECEDING HORIZON CONTROL)

LQR trajectory stabilization is one approach to making the optimized open-loop trajecto-
ries robust to disturbances. But if you can plan fast enough (say for steering a ship), then
computing a short-term finite-horizon open-loop policy at every dt using the current state
as initial condtions can be another reasonable approach to creating what is effectively a
feedback policy. The technique is known as receding-horizon control.
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Model-free Policy Search

17.1 INTRODUCTION

In chapter 12, we talked about policy search as a nonlinear optimization problem, and
discussed efficient ways to calculate the gradient of the long-term cost:

Jα(x0) =
∫ T

0

g(x, πα(x, t))dt, s.t. x(0) = x0.

Assuming Jα(x0) is smooth over w, we derived updates of the form:

∆α = −η
[
∂Jα

∂α

]T
x0,α

.

But it may not always be possible, or practical, to compute the gradients exactly.
A standard technique for estimating the gradients, in lieu of analytical gradient in-

formation, is the method of finite differences[67]. The finite differences approach to esti-
mating the gradient involves making the same small perturbation, ε to the input parameters
in every dimension independently, and using:

∂Jα

∂αi
≈ Jα+εi(x0)− Jα(x0)

ε
,

where εi is the column vector with ε in the ith row, and zeros everywhere else. Finite
difference methods can be computationally very expensive, requiring n+ 1 evaluations of
the function for every gradient step, where n is the length of the input vector.

In this chapter we will develop stochastic gradient descent algorithms which can,
in expectation, descend a policy gradient with considerably less evaluations than those
required for finite differences. In addition, we will develop methods that are robust to
stochasticity in the function evaluation, which is inevitable if one is trying to descend a
policy gradient on a real robot. This allows for the exciting possibility of optimizing a
control policy for a system without requiring any model of the plant.

17.2 STOCHASTIC GRADIENT DESCENT

Requirements and guarantees. For a formal treatment, see Bertsekas.

17.3 THE WEIGHT PERTUBATION ALGORITHM

Instead of sampling each dimension independently, consider making a single small random
change, β, to the parameter vector, α. Assuming that the function is locally smooth, we
can approximate the result of this experiment using a Taylor expansion:

Jα+β(x0) ≈ Jα(x0) +
∂Jα(x0)
∂α

β.
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104 Chapter 17 Model-free Policy Search

FIGURE 17.1 Stochastic gradient descent of a quadratic cost function. See problem 1 for
details.

Now consider the update of the form:

∆α = −η[Jα+β(x0)− Jα(x0)]β.

Since Jα+β − Jα is (approximately) the dot product between ∂Jα

∂α and β, the sign of this
term ensures that ∆α is always within 90 degrees of true gradient descent.

Furthermore, on average, the update is in the direction of the true gradient:

∆α ≈− ηββT ∂J
∂α

T

E [∆α] ≈− ηE
[
ββT

] ∂J
∂α

T

If we select each element of β independently from a distribution with zero mean and vari-
ance σ2

β , or E [βi] = 0, E [βiβj ] = σ2
βδij , then we have

E [∆α] ≈ −ησ2
β

∂J

∂α

T

.

Note that the distribution fαi(αi) need not be Gaussian, but it is the variance of the distri-
bution which determines the scaling on the gradient. Bringing the σ2

β into the update, we
have the weight perturbation algorithm:

∆α = − η
σ2
β

[Jα+β(x0)− Jα(x0)]β (17.1)
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17.3.1 Performance of Weight Perturbation

The simplicity of the weight perturbation update makes it tempting to apply it to problems
of arbitrary complexity. But a major concern for the algorithm is its performance - although
we have shown that the update is in the direction of the true gradient on average, it may
still require a prohibitive number of computations to obtain a local minima.

In this section, we will investigate the performance of the weight perturbation algo-
rithm by investigating its signal-to-noise ratio (SNR). The SNR is the ratio of the power in
the signal (here desired update in the direction of the true gradient) and the power in the
noise (the remaining component of the update, so that ∆α = −η ∂J∂α

T
+noise)1

SNR =

∣∣∣−η ∂J∂αT ∣∣∣2
E

[∣∣∣∆α+ η ∂J∂α
T
∣∣∣2] .

In the special case of the unbiased update, the equation reduces to:

SNR =
E [∆α]T E [∆α]

E [(∆α)T (∆α)]− E [∆α]T E [∆α]
.

For the weight perturbation update we have:

E [∆α]T E [∆α] = η2 ∂J

∂α

∂J

∂α

T

= η2
N∑
i=1

(
∂J

∂αi

)2

,

1SNR could alternatively be defined as the ratio of the power of the component of the update in the direction
of the signal and the component orthogonal to the signal (does not penalize the magnitudes of the updates):

E[a2]

E
[
|∆α− av|2

] , where v =
∂J
∂α

T∣∣∣ ∂J∂αT ∣∣∣ , a = ∆α · v.

