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Using the maximum principle
Recall that for deterministic dynamics ẋ = f (x, u) and cost rate ` (x, u)
the optimal state-control-costate trajectory (x (�) , u (�) , λ (�)) satisfies

ẋ = f (x, u)

�λ̇ = `x (x, u) + fx (x, u)T λ

u = arg mineu
n
` (x, eu) + f (x, eu)T λ

o
with x (0) given and λ (T) = ∂

∂x qT (x (T)). Solving this boundary-value ODE
problem numerically is a trajectory-based method.

We can also use the fact that, if (x (�) , λ (�)) satisfies the ODE for some u (�)
which is not a minimizer of the Hamiltonian H (x, u, λ) = ` (x, u) + f (x, u)T λ,
then the gradient of the total cost J is given by

J (x (�) , u (�)) = qT (x (T)) +
Z T

0
` (x (t) , u (t)) dt

∂J
∂u (t)

= Hu (x, u, λ) = `u (x, u) + fu (x, u)T λ

Thus we can perform gradient descent on J with respect to u (�)
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Compact representations
Given the current u (�), each step of the algorithm involves computing x (�) by
integrating forward in time starting with the given x (0), then computing λ (�)
by integrating backward in time starting with λ (T) = ∂

∂x qT (x (T)).

One way to implement the above methods is to discretize the time axis and
represent (x, u, λ) independently at each time step. This may be inefficient
because the values at nearby time steps are usually very similar, thus it is a
waste to represent/optimize them independently.

Instead we can splines, Legendre or Chebyshev polynomials, etc.

u (t) = g (t, w)

Gradient:

∂J
∂w

=
Z T

0
gw (t, w)T

∂J
∂u (t)

dt

t

w

u
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Space-time constraints

We can also minimize the total cost J as an explicit function of the
(parameterized) state-control trajectory:

x (t) = h (t, v)
u (t) = g (t, w)

We have to make sure that the state-control trajectory is consistent with the
dynamics ẋ = f (x, u) . This yields a constrained optimization problem:

min
v,w

�
qT (h (T, v)) +

Z T

0
` (h (t, v) , g (t, w)) dt

�

s.t.
∂h (t, v)

∂t
= f (h (t, v) , g (t, v)) , 8t 2 [0, T]

In practice we cannot impose the contraint for all t, so instead we choose a finite set of
points ftkg where the constraint is enforced. The same points can also be used to
approximate

R
`. There may be no feasible solution (depending on h, g) in which case

we have to live with constraint violations.
This requires no knowledge of optimal control (which may be why it is popular:)
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dynamics ẋ = f (x, u) . This yields a constrained optimization problem:

min
v,w

�
qT (h (T, v)) +

Z T

0
` (h (t, v) , g (t, w)) dt

�

s.t.
∂h (t, v)

∂t
= f (h (t, v) , g (t, v)) , 8t 2 [0, T]

In practice we cannot impose the contraint for all t, so instead we choose a finite set of
points ftkg where the constraint is enforced. The same points can also be used to
approximate

R
`. There may be no feasible solution (depending on h, g) in which case

we have to live with constraint violations.
This requires no knowledge of optimal control (which may be why it is popular:)

Emo Todorov (UW) AMATH/CSE 579, Winter 2012 Lecture 6 4 / 13



Second-order methods

More efficient methods (DDP, iLQG) can be constructed by using the Bellman
equations locally. Initialize with some open-loop control u(0) (�), and repeat:

1 Compute the state trajectory x(n) (�) corresponding to u(n) (�).
2 Construct a time-varying linear (iLQG) or quadratic (DDP)

approximation to the function f around x(n) (�) , u(n) (�), which gives the
local dynamics in terms of the state and control deviations δx (�) , δu (�).
Also construct quadratic approximations to the costs ` and qT .

3 Compute the locally-optimal cost-to-go v(n) (δx, t) as a quadratic in δx. In
iLQG this is exact (because the local dynamics are linear and the cost is
quadratic) while in DDP this is approximate.

4 Compute the locally-optimal linear feedback control law in the form
π(n) (δx, t) = c (t)� L (t) δx.

5 Apply π(n) to the local dynamics (i.e. integrate forward in time) to
compute the state-control modification δx(n) (�) , δu(n) (�), and set
u(n+1) (�) = u(n) (�) + δu(n) (�). This requires linesearch to avoid jumping
outside the region where the local approximation is valid.
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Numerical comparison

iter 1 iter 10 iter 100 iter 200
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Gradient descent
The directional derivative of f (x) at x0 in direction v is

Dv [f ] (x0) =
df (x0 + εv)

dε

����
ε=0

Let x (ε) = x0 + εv. Then f (x0 + εv) = f (x (ε)) and the chain rule yields

Dv [f ] (x0) =
∂x (ε)T

∂ε

�����
ε=0

∂f (x)
∂x

����
x=x0

= vT
∂f (x)

∂x

����
x=x0

= vTg (x0)

where g denotes the gradient of f .

Theorem (steepest ascent direction)
The maximum of Dv [f ] (x0) s.t. kvk = 1 is achieved when v is parallel to g (x0).

Algorithm (gradient descent)
Set xk+1 = xk � βkg (xk) where βk is the step size. The optimal step size is

β�k = arg min
βk

f (xk � βkg (xk))
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Line search
Most optimization methods involve an inner loop which seeks to minimize
(or sufficiently reduce) the objective function constrained to a line: f (x+ εv),
where v is such that a reduction in f is always possible for sufficiently small ε,
unless f is already at a local minimum. In gradient descent v = �g (x); other
choices are possible (see below) as long as vTg (x) � 0.

