
MS&E339/EE337B Approximate Dynamic Programming Lecture 1 - 3/31/2004

Introduction
Lecturer: Ben Van Roy Scribe: Ciamac Moallemi

1 Stochastic Systems

In this class, we study stochastic systems. A stochastic system consists of 3 components:

• State xt - the underlying state of the system.

• Noise wt - random disturbance from the environment.

• Decision ut - control decision.

The state xt evolves over time according to the equation

xt+1 = F (xt, ut, wt), (1)

for some deterministic function F (·, ·, ·).
A policy π is a sequence of mappings (µ0, µ1, . . .), where, at time t, the mapping µt determines the control

decision ut to take given that the state is xt. The objective in this course is to determine policies that are
“good.”

2 Examples

In order to understand our framework, we consider a number of examples which can be viewed in the context
of stochastic systems.

2.1 Tetris

Tetris is a computer game in which falling pieces must be positioned on a two-dimensional grid (see Figure 1).
The goal is to form contiguous rows of blocks, at which point such rows are deleted. Falling pieces are selected
at random and the game is over when the height of the pieces exceeds the height of the board. Tetris can
be viewed as a stochastic as follows:

state xt =
(

board configuration
shape of current falling piece

)
,

decision ut = (where to put the falling piece, i.e. orientation/translation) ,

noise wt = (next falling piece) .

2.2 Linear Systems

One common example of a stochastic system system is a linear system. Here, xt ∈ Rn, ut ∈ Rm, and wt ∈ Rn

are vectors, and the system evolves according to the linear update

xt+1 = Axt + But + wt,

1

Figure 1: The computer game Tetris.

where A ∈ Rn×n and B ∈ Rn×m. In such instances, linear policies are of particular interest. In a linear
policy, the decision is a linear function of current state, in other words,

ut = Kxt,

for some K ∈ Rm×n. Aside from their simplicity, linear policies are interesting because in many cases the
optimal policy will be a linear policy.

2.3 Dynamic Asset Allocation

Consider the following simplified dynamic asset allocation problem. At every time t, an individual can choose
to invest portions of his wealth in either:

1. Money market - constant rate of return ρ (that is, ρ dollars returned at time t + 1 for every one dollar
invested at time t).

2. Mutual fund - rate of return rt which is a random variable.

In the context of stochastic systems, we have

state xt = (wealth at time t) ∈ R+,

decision ut = (fraction of wealth to invest in mutual fund at time t) ∈ [0, 1],

noise rt = (mutual fund rate of return at time t) ∈ R+.

The system evolves according to the equation

xt+1 = ρ(1 − ut)xt + rtutxt.

2

11 22

Figure 2: A queuing network.

2.4 Queuing

Consider the queuing network in Figure 2. Here, there two classes of products to be manufactured by servers
1 and 2. For the first class of products, produced along the top path, raw materials enter from the left, are
first processed by server 1, then processed by server 2, and finally exit on the right. The second class of
products are produced in an analogous fashion right-to-left along the bottom path. There are four queues
in the system which buffer materials in different stages that are waiting for a busy server. Raw materials
arrive to the input buffers at random times. For simplicity, assume that each server can serve one item per
time step. Hence, if a server has items waiting in both of its buffers, it must make an allocation decision of
which buffer to process an item from. This queuing network can be viewed as a stochastic system as follows:

state xt = (queue lengths) ,

decision ut = (allocation of servers 1 and 2) ,

noise wt = (random arrivals of raw materials) .

3 Transition Probabilities

In general, stochastic systems may evolve in discrete or continuous time, and their state/decison/noise
variables may take values in finite or continuous state spaces. For simplicity, we will initially focus on
discrete-time, finite-state stochastic systems. Note that the ideas we will present can be extended to other
frameworks as well.

In particular, assume that
xt ∈ S = {1, . . . , n},

ut ∈ U(xt),

where for each x ∈ S, U(x) is a finite set of available decisions or actions given state xt = x. For x, y ∈ S,
and u ∈ U(x), we can define transition probabilities

Pxy(u) = P {xt+1 = y|xt = x, ut = u} . (2)

Transition probabilities provide an alternative to the state evolution equation (1) to specify the random
structure of a stochastic system. In particular, we can relate (1) and (2) by

Pxy(u) = P {F (x, u, w) = y} .

Both viewpoints will be useful in the study of stochastic systems.

3

4 Optimality Criteria

We would like to determine the “best” policy for a given stochastic system. In order for this question to be
well-posed, we must define a criteria for optimality. The most general formulation that may be considered is

min
π

E [g(x0, u0, x1, u0, . . .)] . (3)

Here, we attempt to minimize the expected value of a cost function g(·), which is a function of the entire
sample path (x0, u0, x1, u1, . . .). While this criteria is the most general, the optimization problem (3) will
not be tractable in general.

A more tractable criteria is to assume that the cost function in (3) decomposes additively across time,
resulting in

min
π

E

[
N∑

t=0

g(xt, ut, xt+1)

]
. (4)

Here, g(xt, uu, xt+1) is the cost of selecting decision ut at time t, resulting in next state xt+1, given current
state xt. Note that the evolution of the system is considered only up to time N . Hence, (4) is called the
finite horizon problem.

In some systems, there is no natural time horizon N to pick. For these systems, the total cost objective
may be more appropriate,

min
π

E

[∞∑
t=0

g(xt, ut, xt+1)

]
. (5)

The total cost objective is fine for systems that eventually terminate and generate zero cost thereafter.
For systems that generate ongoing cost, however, the total cost will be infinite and will not provide a
useful mechanism for differenting amongst policies. For such systems, one alternative is the discounted cost
objective,

min
π

E

[∞∑
t=0

αtg(xt, ut, xt+1)

]
. (6)

Here, α ∈ (0, 1) is a discount factor which weighs the relative contribution of costs in the near and long-term
future to the total cost. The discounting also guarantees that the sum in (6) is finite.

Another alternative for the infinite horizon case is the average cost criteria,

min
π

lim sup
N→∞

1
N

E

[
N−1∑
t=0

g(xt, ut, xt+1)

]
. (7)

Here, we are looking at the long-term average expected cost. The averaging ensures finite values even when
the system generates ongoing cost. However, if the system eventually terminates the average cost will be
zero, hence the average cost objective is not appropriate and the total cost objective (5) should be used.

Given an optimality criteria, we need a way to determine the optimal policy. One easy way out is to
select at time t the decision ut which minimizes the expected cost over the next time step, in other words

min
ut

E [g(xt, ut, xt+1)|xt] .

This strategy, while simple to implement, does not factor in the effect of the current decision ut on future
costs. Hence, it is myopic and not generally optimal.

An alternative is to select the current decision ut by the optimization problem

min
ut

E [g(xt, ut, xt+1) + J(xt+1)|xt] .

4

Here, the value J(xt+1) captures the future cost that is incurred as a result of being in state xt+1 at time
t + 1. The field of dynamic programming provides methods for choosing a value function J(·) so as to result
in an optimal policy.

In practical problems, number of possible values that xt can take is enormous. For these problems,
computing the value function J(·) by dynamic programming or even storing such a J(·) is infeasible. We
will focus on approximate methods to find good policies. In particular, there are two broad classes of such
methods:

1. Value function approximation. In a spirit similar to regression, we will consider a parameterized family
of value functions Jθ(·), where the number of parameters θ is tractable. We will develop methods for
tuning the value of θ to result in good policies.

2. Policy gradient methods. Here, the class of possible policies will be parameterized, and the parameter
will similarly be tuned to yield a good policy.

5

MS&E339/EE337B Approximate Dynamic Programming Lecture 2 - 4/5/2004

Dynamic Programming Overview
Lecturer: Ben Van Roy Scribe: Vassil Chatalbashev and Randy Cogill

1 Finite Horizon Problems

We distinguish between finite horizon problems, where the cost accumulates over a finite number of stages,
say N , and infinite horizon problems, where the cost accumulates indefinitely. First we consider the finite
horizon problems.
The dynamic system evolves according to the following mapping:

xt+1 = f(xt, µt(xt), wt) ∈ S, t = 0, 1, · · · , N − 1.

where |S| < ∞, µt(xt) is the decision at time t. A policy π is π = {µ0, µ1, ...µN−1}, where µt(x) ∈ U(x),
and U(x) is the set of all legal decisions in state x. Our goal is to minimize the expected cost:

min
π
E

[
N−1∑
t=0

g(xt, µt(xt), xt+1)

∣∣∣∣∣ x0

]
.

We will now define a useful cost-to-go function Jk(xk), which represents the remaining cost to be incurred
starting at t = k and assuming that at time k we are in state xk:

Jk(xk) = min
µk,...µN−1

E

[
N−1∑

t=k

g(xt, µt(xt), xt+1)

∣∣∣∣∣ xk

]

Then, our goal would be to calculate the cost-to-go function J0(x0), which is the overall cost to be incurred
in the finite horizon of N steps. We now state a simple theorem, which will be useful later:

Theorem 1
Jk(x) = min

u∈U(x)

∑

y∈S

pxy(u)(g(x, u, y) + Jk+1(y))

where JN (x) ≡ 0. Also, a policy π∗ = {µ∗0, . . . , µ∗N−1} is optimal if and only if

µ∗k(x) ∈ arg min
u∈U(x)

∑

y∈S

pxy(u)(g(x, u, y) + Jk+1(y)).

The proof is easy, simply use the definition of Jk(x) and split up the minimization and the expectation.

2 Discounted Dynamic Programming

2.1 Discounted Finite Horizon Problems

Before talking about discounted infinite horizon problems, let’s look at discounted finite horizon problems.
Assume we have a discount factor α(∈ (0, 1)). The cost-to-go function now becomes:

Jk(xk) = min
µk,...µN−1

E

[
N−1∑

t=k

αt−kg(xt, µt(xt), xt+1)

∣∣∣∣∣ xk

]

and again, our goal is to find J0(x0), and the minimizing policy. We can re-state the above theorem, by
simply accounting for the discount factor appropriately. No proof is provided.

1

Theorem 2
Jk(x) = min

u∈U(x)

∑

y∈S

pxy(u)(g(x, u, y) + αJk+1(y))

where JN (x) ≡ 0. Also, a policy π∗ = {µ∗0, . . . , µ∗N−1} is optimal if and only if

µ∗k(x) ∈ arg min
u∈U(x)

∑

y∈S

pxy(u)(g(x, u, y) + αJk+1(y)).

2.2 Discounted Infinite Horizon Problems

Now we can make the appropriate definitions for infinite horizon problems. Everything is the same as before,
only now t = 0, 1, . . . and π = {µ0, µ1, . . .}. Let’s redefine the cost-to-go function to account for that:

Jk(xk) = min
µk,µk+1,...

E

[∞∑

t=k

αt−kg(xt, µt(xt), xt+1)

∣∣∣∣∣ xk

]

Let’s also define the cost function with respect to a particular policy π = {µ0, µ1, · · · }:

Jπ(x) = E

[∞∑
t=0

αtg(xt, µt(xt), xt+1)

∣∣∣∣∣ x0 = x

]

Note that the expectation above converges because α ∈ (0, 1) and also because g is bounded, because we
assume a finite state space.
In discounted infinite horizon problems, our goal is to find the optimal policy and its associated cost:

J∗(x) = inf
π

Jπ(x)

3 The Dynamic Programming Operator

We now define the Dynamic Programming Operator (DP Operator) T .

(TJ)(x) = min
u∈U(x)

∑

y∈S

pxy(u)(g(x, u, y) + αJ(y))

Also let’s define the operator Tµ with respect to a fixed µ:

(TµJ)(x) =
∑

y∈S

pxy(µ(x))(g(x, u, y) + αJ(y))

Notice that with the above definitions we can restate Theorem 1 compactly as:

Theorem 3 Jk = TJk+1 and π∗ = {µ∗0, . . . , µ∗n} is optimal if and only if

Tµ∗kJk+1 = TJk+1

Now let’s prove an interesting property of the operator and the optimal value function J∗.

Theorem 4
J∗ = lim

N→∞
TNJ.

2

Proof Let’s look at Jπ(x0) and split up the expectation in it in two parts:

Jπ(x) = E

[
N−1∑
t=0

αtg(xt, µt(xt), xt+1)

∣∣∣∣∣ x0 = x

]
+ E

[∞∑

t=N

αtg(xt, µt(xt), xt+1)

∣∣∣∣∣ x0 = x

]

Let’s look at the second term. Notice that its absolute value is less than αN

1−αM , where M is a constant such
that |g(x, u, y)| < M .

