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Least Squares Solutions of the HJB Equation With
Neural Network Value-Function Approximators

Yuval Tassa and Tom Erez

Abstract—In this paper, we present an empirical study of itera-
tive least squares minimization of the Hamilton–Jacobi–Bellman
(HJB) residual with a neural network (NN) approximation of the
value function. Although the nonlinearities in the optimal control
problem and NN approximator preclude theoretical guarantees
and raise concerns of numerical instabilities, we present two
simple methods for promoting convergence, the effectiveness of
which is presented in a series of experiments. The first method
involves the gradual increase of the horizon time scale, with a
corresponding gradual increase in value function complexity. The
second method involves the assumption of stochastic dynamics
which introduces a regularizing second derivative term to the
HJB equation. A gradual reduction of this term provides further
stabilization of the convergence. We demonstrate the solution of
several problems, including the 4-D inverted-pendulum system
with bounded control. Our approach requires no initial stabi-
lizing policy or any restrictive assumptions on the plant or cost
function, only knowledge of the plant dynamics. In the Appendix,
we provide the equations for first- and second-order differential
backpropagation.

Index Terms—Differential neural networks (NNs), dynamic
programming, feedforward neural networks, Hamilton–Ja-
coby–Bellman (HJB) equation, optimal control, viscosity solution.

I. INTRODUCTION

THE field of optimal control is concerned with finding the
control law which, applied to a given dynamical system,

will minimize some performance index, usually the temporal
integral of an incurred cost. One way of solving this problem
involves the computation of the value function, a measurement
of the performance index as a function of space and time. In the
continuous case considered here, the value function satisfies a
nonlinear partial differential equation called the Hamilton–Ja-
cobi–Bellman (HJB) equation. In the simple case of linear dy-
namics and quadratic costs, this equation famously reduces to
the matrix Riccati equation, which can be accurately solved by
analytical or numerical methods.

In the general case, the HJB equation has proven difficult to
solve. One reason for this is that value functions are frequently
differentiable only almost everywhere, requiring the framework
of nonsmooth analysis and viscosity solutions [1], so that a weak
sense of solution can first be defined and then shown to exist.
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Even when a solution is guaranteed to exist, the task of finding
it is not made any more tractable. When using approximation
schemes, artifacts or hidden extrapolation introduced by an im-
perfect approximator can couple with the nonlinearity inherent
in the minimization operator [see (3)] and produce divergent
feedback phenomena [2]. Finally, the computational complexity
required to describe the value function grows exponentially with
the dimension of its domain (“curse of dimensionality”), lim-
iting the feasibility of an effective approximation. These diffi-
culties in solving the general case have led many research ef-
forts towards finding those special cases for which a suitably
designed technique can be proven to always work.

Feedforward neural networks (NNs) provide a generic frame-
work for smooth function approximation, with a sound theo-
retical foundation [3] and a vast knowledge based on their im-
plementation in terms of architectures and learning algorithms.
Previous studies (e.g., [4] and [5]; see Section II) have shown
the potential of NN approximation of value functions for spe-
cial cases.

In this paper, we study a straightforward approach of per-
forming least squares minimization of the HJB residual with
an NN approximation of the value function. This approach
is attractive because it is simple to implement, requires few
a priori assumptions and can be applied to almost any problem,
including nonlinear problems which frustrate solution by clas-
sical methods of control theory. Deemed prone to numerical
instabilities and divergent phenomena, this course is rarely
taken in practice. Instead of retreating to a limited set of cases
where convergence can be guaranteed due to some restrictive
property, we wish to propose here two methods to overcome
the drawbacks of the unconstrained problem. Intended as a
proof-of-concept, this paper provides no formal convergence
analysis, but rather presents a series of successful experiments
and argues that these methods are likely to promote conver-
gence in most cases. In the rest of this section, we review related
work and the required theoretical background. In Section II,
we present the details of the framework and our proposed
methods for promoting convergence and discuss their motiva-
tion. Section III describes the results of numerical experiments
with one linear quadratic and two nonlinear optimal control
problems, and finally, Section IV contains a conclusion of the
presented work and some possible ramifications. The Appendix
provides the equations for differential backpropagation in
feedforward NNs.

A. Related Work

Research regarding value function approximation has been
done in several academic disciplines. When the dynamics are
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a discrete Markov decision process, the dynamic programming
[6] framework provides a rigorous environment for the descrip-
tion and analysis of algorithms. Though extensions to contin-
uous time and space have been made [7], these involve approx-
imating the value function around a single optimal trajectory
rather than in a volume of the state space.

