### Trajectory-based optimization

#### Emo Todorov

#### Applied Mathematics and Computer Science & Engineering

University of Washington

#### Winter 2012

# Using the maximum principle

Recall that for deterministic dynamics  $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u})$  and cost rate  $\ell(\mathbf{x}, \mathbf{u})$  the optimal state-control-costate trajectory  $(\mathbf{x}(\cdot), \mathbf{u}(\cdot), \lambda(\cdot))$  satisfies

$$\begin{split} \dot{\mathbf{x}} &= \mathbf{f}\left(\mathbf{x}, \mathbf{u}\right) \\ -\dot{\boldsymbol{\lambda}} &= \ell_{\mathbf{x}}\left(\mathbf{x}, \mathbf{u}\right) + \mathbf{f}_{\mathbf{x}}\left(\mathbf{x}, \mathbf{u}\right)^{\mathsf{T}} \boldsymbol{\lambda} \\ \mathbf{u} &= \arg\min_{\widetilde{\mathbf{u}}} \left\{ \ell\left(\mathbf{x}, \widetilde{\mathbf{u}}\right) + \mathbf{f}\left(\mathbf{x}, \widetilde{\mathbf{u}}\right)^{\mathsf{T}} \boldsymbol{\lambda} \right\} \end{split}$$

with  $\mathbf{x}(0)$  given and  $\lambda(T) = \frac{\partial}{\partial \mathbf{x}} q_T(\mathbf{x}(T))$ . Solving this boundary-value ODE problem numerically is a trajectory-based method.

# Using the maximum principle

Recall that for deterministic dynamics  $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u})$  and cost rate  $\ell(\mathbf{x}, \mathbf{u})$  the optimal state-control-costate trajectory  $(\mathbf{x}(\cdot), \mathbf{u}(\cdot), \lambda(\cdot))$  satisfies

$$\begin{split} \dot{\mathbf{x}} &= \mathbf{f}\left(\mathbf{x}, \mathbf{u}\right) \\ -\dot{\boldsymbol{\lambda}} &= \ell_{\mathbf{x}}\left(\mathbf{x}, \mathbf{u}\right) + \mathbf{f}_{\mathbf{x}}\left(\mathbf{x}, \mathbf{u}\right)^{\mathsf{T}} \boldsymbol{\lambda} \\ \mathbf{u} &= \arg\min_{\widetilde{\mathbf{u}}} \left\{ \ell\left(\mathbf{x}, \widetilde{\mathbf{u}}\right) + \mathbf{f}\left(\mathbf{x}, \widetilde{\mathbf{u}}\right)^{\mathsf{T}} \boldsymbol{\lambda} \right\} \end{split}$$

with  $\mathbf{x}(0)$  given and  $\lambda(T) = \frac{\partial}{\partial \mathbf{x}} q_T(\mathbf{x}(T))$ . Solving this boundary-value ODE problem numerically is a trajectory-based method.

We can also use the fact that, if  $(\mathbf{x}(\cdot), \lambda(\cdot))$  satisfies the ODE for some  $\mathbf{u}(\cdot)$  which is not a minimizer of the Hamiltonian  $H(\mathbf{x}, \mathbf{u}, \lambda) = \ell(\mathbf{x}, \mathbf{u}) + \mathbf{f}(\mathbf{x}, \mathbf{u})^{\mathsf{T}} \lambda$ , then the gradient of the total cost *J* is given by

$$J(\mathbf{x}(\cdot), \mathbf{u}(\cdot)) = q_{\mathcal{T}}(\mathbf{x}(T)) + \int_{0}^{T} \ell(\mathbf{x}(t), \mathbf{u}(t)) dt$$
$$\frac{\partial J}{\partial \mathbf{u}(t)} = H_{\mathbf{u}}(\mathbf{x}, \mathbf{u}, \lambda) = \ell_{\mathbf{u}}(\mathbf{x}, \mathbf{u}) + \mathbf{f}_{\mathbf{u}}(\mathbf{x}, \mathbf{u})^{\mathsf{T}} \lambda$$

Thus we can perform gradient descent on *J* with respect to  $\mathbf{u}(\cdot)$ 

Emo Todorov (UW)

## Compact representations

Given the current **u** (·), each step of the algorithm involves computing **x** (·) by integrating forward in time starting with the given **x** (0), then computing  $\lambda$  (·) by integrating backward in time starting with  $\lambda$  (*T*) =  $\frac{\partial}{\partial x} q_T$  (**x** (*T*)).