Recall that

(TNJ)(x0) = min
µ0,...µN−1

E

[
N−1∑
t=0

αtg(xt, µt(xt), xt+1) + αNJ(xN)

∣∣∣∣∣ x0

]

Now using our bound on the absolute value of the second term, and the above, we can write the following
inequalities:

Jπ(x0)− αN

1− α
M−αN‖J‖∞ ≤ E

[
N−1∑
t=0

αtg(xt, µt(xt), xt+1) + αNJ(xN)

∣∣∣∣∣ x0

]
≤ Jπ(x0)+

αN

1− α
M +αN‖J‖∞

Let’s minimize each term w.r.t π:

J∗π(x0)− αN

1− α
M − αN‖J‖∞ ≤ TNJ ≤ J∗π(x0) +

αN

1− α
M + αN‖J‖∞

Clearly as n →∞, αN → 0. Since N was arbitrary it follows that J∗ = limn→∞ TNJ .
The above proof used our assumption of finite state space to get an upper bound M on g(). It needs addi-
tional assumptions to work with infinite state spaces.

We can also show that the operator T has the following additional properties:

Theorem 5 (Max-norm contraction) T is a maximum norm α-contraction. That is, ‖TJ−TJ‖∞ ≤ α‖J−
J‖∞ for all J, J .

Proof For arbitrary functions g, h : A → R, where A is some arbitrary set, the following property holds:
∣∣∣min

a
g(a)−min

a
h(a)

∣∣∣ ≤ max
a
|g(a)− h(a)|.

Using this property we get

|(TJ)(x)− (TJ)(x)| =

∣∣∣∣∣∣
min

u


∑

y∈S

pxy(u)(g(x, u, y) + αJ(y)


−min

u


∑

y∈S

pxy(u)(g(x, u, y) + αJ(y)




∣∣∣∣∣∣
≤ max

u
α

∑

y∈S

pxy(u)|J(y)− J(y)|

≤ α‖J − J‖∞.

Since ‖TJ−TJ‖∞ = maxx |(TJ)(x)−(TJ)(x)|, the previous inequality implies ‖TJ−TJ‖∞ ≤ α‖J−J‖∞.

Theorem 6 (Monotonicity) If J ≥ J , then TJ ≥ TJ .

3

Proof Suppose J ≥ J . Then ∑

y∈S

pxy(u)J(y) ≥
∑

y∈S

pxy(u)J(y)

for all x ∈ S and u ∈ U(x). By multiplying both sides by α and adding the term
∑

y∈S pxy(u)g(x, u, y) to
both sides of the inequality, we get

∑

y∈S

pxy(u)(g(x, u, y) + αJ(y)) ≥
∑

y∈S

pxy(u)(g(x, u, y) + αJ(y))

for all x ∈ S and u ∈ U(x). The above inequality implies TµJ ≥ TµJ for any decision rule µ. Suppose µ∗ is
such that Tµ∗J = TJ . Then TJ ≥ Tµ∗J . Also, it is clear that Tµ∗J ≥ TJ . Therefore TJ ≥ TJ .

Theorem 7 (Offset property) Let e be such that e(x) = 1 for all x ∈ S. Then T (J + ce) = TJ + αce for all
c ∈ R.

Proof

T (J + ce)(x) = min
u∈U(x)

∑

y∈S

pxy(u)(g(x, u, y) + α(J(y) + ce(y)))

= min
u∈U(x)

∑

y∈S

(pxy(u)(g(x, u, y) + αJ(y)) + αc

= (TJ)(x) + αce(x)

4 Contractions

As was shown in the previous section, the dynamic programming operator T is an α-contraction in the
max-norm. In this section we will prove some useful properties of contractions, and discuss some of their
implications for dynamic programming. Throughout this section we will let F be an α-contraction with
respect to some norm ‖ · ‖. For simplicity we will assume F : Rn → Rn.

Theorem 8 The sequence {FNJ} converges for any J .

Proof Since F : Rn → Rn, it will suffice to show that {FNJ} is a Cauchy sequence. Since F is an α-
contraction, ‖FJ −F 2J‖ ≤ α‖J −FJ‖. In general, ‖FNJ −FN+1J‖ ≤ αN‖J −FJ‖. To show that {FNJ}
is a Cauchy sequence, we need to show that for any ε > 0, there exists some K such that ‖FMJ −FNJ‖ ≤ ε
for all M, N ≥ K. For any K and M, N ≥ K,

‖FMJ − FNJ‖ =

∥∥∥∥∥
N−1∑

i=M

(F iJ − F i+1J)

∥∥∥∥∥

≤
N−1∑

i=M

‖(F iJ − F i+1J)‖

≤
N−1∑

i=M

αi‖(J − FJ)‖

≤ αK

1− α
‖(J − FJ)‖

4

For any ε > 0, we can find K such that

αK

1− α
‖(J − FJ)‖ ≤ ε,

hence {FNJ} is a Cauchy sequence.

Theorem 9 F has a unique fixed point.

Proof The sequence {FNJ} converges to a fixed point of F , so at least one fixed point exists. Now
suppose J1 and J2 are both fixed points of F . Since FJ1 = J1 and FJ2 = J2, this implies

‖FJ1 − FJ2‖ = ‖J1 − J2‖,
contradicting the contractive property of F . Therefore, the fixed point of F is unique.

Recall that the dynamic programming operator T is a max-norm α-contraction and that TNJ → J∗ as
N →∞. By the previous two theorems, we can conclude that J∗ is the unique solution to the equation

J∗ = TJ∗.

This is known as Bellman’s equation. We can also use the fact that Tµ is a max-norm α-contraction for any
µ to establish the following result:

Theorem 10 A stationary policy π = {µ, µ, µ, . . .} is optimal among all policies if and only if TJ∗ = TµJ∗.

Proof First suppose that the stationary policy described by µ is optimal. Let Jµ be the cost-to-go function
under this policy. Since this policy is optimal, J∗ = Jµ. Also, the equation J = TµJ is uniquely solved by
Jµ. So Jµ = TµJµ =⇒ J∗ = TµJ∗ =⇒ TJ∗ = TµJ∗.
Now suppose TJ∗ = TµJ∗. This implies J∗ = TµJ∗. Since Jµ is the unique solution of the equation J = TµJ ,
J∗ = Jµ, so the stationary policy described by µ is optimal.

5 Homework

The homework is due on Wednesday, April 14. You are allowed to work on the homework assignments in
small groups.

1. Suppose F is an α-contraction with respect to the norm ‖·‖ and has fixed point J∗. Suppose F satisfies
‖FJ − FJ‖ ≤ ε for all J and F

k
J → J . Show that

∥∥J∗ − J
∥∥ ≤ ε

1− α

2. Define the operator Tx such that

(TxJ)(y) =
{

(TJ)(y) if y = x
J(y) otherwise

Consider Jk+1 = TnTn−1 · · ·T2T1Jk. Prove that Jk → J∗.

3. Consider the dynamic programming algorithm Jk+1 = TJk. Which converges faster, this algorithm or
the algorithm using the operator Tx described in problem 2? Be prepared to answer this question in a
3 minute presentation in class with your group. You do not need to prepare a detailed argument, just
give some intuition on which algorithm converges faster.

5

MS&E339/EE337B Approximate Dynamic Programming Lecture 3 - 4/7/2004

Policy Iteration and Rollouts
Lecturer: Ben Van Roy Scribe: Jose Blanchet and Su-In

1 Policy Iteration

In contrast to the value iteration algorithm, which implies that TNJ → J∗ as N →∞, the policy iteration
algorithm generates a sequence of policies such that their associated cost-to-go functions Jk = J∗ for all k
large enough; where J∗ is the optimal cost-to-go function (the only fixed point of the dynamic operator T).

In other words, policy iteration generates an optimal stationary policy. The policy iteration algorithm
proceeds as follows: given a policy µk, choose µk+1 such that Tµk+1Jµk

= TJµk
. Recall our notation, Jµk

satisfies J = Tµk
J , where Tµk

is the corresponding dynamic operator with respect to a problem with only
one policy, namely, the stationary policy generated by µk. The next result constitutes the most important
theorem of this lecture.

Theorem 1 There exists a natural N0 such that for all k > N0 we have that Jµk
= J∗.

Proof The next diagram shows what is happening at every iteration in the procedure.

Jµ

Jµ '

J*

Tµ ' Jµ = TJµ

x

Jµ

'

First, note that, by optimality of J∗, we can write Jµk
≥ J∗. Also, by definition of µk+1 and T , we have

Tµk+1Jµk
= TJµk

≤ Tµk
Jµk

= Jµk
.

Thus, summarizing, Tµk+1Jµk
≤ Jµk

, which implies

Jµk
≥ TN

µk+1
Jµk

→ Jµk+1 .

Here, we have used standard properties of the dynamic programming operator i.e. monotonicity and con-
tractive properties, in this case applied to the dynamic programming operator corresponding to the problem
with only one policy, µk+1. Now, if TJµk

= Jµk
then Jµk

= J∗ (because T has only fixed point), otherwise
we must have that Tµk+1Jµk

6= Jµk
and at least one improved can be made. The procedure terminates in a

1

finite number of steps (when no improvement can be made) because there are finitely many decisions and
the algorithm converges to J∗ as it is the only fixed point of T .

A very interesting feature of the the policy improvement method is that it seems to work remarkably
well in practice; in fact, a complete satisfactory explanation for which policy iteration has the mentioned
fast convergence characteristics is still an open problem. The best bound known in the rate of convergence
for a general problem with n states and 2 decisions is of order 2n/n. However, in practice policy iteration
seems to converge in very few iterations, perhaps fewer than 10-15 iterations, for even very large problems.
The worst known cases involve problem instances with n states (for small n) and require n + 2 iterations.

2 Rollouts

In this algorithm the idea is to carry out a single policy iteration step from a given (heuristic) policy, while
estimating the cost-to-go function of the given policy via simulation directly from the performance. For
example, let’s suppose we are studying a discounted dynamic programming problem. Fix a policy µ and a
state x, then the idea is to estimate

µ̃(x) = min
u
E

[∞∑

k=0

αtg(xt, ut, xt+1)

∣∣∣∣∣ x0 = x, u0 = u, ut = µ(xt)

]

by

µ̃(x) ≈ min
u

1
N

N∑

i=1

[∞∑

k=0

αtg(xt, ut, xt+1)

∣∣∣∣∣ x0 = x, u0 = u, ut = µ(xt)

]
,

where N is the number of paths to simulate (of course, one has to truncate the infinite horizon in the previous
computation).

The complexity of this method, naturally, grows exponentially as the computational power needed for the
sequence of update may be enormous at each state. However, this procedure can work well if one has some
good heuristic for µ and the controller is interested in how does the value (corresponding to the selected
policy µ) amplifies in very few iterations.

2

MS&E339/EE337B Approximate Dynamic Programming Lecture 4 - 4/12/2004

Rollout Review, Linear Programming, and Real-Time DP
Lecturer: Ben Van Roy Scribe: Mark Peters and Michael Rotkowitz

1 Rollout Review

Suppose that we have a heuristic h such that h(xt) specifies an action for each xt. To implement a rollout,
we would consider each possible action at each state that the system reaches and calculate the expected
cost-to-go based on taking each action then using the heuristic from that point onward. Simulation is used
to estimate the expected cost-to-go for each considered action. The rollout will select the optimal action
based on the estimated cost-to-go function and implement this action at the current state. If the dynamic
program path is infinite, we can simply truncate it when the discounted value drops below some threshold.

Rollout is some kind of a real time policy iteration, it carries out a single policy improvement step, and it
updates the policy only when the state is visited. We can think of rollout as a black box, the inputs are the
heuristic policy h and current state x, the output is action a. Since policy iteration always converges to the
optimal policy in a few steps (say 10-15), rollout usually improves the heuristic policy a lot. Additionally, we
can implement a rollout with multiple iterations. After implementing a 1 iteration rollout h′ (as shown on
the right side of Figure 1), we can apply the rollout procedure to h′ (basically treat h′ as the heuristic). This
creates a 2 iteration rollout. Increasing the number of iterations will exponentially increase the compute
time for the rollout. Practically, though, we will often see large improvements with just a few iterations.

h

x

a

h

x
a

h'

Figure 1: Schematic of Rollout Procedure

1.1 Example

Suppose we have the dynamics xt+1 = f(xt, ut, wt) where wt ∼ q(·) is some arbitrary distribution. Further
assume that ut ∈ {0, 1}, so that there are two possible actions for each time t. We have a heuristic
µ : S → {0, 1}, which when applied yields the closed-loop dynamics

xt+1 = f(xt, µ(xt), wt)

To improve on this, we try the following rollout procedure.

