
Homework 2:
LQG and Trajectory Optimization

E. Todorov, AMATH/CSE 579

due May 24

1 Acrobot dynamics

The dynamical system we will be working with is a deterministic double
pendulum, also known as the acrobot. See Figure 1. Only the second joint
(elbow) is actuated. The dynamics are in the form

_x = a (x) +B (x)u

x =
h
�1; �2; _�1; _�2

iT
where �1; �2 are the two joint angles; u is the scalar

control signal (torque acting on the second joint).
The following Matlab code (acrobot.m) computes the dynamics:

function [xdot, a, B] = acrobot(x, u)
friction = 0.1;
g = 9.8;
M = [3 + 2*cos(x(2)), 1+cos(x(2)); 1+cos(x(2)), 1];
c1 = x(4)*(2*x(3)+x(4))*sin(x(2)) + 2*g*sin(x(1)) + g*sin(x(1)+x(2));
c2 = -x(3)^2*sin(x(2)) + g*sin(x(1)+x(2));
a = [x(3:4); M \ [c1-friction*x(3); c2-friction*x(4)]];
B = [0;0; M \ [0;1]];
xdot = a + B*u;

On the course website you can also �nd the �le testacrobot.m which
shows an animation of the passive dynamics. Note that the dynamics have
two parameters: the friction and gravity coe¢ cients. Feel free to experiment
with di¤erent values.

1



Figure 1: Illustration of the acrobot system. The plot on the right shows
joint positions and velocities over time for the passive system.

2 Tasks

We want to design control laws which make the acrobot stay in the upright
position (�1 = �2 = 0) with minimal control e¤ort. Thus we will use the cost
function

` (x; u) =
r

2
u2 + 1� exp (k cos (x1) + k cos (x2)� 2k)

where r sets the relative importance of conserving control energy vs. staying
upright, and k is the width of the position cost. You should adjust r; k so as
to generate interesting behaviors. Note that the angles should be kept inside
the interval [��; +�]. If they ever leave this interval you should add/subtract
2�.
We will consider two versions of the task. The �rst is a regulation task:

keep the acrobot in the goal state assuming the initial state is near the goal
state. The second task is harder: get the acrobot to swing up from an
arbitrary initial state, and then keep it there.

2.1 Regulation near the goal state

To solve the regulation problem, linearize the dynamics around state x0 =
[0; 0; 0; 0]T and approximate it in the form

_x = A0x+B0u

2



Also compute a quadratic approximation to the cost function in the form

`0 (x; u) =
r

2
u2 +

1

2
xTQx

Now that you have a linear system and a quadratic cost function, solve the
corresponding continuous-time LQQ problem (using "care" in Matlab, and
setting the noise covariance terms from the lecture notes to 0). This will give
you a linear feedback control law in the form

u = Lx

which should make the linearized system go to the goal state from any initial
state (test this numerically). But what about the actual nonlinear system?
Plug in your linear feedback control law in the nonlinear dynamics:

_x = a (x) +B (x)Lx

and integrate the latter forward in time from a variety of initial states. Use
one of Matlab�s integrators (say "ode45"). For some initial states this lin-
ear control law will work well, while for others it will not. Find a way to
characterize (numerically) the region of initial states around x0 for which it
works.

2.2 Control from any initial state

The control problem here will be de�ned as a �nite horizon optimal control
problem. The �nal cost is the same as the running cost but without the
control term. You have to adjust the overall duration and time step; note
that this is a complicated dynamical system, thus you need to use small time
steps (around 10 msec) and large horizon (at least 3 sec). We want to control
the system from any initial state, and not just from states near the goal. We
will do this by optimizing a trajectory that is speci�c to each initial state
x0. This involves two subtasks: implementing the code that computes the
gradient and calls an optimizer, and then adjusting parameters and initial
conditions (see below) so as to make the optimizer �nd sensible solutions.
The objective function J being minimized is the total cost of the tra-

jectory. Its argument is the sequence of controls U = fu0; u1; � � �uN�1g.
To compute the total cost J , integrate the dynamics forward in time to ob-
tain the state trajectory and then evaluate ` (x; u) at each point in time.

3



Note that J also depends on the starting state x0, however this dependence
should be made implicit because the optimizer should not change x0. Use
the discrete-time maximum principle from the lecture notes to compute the
gradient @J=@U . Once you have a MATLAB function that computes both
J and its gradient, call an o¤-the-shelf optimizer to minimize it. Try to
compute the necessary derivatives analytically; �nite-di¤erencing is also �ne
but it may slow you down. You can use the MATLAB optimization tool-
box, or minFunc by Mark Schmidt (Google it). Note that you can select
di¤erent optimization algorithms, and which algorithm is best tends to be
problem-speci�c. BFGS is usually a good starting point.
Now that you can optimize J automatically, in an ideal world you would

be done. In the real world however you are not done, because hard opti-
mization problems often require good initialization as well as continuation
methods to guide them to the minimum. In this case it is not clear how to
obtain good initialization. You can try di¤erent random initializations for
U , perhaps smoothed over time.
If it turns out that random initialization of U is not su¢ cient, you can

explore a continuation method. Continuation generally means solving an
easier problem �rst, and using the solution as initialization for the harder
problem. To use continuation, you have to de�ne a continuum of problems
such that your (hard) problem is at one end, and some easy-to-solve problem
is at the other end. In this case, you can create a related but easier problem
by allowing actuation at both joints. To create intermediate problems, you
can still allow actuation at both joints but use a larger control cost at the
�rst joint (shoulder). If you make this cost very large, the problem eventually
becomes indistinguishable from our original problem with actuation only at
the elbow joint. You may need multiple steps of continuation, gradually
increasing the control cost on the shoulder joint.
In solving higher-dimensional problems it is important to visualize the

results and get an intuition as to what the optimizer is doing. To plot the
acrobot trajectories in static �gures, you can create multiple subplots showing
frames from the animation. You can also plot the state and control variables
over time - to check that they change smoothly over time.
WHAT TO SUBMIT: your code, along with a PDF �le showing �gures

of (hopefully successful) control and summarizing your observations. For the
second part, test your trajectory optimizer with di¤erent initial states.

4