This is called linesearch, and can be done in different ways:
1 Backtracking: try some ε, if f (x+ εv) > f (x) reduce ε and try again.
2 Bisection: attempt to minimize f (x+ εv)w.r.t. ε using a bisection method.
3 Polysearch: attempt to minimize f (x+ εv) by fitting quadratic or cubic

polynomials in ε, finding the minimum analytically, and iterating.

Exact minimization w.r.t. ε is often a waste of time because for ε 6= 0 the current search
direction may no longer be a descent direction.

Sufficient reduction in f is defined relative to the local model (linear or quadratic).
This is known as the Armijo-Goldstein condition; the Wolfe condition (which also
involves the gradient) is more complicated.

Emo Todorov (UW) AMATH/CSE 579, Winter 2012 Lecture 6 8 / 13



Line search
Most optimization methods involve an inner loop which seeks to minimize
(or sufficiently reduce) the objective function constrained to a line: f (x+ εv),
where v is such that a reduction in f is always possible for sufficiently small ε,
unless f is already at a local minimum. In gradient descent v = �g (x); other
choices are possible (see below) as long as vTg (x) � 0.

This is called linesearch, and can be done in different ways:
1 Backtracking: try some ε, if f (x+ εv) > f (x) reduce ε and try again.
2 Bisection: attempt to minimize f (x+ εv)w.r.t. ε using a bisection method.
3 Polysearch: attempt to minimize f (x+ εv) by fitting quadratic or cubic

polynomials in ε, finding the minimum analytically, and iterating.

Exact minimization w.r.t. ε is often a waste of time because for ε 6= 0 the current search
direction may no longer be a descent direction.

Sufficient reduction in f is defined relative to the local model (linear or quadratic).
This is known as the Armijo-Goldstein condition; the Wolfe condition (which also
involves the gradient) is more complicated.

Emo Todorov (UW) AMATH/CSE 579, Winter 2012 Lecture 6 8 / 13



Chattering

If xk+1 is a (local) minimum of f in the search direction vk = �g (xk), then
Dvk [f ] (xk+1) = 0 = vTk g (xk+1), and so if we use vk+1 = �g (xk+1) as the next
search direciton, we have vk+1 orthogonal to vk. Thus gradient descent with
exact line search (i.e. steepest descent) makes a 90 deg turn at each iteration,
which causes chattering when the function has a long oblique valey.

xk

Key to developing more efficient methods is to anticipate how the gradient
will rotate as we move along the current search direction.
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Newton’s method

Theorem
If all you have is a hammer, then everything looks like a nail.

Corollary
If all you can optimize is a quadratic, then every function looks like a quadratic.

Taylor-expand f (x) around the current solution xk up to 2nd order:

f (xk + ε) = f (xk) + εTg (xk) +
1
2

εTH (xk) ε+ o
�

ε3
�

where g (xk) and H (xk) are the gradient and Hessian of f at xk:

g (xk) ,
∂f
∂x

����
x=xk

H (xk) ,
∂2f

∂x∂xT

����
x=xk

Assuming H is (symmetric) positive definite, the next solution is

xk+1 = xk + arg min
ε

�
εTg+

1
2

εTHε

�
= xk �H�1g
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Stabilizing Newton’s method

For convex functions the Hessian H is always s.p.d, so the above method
converges (usually quickly) to the global minimum. In reality however most
functions we want to optimize are non-convex, which causes two problems:

1 H may be singular, which means that xk+1 = xk �H�1g will take us all
the way to infinity.

2 H may have negative eigenvalues, which measn that (even if xk+1 is
finite) we end up finding saddle points – minimum in some directions,
maximum in other directions.

These problems can be avoided in two general ways:

1 Trust region: minimize εTg+ 1
2 εTHε s.t. kεk � r, where r is adapted over

iterations. The minimization is usually done approximately.
2 Convexification/linearsearch: replace H with H+ λI, and/or use

backtracking linesearch starting at the Newton point. When λ is large,
xk � (H+ λI)�1 g � xk � λ�1g, which is gradient descent with step λ�1.
The Levenberg-Marquardt method adapts λ over iterations.
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Relation to linear solvers
The quadratic function

f (xk + ε) = f (xk) + εTg (xk) +
1
2

εTH (xk) ε

is minimized when the gradient w.r.t ε vanishes, i.e. when

Hε = �g

When H is s.p.d, one can use the conjugate-gradient method for solving linear
equations to do numerical optimization.

The set of vectors fvkgk=1���n are conjugate if they satisfy vTi Hvj = 0 for i 6= j.
These are good search directions because they yield exact minimization of an
n-dimensional quadratic in n iterations (using exact linesearch). Such a set
can be constructed using Lanczos iteration:

sk+1vk+1 = (H� αkI) vk � skvk�1

where sk+1 is such that kvk+1k = 1, and αk = vTk Hvk. Note that access to H is
not required; all we need to be able to compute is Hv.
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Non-linear least squares
Many optimization problems are in the form

f (x) =
1
2
kr (x)k2

where r (x) is a vector of "residuals". Define the Jacobian of the residuals:

J (x) =
∂r (x)

∂x
Then the gradient and Hessian of f are

g (x) = J (x)T r (x)

H (x) = J (x)T J (x) +
∂J (x)

∂x
� r (x)

We can omit the last term and obtain the Gauss-Netwon approximation:

H (x) � J (x)T J (x)

Then Newton’s method (with stabilization) becomes

xk+1 = xk �
�

JTk Jk + λkI
��1

JTk rk
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