1

(a) Estimate E

[∞∑
t=0

αtg(xt, ut, xt+1)
∣∣∣∣ x0 = x, u0 = 0, ut = µ(xt) ∀ t > 0

]

(b) Estimate E

[∞∑
t=0

αtg(xt, ut, xt+1)
∣∣∣∣ x0 = x, u0 = 1, ut = µ(xt) ∀ t > 0

]

The rollout simply chooses the lesser of the two. Two steps often used to make this estimation are truncation
and simulation as shown for (a)

E

[∞∑
t=0

αtg(xt, ut, xt+1)
∣∣∣∣ x0 = x, u0 = 0, ut = µ(xt) ∀ t > 0

]

≈ E

[
M∑

t=0

αtg(xt, ut, xt+1)
∣∣∣∣ x0 = x, u0 = 0, ut = µ(xt) ∀ t > 0

]

≈ 1
K

K−1∑

k=0

M∑
t=0

αtg(x(k)
t , u

(k)
t , x

(k)
t+1) where x0 = x, u0 = 0, ut = µ(xt) ∀ t > 0

We choose M large enough so that αM is negligible, and simulate by the following steps

• Sample w
(k)
t according to q(·)

• u
(k)
t =

{
0 if t = 0
µ(x(k)

t) if t > 0

• x
(k)
t+1 = f(x(k)

t , u
(k)
t , w

(k)
t)

2 Linear Programming

We examine another algorithm for computing J∗. Consider the following optimization problem.

maximize
∑

x∈S

J(x)

subject to TJ ≥ J

(1)

T is a nonlinear operator, so we seek to convert the constraint into several linear constraints.

(TJ)(x) = min
u∈U(x)

∑

y∈S

pxy(u) (g(xt, u, y) + αJ(y)) ≥ J(x)

is equivalent to

∑

y∈S

pxy(u) (g(xt, u, y) + αJ(y)) ≥ J(x) ∀u ∈ U(x)

Theorem 1 Problem (1) is uniquely optimized by J∗.

Proof If J is feasible, then TJ ≥ J , and then by the monotonicity of T ,

J ≤ TJ ≤ T 2J ≤ · · · ≤ J∗

2

So any feasible J satisfies J ≤ J∗. Then J∗ is feasible and dominates all other feasible points when
maximizing the sum. So J∗ solves Problem (1), and it’s unique.

Remark This proof holds if we instead maximize
∑

c(x)J(x) for any c such that c(x) > 0 for every x ∈ S.

3 Real Time Dynamic Programming

3.1 Gauss-Seidel Value Iteration

This algorithm updates one component of J at a time, as in HW#1. It can be shown that the entire cycle
of updates (to all components of J) is a max norm contraction. The homework problem asks that we prove
convergence to J∗ using the Gauss-Seidel value iteration.

3.2 Asynchronous Value Iteration

Asynchronous value iteration picks out an infinite sequence of states (x(0), x(1), x(2), x(3), ...) such that every
state occurs infinitely often. Consider the following algorithm:

Jk+1(x) =

{
(TJk)(x) if x(k) = x

Jk(x) otherwise

We can easily show that this will converge. First, look at states until we reach x(l1) which is the first time
that every state has been reached at least once. In other words, let l1 be the first time at which xt = i for
every state i for at least one t ≤ l1. Similarly, let l2 be the lowest possible value such that xt = i for every
possible state i for at least one t such that l1 < t ≤ l2, and so forth. Then,

‖Jl1+1 − J∗‖∞ ≤ α ‖J0 − J∗‖∞
and repeating for x(l2)

‖Jl2+1 − J∗‖∞ ≤ α ‖Jl1+1 − J∗‖∞ ≤ α2 ‖J0 − J∗‖∞
...

Thus Jt converges to J∗.
The name for asynchronous value iteration was derived from asynchronous computation since, if you had

each processor work on a component then you could have the component completion times correspond to
when J is updated for that component. This justifies parallelizing the process.

3.3 Real Time Value Iteration

This is actually just a special case of asynchronous value iteration. This algorithm simply calls for a se-
quence of states to be generated by simulating the underlying system. Convergence of real time value
iteration doesn’t follow from the convergence of asynchronous value iteration due to the fact that you are
not guaranteed to update each state an infinite number of times.

Example:

Generate x0, x1, x2, x3, . . .

with corresponding J0, J1, J2, J3, . . .

Method for generating the xt’s

3

• x0 is arbitrary

• sample wt from q(·)
• Let ut ∈ arg minu∈U(xt)

∑
y∈S pxty(u) (g(xt, u, y) + αJt(y)).

• xt+1 = f(xt, ut, wt)

Theorem 2 If J0 ≤ J∗ then RTDP converges, and there exists t0 such that ut is optimal for every t ≥ t0 .

Proof Next lecture.

Notes:

• J0 doesn’t necessarily correspond to a policy.

• t0 is finite with probability 1 (but it is a random variable).

• Jt doesn’t necessarily converge to J∗ but the action derived will be optimal.

• J0 ≤ J∗ means we are optimistic about the cost-to-go function at each state, so we have incentives to
go to each state and we are unlikely to get stuch in a bad loop.

• From the monotonicity of the DP operator, all functions will be less than J∗

J0 ≤ J∗

TJ0 ≤ TJ∗ = J∗

...
Then Jt ≤ J∗ for all t

4

MS&E339/EE337B Approximate Dynamic Programming Lecture 5 - 4/14/2004

Real Time Dynamic Programming, and Q-Functions
Lecturer: Ben Van Roy Scribe: Rick Johnston and Brad Null

1 Real Time Dynamic Programming

1.1 Overview of the Process

• Simulate the dynamics of the System:

xt+1 = f(xt, ut, wt)

• Select decision:
ut ∈ arg min

u∈U(xt)

∑
y∈S

pxy(u)(g(x, u, y) + αJt(y))

• Update J according to:

(Jt+1)(x) =
{ ∑

y∈S pxy(ut)(g(x, u, y) + αJt) if x = xt

Jt(x) otherwise

Theorem 1 If J0 ≤ J∗ then ∃t such that ut are optimal for all t ≥ t (where t < ∞ with probability 1)

Proof First, recall that Jt ≤ J∗ ∀t (established previously).
Partition the state space S into two sets. Let V be the set of states visited infinitely often and V̄ be the

complement of V in S. Thus S = V ∪ V̄ .
If we consider a sample path, ∃t̂ such that pxy(ut) = 0 ∀y ∈ V̄ , ∀t ≥ t̂ with probability 1.
At all times subsequent to t̂, the probability of travelling to V̄ is zero. (This follows from the fact that

we have a finite state and decision space). Intuitively, this makes sense because each of the states in V̄
are only visited a finite number of times. So there must be a time t̂ after which the system remains in V .
Subsequently, only states in V are relevant and as we are updating each infinitely often, we know we will
converge on this set (i.e. for x ∈ V , Jt(x) → J∗V (x) for some J∗V (x) which includes only decisions that keep
us in V).

We also know that for x ∈ V , J∗V (x) = Jπ(x) where Jπ is the cost-to-go function for some legitimate
policy π. As J∗ is the minimum cost-to-go over all policies, Jπ(x) ≥ J∗(x) ∀x ∈ V . This fact, in addition to
the fact that Jt ≤ J∗ ∀t implies:

J∗V (x) = J∗(x)∀x ∈ V

When the algorithm terminates, we are left with J∗V (x) = J∗(x) ∀x ∈ V and JV̄ (x) ≤ J∗(x) ∀x ∈ V̄ .
Under J∗V , all x ∈ V have corresponding decisions that ensure we never visit V̄ using JV̄ (x) as the cost-to-go
for all x ∈ V̄ . Thus, if we increase all cost-to-go functions for x ∈ V̄ to J∗(x) this would leave J∗V unchanged,
but would increase the cost-to-go for policies containing decisions with positive probability of returning to
V̄ from V . Thus, J∗V would still correspond to an optimal policy over V .

This theorem implies that eventually you will be making optimal decisions. However the process could
become stuck in a bad part of the state space. To expand the theory to show global optimality one must

1

Figure 1: State Space for RTDP

add additional conditions specifying communication exists between all states, i.e. providing it is possible to
get from any x ∈ S to any y ∈ S.

According to this theorem, one valuable application of this algorithm might be to problems with very
large state space (e.g. 100 billion states). For such problems we couldn’t possibly store J values for each
state. However, this theorem suggests that we might be able to use this approach to find an optimal policy
among a small subset of the total state space.

2 Q-Functions

Suppose you knew J∗. To make optimal decisions, you would still need to solve

min
u∈U(x)

∑
y∈S

pxy(u)(g(x, u, y) + αJ∗(y)) ∀x (1)

and in doing so, you would have to take expectations for every possible decision u ∈ U(x) for all states x.
As an alternative, you might define

Q∗(x, u) =
∑
y∈S

pxy(u)(g(x, u, y) + αJ∗(y)). (2)

and choose optimal decisions by
min

u
Q∗(x, u) (3)

So how do we compute Q∗? First observe that Q∗ satisfies the equation J∗(x) = minu Q∗(x, u) =
Q∗(x, u∗(x)). Substituting into equation 2 above we obtain:

Q∗(x, u) =
∑
y∈S

pxy(u)(g(x, u, y) + α min
ū

Q∗(y, ū)) (4)

Q∗ is the unique optimal solution of this equation.
For compactness we can define the operator F - similar to the dynamic programming operator T - such

that:
(FQ)(x, u) =

∑
y∈S

pxy(u)(g(x, u, y) + α min
ū

Q(y, ū)) (5)

Thus, we can rewrite equation 3 as Q∗ = FQ∗, the Q-equivalent to Bellman’s equation.
As we would expect, the following properties also hold for F:

2

• F is a maximum norm α-contraction

• F has a unique fixed point which is Q∗

• All of the following algorithms applied in Q will converge to Q∗: Q-Value Iteration (where Qk+1 =
FQk), Gauss-Seidel, and Asynchronous Value Iteration

2.1 Real Time Dynamic Programming using the Q operator

We can also apply Real Time Dynamic Programming (RTDP) to Q rather than J by in any iteration updating
only the state-action pair currently under consideration. The following is an overview of this process:

• Simulate the dynamics of the System:

xt+1 = f(xt, ut, wt)

• Select decision:
ut ∈ arg min

u∈U(xt)
Qt(xt, u)

• Update Q according to:

Qt+1(x, u) =
{

(FQt)(x, u) if (x, u) = (xt, ut)
Qt(x, u) otherwise

The characteristics of Q lead to the following theorem (analogous to theorem 1) which we will not prove.

Theorem 2 If Q0 ≤ Q∗ then ∃t after which the estimate will be optimal.

The advantage of Q-RTDP over standard RTDP is that only one expectation for each state-action pair
has to be calculated. This means that individual iterations are executed more quickly. However convergence
may be much slower under Q-RTDP.

3

MS&E339/EE337B Approximate Dynamic Programming Lecture 6 - 4/20/2004

Real Time Dynamic Programming, and Q-Functions
Lecturer: Ben Van Roy Scribe: Lykomidis Mastroleon and Jeffrey Randall Sadowsky

1 Real Time Dynamic Programming

1.1 Overview of the Real Time Dynamic Programming Algorithm

• Simulate the dynamics of the System:

xt+1 = f(xt, ut, wt)

• Select decision:
ut ∈ arg min

u∈U(xt)

∑

y∈S

pxy(u)(g(x, u, y) + αJt(y))

• Update J according to:

(Jt+1)(x) =
{ ∑

y∈S pxy(ut)(g(x, u, y) + αJt) if x = xt

Jt(x) otherwise

1.2 Real Time Dynamic Programming using the Q operator

We can also apply Real Time Dynamic Programming (RTDP) to Q rather than J by in any iteration updating
only the state-action pair currently under consideration. The following is an overview of this process:

• Simulate the dynamics of the System:

xt+1 = f(xt, ut, wt)

• Select decision:
ut ∈ arg min

u∈U(xt)
Qt(xt, u)

• Update Q according to:

Qt+1(x, u) =
{

(FQt)(x, u) if (x, u) = (xt, ut)
Qt(x, u) otherwise

In evaluating the above update for Qt+1, the following expectation has to be calculated :

(FQ)(x, u) =
∑

y∈S

pxy(u)(g(x, u, y) + α min
ū

Q(y, ū)) (1)

1.3 Q-Learning

As an alternative to the computationally expensive calculation of the previously mentioned expectation, the
following update algorithm can be used:

Qt+1(x, u) =
{

γt(g(xt, ut, yt+1) + αQ(xt+1, ut+1)) + (1− γt)Q(xt, ut) if (x, u) = (xt, ut)
Qt(x, u) otherwise

This is known as the Q-learning update rule. Provided that every state is visited infinitely often, the Q-
learning update can be proven to converge to Q∗. However, this proof requires basic results from stochastic
approximation theory.