## Compact representations

Given the current  $\mathbf{u}(\cdot)$ , each step of the algorithm involves computing  $\mathbf{x}(\cdot)$  by integrating forward in time starting with the given  $\mathbf{x}(0)$ , then computing  $\lambda(\cdot)$  by integrating backward in time starting with  $\lambda(T) = \frac{\partial}{\partial \mathbf{x}} q_T(\mathbf{x}(T))$ .

One way to implement the above methods is to discretize the time axis and represent  $(x, u, \lambda)$  independently at each time step. This may be inefficient because the values at nearby time steps are usually very similar, thus it is a waste to represent/optimize them independently.

## Compact representations

Given the current  $\mathbf{u}(\cdot)$ , each step of the algorithm involves computing  $\mathbf{x}(\cdot)$  by integrating forward in time starting with the given  $\mathbf{x}(0)$ , then computing  $\lambda(\cdot)$  by integrating backward in time starting with  $\lambda(T) = \frac{\partial}{\partial \mathbf{x}} q_T(\mathbf{x}(T))$ .

One way to implement the above methods is to discretize the time axis and represent  $(x, u, \lambda)$  independently at each time step. This may be inefficient because the values at nearby time steps are usually very similar, thus it is a waste to represent/optimize them independently.

Instead we can splines, Legendre or Chebyshev polynomials, etc.

 $\mathbf{u}\left(t\right)=\mathbf{g}\left(t,\mathbf{w}\right)$ 



### Space-time constraints

We can also minimize the total cost *J* as an explicit function of the (parameterized) state-control trajectory:

$$\begin{aligned} \mathbf{x} \left( t \right) &= \mathbf{h} \left( t, \mathbf{v} \right) \\ \mathbf{u} \left( t \right) &= \mathbf{g} \left( t, \mathbf{w} \right) \end{aligned}$$

We have to make sure that the state-control trajectory is consistent with the dynamics  $\dot{x} = f(x, u)$ . This yields a constrained optimization problem:

$$\min_{\mathbf{v},\mathbf{w}} \left\{ q_{\mathcal{T}} \left( \mathbf{h} \left( T, \mathbf{v} \right) \right) + \int_{0}^{T} \ell \left( \mathbf{h} \left( t, \mathbf{v} \right), \mathbf{g} \left( t, \mathbf{w} \right) \right) dt \right\}$$
  
s.t. 
$$\frac{\partial \mathbf{h} \left( t, \mathbf{v} \right)}{\partial t} = \mathbf{f} \left( \mathbf{h} \left( t, \mathbf{v} \right), \mathbf{g} \left( t, \mathbf{v} \right) \right), \quad \forall t \in [0, T]$$

# Space-time constraints

We can also minimize the total cost *J* as an explicit function of the (parameterized) state-control trajectory:

$$\begin{aligned} \mathbf{x} \left( t \right) &= \mathbf{h} \left( t, \mathbf{v} \right) \\ \mathbf{u} \left( t \right) &= \mathbf{g} \left( t, \mathbf{w} \right) \end{aligned}$$

We have to make sure that the state-control trajectory is consistent with the dynamics  $\dot{x} = f(x, u)$ . This yields a constrained optimization problem:

$$\min_{\mathbf{v},\mathbf{w}} \left\{ q_{T} \left( \mathbf{h} \left( T, \mathbf{v} \right) \right) + \int_{0}^{T} \ell \left( \mathbf{h} \left( t, \mathbf{v} \right), \mathbf{g} \left( t, \mathbf{w} \right) \right) dt \right\}$$
  
s.t. 
$$\frac{\partial \mathbf{h} \left( t, \mathbf{v} \right)}{\partial t} = \mathbf{f} \left( \mathbf{h} \left( t, \mathbf{v} \right), \mathbf{g} \left( t, \mathbf{v} \right) \right), \quad \forall t \in [0, T]$$

In practice we cannot impose the contraint for all *t*, so instead we choose a finite set of points  $\{t_k\}$  where the constraint is enforced. The same points can also be used to approximate  $\int \ell$ . There may be no feasible solution (depending on **h**, **g**) in which case we have to live with constraint violations.