In the reinforcement learning (RL) branch of computational
learning, the optimal control problem is recast as interaction be-
tween an agent (the controller) and an environment (the plant),
with the negative cost (usually denoted as ) considered as a re-
ward (denoted ) which the agent strives to maximize. This per-
spective induces several departures from the control theoretic
approach, notably, a bias towards online methods and minimal
assumed prior knowledge of the environmental dynamics, e.g.,
in temporal-difference (TD) methods [8]. This focus on online
methods, which might be attributed to the biological plausibility
of similar processes taking place in nervous systems [9], biases
the application of gradient-based methods towards stochastic
gradient descent. In this paper, we show how high condition
numbers of the error Hessian give second-order batch methods
a distinct computational advantage. Least squares temporal dif-
ference (LSTD) and related methods [10] comprise a class of RL
algorithms which do use batch learning. The work presented in
this paper can be considered an extension of these methods to
the continuous case.

When solving continuous problems, most work in RL has
concentrated on discretization of the state space and subsequent
solution by dynamic programming or related methods [11],
probably due to the availability of powerful analytical tools
for the discrete case. An exception is Doya’s generalization
of TD- to continuous problems [12] using radial-basis func-
tions. This approach was subsequently applied by Coulom [5]
using sigmoidal NNs. In Coulom’s work, though arguably a
most impressive use of NNs for value function estimation,
the learning is computationally intensive and rather unstable,
with nonmonotonic convergence. Besides the work of Coulom,
mixed results have been reported regarding the application of
NNs to value function approximation. After the initial success
of Tesauro [13], most papers reported unsatisfactory results [2],
[14], [15].

In the control community, the general control problem is usu-
ally defined to be that of forcing the output of some dynamical
system to follow a given desired signal. By considering the dif-
ference between the current and desired states, the problem is
recast as bringing this difference to the origin. This assump-
tion, which in optimal control manifests as constraints on the
cost function to be zero at the origin and positive elsewhere,
conceals the possibilities afforded by other types of problems.
For example, Coulom [5] uses a cost function which is linear
in the velocity to design “swimmers” whose controllers give
rise to limit cycle, rather than stabilizing, dynamics. Another
meta-constraint on control theoretic research, due to the applied
nature of the field, is the legitimate emphasis on provably con-
vergent algorithms.

Value function approximation has not been a popular method
for nonlinear control design, perhaps due to the availability of
other powerful methods. An important exception is [16], which
uses a Galerkin expansion to construct the value function, but

requires computationally intensive integrations. Other current
state-of-the-art approximation approaches include adaptive
meshing [11] and level sets [17].

Though extensive use of NNs has been performed in the con-
trol theory literature [18], they have been used rarely for value
function approximation. In cases where they have been used,
only special cases of the problem had been considered. Goh
[19] used an NN to solve a nonlinear quadratic optimal regulator
problem. Several assumptions were made, including a quadratic
cost function and the origin being a fixed point of the dynamics,
which allow the author to assume a sum-of-squares structure
for the value function. Abu-Khalaf and Lewis [4] assumed a
convex cost and approximated the value function using a linear
function approximator with polynomial basis functions. By ac-
cepting these restrictions, they enjoyed the guarantees conferred
by a unique minimum. This paper effectively demonstrates how
the approaches of [19] and [4] can be extended to general feed-
forward NNs and general nonlinear optimal control problems.
Although provable convergence is lost, general applicability and
de facto stability are gained.

A necessary step in the use of NNs as approximate solutions
to differential equations is the computation of the derivatives of
the output of the network with respect to (w.r.t.) its input vari-
ables, and the derivatives of these values w.r.t. the weights of the
network. Although the equations for computing these quanti-
ties have appeared before, either implicitly [20] or explicitly [5],
[21], [22], we feel that a clearer derivation is required to do jus-
tice to their great usefulness, and include them in the Appendix.