1

2 Stochastic Approximation Theory

2.1 Strong Law of Large Numbers

The following theorem is known as the Strong Law of Large Numbers (SSLN):

Theorem 1 Let X1, X2, . . . , Xk be a sequence of i.i.d. random variables, each having a finite mean of
E [Xi]. Then:

Yk = 1
k

∑k
i=1 Xi = rk → r∗ = E [Xi]w.p. 1 (2)

2.2 Recursive Version of Strong Law of Large Numbers and A Generalization

Figure 1: Graphical Interpretation of the SLLN generalization.

Based on the left hand equations in (2) we can write the following regarding rk:

rk+1 = (1− 1
k+1)rk + 1

k+1xk+1 = rk + 1
k+1 (xk+1 − rk) = rk + γt(xk+1 − rk) (γk = 1

k+1) (3)

However, it can be proven that rk converges to r∗ for a range of γt. More specifically the following
theorem is true:

Theorem 2 { ∑∞
k=1 γk = ∞∑∞
k=1 γ2

k < ∞ ⇒ rk+1 = rk + γk(xk+1 − rk) → r∗

An intuitive interpretation of this theorem is presented in Figure 1.
Now suppose F is an α-contraction with respect to the Euclidean-norm ‖ . . . ‖2 and furthermore, assume

that it has a fixed pint r∗ (r∗ = Fr∗). Then, we know that rk+1 = Frk → r∗. We will now prove the
following theorem:

2

Figure 2: Graphical Interpretation of the SLLN generalization involving α-contractions.

Theorem 3 Define rk+1 = rk + γk(Frk + wk − rk) with wt i.i.d. such that E [wk] = 0.Assume:

1.
∑∞

t=1 γk = ∞
2. γk ∈ (0, 1)

Then rk → r∗.

Proof
(An intuitive interpretation of this theorem is presented in Figure 2.)
First let wk = 0. Then rk+1 = rk + γk(Frk − rk). We will first prove for this case that rk → r∗.

‖rk+1 − r∗‖2 = ‖rk + γk(Frk − rk)− r∗‖2 ≤
≤ (1− γk)‖rk − r∗‖2 + γk‖Frk − r∗‖2 ≤
≤ (1− γk)‖rk − r∗‖2 + γkα‖rk − r∗‖2 ≤
≤ ‖rk − r∗‖2 − γk(1− α)‖rk − r∗‖2 ≤

Define εk = ‖rk − r∗‖2. Obviously:

εk+1 ≤ εk − γk(1− α)εk

Thus εk is non-increasing. Since εk = ‖rk − r∗‖2 ≥ 0 εk is also bounded below. Therefore we conclude
that εk converges. Assume it converges to ε̄.

If ε̄ > 0 because :

εk+1 ≤ εk − γk(1− α)εk ≤ εk − γk(1− α)ε̄

so by summing the previous inequalities we conclude that:

3

ε̄ ≤ ε1 − (1− α)ε̄
∞∑

t=1

γk ≤ −∞

which leads to a contradiction. So it must be true that ε̄ = 0

In the next section we will build the general proof for noisy wk by introducing additional concepts like
Lyapunov functions.

3 Stochastic Approximation with Noise

Now let wk 6= 0. Let’s consider the more general case where rk+1 = rk + γks(rk, wk). Also let s̄(rk) =
E [s(rk, wk)]. A Lyapunov function is a function V : Rn → R that satisfies the following conditions:

1. V (r) ≥ 0

2. ∇rV (r?) = 0

3. (∇rV (r))T s(r) < 0, for all r 6= r?

Theorem 4 V (r) = 1
2‖r? − r‖22 is a Lyapunov function corresponding to s(r) = Fr − r

Proof (1) and (2) hold trivially. To show (3) we can see that:

(∇rV (r))T s(r) = (r − r?)T (Fr − r) = (r − r?)T (r? − r) + (r − r?)T (Fr − r?) ≤

−‖r − r?‖22 + α‖r − r?‖22 = −(1− α)‖r − r?‖22 < 0 if r 6= r?

where we have used that: ‖(r − r?)T (Fr − r?)‖ ≤ ‖(r − r?)‖‖(Fr − r?)‖ ≤

≤ ‖(r − r?)‖α‖(r − r?)‖ = α‖(r − r?)‖2

Theorem 5 If V (r) = 1
2‖r? − r‖22 is a Lyapunov function and the following conditions hold:

1. (r? − r)T s(r) ≥ C1‖r? − r‖22
2. Ew[‖s(r, w)‖22] ≤ C2(1 + ‖r? − r‖22)
3.

∑
γk = ∞,

∑
γ2

k < ∞, γk > 0 and γk diminishing.

Then rk → r? w.p. 1.

Before proving this theorem let’s state without proof three standard convergence results from Probability
Theory:

(a) Consider Xk ≥ 0, s.t Ek[Xk+1] ≤ Xk, then Xk → X ≥ 0 w.p. 1. This result is known as the Super-
martingale Convergence Theorem.

4

(b) Consider Xk, Yk ≥ 0, s.t
∑

Yk < ∞ and Ek[Xk+1] ≤ Xk + Yk, then Xk → X ≥ 0 w.p. 1.

(c) Consider Xk, Yk, Zk ≥ 0, s.t
∑

Yk < ∞ and Ek[Xk+1] ≤ Xk + Yk − Zk, then Xk → X ≥ 0 and Zk → 0
w.p. 1.

Proof Let εk+1 = ‖rk+1 − r?‖22 = ‖rk + γks(rk, wk) − r?‖22. By doing the inner product εk+1 could be
rewritten as:

εk+1 = εk + γ2
k‖s(rk, wk)‖22 − 2γk(r? − rk)T s(rk, wk)

Taking conditional expectations with respect to k and using conditions (1) and (2) of the statement of
the theorem we get:

Ek[εk+1] ≤ εk + γ2
kC2(1 + ‖r? − r‖22)− 2γkC1‖r − r?‖22

Ek[εk+1] ≤ εk + εk(γ2
kC2 − 2γkC1) + C2γ

2
k

If we let Xk = εk, Yk = C2γ
2
k and Zk = εk(2γkC1− γ2

kC2) we are ready to use our convergence result (c),
since we can trivially see that Xk, Yk ≥ 0. Moreover, Zk = εk(2γkC1− γ2

kC2) will be greater or equal to zero
eventually by condition (3).

Hence, applying our convergence result (c) we have that: εk → ε and εk(2γkC1 − γ2
kC2) → 0 w.p. 1 as

k →∞. Since εK ≥ 0 for all k then ε ≥ 0.
Now suppose ε > 0. ∀δ < ε, there exists K such that εk > ε− δ, for all k > K. So for large enough k

Ek[εk+1] ≤ εk + (ε− δ)(γ2
kC2 − 2γkC1) + C2γ

2
k

Taking conditional expectation we have

Ek[εk+l+1] ≤ Ek[εk+l] + (ε− δ)(γ2
k+lC2 − 2γk+lC1) + C2γ

2
k+l,∀l ≥ 0

So

Ek[εk+l+1] ≤ εk + (ε− δ)(C2

l∑

i=0

γ2
k+i − 2C1

∑

i=0

lγk+i) + C2

l∑

i=0

γ2
k+i,∀l ≥ 0

Let l →∞ we get
lim
l→∞

Ek[εk+l+1] ≤ −∞
which is impossible since εi ≥ 0. So we must have ε = 0.

4 Homework

Consider ‖r‖2D = rT Dr, where D is diagonal and positive definite. If V (r) = 1
2‖r? − r‖2D is a Lyapunov

function and the following conditions hold:

1. (r? − r)T Ds(r) ≥ C1‖r? − r‖2D
2. Ew[‖s(r, w)‖2D] ≤ C2(1 + ‖r? − r‖2D)

3.
∑

γk = ∞,
∑

γ2
k < ∞, γk > 0 and γk diminishing.

Then rk → r? w.p 1.

5

MS&E339/EE337B Approximate Dynamic Programming Lecture 7 - 4/26/2004

Asynchronous Stochastic Approximation, and Q-Learning
Lecturer: Ben Van Roy Scribe: Shahriar Azizpour and Amirpouya Kavousian

1 Review

In our previous discussion, different types of sequences in the following form were considered and their
convergence were showed analytically:

rt+1 = rt + γts(rt, wt)

This method is in general like the Gradient Method. Although last time we showed the convergence of rt

with a special type of Lyapunov function V (r) = ‖r− r∗‖2 , but it works for some other Lyapunov functions
as well. In general consider:

wt⊥rt
(rt−1, rt−2, . . . , wt−1, wt−2, . . .)

s̄(r) = E [s(rt, wt)|rt = r]

The following theorem is similar to what we had:

Theorem 1 Suppose ∃V : Rn → R such that:

1. V (r) ≥ 0

2. V is continuously differentiable, and ∃L s.t. ‖OV (r)− OV (r)‖2 6 L‖r − r‖2
3. ∃c s.t. c‖OV (r)‖2 6 −OV (r)T s(r)

4. ∃k1, k2, s.t. s(r) 6 k1 + k2‖OV (r)‖2

Then: if

γt > 0,
∞∑

t=1

γt = ∞,
∞∑

t=1

γt
2 < ∞

1. V (rt) converges

2. limt→∞OV (rt) = 0

3. All limit points satisfy OV (r) = 0

In the quadratic Lyapunov, we had only one optimal point. But here we see a more general case: you
may have more than one limit point or you may have no limit at all (infinity).

1

Figure 1: No limit case

Figure 2: V(r) with Box level sets

2 Asynchronous Stochastic Approximation

Now consider:

rt+1(it) = rt(it) + γtsit
(rt, wt)

Where rt is a vector and we update one component of rt at each time. If i0, i1, · · · samples each index
infinite number of times, then rt converges. Because we are only updating one component at each time, we
need maximum norm.

Note that using the ‖.‖2 may cause some problems (divergence instead of convergence).
Now, let’s relate this with Q-Learning.

3 Q-Learning

The Q-Learning updating rule is:

Qt+1(x, a) = (1− γt)Qt(x, a) + γt(g(x, a, y) + α min
a

Qt(y, ā))

2

We can relate Q-Learning with asynchronous stochastic approximation by the following substitution:

rt = Qt

s(x,a)(Q, y) = g(x, a, y) + α min
a

Qt(y, ā)−Q(x, a)

s̄(x,a)(Q) =
∑

y

Pxy(a)(g(x, a, y) + α min
a

Qt(y, ā)−Q(x, a))

= FQ−Q

V (Q) = ‖Q−Q∗‖∞

4 Approximation of J∗

Now suppose that instead of looking for a function J(·) in general and updating its values by TJ (value
iteration), we want to approximate J∗ (our limit, cost-to-go function) by some basis functions {φ1, · · · , φK}:

J∗ '
K∑

k=1

rkφk

where φ1, . . . , φK : S → R.
In this algorithm, first we need to find good basis functions, then we need to calculate the coefficient r.

Example 1: Tetris

For example in Tetris, the J∗ function is a function of the current state (configuration of the board) which
shows that how bad or good will be the rest of our game (cost-to-go function). One choice of basis functions
is:
φ1 = max(height)
φ2 = absolute difference between heights of columns 1 and 2
φ3 = height of column 1
φ4 = height of column 2
...

4.1 Q-Learning (one possible action in each state)

Suppose that at each state there is only one legal action, i.e. there are no decisions to be made. Consider
our Q-learning setting. Substitute Qt’s with Jt’s

Qt+1(x) = (1− γt)Qt(x) + γt(g(x, a, y) + αQt(y)))

or
Jt+1(x) = (1− γt)Jt(x) + γt(g(x, a, y) + αJt(y)))

This is a Markov Chain and we want to approximate J∗ . Simulate the trajectory x0, x1, · · · and update
J by

Jt+1(xt) = (1− γt)Jt(xt) + γt(g(xt, a, xt+1) + αJt(xt+1)))

or
Jt+1(xt) = Jt(xt) + γt(g(xt, xt+1) + αJt(xt+1)− Jt(xt))

where Jk = φrk.