This form is probably a better definition, but is more difficult to work with.
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E
[
(∆α)T (∆α)

]
=
η2

σ4
β

E
[[
Jα+β − Jα

]2
βTβ

]
≈ η

2

σ4
β

E

[[
∂J

∂α
β

]2
βTβ

]

=
η2

σ4
β

E

(∑
i

∂J

∂αi
βi

)∑
j

∂J

∂αj
βj

(∑
k

β2
k

)
=
η2

σ4
β

E

∑
i

∂J

∂αi
βi
∑
j

∂J

∂αj
βj
∑
k

β2
k


=
η2

σ4
β

∑
i,j,k

∂J

∂αi

∂J

∂αj
E
[
βiβjβ

2
k

]

E
[
βiβjβ

2
k

]
=


0 i 6= j

σ4
β i = j 6= k

µ4(β) i = j = k

=η2(N − 1)
∑
i

(
∂J

∂αi

)2

+
η2µ4(z)
σ4
β

∑
i

(
∂J

∂αi

)2

where µn(z) is the nth central moment of z:

µn(z) = E [(z − E [z])n] .

Putting it all together, we have:

SNR =
1

N − 2 + µ4(βi)
σ4
β

.

EXAMPLE 17.1 Signal-to-noise ratio for additive Gaussian noise

For βi drawn from a Gaussian distribution, we have µ1 = 0, µ2 = σ2
β , µ3 = 0, µ4 = 3σ4

β ,
simplifying the above expression to:

SNR =
1

N + 1
.

EXAMPLE 17.2 Signal-to-noise ratio for additive uniform noise

For βi drawn from a uniform distribution over [-a,a], we have µ1 = 0, µ2 = a2

3 = σ2
β , µ3 =

0, µ4 = a4

5 = 9
5σ

4
β , simplifying the above to:

SNR =
1

N − 1
5

.
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Performance calculations using the SNR can be used to design the parameters of the
algorithm in practice. For example, based on these results it is apparent that noise added
through a uniform distribution yields better gradient estimates than the Gaussian noise case
for very small N , but that these differences are neglibile for large N .

Similar calculations can yield insight into picking the size of the additive noise
(scaled by σβ). The calculations in this section seem to imply that larger σβ can only
reduce the variance, overcoming errors or noise in the baseline estimator, b̃; this is a short-
coming of our first-order Taylor expansion. If the cost function is not linear in the parame-
ters, then an examination of higher-order terms reveals that large σβ can increase the SNR.
The derivation with a second-order Taylor expansion is left for an exercise (Problem 3).

17.3.2 Weight Perturbation with an Estimated Baseline

The weight perturbation update above requires us to evaluate the function J twice for every
update of the parameters. This is low compared to the method of finite differences, but let
us see if we can do better. What if, instead of evaluating the function twice per update
[Jα+β and Jα], we replace the evaluation of Jα with an estimator, b = Ĵ(α), obtained
from previous trials? In other words, consider an update of the form:

∆α = − η
σ2
β

[Jα+β − b]β (17.2)

The estimator can take any of a number of forms, but perhaps the simplest is based on the
update (after the nth trial):

b[n+ 1] = γJ [n] + (1− γ)b[n], b[0] = 0, 0 ≤ γ ≤ 1,

where γ parameterizes the moving average. Let’s compute the expected value of the up-
date, using the same Taylor expansion that we used above:

E[∆α] =− η

σ2
β

E

[
[Jα +

∂J

∂α
β − b]β

]
=− η

σ2
β

E [Jα − b]E [β] + E
[
ββT

] ∂J
∂α

T

=− η ∂J
∂α

T

In other words, the baseline does not effect our basic result - that the expected update is
in the direction of the gradient. Note that this computation works for any baseline esti-
mator which is uncorrelated with β, as it should be if the estimator is a function of the
performance in previous trials.

Although using an estimated baseline doesn’t effect the average update, it can have
a dramatic effect on the performance of the algorithm. Although it is left as an exercise for
the reader (see Problem 2), the results are...

As we will see in a later section, if the evalution of J is stochastic, then the up-
date with a baseline estimator can actually outperform an update using straight function
evaluations.
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17.4 THE REINFORCE ALGORITHM

The weight perturbation algorithm used only additive noise in the parameters. It also as-
sumed that this noise was small and that J was smoothly differientable. More generally,
we can minimize the expected value of a scalar deterministic function y(z), where z is a
vector random variable which depends on α through the conditional probability density
function fz|α(z|α). Note that z = α + β, is a special case of this general form. Consider
the gradient of the expected value of y:

∂

∂α
E [y] =

∫ +∞

−∞
y(z)

∂

∂α
fz|α(z|α)dz

=
∫ +∞

−∞
y(z)fz|α(z|α)

∂

∂α
ln fz|α(z|α)dz

=E

[
y(z)

[
∂

∂α
ln fz|α(z|α)

]T]
,

where the second line used the identity ∂
∂z ln(z) = 1

z . Therefore, the update for the REIN-
FORCE algorithm is:

∆α = −η [y(x)− b]
[
∂
∂α ln fx|α(x|α)

]T
(17.3)

which will have the property that

E [∆α] = −η ∂
∂α

E [y] .