This requires no knowledge of optimal control (which may be why it is popular:)

Emo Todorov (UW)

# Second-order methods

More efficient methods (DDP, iLQG) can be constructed by using the Bellman equations locally. Initialize with some open-loop control  $\mathbf{u}^{(0)}(\cdot)$ , and repeat:

- Compute the state trajectory  $\mathbf{x}^{(n)}(\cdot)$  corresponding to  $\mathbf{u}^{(n)}(\cdot)$ .
- Construct a time-varying linear (iLQG) or quadratic (DDP) approximation to the function **f** around  $\mathbf{x}^{(n)}(\cdot)$ ,  $\mathbf{u}^{(n)}(\cdot)$ , which gives the local dynamics in terms of the state and control deviations  $\delta \mathbf{x}(\cdot)$ ,  $\delta \mathbf{u}(\cdot)$ . Also construct quadratic approximations to the costs  $\ell$  and  $q_T$ .
- Compute the locally-optimal cost-to-go  $v^{(n)}(\delta \mathbf{x}, t)$  as a quadratic in  $\delta \mathbf{x}$ . In iLQG this is exact (because the local dynamics are linear and the cost is quadratic) while in DDP this is approximate.

• Compute the locally-optimal linear feedback control law in the form  $\pi^{(n)}(\delta \mathbf{x}, t) = \mathbf{c}(t) - L(t) \, \delta \mathbf{x}.$ 

Apply π<sup>(n)</sup> to the local dynamics (i.e. integrate forward in time) to compute the state-control modification δx<sup>(n)</sup> (·), δu<sup>(n)</sup> (·), and set u<sup>(n+1)</sup> (·) = u<sup>(n)</sup> (·) + δu<sup>(n)</sup> (·). This requires linesearch to avoid jumping outside the region where the local approximation is valid.

### Numerical comparison



### Gradient descent

The directional derivative of  $f(\mathbf{x})$  at  $\mathbf{x}_0$  in direction  $\mathbf{v}$  is

$$D_{\mathbf{v}}[f](\mathbf{x}_{0}) = \left. \frac{df(\mathbf{x}_{0} + \varepsilon \mathbf{v})}{d\varepsilon} \right|_{\varepsilon = 0}$$

Let  $\mathbf{x}(\varepsilon) = \mathbf{x}_0 + \varepsilon \mathbf{v}$ . Then  $f(\mathbf{x}_0 + \varepsilon \mathbf{v}) = f(\mathbf{x}(\varepsilon))$  and the chain rule yields

$$D_{\mathbf{v}}[f](\mathbf{x}_{0}) = \left. \frac{\partial \mathbf{x}(\varepsilon)^{\mathsf{T}}}{\partial \varepsilon} \right|_{\varepsilon=0} \left. \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} \right|_{\mathbf{x}=\mathbf{x}_{0}} = \mathbf{v}^{\mathsf{T}} \left. \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} \right|_{\mathbf{x}=\mathbf{x}_{0}} = \mathbf{v}^{\mathsf{T}} \mathbf{g}(\mathbf{x}_{0})$$

where **g** denotes the gradient of f.

### Gradient descent

The directional derivative of  $f(\mathbf{x})$  at  $\mathbf{x}_0$  in direction  $\mathbf{v}$  is

$$D_{\mathbf{v}}[f](\mathbf{x}_{0}) = \left. \frac{df(\mathbf{x}_{0} + \varepsilon \mathbf{v})}{d\varepsilon} \right|_{\varepsilon = 0}$$

Let  $\mathbf{x}(\varepsilon) = \mathbf{x}_0 + \varepsilon \mathbf{v}$ . Then  $f(\mathbf{x}_0 + \varepsilon \mathbf{v}) = f(\mathbf{x}(\varepsilon))$  and the chain rule yields

$$D_{\mathbf{v}}[f](\mathbf{x}_{0}) = \left. \frac{\partial \mathbf{x}(\varepsilon)^{\mathsf{T}}}{\partial \varepsilon} \right|_{\varepsilon=0} \left. \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} \right|_{\mathbf{x}=\mathbf{x}_{0}} = \mathbf{v}^{\mathsf{T}} \left. \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} \right|_{\mathbf{x}=\mathbf{x}_{0}} = \mathbf{v}^{\mathsf{T}} \mathbf{g}(\mathbf{x}_{0})$$

where **g** denotes the gradient of f.