B. HJB Equation

Consider a state vector of some dynamical
system which evolves according to , with

being a control signal. Both and are assumed to be
bounded compact sets, with convex. Given some scalar cost

, our goal is to find the control law or policy ,
which will minimize the cost1 incurred along the trajectory
as measured by an integral performance index called the value
function

(1)

Putting as the limit of the integral makes the value and
policy independent of . The exponential discounting function

ensures convergence and determines the horizon
time scale. The coefficient is not essential to the exposition
but was added because it normalizes the exponential integrand
and fixes to be in the same units as . Specifically, for

, the normalized exponent shrinks to a -function and
. Our goal is to find a policy for which the value function

is minimized. This value function, denoted , is called the
optimal value function

1In the formally equivalent continuous reinforcement learning framework, a
corresponding reward is maximized.
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By direct differentiation w.r.t. , any function which satisfies (1),
including , satisfies the linear differential relation

or

(2)

Now, assume we have found and invoke the minimum prin-
ciple: Since is already optimal w.r.t. , any perturbation to

must necessarily increase the -dependent right-hand side

(3)

This nonlinear partial differential equation (PDE) is called the
HJB equation.2

C. Solutions of the HJB Equation

For linear dynamics and quadratic costs, the HJB equation
famously reduces to the Riccati matrix equation of the linear
quadratic regulator. For general problems, however, is not
differentiable everywhere and the equation does not hold in the
classical sense. The usual framework for analyzing nonsmooth
solutions to HJB equations is the formalism of viscosity solu-
tions. A way to avoid this is to introduce some stochasticity in
the state dynamics with denoting a
Brownian motion term of covariance . In this case, the modi-
fied HJB equation becomes

(4)

which provides a regularizing effect that guarantees that the
value function is differentiable everywhere [23].

When attempting to solve the HJB equation in some finite
compact volume of space , boundary conditions on

must be considered. For the integral (1) to be defined,
the trajectory must either remain in or, upon reaching
the boundary, incur some terminal cost. When stabilizing con-
trollers are sought in the control theoretic context, the concept
of a Lyapunov function is used to ensure that trajectories are
restricted to a domain. In the general nonlinear context, where
such techniques are unavailable, boundary conditions must be
dealt with explicitly.

D. Value Iteration

Given any value function , a policy which minimizes the
RHS of (3)

(5)

2This semiformal derivation is intended to provide an intuition of the problem.
For rigorous results, see, e.g., [23].

is called a greedy policy. Assuming ,
if and are differentiable, and invertible,
then the minimization in (3) can be reduced to differentiating
w.r.t. , equating to zero and solving for . If the dynamics are
affine in the control ,3 then a sufficient con-
dition for the invertibility of is the Legendre–Clebsch
condition (convexity of )

The greedy policy is then given in closed form by

(6)

The process of iteratively forming a value function for a given
policy, and then, deriving a new greedy policy with respect to
the new value function, is called value iteration or method of
approximations, and has been shown to converge when exact
measurements are possible [24]. When the object of the iterative
improvement is the policy rather than the value function, the
process is called policy iteration. In cases such as this one, where
the greedy policy is a deterministic closed-form function of the
value, the value- and policy-iteration algorithms become nearly
indistinguishable.

E. Differential NNs

The Pineda architecture [25] is a generalized topology for
feedforward NNs which can generate layered and other topolo-
gies as special cases. Given a feedforward network , an input
vector , and a weight vector , the Appendix shows how to
calculate the following quantities in the Pineda formalism:

The quantities on the left are computed by “forward” propaga-
tion while the values on the right are computed by “back” prop-
agation, using intermediate values obtained in the forward pass.
We used standard sigmoids but the nonlinearity can belong
to any class of smooth functions [radial basis function (RBF),
polynomial, trigonometric, etc.].

F. Least Squares

The approach taken here to approximating a solution to (3)
is to minimize the square of the left-hand side (LHS) minus
the RHS, called the residual or error. More generally, given an
error vector , which is a function of a weight vector

, the object of least squares minimization is to find
. The Gauss–Newton approximation takes

the first-order expansion of in

3As is usually the case in mechanical systems.
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where is the Jacobian matrix. The square
error is then given by the quadratic

which is minimized by . In the Lev-
enberg–Marquardt variation, the approximated Hessian is
conditioned by a scaled identity matrix4 with a positive factor

(7)

Of the various heuristics for controlling during minimization,
we use the one suggested in [26].

II. PROPOSED METHOD

In this section, we first present a straightforward implementa-
tion of the techniques presented previously. Then, we describe
some common causes for approximation failure, and afterwards,
suggest two methods that circumvent many of these causes.

A. Naive Implementation

The naive approach to least squares minimization of the HJB
residual is the following. We take as an input points

, and an NN approximation of the value function
with a weight vector initialized using any standard weight
initialization scheme (e.g., [27]). Then, the algorithm repeat-
edly performs Levenberg–Marquardt steps on the squared HJB
residual for all points simultaneously until a local minimum is
reached.