3

φ =




| | |
φ1 φ2 . . . φK

| | |




We update rk’s by gradient method. So we will have:

rt+1 = rt + γt 5r (φrt)(xt)(g(xt, xt+1) + α(φrt)(xt+1 − φrt)(xt))

Note that rt is a vector and 5r(φrt)(xt) is the direction of maximum impact. Because φrt is a linear
function w.r.t. rt, so we can substitute the gradient:

rt+1 = rt + γtφ(xt)(g(xt, xt+1) + α(φrt)(xt+1)− (φrt)(xt))

where φ(i) is the ith row of φ.

4.2 Approximation Value Iteration

We already had the setting of value iteration:

Jt+1 = TJt

It’s natural to combine this value iteration with approximation of J , i.e., update values of rt’s according to

φrt+1 = ΠTφrt

where Π is the projecting operator
Πf = arg min

φr
‖f − φr‖2

Note that, first a T-operator (which is a α -contraction) and then a projector
will be applied. This algorithm looks similar to the value iteration, so one
might expect similar convergence results here. But unfortunately, the error of
this algorithm doesn’t go to 0. In fact, it grows exponentially. We will discuss
this in the next lecture.

4

MS&E339/EE337B Approximate Dynamic Programming Lecture 8 - 4/28/2004

Approximate Value Iteration and Refinements
Lecturer: Ben Van Roy Scribe: Eymen Errais and Donald Lee

1 Approximate Value Iteration

1.1 Example of iteration divergence

Figure 1: Markov Chain Diagram

Consider the autonomous (one action only) Markov Chain depicted above. We set α ∈ (0, 1) and all costs
to zero i.e. g(1) = g(2) = 0, hence J∗ = (0, 0). Let Φ = (1, 2) form the basis for our approximations, so all
approximations of the value function take the form Φr. An update using the approximate VI yields

Φrk+1 = ΠTΦrk

ΠJ = arg min
Φr

‖Φr − J‖2
(TJ)(i) = αεJ(1) + α(1− ε)J(2) for i=1,2

Hence

(TΦrk)(i) = α(2− ε)rk

rk+1 = arg min
r

(
(r − (TΦrk)(1))2 + (2r − (TΦrk)(2))2

)
=

3
5
α(2− ε)rk

If ε ≈ 0 and α ≈ 1 then rk grows to infinity.

2 Refinements

2.1 Some intuition

In stationarity, the Markov Chain above spends only ε-proportion of the time in state 1. Therefore it seems
sensible to put more weight on state 2 by using a different norm, namely

‖Φr − J‖2D = ε(r − J(1))2 + (1− ε)(r − J(2))2

With this modification, it can be shown that the iterations converge to zero no matter where we start.

1

����

����

�Φ

���	
���

����������

���
�	����

����������

Figure 2: Intuition of divergence and convergence

2.2 Convergence issues

It is well known that ‖Π‖D ≤ 1, which implies

‖ΠTJ −ΠTJ‖D ≤ ‖TJ − TJ‖D

So if the DP operator is a ‖ · ‖D α-contraction, then so is the approximate VI operator ΠT .

Theorem 1 For autonomous (one action only), irreducible and aperiodic Markov Chains with stationary
distribution π,

‖TJ − TJ‖D ≤ α‖J − J‖D

where

‖x‖2D = xT Dx

and

D =




π1 0 · · · 0

0
. . .

...
...

. . . 0
0 · · · 0 πn




Proof That the transition matrix P satisfies ‖P‖D ≤ 1 follows from

‖PJ‖2D =
n∑

i=1

πi(PJ)2i =
n∑

i=1

πi(E[J(Xt+1) | Xt = i])2

2

Jensen≤
n∑

i=1

πiE[J(Xt+1)2 | Xt = i] = EJ(Xt+1)2 = ‖J‖2D

which implies that

‖TJ − TJ‖2D = ‖αPJ − αPJ‖2D = α2‖P (J − J)‖2D ≤ α2‖J − J‖2D

Since the approximate VI operator is a contraction, it follows that Φrk → Φr∗ for any starting value r0.
In general, this limit is not necessarily the projection of J∗ onto span(Φ), i.e. Φr∗ 6= ΠJ∗. However we can
still provide a bound on the distance of Φr∗ from J∗ in terms of the minimum distance between J∗ and the
plane spanned by Φ:

Theorem 2
‖Φr∗ − J∗‖D ≤ 1√

1− α2
‖ΠJ∗ − J∗‖D

Proof
‖Φr∗ − J∗‖2D = ‖ΠTΦr∗ −ΠJ∗ + ΠJ∗ − J∗‖2D

Pythagoras
= ‖ΠTΦr∗ −ΠJ∗‖2D + ‖ΠJ∗ − J∗‖2D

≤ ‖TΦr∗ − J∗‖2D + ‖ΠJ∗ − J∗‖2D

J∗=TJ∗≤ α2‖Φr∗ − J∗‖2D + ‖ΠJ∗ − J∗‖2D

3

MS&E339/EE337B Approximate Dynamic Programming Lecture 9 - 5/5/2004

Temporal Difference Learning
Lecturer: Ben Van Roy Scribe: Yirong Shen and Chih-Han Yu

1 Review

Previously, we saw that approximate value iteration,

Φrt+1 = ΠTΦrt

where Π is the projection operator
ΠJ = arg min

Φr
‖J − Φr‖

could diverge. In particular, we saw an example of an autonomous Markov chain in which rt grows un-
bounded. However, convergence could be achieved if we use the norm ‖ · ‖D in the projection operator,
where D is the diagonal matrix with Dii = π(i) and π is the steady state distribution for the Markov chain,
i.e.

ΠJ = arg min
Φr

‖J − Φr‖D

‖J‖2D =
∑

x

π(x)J2(x)

where π(x) is steady state distribution. In this case the result is that (ΠT)kJ → Φr̃ where r̃ is unique and

‖Φr̃ − Jk‖D ≤ 1√
1− α2

min
r
‖J∗ − Φr‖D

2 Approximate Projection

For large state spaces, the projection operation Π is difficult to compute. Projection matrix Π = Φ(ΦT DΦ)−1ΦT D

ΠJ = arg min
Φr

‖J − Φr‖D = Φ(ΦT DΦ)−1ΦT DJ

The difficulty of computing Φ is it involves summing/integrating over the state space. So instead of sum-
ming/integrating over the entire state space, we use Monte Carlo simulation to compute an approximate
projection as follows:

1. Sample x1, x2, . . . , xk from π(x)

2. Compute the approximate projection using least squares

min
r

1
k

k∑

i=1

(J(xi)− (Φr)(xi))2

when k goes to infinity, it will be equivalent to minr ‖J − Φr‖2D
For a good approximation, the computation required depends on the number of basis functions and

NOT on the size of the state space. Hence, even though exact projection is hard to compute, it can be
approximated easily.

1

3 Temporal Difference

Now we describe the temporal difference method. Assume that through simulation, we can obtain a sequence
of states x0, x1, x2, We update r as follows:

rt+1 = rt + γtφ(xt)

temporal difference︷ ︸︸ ︷
(g(xt) + α(Φrt)(xt+1)︸ ︷︷ ︸

improved estimate

− (Φrt)(xt)︸ ︷︷ ︸
old estimate

)

To understand the above update formula, we note that the gradient of (Φr)(x) = φ(x)T r with respect to r
is

∇r(Φr)(x) = φ(x)

where φ(x) is the x-th row of Φ. The temporal difference is just the difference between the new and old
estimates of the cost-to-go function. Hence, the update used to obtain rt+1 from rt is proportional to the
temporal difference in length and is in the direction of the gradient with respect to rt at xt in order to
maximize the impact of estimation.

4 Proof of Convergence for TD

We can view TD in the framework of stochastic approximations:

rt+1 = rt + γts(rt, xt, xt+1)

The expected update step is

s̄(r) = E[s(rt, xt, xt+1] =
∑
x,y

π(x)Pxy s(r, x, y)

We note that the expectation above is with respect to the steady state distribution of the Markov chain,
which is different from cases that we saw in previous lectures where the randomness was due to i.i.d. noise,
and the expectation was take with respect to the noise distribution.

For the convergence proof, we use the Lyapunov function

V (r) =
1
2
‖r − r̃‖2

Since ∇V (r) = r− r̃, all we need to do (plus verifying some technical conditions) is to show that the expected
update step is a descent direction, i.e.

(r − r̃)T s̄(r) < 0 for r 6= r̃

First, we note that

s̄k(r) =
∑

x

π(x)
∑

y

Pxyφk(x)[g(x) + α(Φr)(y)− (Φr)(x)]

=
∑

x

π(x)φk(x)((TΦr)(x)− (Φr)(x))

= φT
k D(TΦr − Φr)

2

Hence, we have s̄(r) = ΦT D(TΦr − Φr). Now

(r − r̃)T s̄(r) = (r − r̃)T ΦT D(TΦr − Φr)
= (Φr − Φr̃)T D(ΠTΦr −ΠΦr)
= (Φr − Φr̃)T D(ΠTΦr − Φr)
= (Φr − Φr̃)T D(ΠTΦr − Φr̃)− φT

k D(Φr − Φr̃)
≤ ‖Φr − Φr̃‖D· ‖ΠTΦr − Φr̃‖D − ‖Φr − Φr̃‖D

≤ α‖Φr − Φr̃‖2D − ‖Φr − Φr̃‖D

< 0

The first inequality follows from the Cauchy-Bunyakovsky-Schwarz inequality. The second inequality is due
to the fact that ΠT is a D-norm contraction. The last inequality is because α is less than 1. Hence, the
expected update step is a descent direction for our chosen Lyapunov function. This combined with some
suitable technical conditions, guarantees convergence.

The update rule from rt to rt+1 can be written as the following forms:

rt+1 = rt + γtφ(xt)(g(xt) + α(Φrt)(xt+1)− (Φrt)(xt))
rt+1 = rt + γtφ(xt)((TΦrt)(xt)− (Φrt)(xt))
rt+1 = rt + γtφ(xt)(J∗(xt)− (Φrt)(xt))

rt+1 = rt + γt · 1
2
∇r(J∗(xt)− (Φrt)(xt))2

3

MS&E339/EE337B Approximate Dynamic Programming Lecture 10 - 05/10/2004

Temporal Difference Learning (Continued)
Lecturer: Ben Van Roy Scribe: Vishal Kasera and Priyendra Deshwal

1 Topics Covered

This lecture talks about the following:

1. Convergence of the TD algorithm

2. TD-λ algorithm

3. The Optimal Stopping Problem

2 Convergence of the TD algorithm

We shall try to understand the convergence of the TD algorithm under a more general framework. Specifically,
we shall pose the following variant of the TD learning algorithm.

rk+1 = rk + γkφ(xk)(g(xk) + α(Φrk)(yk)− (Φrk)(xk)) (1)

where, xk ∼ q(·), yk ∼ Pxkyk
.

The salient difference between this version and the previous version of the algorithm is that earlier we were
simulating a complete Markov chain, whereas here we are resampling xk from the distribution q(·) (that can
be any arbitrary distribution) at each time step.

Theorem 1 If q = π, where π is the steady state distribution, then rk → r̃. Also ∃q 6= π such that
‖rk‖ → ∞.

The proof for the convergence for the case of q = π is similar to the one discussed in the previous lecture.
It would seem that since in the original version of the TD algorithm, there would be some correlation in
the sampled values (as we are sampling one trajectory), it should be different from the algorithm under
consideration. However, since this is a stochastic approximation scheme, what matters is the steady state
distribution.
Let us now argue that it is always possible to choose q such that the algorithm diverges. In particular, let
us look at the expected steps that the values of rk take.

s̄(r) = Ex,y [φ(x)(g(x) + α(Φr)(y)− (Φr)(x))] (2)

=
∑

x

q(x)φ(x) [(TΦr)(x)− (Φr)(x)] (3)

= ΦQ(TΦr − Φr) (4)

where Q is a diagonal matrix defined as Q ∈ <n×n, Qii = q(i). In (3), we have explicitly written out the
expectation over x while the expectation over y has implicitly been taken, giving us the term (TΦr)(x).
Note that this expression is essentially the same as the one we encountered before - however since we can
choose to sample from any arbitrary distribution q(·), we have freedom of choosing the matrix Q which we
did not have earlier.