#### Theorem (steepest ascent direction)

*The maximum of*  $D_{\mathbf{v}}[f](\mathbf{x}_0)$  *s.t.*  $\|\mathbf{v}\| = 1$  *is achieved when*  $\mathbf{v}$  *is parallel to*  $\mathbf{g}(\mathbf{x}_0)$ *.* 

### Gradient descent

The directional derivative of  $f(\mathbf{x})$  at  $\mathbf{x}_0$  in direction  $\mathbf{v}$  is

$$D_{\mathbf{v}}\left[f\right]\left(\mathbf{x}_{0}\right) = \left.\frac{df\left(\mathbf{x}_{0} + \varepsilon \mathbf{v}\right)}{d\varepsilon}\right|_{\varepsilon=0}$$

Let  $\mathbf{x}(\varepsilon) = \mathbf{x}_0 + \varepsilon \mathbf{v}$ . Then  $f(\mathbf{x}_0 + \varepsilon \mathbf{v}) = f(\mathbf{x}(\varepsilon))$  and the chain rule yields

$$D_{\mathbf{v}}[f](\mathbf{x}_{0}) = \left. \frac{\partial \mathbf{x}(\varepsilon)^{\mathsf{T}}}{\partial \varepsilon} \right|_{\varepsilon=0} \left. \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} \right|_{\mathbf{x}=\mathbf{x}_{0}} = \mathbf{v}^{\mathsf{T}} \left. \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} \right|_{\mathbf{x}=\mathbf{x}_{0}} = \mathbf{v}^{\mathsf{T}} \mathbf{g}(\mathbf{x}_{0})$$

where **g** denotes the gradient of f.

#### Theorem (steepest ascent direction)

*The maximum of*  $D_{\mathbf{v}}[f](\mathbf{x}_{0})$  *s.t.*  $\|\mathbf{v}\| = 1$  *is achieved when*  $\mathbf{v}$  *is parallel to*  $\mathbf{g}(\mathbf{x}_{0})$ *.* 

#### Algorithm (gradient descent)

Set  $\mathbf{x}_{k+1} = \mathbf{x}_k - \beta_k \mathbf{g}(\mathbf{x}_k)$  where  $\beta_k$  is the step size. The optimal step size is

$$\beta_{k}^{*} = \arg\min_{\beta_{k}} f\left(\mathbf{x}_{k} - \beta_{k}\mathbf{g}\left(\mathbf{x}_{k}\right)\right)$$

Emo Todorov (UW)

# Line search

Most optimization methods involve an inner loop which seeks to minimize (or sufficiently reduce) the objective function constrained to a line:  $f(\mathbf{x} + \varepsilon \mathbf{v})$ , where  $\mathbf{v}$  is such that a reduction in f is always possible for sufficiently small  $\varepsilon$ , unless f is already at a local minimum. In gradient descent  $\mathbf{v} = -\mathbf{g}(\mathbf{x})$ ; other choices are possible (see below) as long as  $\mathbf{v}^{\mathsf{T}}\mathbf{g}(\mathbf{x}) \leq 0$ .

# Line search

Most optimization methods involve an inner loop which seeks to minimize (or sufficiently reduce) the objective function constrained to a line:  $f(\mathbf{x} + \varepsilon \mathbf{v})$ , where  $\mathbf{v}$  is such that a reduction in f is always possible for sufficiently small  $\varepsilon$ , unless f is already at a local minimum. In gradient descent  $\mathbf{v} = -\mathbf{g}(\mathbf{x})$ ; other choices are possible (see below) as long as  $\mathbf{v}^{\mathsf{T}}\mathbf{g}(\mathbf{x}) \leq 0$ .

This is called *linesearch*, and can be done in different ways:

- **O** Backtracking: try some  $\varepsilon$ , if  $f(\mathbf{x} + \varepsilon \mathbf{v}) > f(\mathbf{x})$  reduce  $\varepsilon$  and try again.
- **3** Bisection: attempt to minimize  $f(\mathbf{x} + \varepsilon \mathbf{v})$  w.r.t.  $\varepsilon$  using a bisection method.
- Polysearch: attempt to minimize  $f(\mathbf{x} + \varepsilon \mathbf{v})$  by fitting quadratic or cubic polynomials in  $\varepsilon$ , finding the minimum analytically, and iterating.

Exact minimization w.r.t.  $\varepsilon$  is often a waste of time because for  $\varepsilon \neq 0$  the current search direction may no longer be a descent direction.

Sufficient reduction in f is defined relative to the local model (linear or quadratic). This is known as the Armijo-Goldstein condition; the Wolfe condition (which also involves the gradient) is more complicated.

