
Homework 1:
MDP approximation to inverted pendulum

E. Todorov, AMATH/CSE 579

due April 30, 2015

Problem statement

In this homework we will solve a simple optimal control problem �balancing
an inverted pendulum. This will be done by discretizing the problem as an
MDP, which will then be solved with either value iteration or policy iteration.
The continuous-time dynamical system is:

dx1 = x2dt

dx2 = (a sin (x1)� bx2 + u) dt+ �d!
x1 is the angle of the pendulum, x2 is the angular velocity, u is the control,
! is Brownian motion. The cost rate function is

` (x; u) = 1� exp (k cos (x1)� k) +
r

2
u2

The problem is de�ned in the discounted cost setting, with discount factor
which is up to you. Here a > 0 models gravity, mass and length; b > 0
is damping; � > 0 is the noise scaling; k > 0 determines the shape of the
cost function (larger k makes the cost sharper); r > 0 is the weight of the
control cost. The constants a; b; �; k; r together with the discount factor can
be adjusted to obtain di¤erent problem instances; you should experiment
with them and try to understand how they a¤ect the solution.

Part 1: Constructing the MDP

Construct the approximating MDP as follows. First decide on a time step h,
maximum velocity vmax and control umax to be represented in the MDP, and

1



numbers of grid points (n1; n2; nu) along the state and control dimensions.
Dimension (x1) is circular and should be discretized with care, enforcing
wrap-around. Dimension (x2) and the control dimension (u) are discretized
over the intervals [�vmax; vmax] and [�umax;umax] in a straightforward way.
The MATLAB command "linspace" is useful here.
Now we have a grid of discrete states, each corresponding to some contin-

uous state (x1; x2). For each discrete state and each discrete control, compute
the continuous next state (y1; y2) under the deterministic part of the pendu-
lum dynamics:

y1 = x1 + hx2

y2 = x2 + h (a sin (x1)� bx2 + u)

Now we have to create transition probabilities in the MDP such that the
mean and covariance of the resulting mixture-of-delta-functions are close to
the mean and covariance of the Gaussian density de�ned by the continuous
dynamics. We discussed di¤erent methods for doing this in class. Use the eas-
iest one: choose possible next states/grid points around the mean, evaluate
the Gaussian at the chosen grid points, and normalize so that the outgo-
ing transition probabilities sum up to 1 at each state. Note that (y1; y2) will
sometimes fall outside the grid in the velocity dimension. In that case we can-
not achieve the above requirement for matching the means and covariances.
Instead we will use the nearest grid states and accept some approximation
error (i.e. edge e¤ect). The cost in the MDP is h` where ` is evaluated at
the discretized states and controls.
There are several unspeci�ed constants: h; vmax; umax; n1; n2; nu in the

MDP construction. Similar to the above constants appearing in the problem
formulation, you should de�ne them as symbolic constants at the beginning
of your code, experiment with them, and try to understand their e¤ects.
Generally, denser grids produce more accurate solutions. It is also useful

to think about "compatibility" of the grid in the following sense. Suppose the
time step h is small and the discretization step in velocity is small, while the
discretization step in position is large. Then it will be very di¢ cult for the
MDP to make any state transitions, i.e. the transition probabilities will be
close to delta functions centered at the current state. This is to be avoided.
Instead we want

h
2vmax
n2

� 2�

n1
Similar reasoning applies to the velocity and control discretization.

2



Part 2: Solving the MDP

Now that we have an MDP, we can use the policy iteration and value iteration
algorithms discussed in class (feel free to use the MATLAB code from the
lecture notes as a starter). For the purpose of exploring the e¤ects of the
di¤erent parameters you can use either algorithm. Once you settle on a set
of parameters that you like, compare the convergence of policy and value
iteration. This can be done by plotting a 2D image representing the value
function and observing how it changes over iterations. You can also plot the
amount of change in the value function between iterations, and observe how
quick the convergence is for the two algorithms.

Part 3: Simulating the control law

Once the MDP is solved, you have a control law de�ned on the grid. Use
interpolation to extend the control law to the continuous space, and simulate
several trajectories for the continuous system, starting at di¤erent initial
states. If your controller (and problem and discretization parameters) are
sensible, you should see the pendulum going to the vertical state and bal-
ancing there. Note that the system is stochastic, so you should inject the
necessary amount of noise at each simulation step. The simulation is done
in continuous space, but discrete time.

What to submit

� MATLAB code.

� Figures showing the optimal value function and the optimal control law
for di¤erent parameter settings you found interesting.

� Figures comparing the convergence of policy and value iteration.

� Figures showing simulated trajectories under the optimal control law
for several initial states, with noise added to the simulation.

� Text summarizing your observations.

3