1

Figure 1: Illustration of Divergence

Now in order to show that the sequence converges, it is sufficient to show that the expected step has a
negative inner product with the gradient of the Lyapunov function. On the other hand, if we can come up
with a setting in which this inner product is always positive, then we will have shown that the sequence
diverges. We shall now show such a case. Let us take our Lyapunov function to be V (r) = 1

2‖r − r̃‖2.
Assume that ∃r̃ : J∗ = Φr̃. We have,

(∇rV (r))T s̄(r) = (r − r̃)T ΦQ(TΦr − Φr) (5)

= (Φr − Φr̃)T Q(TΦr − Φr) (6)

= (Φr − Φr̃)T Q(ΠQTΦr − Φr) (7)

where ΠQJ = arg minΦr ‖J − Φr‖Q is the standard projection operator.
Figure1 shows why the above expression is always positive. In the figure, J∗ = Φr̃, J1 = Φr, X = TΦr

and J2 = ΠQTΦr. We know that T is a contraction in the D-norm and not in the Q-norm. Hence, if we
start at J1, then after applying the T operator, we may end up at X which is outside the Q-norm but inside
the D-norm. Projecting X, we get J2. However, J2 is further away from J∗ than J1 was. It is also easy
to see that the expression in equation 7 will be positive. Hence, we can see that divergence is definitely
possible.

3 TD-λ

TD-λ is a generalization of the normal TD algorithm where instead of using the derivative of Φ(xt) in the
update equation, we use some general function Zt. So our new update equation is:

rt+1 = rt + γtZt(g(xt) + α(Φrt)(xt+1)− (Φrt)(xt)) (8)

An example of Zt is:

Zt =
t∑

τ=0

(αλ)t−τφ(xτ) (9)

Zt+1 = (αλ)Zt + φ(xt) (10)

It is easy to see that when λ = 0 then Zt = φ(xt) and this is the normal TD algorithm.

2

Theorem 2 When λ = 0, then ‖J∗ − Φr̃‖D ≤ 1√
1−α2 minr ‖J∗ − Φr‖D. Moreover, when λ = 1, then

‖J∗ − Φr̃‖D = minr ‖J∗ − Φr‖D.

The convergence properties of TD-λ are still under development. However, TD-λ works very well in lots
of applications, and there are evidence that generally there exists some λ such that TD-λ converges faster
than TD(0) and TD(1). So TD-λ is quite popular. For example, read the paper about Backgammon in the
handout section.

4 Optimal Stopping

Our discussion so far has focussed on discounted problems, where there are no termination states nor stopping
decisions. But in some cases, like the American option pricing problem, the most important decision is when
to stop. So we will now take a look at the optimal stopping problem. It turns out that we can prove
interesting results in this problem, please have a look at Prof. Van Roy’s paper on this topic in the handout
section.

Consider Markov chain x0, x1, . . . xt where you can decide to stop at any time step t. The pay-off for
stopping at time step t is denoted by G(xt) (note that the pay-offs here are not accumulative but terminal).
We can adapt the Bellman equation to this problem as:

J∗(x) = max(G(x), α
∑

y∈S

PxyJ∗(y)) (11)

The Bellman operator can now be written as:

TJ(x) = max(G(x), α
∑

y∈S

PxyJ(y)) (12)

TJ = max(G,αPJ) (13)

where P is the transition matrix for the Markov chain. T is a weighted Euclidean norm contraction.

Theorem 3 ‖TJ − T J̄‖D ≤ α‖J − J̄‖D

Clearly |max(a, b)−max(a, c)| ≤ |b− c|. ‖TJ − T J̄‖D ≤ ‖αPJ − αP J̄‖D ≤ α‖J − J̄‖D

5 Homework (due on Wednesday 05/24)

5.1 Question 1

In this problem we shall try to generalize the proof of the TD-λ algorithm to work with Zt =
∑t

τ=0 αt−τCt−τφ(xτ)
where

∑∞
k=0 Ck = 1, Ck ≥ 0. In particular, define a Lyapunov function V (r), and compute s̄(r) and show

that (∇rV (r))T s̄(r) < 0 except at limit.

5.2 Question 2

Consider ODE J̇t = FJt − Jt. Assume ∃J : J = FJ . J is finite dimensional. F can be any (possibly
non-linear) operator.

5.2.1 Warmup:

Prove that Jt converges if ∀J, J̄ , ‖FJ − F J̄‖2 ≤ ‖J − J̄‖2

5.2.2 Challenge:

Prove that Jt converges if ∀J, J̄ , ‖FJ − F J̄‖∞ ≤ ‖J − J̄‖∞

3

MS&E339/EE337B Approximate Dynamic Programming Lecture 11 - 5/12/2004

Approximate Linear Programming Approach
Lecturer: Ben Van Roy Scribe: Erick Delage and Penka Markova

1 Bounds for Approximate Value Iteration

In Lecture 8 we proved that for approximate value iteration, i.e.

Φrk+1 = ΠTΦrk

we have convergence: rk → r̃, and

‖Φr̃ − J∗‖2,π ≤ 1√
1− α2

min
r
‖Φr − J∗‖2,π = O(min

r
‖Φr − J∗‖2,π) (1)

where ‖J‖2,π = (
∑

x π(x)J2(x))1/2. From this r̃ we can derive the greedy policy ũ:

TũΦr̃ = TΦr̃

and get an error bound on the greedy policy

E[Jũ(xt)− J∗(xt)] = O(‖Φr̃ − J∗‖)2,π

Implementation using Temporal Difference learning on an autonomous system or in an optimal stopping
problem was proven to have similar bounds but no such bounds could be proven for problems with a bigger
set of policies. On the other hand, the Approximate Linear Programming approach provides similar results.

2 Approximate Linear Programming Approach

Recall how the DP equation:

J∗ = min
u∈U(x)

∑

y∈S

pxy(u)(g(x, u, y) + αJ∗(y))

is solved with LP:
maximize cT J

subject to TJ ≥ J
(2)

where c(x) > 0,∀x. In order to reduce the dimension of the problem, we consider the following approximate
LP:

maximize cT Φr

subject to TΦr ≥ Φr
(3)

In a problem where the state space is very large, we are still required to reduce the amount of computation:

• Evaluating cT Φr - This summation is of the size of the state space.
A close enough approximation can be obtained from considering c as a probability distribution, sam-
pling x according to c and computing

∑
x Φr(x)

• Constraining to TΦr ≥ Φr - A constraint for every state, so there are O(|S|) constraints.
The solution is to sample a bunch and ignore others. We will discuss this issue in the next lecture.

In this lecture we assume we can solve the approximate LP (3), and focus on the properties of the
solution.

1

2.1 Feasibility of Φr in the LP

Since Φr only ranges a subspace in the value function space, it is possible that none of the reachable Φr are
in the feasibility region of the LP (3). This region is presented in figure 1.

Figure 1: Feasibility region for LP

This region is necessarily included in the space for which J ≤ J∗ as we discussed in Lecture 4 Theorem
1. The feasible space can then be sketched from a set of J known to be in the feasible space.
If J0 and J1 is in the set then all J ’s on the segment between J0 and J1 is in the set because of convexity.
Also, if J0 is in the set, then J0 − γe is in the set, since

TJ0 ≥ J0 ⇒ T (J0 − γe) = TJ0 − Tγe = TJ0 − αγe ≥ J0 − γe

where e(x) = 1, ∀x and γ > 0.
In the case where the span of Φ does not intersect with the LP feasible space, then the LP cannot be

solved. Figure 2 shows how such a situation could occur.

Theorem 1 Problem (3) has a feasible set if ∃r such that Φr = e where e(x) = 1,∀x.

Proof If Φr̂ = e then Φr = Φr̄ − γe where r̄ = r + γr̂. The LP problem becomes: Let c ≥ 0,

maximize cT (Φr̄ − γe)
subject to T (Φr̄ − γe) ≥ Φr̄ − γe

(4)

The feasible set of this problem is not empty since:

T (Φr̄ − γe) ≥ Φr̄ − γe

TΦr̄ − αγe ≥ Φr̄ − γe

TΦr̄ ≥ Φr̄ − (1− α)γe

And there always exists a γ that will validate the inequality.

2

Figure 2: Approximate Value Function feasibility

2.2 Error Bond

Once the feasibility of Φr has been established, we can go back to determining the error bound for (3). The
following result can be shown:

Theorem 2 If Φr = e for some r, and r̂ is the optimal solution to LP (3), then

‖J∗ − Φr̂‖1,c ≤ 2
1− α

min
r
‖Φr − J∗‖∞ (5)

where c(x) > 0,
∑

x c(x) = 1, ‖J‖∞ = maxx|J(x)|, and ‖J‖1,c =
∑

x c(x)|J(x)|.

Proof Let r∗ ∈ arg minr ‖Φr − J∗‖∞ and ε = ‖Φr∗ − J∗‖∞. Then

‖TΦr∗ − J∗‖∞ ≤ α‖Φr∗ − J∗‖∞ = αε(byα-contraction, and by the definition of ε).

=⇒ TΦr∗ ≥ J∗ − αεe (6)

Since T (J − γe) = TJ − αγe,

T (Φr∗ − γe) = TΦr∗ − αγe
≥ J∗ − αεe− αγe (by (6))
≥ Φr∗ − εe− αεe− αγe
= Φr∗ − γe + ((1− α)γ − (1 + α)ε)e

(7)

Since e is in the span of Φ, hence there exists r̃ such that

Φr̃ = Φr∗ − (1 + α)
1− α

εe.

Then by (7)
TΦr̃ ≥ Φr̃.

3

Going back to the result we are proving, we get

‖J∗ − Φr̃‖1,c ≤ ‖J∗ − Φr̃‖∞ (by the definitions of ‖ · ‖1,c and ‖ · ‖∞, and the restrictions on c(x))
≤ ‖J∗ − Φr∗‖∞ + ‖Φr∗ − Φr̃‖∞ (by simple algebra and properties of max)

= ‖J∗ − Φr∗‖∞ +
(1 + α)ε
1− α

=
2

1− α
ε

Lastly, TΦr ≥ Φr implies Φr ≤ J∗, so maximizing cT Φr is equivalent to minimizing cT (J∗ − Φr). So
‖J∗ − Φr̂‖1,c ≤ ‖J∗ − Φr̃‖1,c, and the result follows.

While this is the type of bound we are looking for, there are still some problems with this result (including
measuring error in terms of the max norm, the relationship between the ‖·‖1,c type of norm and performance
loss).

4

MS&E339/EE337B Approximate Dynamic Programming Lecture 12 - 5/17/2004

Constraint Sampling
Lecturer: Ben Van Roy Scribe: Jiarui Han and Ciamac Moallemi

In the linear programming approach to DP, we either consider the exact LP

maximize cT J,
subject to TJ ≥ J,

or the approximate LP
maximize cT Φr,
subject to TΦr ≥ Φr.

Although the dimension of problem is reduced in the approximate version, the number of the constraints
does not change and can be very large (or even infinite). Thus, it is still very hard to solve. In the constraint
sampling approach, we solve the approximate LP using a randomly sampled subset of the constraints. This
will yield reasonable policies, if we can prove the following two properties:

1. If we sample some reasonable number of constraints, then “almost all” others will be satisfied.

2. The constraints that are not satisfied don’t distort the solution too much.

In this lecture, we will focus on the first property. The second property will be considered in the next lecture.
Consider the following general linear programming problem:

maximize cT x,
subject to Ax ≤ b.

(1)

where x ∈ Rn, A ∈ Rm×n, and m À n (or even m = ∞). Given a probability distribution µ over {1, · · · ,m},
sample the sequence {i1, i2, . . .} in an IID fashion according to µ. Define x̂N as the optimal solution of the
following LP

maximize cT x,
subject to Aij

x ≤ bij
, for j = 1, 2, . . . , N,

(2)

where Aij
is the ijth row of the matrix A.

We would like to establish the following theorem.

Theorem 1 For arbitrary ε, δ > 0, if N ≥ n/(εδ)− 1, then

P {µ({i|Aix̂N > bi}) ≤ ε} ≥ 1− δ, (3)

where the probability is taken over the random sampling of constraints.

Here, ε represents a tolerance or control on how many constraints are allowed to be violated, and 1 − δ
represents a confidence level. The theorem states that given an ε and δ, the number of constraints we need
for (3) to hold is linear in n, and, remarkably, does not depend on m.