Emo Todorov (UW)

# Chattering

If  $\mathbf{x}_{k+1}$  is a (local) minimum of f in the search direction  $\mathbf{v}_k = -\mathbf{g}(\mathbf{x}_k)$ , then  $D_{\mathbf{v}_k}[f](\mathbf{x}_{k+1}) = 0 = \mathbf{v}_k^\mathsf{T} \mathbf{g}(\mathbf{x}_{k+1})$ , and so if we use  $\mathbf{v}_{k+1} = -\mathbf{g}(\mathbf{x}_{k+1})$  as the next search direction, we have  $\mathbf{v}_{k+1}$  orthogonal to  $\mathbf{v}_k$ . Thus gradient descent with exact line search (i.e. steepest descent) makes a 90 deg turn at each iteration, which causes chattering when the function has a long oblique valey.

# Chattering

If  $\mathbf{x}_{k+1}$  is a (local) minimum of f in the search direction  $\mathbf{v}_k = -\mathbf{g}(\mathbf{x}_k)$ , then  $D_{\mathbf{v}_k}[f](\mathbf{x}_{k+1}) = 0 = \mathbf{v}_k^\mathsf{T} \mathbf{g}(\mathbf{x}_{k+1})$ , and so if we use  $\mathbf{v}_{k+1} = -\mathbf{g}(\mathbf{x}_{k+1})$  as the next search direction, we have  $\mathbf{v}_{k+1}$  orthogonal to  $\mathbf{v}_k$ . Thus gradient descent with exact line search (i.e. steepest descent) makes a 90 deg turn at each iteration, which causes chattering when the function has a long oblique valey.



# Chattering

If  $\mathbf{x}_{k+1}$  is a (local) minimum of f in the search direction  $\mathbf{v}_k = -\mathbf{g}(\mathbf{x}_k)$ , then  $D_{\mathbf{v}_k}[f](\mathbf{x}_{k+1}) = 0 = \mathbf{v}_k^\mathsf{T} \mathbf{g}(\mathbf{x}_{k+1})$ , and so if we use  $\mathbf{v}_{k+1} = -\mathbf{g}(\mathbf{x}_{k+1})$  as the next search direction, we have  $\mathbf{v}_{k+1}$  orthogonal to  $\mathbf{v}_k$ . Thus gradient descent with exact line search (i.e. steepest descent) makes a 90 deg turn at each iteration, which causes chattering when the function has a long oblique valey.



Key to developing more efficient methods is to anticipate how the gradient will rotate as we move along the current search direction.

# Newton's method

#### Theorem

If all you have is a hammer, then everything looks like a nail.

### Corollary

If all you can optimize is a quadratic, then every function looks like a quadratic.

# Newton's method

#### Theorem

If all you have is a hammer, then everything looks like a nail.

### Corollary

If all you can optimize is a quadratic, then every function looks like a quadratic.

Taylor-expand  $f(\mathbf{x})$  around the current solution  $\mathbf{x}_k$  up to 2nd order:

$$f(\mathbf{x}_{k} + \boldsymbol{\varepsilon}) = f(\mathbf{x}_{k}) + \boldsymbol{\varepsilon}^{\mathsf{T}} \mathbf{g}(\mathbf{x}_{k}) + \frac{1}{2} \boldsymbol{\varepsilon}^{\mathsf{T}} H(\mathbf{x}_{k}) \boldsymbol{\varepsilon} + o\left(\boldsymbol{\varepsilon}^{3}\right)$$

where  $\mathbf{g}(\mathbf{x}_k)$  and  $H(\mathbf{x}_k)$  are the gradient and Hessian of f at  $\mathbf{x}_k$ :

$$\mathbf{g}\left(\mathbf{x}_{k}\right) \triangleq \left.\frac{\partial f}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}_{k}} \qquad H\left(\mathbf{x}_{k}\right) \triangleq \left.\frac{\partial^{2} f}{\partial \mathbf{x} \partial \mathbf{x}^{\mathsf{T}}}\right|_{\mathbf{x}=\mathbf{x}_{k}}$$

Assuming *H* is (symmetric) positive definite, the next solution is

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \arg\min_{\mathbf{\epsilon}} \left\{ \mathbf{\epsilon}^{\mathsf{T}} \mathbf{g} + \frac{1}{2} \mathbf{\epsilon}^{\mathsf{T}} H \mathbf{\epsilon} \right\} = \mathbf{x}_k - H^{-1} \mathbf{g}$$

# Stabilizing Newton's method

For *convex* functions the Hessian *H* is always s.p.d, so the above method converges (usually quickly) to the global minimum. In reality however most functions we want to optimize are non-convex, which causes two problems:

- *H* may be singular, which means that  $\mathbf{x}_{k+1} = \mathbf{x}_k H^{-1}\mathbf{g}$  will take us all the way to infinity.
- H may have negative eigenvalues, which measn that (even if x<sub>k+1</sub> is finite) we end up finding saddle points minimum in some directions, maximum in other directions.