This derivation generalizes our weight perturbation algorithm, removing the assumption
on small β and allowing more general forms for fx|α(x|α). The caveat is that the update
is only well-defined for probability densities which are smoothly differentiable in α.

EXAMPLE 17.3 REINFORCE with additive Gaussian noise

When x = α+ β, β ∈ N(0, σ2), we have

fx|α(x|α) =
1

(2πσ2)N
e
−(x−α)T (x−α)

2σ2

ln fx|α(x|α) =
−(x− α)T (x− α)

2σ2
+ terms that don’t depend on α

∂

∂α
ln fx|α(x|α) =

1
σ2

(α− x)T =
1
σ2
βT .

Therefore, the update
∆α = − η

σ2
y(α+ β)β

will perform gradient descent (in expectation). Since

E [y(α)β] = y(α)E [β] = 0,

the update from Equation 17.1 will also perform stochastic gradient descent on y.
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17.4.1 Optimizing a stochastic function

To generalize our weight perturbation results, now consider the case where y is not a de-
terministic function of x, but rather is described by the joint density function:

fy,x|α(y,x|α) = fy|x(y|x)fx|α(x|α).

Repeating the recipe above, we have:

∂

∂α
E [y] =

∫ +∞

−∞

∫ +∞

−∞
y(x)fy|x(y|x)

∂

∂α
fx|α(x, α)dxdy

=
∫ +∞

−∞

∫ +∞

−∞
y(x)fy|x(y|x)fx|α(x|α)

∂

∂α
ln fx|α(x|α)dxdy

=E

[
y(x)

[
∂

∂α
ln fx|α(x|α)

]T]
,

Therefore, the weight perturbation algorithm derived still achieves stochastic gradient de-
scent despite stochasticity in y.

17.4.2 Adding noise to the outputs

17.5 EPISODIC REINFORCE

Evaluating our control system many times per trial. Can we do better by performing mul-
tiple perturbation “tests” during a single trial? Stochastic processes are harder (but not im-
possible) to define in continuous time, and our control systems are (mostly) implemented
on digital machines, so let’s discretize time.

Eα =
N∑
n=0

g(x[n],u[n]),

subject to

u[n] = πα(x[n], n),x[n+ 1] = f(x[n],u[n], n),x[0] = x0.

To match our previous derivation, let us rewrite this as

Eα(x̄, ū) =
∑

g(x[n],u[n]), and Pα(x̄, ū)

where x̄ = {x0, x1, ...xN} and ū = {u0, u1, ...uN}. The first task is to compute
∂
∂α logPα(x̄, ū).

End up with a rule of the form

∆w = −η
N∑
n=0

g(x, u)e(k),

where

e(0) = 0, e(k + 1) =
[
∂

∂α
logPα(x(k))

]T
+ e(k).
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17.6 INFINITE-HORIZON REINFORCE

17.7 LTI REINFORCE

17.8 BETTER BASELINES WITH IMPORTANCE SAMPLING

PROBLEMS

17.1. (MATLAB) Weight perturbation on a quadratic cost.

In this problem we will optimize a cost quadratic cost function using weight perturba-
tion.

y(α) =
1

2
αTAα, with A = AT

(a) Simulate the weight perturbation algorithm for A = I2×2. Plot the values of
α at each iteration of the algorithm on top of the cost function, y. Your results
should resemble figure 17.1, which was made with these parameters. Try using
additive Gaussian noise, and additive uniform noise. How does the performance of
convergence depend on η? on σ2

β?

(b) (Signal-to-noise ratio.) Estimate the signal-to-noise ratio of your weight pertuba-
tion update by holding α fixed and computing ∆α for as many trials as are required
for your SNR statistics to converge. Using A = IN×N , make a plot of the SNR
for Gaussian and uniform additive noise as a function of N . Compare these plots
with the theoretical predictions.

17.2. Weight perturbation performance with a baseline estimator.

17.3. Weight perturbation - optimal noise calculations.

Use a second-order Taylor expansion...

y(α+ β) = y(α) +
∂J

∂α
β +

1

2
βThβ,

where h is the Hermitian of the function evaluated at α:

h =
∂

∂α

[
∂J

∂α

T
]

=


∂2y

∂α1∂α1
· · · ∂2y

∂α1∂αN
...

. . .
...