Algorithm: Naive

1) repeat

2) for to

3) do

4)

5)

6)

7)

8)

9)

10) as in [26]

11) until

12) return the weight vector

4The variation which takes the diagonal of J J (à la Marquardt) rather than
the identity (à la Levenberg) was tried and found to be less stable.

Note that we assume we can compute and
[step 3)], [step 4)], and [step 5)].

Additionally, apart from the obvious requirement to calculate
and [steps 3) and 5)], we need the

derivatives of these quantities w.r.t. [step 6)]. The Appendix
explains in detail how these quantities are calculated. Note that
since we never actually simulate the plant dynamics, we do not
have to determine a time step , nor do we have to deal with
the accuracy issues which arise in numerical integration.

B. Distribution of Points and Conditioning

One of our main results is the extremely wide range of sen-
sitivities of the squared error to changes in . In all our
experiments, the condition number of the approximated Hes-
sian regularly exceeded . This fact is made even
more dramatic when we realize that the lower eigenvalues of this
matrix are dominated by the condition factor and can never
approach 0. We feel that this explains why methods based on
stochastic gradient descent do not perform well.

Another consequence of this sensitivity is the choice of a fixed
set of points during the learning. We initially experimented
with resampling the point set before each iteration or collecting
the training points along trajectories of a behaving system, but
both approaches turned out to introduce too much noise and pre-
vent good convergence. In all our experiments, the point set was
drawn from the quasi-random Halton sequence [28], which pro-
vided consistently better results than sampling from a uniform
distribution, though not by a large margin.

C. Boundary Conditions

The definition of the value function (1) as an integral into the
“future” requires special attention at the boundaries of ,
the compact set over which we wish to approximate . The
points on , the boundary surface of , can be divided into
the following three distinct categories

Regions where points into for
all . These regions require no special attention
since the integral (1) is well defined.

Regions where points out of for all
. Because the integral is no longer defined,

the HJB equation does not hold and a terminal
cost must be incurred. In practice, this
“clamping” constraint is enforced
by scattering points for which
the error is defined to be
rather than the usual HJB residual.
Regions where points into for some
values of and out of for other values. These
regions are the most problematic for our purposes
and can sometimes be avoided by a careful choice
of . The solution we used5 was to modify the
dynamics so that if points out of , the
component perpendicular to is discarded and
only the parallel component is retained. It should
be noted that the resulting discontinuities in do
not invalidate the existence of HJB solutions.
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D. Causes of Divergence

There are several difficulties associated with the approximate
numerical solution of the HJB equation. First are multiple so-
lutions admitted by the equation. These are either the result of
the aforementioned discontinuities allowed in the solution (see
[14] for examples) or the nonuniqueness which results when the
minimization in (5) is realized as extremization in (6). This type
of nonuniqueness is epitomized by the Riccati equation having
two solutions, a positive–definite and a negative–definite one
(see Section III-A).

Second are the positive feedback effects brought about by
and having the same sign in (3). Because is a func-
tion of in (6), greedy value iteration of type proposed
here can lead to divergent phenomena. One type is the classical
“rattling” effect, where repeated overshooting of the minimum
leads to divergence. In our approach, this effect is mostly con-
trolled by the Levenberg–Marquardt parameter . Another type
of positive feedback phenomena emerges when using a non-
linear function approximator. Local biases in the approximation
or “hidden extrapolation,” especially at difficult-to-approximate
discontinuous boundaries, can lead to false solutions (see, e.g.,
Fig. 4).

E. Promoting Convergence by Gradual Complexification

The both two methods proposed in the following involve the
gradual modification of some parameter during the convergence
loop [i.e., before every iteration, steps 2)–10)
in the algorithm], so that the problem is initially an “easier“
variant which then progressively approaches the full problem.
Although their success is not guaranteed and no general con-
vergence proofs are provided, we show how these techniques
enable us to address a wide range of problems with consider-
able success.

F. Modifying the Horizon Time Scale

Our first method involves the modification of the horizon time
scale . An inspection of (3) leads to an interpretation of as
the relative weighting coefficient of instantaneous and future
costs. As mentioned previously, the introduction of the normal-
izing coefficient in (1) fixes the units of to be those of .
Specifically for , we have and the problem reduces
to simple function approximation. These insights motivate the
following method: First, train the NN approximator with
until has converged to , and then, increase in small
increments until the desired value is reached.