# Stabilizing Newton's method

For *convex* functions the Hessian *H* is always s.p.d, so the above method converges (usually quickly) to the global minimum. In reality however most functions we want to optimize are non-convex, which causes two problems:

- *H* may be singular, which means that  $\mathbf{x}_{k+1} = \mathbf{x}_k H^{-1}\mathbf{g}$  will take us all the way to infinity.
- H may have negative eigenvalues, which measn that (even if x<sub>k+1</sub> is finite) we end up finding saddle points minimum in some directions, maximum in other directions.

These problems can be avoided in two general ways:

- Trust region: minimize  $\varepsilon^{\mathsf{T}} \mathbf{g} + \frac{1}{2} \varepsilon^{\mathsf{T}} H \varepsilon$  s.t.  $\|\varepsilon\| \le r$ , where *r* is adapted over iterations. The minimization is usually done approximately.
- Onvexification/linearsearch: replace *H* with *H* + λ*I*, and/or use backtracking linesearch starting at the Newton point. When λ is large, **x**<sub>k</sub> − (*H* + λ*I*)<sup>-1</sup> **g** ≈ **x**<sub>k</sub> − λ<sup>-1</sup>**g**, which is gradient descent with step λ<sup>-1</sup>. The Levenberg-Marquardt method adapts λ over iterations.

### Relation to linear solvers

The quadratic function

$$f(\mathbf{x}_{k} + \boldsymbol{\varepsilon}) = f(\mathbf{x}_{k}) + \boldsymbol{\varepsilon}^{\mathsf{T}} \mathbf{g}(\mathbf{x}_{k}) + \frac{1}{2} \boldsymbol{\varepsilon}^{\mathsf{T}} H(\mathbf{x}_{k}) \boldsymbol{\varepsilon}$$

is minimized when the gradient w.r.t  $\varepsilon$  vanishes, i.e. when

$$H \boldsymbol{\varepsilon} = -\mathbf{g}$$

When *H* is s.p.d, one can use the conjugate-gradient method for solving linear equations to do numerical optimization.

The set of vectors  $\{\mathbf{v}_k\}_{k=1\cdots n}$  are conjugate if they satisfy  $\mathbf{v}_i^\mathsf{T} H \mathbf{v}_j = 0$  for  $i \neq j$ . These are good search directions because they yield exact minimization of an *n*-dimensional quadratic in *n* iterations (using exact linesearch). Such a set can be constructed using Lanczos iteration:

$$s_{k+1}\mathbf{v}_{k+1} = (H - \alpha_k I)\mathbf{v}_k - s_k\mathbf{v}_{k-1}$$

where  $s_{k+1}$  is such that  $\|\mathbf{v}_{k+1}\| = 1$ , and  $\alpha_k = \mathbf{v}_k^\mathsf{T} H \mathbf{v}_k$ . Note that access to *H* is not required; all we need to be able to compute is  $H \mathbf{v}$ .

### Non-linear least squares

Many optimization problems are in the form

$$f(\mathbf{x}) = \frac{1}{2} \|\mathbf{r}(\mathbf{x})\|^2$$

where  $\mathbf{r}(\mathbf{x})$  is a vector of "residuals". Define the Jacobian of the residuals:

$$J\left(\mathbf{x}\right) = \frac{\partial \mathbf{r}\left(\mathbf{x}\right)}{\partial \mathbf{x}}$$

Then the gradient and Hessian of f are

$$\begin{aligned} \mathbf{g}\left(\mathbf{x}\right) &= J\left(\mathbf{x}\right)^{\mathsf{T}} \mathbf{r}\left(\mathbf{x}\right) \\ H\left(\mathbf{x}\right) &= J\left(\mathbf{x}\right)^{\mathsf{T}} J\left(\mathbf{x}\right) + \frac{\partial J\left(\mathbf{x}\right)}{\partial \mathbf{x}} \times \mathbf{r}\left(\mathbf{x}\right) \end{aligned}$$

We can omit the last term and obtain the Gauss-Netwon approximation:

$$H(\mathbf{x}) \approx J(\mathbf{x})^{\mathsf{T}} J(\mathbf{x})$$

Then Newton's method (with stabilization) becomes

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \left(J_k^\mathsf{T} J_k + \lambda_k I\right)^{-1} J_k^\mathsf{T} \mathbf{r}_k$$