Theorem 1 was originally established by de Farias and Van Roy in the context of approximate DP. The
original derivation required sophisticated results from Vapnik-Chervonenkis theory. Subsequently, the result
was established using the the idea of support constraints by Calafiore and Campi. This is the approach we
will follow. This method is self-contained and extends to a broader class of convex optimization problems.
These results are of independent interest to the convex optimization community in the context of robust
optimization problems.

1

Definition 2 Given an LP, a constraint is called a support constraint if the optimal objective value is
changed if the constraint is relaxed.

For example, in the left side of Figure 1, none of L1, L2, and L3 are support constraints; in the right side of
Figure 1, L5 and L6 are support constraints while L4 is not. Notice that a support constraint must be an
active constraint, but, in the case of degenerate vertices, active constraints need not be support constraints.

Figure 1: Support constraints.

The following theorem is a straightforward linear programming result that provides a bound on the
number of support constraints.

Theorem 3 If there are n variables in an LP, which is bounded and feasible, then there are at most n
support constraints.

Proof We’ll use sensitivity analysis. Consider the dual of LP (1)

minimize bT y, (y ∈ Rm)
subject to AT y = c, (n constraints)

y ≥ 0. (m constraints)

Notice that every vertex of the dual LP must have at least m−n components which are zero. Since the LP is
bounded and feasible, hence the dual always has an optimal solution y∗ occuring at a vertex. If constraint i
is a support constraint, then y∗i > 0. So, the fact that there are at most n positive components in y∗ implies
that there are at most n support constraints.

The following theorem will provide the fundamental bound necessary in the proof Theorem 1.

Theorem 4 If x̂N is the solution to the sampled LP (2), then

E [µ ({i : Aix̂N > bi})] ≤ n

N + 1
,

where the expectation above is taken over the random sampling of constraints.

2

Proof Given a sequence {i1, . . . , iN , iN+1} sampled IID according to the dirstibuted µ, define x̂k
N to be

the solution of the LP

maximize cT x,
subject to Aij

x ≤ bij
, for j ∈ {1, 2, . . . , N + 1} − {k}.

Note that x̂N+1
N = x̂N . Then, by symmetry,

P
{
AiN+1 x̂N > biN+1

}
= P

{
Aik

x̂k
N > bik

}
.

Now, consider the event that Aik
x̂k

N > bik
. If we consider the original sampled LP (2) for x̂N+1, notice that

this event occurs only if ik corresponds to a support constraint for x̂N+1. Since at most n of the N + 1
constraints are support constraints, we have

P
{
AiN+1 x̂N > biN+1

}
= P

{
Aik

x̂k
N > bik

} ≤ n

N + 1
.

Let PN denote the distribution of x̂N . Then,

P
{
AiN+1 x̂N > biN+1

}
=

m∑

j=1

∫

Rn

µ(j)1{Ajx>bj}PN (dx)

=
∫

Rn

µ({i|Aix > bi})PN (dx)

= E [µ ({i : Aix̂N > bi})] .

The result follows.

We are ready to prove Theorem 1. Observe that if N > n/(εδ)− 1, using Markov’s Inequality,

P {µ({i|Aix̂N > bi}) > ε} ≤ 1
ε
E [µ({i|Aix̂N > bi})]

≤ n

ε(N + 1)

≤ 1
ε

n

(n/(εδ)− 1) + 1
= δ.

Homework Problem: Notice that the lower bound for N is Theorem 1 was order O(n/(εδ)). Using
Theorem 1, prove a lower bound for N of order

O

(
1
ε

[
n ln

1
ε

+ ln
1
δ

])
.

3

MS&E339/EE337B Approximate Dynamic Programming Lecture 13 - 5/19/2004

Constraint Sampling for the ADP Convex Problems
Lecturer: Ben Van Roy Scribe: Mark Peters and Mike Rotkowitz

Last time, we considered the general LP

maximize cT x
subject to Ax ≤ b

(1)

where x ∈ Rn, A ∈ Rm×n, and m � n. Given a probability distribution µ over {1, · · · ,m}, we sampled the
sequence {i1, i2, . . . , iN} of constraints in an IID fashion according to µ. Defining x̂N as the optimal solution
of the ensuing LP,

maximize cT x
subject to Aij x ≤ bij for all j = 1, 2, . . . , N

(2)

where Aij
is the ijth row of the matrix A, we established the following result.

Theorem 1 For arbitrary ε, δ > 0, if N ≥ n
εδ − 1, then

P
{
µ
(
{i | Aix̂N > bi}

)
≤ ε

}
≥ 1− δ, (3)

where the probability is taken over the random sampling of constraints.

In this lecture, we’d like to leverage this result for approximate dynamic programming. First we note
that the proof in the previous lecture did not depend on the constraints being linear, only convex. So we
can generalize this result. Consider the convex optimization problem

maximize cT x
subject to g(x) ≤ b

(4)

where x ∈ Rn, g : Rn → Rm convex, and m � n.
Similarly sample the sequence {i1, i2, . . . , iN} of constraints in an IID fashion according to µ. Defining

x̂N as the optimal solution of the ensuing convex problem,

maximize cT x
subject to gi(x) ≤ bi for all i ∈ {i1, i2, . . . , iN}

(5)

where gi is the ith convex constraint. We then have the following generalized result.

Theorem 2 For arbitrary ε, δ > 0, if N ≥ n
εδ − 1, then

P
{
µ
(
{i | gi(x̂N) > bi}

)
≤ ε

}
≥ 1− δ, (6)

where the probability is taken over the random sampling of constraints.

We now consider the ADP LP

maximize cT Φr
subject to (TΦr)(x) ≥ (Φr)(x) for all x ∈ S

(7)

and also consider this problem with sampled constraints and an additional constraint

maximize cT Φr
subject to (TΦr)(x) ≥ (Φr)(x) for all x ∈ {x1, . . . , xN}

r ∈ N
(8)

1

where N is a bounded convex set which will prevent the optimization from taking too much advantage of
excluded constraints. Let r̃ be the solution to problem (7) and let r̂ be the solution to problem (8).

We recall that the weighted 1-norm of a vector is defined as ‖J‖1,c =
∑

c(x)|J(x)|. Last week we derived
a bound for ‖J∗ − Φr̃‖1,c, and now we would like to have a bound for ‖J∗ − Φr̂‖1,c.

Define the probability distribution πα as

πα = (1− α)cT (I − αPµ∗)−1

Where µ∗ is the optimal policy and Pµ∗ is the transition matrix of the Markov chain under the optimal
policy. Also, note that πα can also be expressed as

πα = (1− α)
∞∑

t=0

αtcT P t
µ∗

Further, we know that
∑∞

t=0 αt = 1
1−α .

Note that cT P t
µ∗ is the distribution of the Markov chain at time t when it starts from the distribution

cT . Thus, πα can be viewed as an expected distribution of the Markov chain where the impact of the initial
distribution cT is being weighted by the value of αt in the summation. Thus if α is close to zero, then the
early terms in the summation will dominate the later terms and cT will play a large role in determining πα.
However, as α → 1, then cT will have less impact on the value of πα because the future terms will have
roughly the same weight as the early terms. Thus, the stationary distribution of Pµ∗ will dominate.

One major problem here is that we are employing circular logic since πα depends on the optimal policy.
Unfortunately, in general, we can’t use another distribution and have the result hold. However, there prob-
ably are some classes of problems where another distribution could be safely substituted.

Letting the constraints in problem (8) be sampled according to πα, we get the following result.

Theorem 3 If N ≥ 4K
(1−α)εδ

supr∈N ‖J
∗−Φr‖∞

cT J∗
then

‖J∗ − Φr̂‖1,c ≤ ‖J∗ − Φr̃‖1,c + ε ‖J∗‖1,c with probability 1− δ

Proof We let g be the standard vector of cost as a function of state such that J∗ = (I − αPµ∗)−1g =∑∞
t=0 αtP t

µ∗g. We make use of the notation

x+ =

{
x if x ≥ 0
0 otherwise

x− =

{
|x| if x ≤ 0
0 otherwise

such that x+ + x− = x + 2x−.

‖J∗ − Φr̂‖1,c = cT |J∗ − Φr̂| where the absolute value is taken component-wise

≤ cT (I − αPµ∗)−1|g − (I − αPµ∗)Φr̂| since the inverse has only non-negative elements

= cT (I − αPµ∗)−1
(
(g − (I − αPµ∗)Φr̂)+ + (g − (I − αPµ∗)Φr̂)−

)
= cT (I − αPµ∗)−1

(
(g − (I − αPµ∗)Φr̂) + 2(g − (I − αPµ∗)Φr̂)−

)
= cT (J∗ − Φr̂) + 2cT (I − αPµ∗)−1(Tµ∗Φr̂ − Φr̂)− where (Tµ∗Φr̂ = g + αPµ∗Φr̂)

≤ cT (J∗ − Φr̃) + 2cT (I − αPµ∗)−1(Tµ∗Φr̂ − Φr̂)−

since r̂ has fewer constraints and thus cT Φr̂ > cT Φr̃

≤ ‖J∗ − Φr̃‖1,c + 2cT (I − αPµ∗)−1(Tµ∗Φr̂ − Φr̂)−

2

Then, focusing on the right-hand side of the last term of the inequality, we have

2cT (I − αPµ∗)−1(Tµ∗Φr̂ − Φr̂)− =
2

1− α
πT (Tµ∗Φr̂ − Φr̂)−

We note that (Tµ∗Φr̂ − Φr̂)− = 0 if Tµ∗Φr̂ ≥ Φr̂ and thus (Tµ∗Φr̂ − Φr̂)− = 0 if TΦr̂ ≥ Φr̂ as well. Thus,
this will equal zero if a constraint is being satisfied.

2cT (I − αPµ∗)−1(Tµ∗Φr̂ − Φr̂)− ≤ 2
1− α

πT (TΦr̂ − Φr̂)−

This is non-zero for each violated constraint and its magnitude is bounded by our bounding box

2cT (I − αPµ∗)−1(Tµ∗Φr̂ − Φr̂)− ≤ 2
1− α

π(violated constraint) sup
r∈N

‖TΦr − Φr‖∞

Now, we would like to convert this inequality into a probabilistic statement so we will refer back to Theorem
2 and insert the following substitution.

π(violated constraint) ≤ ε1 with probability 1− δ where

ε1 =
(1− α)ε

4
cT J∗

supr∈N ‖J∗ − Φr‖∞

Furthermore, using the triangle inequality and the fact that T is an α contraction, we will also make this
substitution

sup
r∈N

‖TΦr − Φr‖∞ ≤ (1 + α) sup
r∈N

‖J∗ − Φr‖∞

After making these two substitutions, the following inequality will hold with probability 1− δ.

2cT (I − αPµ∗)−1(Tµ∗Φr̂ − Φr̂)− ≤ 2
1− α

(1− α)ε
4

cT J∗

supr∈N ‖J∗ − Φr‖∞
(1 + α) sup

r∈N
‖J∗ − Φr‖∞

≤ εcT J∗

= ε ‖J∗‖1,c

Thus, we have shown

‖J∗ − Φr̂‖1,c ≤ ‖J∗ − Φr̃‖1,c + ε ‖J∗‖1,c with probability 1− δ

3

MS&E339/EE337B Approximate Dynamic Programming Lecture 12 - 5/24/2004

Average Cost Problems
Lecturer: Ben Van Roy Scribe: Benjamin Van Roy

1 Introduction

We have studied a linear program that approximates the optimal cost-to-go function for a discounted problem:

maximize cT Φr,
subject to TΦr ≥ Φr.

We established an error bound for a parameter vector r̃ that attains the optimum of this linear program: if
there is a vector r such that Φr = e then,

‖J∗ − Φr̃‖1,c ≤
2

1− α
min

r∈<K
‖J∗ − Φr‖∞.

Though this is an interesting result that provides some confidence in the approximation algorithm, it fails
to address two important issues:

1. We are ultimately interested in performance of the resulting greedy policy, not just error in approxi-
mating J∗. In particular, if we use a greedy policy

µ̃(x) ∈ arg min
u

∑
y

pxy(u) (g(x) + α(Φr̃)(y)) ,

what can we say about its cost-to-go J̃µ̃ relative to the optimal cost-to-go J∗?

2. What role does c play? In the result, c influences the metric with which we are assessing approximation
error. But how should this metric be chosen so that small approximation error translates to good
performance of the resulting policy?

In order to address these issues in an elegant manner, we will work with an average cost formulation.
We could also treat these issues in a discounted cost framework, but its messier, so we choose to work with
average cost. Since not everyone in the class is familiar with average cost dynamic programming, we develop
the framework in this lecture.