For linear–quadratic (LQR) problems, where more than one
solution to the HJB equation is possible, starting with
is equivalent to starting the convergence process from within
the positive–definite cone, thus avoiding the negative–definite
solution (see Section III-A). Finally, it is important to note that
this method is not appropriate for all types of problems. In
many cases, especially when the goal is to bring the state into
some target set, is discontinuous in while is continuous.
In these cases, the approximation is actually more difficult for

5Due to Rémi Munos.

small values of , and no advantage is gained by its gradual
incrementation.

G. Modifying the Stochastic Term

As described in Section I-C, the assumption of stochastic dy-
namics adds a second derivative term to the HJB equation and
has a smoothing effect on the value function. Our second method
for promoting convergence involves the gradual reduction of
this term.6 Intuitively, boundaries across which the value func-
tion is discontinuous for deterministic dynamics become fuzzy
with stochasticity as noise may push the dynamics from one re-
gion to another. Besides the dispensation with the formal re-
quirement for “viscosity solutions,” smooth functions are easier
to approximate and are far less susceptible to the destructive ef-
fects of local irregularities, which may form when a continuous
function approximates a discontinuous one (as in Gibbs oscil-
lations). In practice, all we need to do to enjoy the benefits of
smoothness is to modify step 5) of the algorithm to be

which is equivalent to the assumption of white spherical process
noise of variance . The appropriate derivatives must also
be computed when calculating in step 6)

It is important to note that while our calculations assume sto-
chastic dynamics and enjoy the benefits of a smooth, differen-
tiable value function, no actual noise is injected anywhere and
the algorithm remains deterministic. Another benefit relative to
regularization schemes of the Tikhonov, or similar types, is that
rather than directly penalizing weights or nonsmoothness as an
extra term in the squared error, this type of smoother acts in-
side the residual term and actually decreases the squared error
by orders of magnitude. While these benefits are obvious, we
pay a price: A sharp edge in the surface of the value function
is often meaningful as a “switching curve,” and smoothing it
could result in a suboptimal policy, or even the system’s failure
to achieve its goal. Therefore, we end up with a logic similar
to the previous method: Begin with large value for improved
convergence during the initial approximation iterations, and de-
crease it gradually through the iterations until it reaches 0 or
some other small value.

H. Scheduling and Combining the Methods

For both parameters, we found that parameter modification
was best implemented with a sigmoidal schedule, to achieve a
converge-track-converge behavior. In the first few iterations, the

6The idea of adding this term, hinted at in [29], was suggested to the authors
by R. Munos.
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values of or are kept fixed, so that the approximator can con-
verge from its initial conditions to the “easy” problem. Then, the
parameter changes gradually while the approximator tracks the
resulting changes in the value function. Finally, the parameter
remains fixed for the last iterations, allowing maximum conver-
gence for the “hard” problem. The exact rate of change of the
parameter during the tracking phase is immaterial, as long as it
is slow enough for consecutive realizations of the value function
to be good approximations of each other.

When using both methods concurrently, we found that an ef-
fective approach is to first let increase while is held large and
constant and then decrease only after has plateaued. Intu-
itively, this is because the divergent phenomena described previ-
ously are all related to the predictive information contained in
as parameterized by . The smoothness benefits arising from
are used to robustify the convergence while is increasing, and
should, therefore, be decreased only once no longer changes.

III. EXPERIMENTS

In this section, we demonstrate the proposed method on
three optimal control problems. First, we describe the linear
quadratic problem, derive the Riccati equation for the dis-
counted horizon case, and discuss the relationship between the
horizon time scale and stability. Our solution of a 4-D linear
quadratic system is then compared to an accurate solution
obtained by standard methods. Next, we present results for the
2-D car-on-the-hill problem. We show how discontinuity of the
value function can lead to local divergence, and proceed to use
the smoothing parameter to resolve this issue. Finally, the
4-D cart-pole problem is described and solved. All experiments
were carried out using Pineda-type NNs with sigmoids,
as described in the Appendix.7 Running time complexity is

with the number of sample points and the number
of weights. Experiments were performed on a 3-GHz Pentium
4 CPU.

In both of the nonlinear problems, we follow [12] and [30]
and implement a bounded control by using the
convex cost function

which, inserted in (6), results in the control law

(8)

We use the terminology of reinforcement learning (reward max-
imization) rather than control (cost minimization), when doing
so aids with the comparison to previous work.