∂2y
∂αN∂α1

· · · ∂2y
∂αN∂αN

 .
You may assume that the distribution on βi is symmetric about the mean, which zeros
all odd central-moments starting at µ3(βi) = 0.
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C H A P T E R A

Robotics Preliminaries

A.1 DERIVING THE EQUATIONS OF MOTION (AN EXAMPLE)

The equations of motion for a standard robot can be derived using the method of Lagrange.
Using T as the total kinetic energy of the system, and U as the total potential energy of the
system, L = T − U , and Qi as the generalized force corresponding to qi, the Lagrangian
dynamic equations are:

d

dt

∂L

∂q̇i
− ∂L

∂qi
= Qi.

If you are not comfortable with these equations, then any good book chapter on rigid body
mechanics can bring you up to speed1; for now you can take them as a handle that you can
crank to generate equations of motion.

EXAMPLE A.1 Simple Double Pendulum

2

2

lg

m

l

θ

1

θ
m

1

1

2

FIGURE A.1 Simple Double Pendulum

Consider the system in Figure A.1 with torque actuation at both joints, and all of
the mass concentrated in two points (for simplicity). Using q = [θ1, θ2]T , and x1,x2 to

1Try [27] for a very practical guide to robot kinematics/dynamics, [35] for a hard-core dynamics text or [85]
for a classical dynamics text which is a nice read
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denote the locations of m1,m2, respectively, the kinematics of this system are:

x1 =
[
l1s1
−l1c1

]
, x2 = x1 +

[
l2s1+2

−l2c1+2

]
ẋ1 =

[
l1q̇1c1
l1q̇1s1

]
, ẋ2 = ẋ1 +

[
l2(q̇1 + q̇2)c1+2

l2(q̇1 + q̇2)s1+2

]
Note that s1 is shorthand for sin(q1), c1+2 is shorthand for cos(q1 + q2), etc. From this
we can easily write the kinetic and potential energy:

T =
1
2
ẋT1 m1ẋ1 +

1
2
ẋT2 m2ẋ2

=
1
2

(m1 +m2)l21 q̇
2
1 +

1
2
m2l

2
2(q̇1 + q̇2)2 +m2l1l2q̇1(q̇1 + q̇2)c2

U =m1gy1 +m2gy2 = −(m1 +m2)gl1c1 −m2gl2c1+2

Taking the partial derivatives ∂T
∂qi

, ∂T
∂q̇i

, and ∂U
∂qi

( ∂U∂q̇i terms are always zero), then d
dt
∂T
∂q̇i

,
and plugging them into the Lagrangian, reveals the equations of motion:

(m1 +m2)l21 q̈1 +m2l
2
2(q̈1 + q̈2) +m2l1l2(2q̈1 + q̈2)c2

−m2l1l2(2q̇1 + q̇2)q̇2s2 + (m1 +m2)l1gs1 +m2gl2s1+2 = τ1

m2l
2
2(q̈1 + q̈2) +m2l1l2q̈1c2 +m2l1l2q̇

2
1s2 +m2gl2s1+2 = τ2

Numerically integrating (and animating) these equations in MATLAB produces the ex-
pected result.

A.2 THE MANIPULATOR EQUATIONS

If you crank through the Lagrangian dynamics for a few simple serial chain robotic manip-
ulators, you will begin to see a pattern emerge - the resulting equations of motion all have
a characteristic form. For example, the kinetic energy of your robot can always be written
in the form:

T =
1
2
q̇TH(q)q̇,

where H is the state-dependent inertial matrix. This abstraction affords some insight into
general manipulator dynamics - for example we know that H is always positive definite,
and symmetric[7, p.107].

Continuing our abstractions, we find that the equations of motion of a general robotic
manipulator take the form

H(q)q̈ + C(q, q̇)q̇ + G(q) = B(q)u,

where q is the state vector, H is the inertial matrix, C captures Coriolis forces, and G
captures potentials (such as gravity). The matrix B maps control inputs u into generalized
forces.
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EXAMPLE A.2 Manipulator Equation form of the Simple Double Pendulum

The equations of motion from Example 1 can be written compactly as:

H(q) =
[
(m1 +m2)l21 +m2l

2
2 + 2m2l1l2c2 m2l

2
2 +m2l1l2c2

m2l
2
2 +m2l1l2c2 m2l

2
2

]
C(q, q̇) =

[
0 −m2l1l2(2q̇1 + q̇2)s2

m2l1l2q̇1s2 0

]
G(q) =g

[
(m1 +m2)l1s1 +m2l2s1+2

m2l2s1+2

]
Note that this choice of the C matrix was not unique.

The manipulator equations are very general, but they do define some important char-
acteristics. For example, q̈ is (state-dependent) linearly related to the control input, u. This
observation justifies the form of the dynamics assumed in equation 1.1.
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