2 Problem Formulation and Notation

Consider a stochastic system with dynamics characterized by transition probabilities pxy(u). There is a cost
g(x) ≥ 0 incurred when as state x. Under each policy µ, the system evolves as a Markov chain. We assume
that for each µ, the resulting Markov chain has a unique steady-state distribution πµ, which is strictly
positive; i.e., πµ(x) > 0 for all x. The average cost associated with a policy µ is denoted by λµ. Note that

λµ =
∑

x

πµ(x)g(x) = πT
µ g.

The problem is to find a policy that attains minimal average cost:

min
µ

λµ.

1

We define a dynamic programming operator

(TJ)(x) = min
u

∑
y

pxy(u)(g(x) + J(y)).

Note that this is the same as the dynamic programming operator defined in the context of average cost
problems, but now the discount factor is set to 1.

3 The Primal LP

We begin by introducing a simple linear programming approach for generating an optimal policy. The LP
decision variables are state-action probabilities ρ(x, u). Note that there is one decision variable per state-
action pair. Each ρ(x, u) represents the fraction of time, in steady-state, that the system is in state x and
action u is selected. Given state-action frequencies ρ, one can define a (possibly randomized) policy that
attains the state action frequencies:

Pr{ut = u|xt = x} =
ρ(x, u)∑
u ρ(x, u)

.

Note that this construction makes sense only if the probability of being in state x is positive. This is implied
by our assumption that every deterministic policy results in positive state probabilities.

The linear program optimizes average cost over the space of feasible state-action frequencies:

minρ

∑
x,u ρ(x, u)g(x)

s.t.
∑

x,u ρ(x, u)pxy(u) =
∑

u ρ(y, u) ∀y∑
x,u ρ(x, u) = 1

ρ(x, u) ≥ 0 ∀x, u.

The last two sets of constraints ensure that ρ is a probability distribution. The first set of constraints
restrict ρ based on the transition probabilities. It is easy to see that any optimal solution provides state
action frequencies that minimize average cost, and that the optimal objective value is minµ λµ.

As with any linear program, the feasible set of ours forms a polytope. It is easy to show that, in our
particular case, this polytope is bounded and that the vertices correspond to deterministic strategies. In
particular, at any vertex ρ, for any state x, there exists an action u such that ρ(x, u) > 0 and ρ(x, u) = 0
for u 6= u.

Let ρ∗ be an optimal vertex.

4 The Dual LP

The dual of the linear program introduced in the previous section can be written as

maxλ,h λ
s.t. g(x)− λ +

∑
y pxy(u)h(y) ≥ h(x) ∀x, u.

Let (λ∗, h∗) be an optimal solution. By the duality theorem, λ∗ = minµ λµ.
Note that each (x, u)th constraint in the dual corresponds to a variable ρ(x, u) in the primal. If ρ(x, u) > 0,

then the corresponding constraint in the dual is binding. It follows that

min
u

(
g(x)− λ∗ +

∑
y

pxy(u)h∗(y)

)
= h∗(x).

2

In other words, (λ∗, h∗) satisfies a version of Bellman’s equation:

Th∗ − λ∗e = h∗.

Further, since ρ(x, u) > 0 if and only if action u is an optimal decision at state x, action

u ∈ arg min
u

(
g(x)− λ∗ +

∑
y

pxy(u)h∗(y)

)
,

if and only if u is an optimal action at state x. In other words, a policy µ∗ is optimal if and only if

Tµ∗h
∗ = Th∗.

5 The Differential Cost Function

How should we interpret the function h∗? Well, we know that

h∗ = Th∗ − λ∗e = Tµ∗h
∗ − λ∗e,

for an optimal policy µ∗. Hence, letting Pµ∗ denote the transition matrix of the optimal policy µ∗, we have

h∗ = g − λ∗e + Pµ∗h
∗.

Now what is the set of solutions h to the equation

h = g − λ∗e + Pµ∗h?

Well, the larges eigenvalue of Pµ∗ is equal to one, and the corresponding right eigenvector is e. The absolute
value of every other eigenvalue is strictly less than one. Hence, the set of solutions h is the one-dimensional
affine subspace H = {h∗+ γe|gamma ∈ <}. Further, for any h that solves this equation, (λ∗, h) is a feasible
and therefore optimal solution to the dual linear program. Hence, the set of optimal solutions to the dual
linear program is (lambda∗, h)|h ∈ H}.

We started by taking (λ∗, h∗) to be an arbitrary optimal solution to the dual linear program. Since there
are many possibilities for h∗, in order to avoid ambiguity, let h∗ be the element of H for which πT

µ∗h
∗ = 0,

for a distinguished optimal policy µ∗. Since

h∗ = g − λ∗e + Pµ∗h
∗,

we have

h∗ =
T−1∑
t=0

P t
µ∗(g − λ∗e) + PT

µ∗h
∗.

The fact that πT
µ∗g = λ∗ and πT

µ∗h
∗ = 0 imply that P t

µ∗(g − λ∗e) and P t
µ∗h

∗ each converge to zero at an
exponential rate. It follows that the limit

lim
T→∞

T−1∑
t=0

P t
µ∗(g − λ∗e) + PT

µ∗h
∗,

is well-defined and finite, and that

h∗ =
∞∑

t=0

P t
µ∗(g − λ∗e).

3

Another way of writing this is

h∗(x) = lim
T→∞

E

[
T∑

t=0

(g(xt)− λ∗)
∣∣∣x0 = x, ut = µ∗(xt)

]
.

For this reason, h∗ is called the differential cost function. It represents the optimal sum of future costs,
where each future cost is offset by subtracting the long-term average.

4

MS&E339/EE337B Approximate Dynamic Programming Lecture 15 - 5/26/2004

Average Cost & Discounted Average Cost Problems
Lecturer: Ben Van Roy Scribe: Erick Delage and Lykomidis Mastroleon

1 Average Cost Dynamic Programming

In the previous lecture we examined the average cost dynamic programming formulation and we introduced
a simple linear programming approach for generating an optimal policy. More specifically:

• We assumed all policies generated irreducible and aperiodic Markov Chains

• There was a cost function g(x)

• The transition probabilities were pxy(µ)

• The dual LP was :{ max λ
s.t. Th− λ ≥ h

Given that (λ∗, h∗) is an optimal solution of the dual LP we showed that:

1. λ∗ = minµ λµ (using the duality theorem)

2. h∗ = Th∗ − λ∗e

3. µ∗ optimal iff Th∗ = Tµ∗h
∗

2 Interpretation of h∗

Based on the results of the previous section we have:

h∗ = Th∗ − λ∗e = Tµ∗h
∗ − λ∗e (1)

Notice that the right hand of equation (1) is basically a set of linear equations (as Tµ∗ is a linear operator).
More specifically:

h∗ = g + Pµ∗h
∗ − λ∗e (2)

Now lets define the following set:

H = {h|h = g + Pµ∗h− λ∗e} (3)

where Pµ∗ is the transition matrix for the irreducible and aperiodic Markov chain.
To continue our analysis we will need to use Perron-Frobenius theory. In particular we will need to use the
following theorem (no proof is provided):

Theorem 1 If P is irreducible and aperiodic then the following statements are true:

• The maximum eigenvalue of P is 1

• All the other eigenvalues of P are strictly less than 1

• There exists a right eigenvector e = (1, 1, ..., 1)> such that Pe = e

1

With this theorem in mind we can look again equation (3) and rewrite it in the following form:

H = {h|(I − Pµ∗)h = g − λ∗e} (4)

We can make certain observations regarding the nullspace N{(I − Pµ∗)} of (I − Pµ∗):

• (I − Pµ∗)e = e− Pµ∗e = 0 => e ε N{(I − Pµ∗)}
• (I − Pµ∗)ui = ui − λiui 6= 0 since λi < 1 => ui not in N{I − Pµ∗)} (where ui is any eigenvector of

Pµ∗ other than e and λi is the corresponding eigenvalue)

• N{(I − Pµ∗)} = {γe|γ ε R} as it can be easily seen from the 2 previous observations

So if h∗ ε H then (h∗ + γe) ε H ∀ γ ε R. It’s trivial to verify that any h ε H is a feasible solution for the
dual LP and so the solution h∗ we actually receive from the dual LP is arbitrary. It will be convenient for
us to select h∗ as the element of this space that has the following property:

πτ
µ∗h

∗ = 0 (5)

Now if iterate equation (2) then we get the following:

h∗ = g + Pµ∗h
∗ − λ∗e

= g + Pµ∗(g + Pµ∗h
∗ − λ∗e)− λ∗e

= g + Pµ∗g + P 2
µ∗h

∗ − 2λ∗e

= (g − λ∗e) + Pµ∗(g − λ∗e) + P 2
µ∗h

∗

=
τ−1∑
t=0

P t
µ∗(g − λ∗e) + P τ

µ∗h
∗

=
∞∑

t=0

P t
µ∗(g − λ∗e)

where we used the fact that limτ→∞P τ
µ∗h

∗ = πT
µ∗h

∗ = 0.

Now we can write : h∗(x) = E{∑∞
t=0(g(xt)− λ∗)|x0 = x, µ∗}

h∗(x) is often called “Differential cost-to-go function” as it shows how much the cost-to-go increases when
the process is started in state x compared to when it is started in the steady state distribution.

3 The “Restart” Perturbation

From now on, we will be working with a perturb version of the average cost dynamic problem. In this
version, the system is considered to have probability (1 − α) of getting into a restart distribution at each
transition step. The new problem is entirely similar to the previous one with a minor change to the transition
probability matrix.

Pα,c
xy (µ) = (1− α)c(y) + αPxy(µ)

2

Obviously, we recover the traditional average cost problem when α is equal to 1.

Now we would like to a bound on how far from the original problem this perturbation brings us. The
measure of difference we are interested in is the average cost when following a policy, since this tells us how
likely we are of following the wrong policy and a larger average cost than necessary.

Theorem 2
∀α ∈ (0, 1), µ, c, |λα,c,µ − λµ| ≤ z

1− α

1− αν

This limits the disturbance to O(1− α).

Proof First:

P t
µ → eπt

µ all other eigenvalues vanish to 0

cT P t
µ → cT eπt

µ

cT P t
µg → πt

µg , since c is a probability distribution and sums to 1

Therefore:
|cT P t

µg − πt
µg| ≤ zνt for some ν < 1,∀µ, t (6)

Notice also that the following expression holds:

πα,c,µ =
∞∑

t=0

(1− α)αtcT P t
µ (7)

Using equations (6) and (7), we can know construct a bound on |λα,c,µ − λµ|:

|λα,c,µ − λµ| = |πT
α,c,µg − πT

µ g|

= |
∞∑

t=0

(1− α)αtcT P t
µg − πT

µ g| , using (7)

≤
∞∑

t=0

(1− α)αt|cT P t
µg − πT

µ g| , from the triangle inequality

≤ (1− α)
∞∑

t=0

αtzνt

=
1− α

1− αµ
z

4 The Perturbed Average Cost Approximate LP

Remember the Approximate Linear Program for the discounted dynamic program:

maximize cT Φr

subject to TΦr ≥ Φr
(8)

In the case of the perturbed average cost dynamic problem, we can approximate the optimal average cost
function by solving the linear program:

3

minimize λ

subject to Tc,αΦr − λe ≥ Φr
(9)

Theorem 3 Let (λ̃, r̃) be an optimal solution of the approximate linear program.
Also let µ̃ satisfy Tc,α,µ̃Φr = Tc,αΦr.

Then,

|λc,α,µ̃ − λc,α,µ∗ | ≤ 2θ

1− α
min

r
‖h∗c,α − Φr‖∞

Where θ = max(r,λ) feasible
cT (Tc,αΦr−Φr−λe)

πT
α,c,µ(Tc,αΦr−Φr−λe)

The proof of this bound will be develop in the next lecture. However, we have already interesting
comments to make about the nature of this bound.

• |λµ̃ − λ∗| ≤ |λc,α,µ̃ − λc,α,µ∗ |+ O(1− α)
We are already interested in making α close to one to reduce this bound

• θ value
Although the equation that defines θ is complicated we will find a way if making theta ≈ 1 by choosing
c appropriately

• ‖ · ‖∞
We have seen that the infinity norm is not satisfying limiting bounds. There is ways of getting to a
similar inequality without this type of norm.

• 1
1−α
Here we notice that we have contradictive objectives for α: setting it close 1 as stated earlier will make
this fraction grow out of proportions. There are no solution yet for this problem.

4