A. Linear Quadratic System

Let us derive the discounted Riccati equation. For linear dy-
namics and quadratic costs

with stabilizable, and ,

7MATLAB code for implementing differential backpropagation is available at
www.alice.nc.huji.ac.il/~tassa/

the value function is itself quadratic . Pre-
multiplication by , which amounts to a rescaling of , is
added for easier comparison to standard notations. Inserting
and in (6), the greedy policy is . Substi-
tuting in (2), we have

Differentiating twice w.r.t. , dividing by two, and rearranging

By comparison to the usual Riccati equation
, we see that a discounted linear quadratic

system is equivalent to a nondiscounted system with a fric-
tion-like damping factor of added to the dynamics.
The Riccati equation, essentially a quadratic equation, admits
two solutions, the positive–definite “correct” solution, and a
destabilizing negative–definite solution. This fact serves to mo-
tivate the method of increasing during the convergence. For a
small enough , the dynamical system is extremely stable and
any initial guess value function will provide a stable control.
As is increased, the stabilizing controller found at the pre-
vious stages serves as “scaffolding” for the current stage. This
is quite similar to other techniques [4], [24], [31], where the
preexistence of a stabilizing controller is a condition for its fur-
ther improvement. Another way of showing the same effect is
to rescale and to see that , which is a
positive–definite initial condition.

We experimented with the 4-D linear quadratic system given
by

For , this is a simple energy conserving model of two
masses connected by springs. We generated 1000 quasi-uniform
points in the ellipsoid of unit mechanical energy. Applying the
Naive algorithm over these points to the nondiscounted equa-
tion using a 93-weight NN, we got mixed results. In
Fig. 1, we see one run converging to the “correct“ positive–def-
inite solution, another to the negative–definite solution, and yet
another to no solution at all. Gradually increasing from 1 to

, as described, always resulted in correct convergence.

B. Car on the Hill

The car-on-the-hill problem, described in [32] and investi-
gated in [11], is a 2-D optimal control problem. A “car” is pos-
tulated to roll8 on a hill of shape

if ,
if .

8We make the hairsplitting note that the dynamical equations, used in this
paper to allow comparison to previous work and originally given in [32], ignore
the centripetal force and are not “correct” in the Newton-mechanical sense.
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Fig. 1. Performance of three sample runs of the naive algorithm on the linear
quadratic system with � = 1. At every iteration, we measure the difference
between approximated and analytical values over a set of 1000 random points
generated anew. Solid (dotted) lines denote the difference between the approxi-
mated function and the positive–definite (negative–definite) analytical solution,
computed with standard methods. The three figures show a converging, anticon-
verging, and misconverging run.

Fig. 2. Car-on-the-hill optimal control problem. The reward is identically zero
inside the state space. Terminal rewards of �1 and 1� _x=2 are incurred upon
reaching the left and right edges of the state space, respectively.

The stated goal of reaching the top of the hill with minimal ve-
locity is achieved by setting terminal rewards of

and on the left and right edges of
the state space, respectively (Fig. 2), and ev-
erywhere else. A discrete control space is well
approximated by using the bounded control (8) with
and . The volume of state space where we solve this
problem is m/s . We
used three sets of points to find a solution, as shown in Fig. 3.
First, we placed 2000 points evenly spread across , using the
pseudorandom Halton sequence. Next, we placed 400 points on
the “outbound” ( and, respectively, ), where
any trajectory would inevitably fall out of . At this points,

was enforced. Finally, we placed 200 points on

Fig. 3. Illustration of the points where the HJB residual was measured and min-
imized. Clamping constraints were applied to points on the “outbound” @X by
minimizing (V (x)� r(x)) . For points on @X , the dynamics were modified
to never point outside the state space.

Fig. 4. Local divergence of the learning. The bump in the value function close
to (�0.5 0) begins as a local extrapolation near the discontinuous boundary and
migrates to this position.

, where but . In these points, the dy-
namics were modified by limiting the maximal speed of the car
to 4 m/s, a manipulation to the effect of “clipping” the outbound
dynamics to be tangent to . The value function which solves
this problem has a discontinuous ridge and a nondifferentiable
ridge which make the problem difficult for essentially smooth
function approximators like ours. Specifically, when running the
Naive algorithm, a Gibbs-oscillation-type phenomenon at the
discontinuous boundary was found to sometimes evolve into a
false stationary point on the line (Fig. 4).

Since the reward function of this problem is discontinuous,
setting (and, consequently, ) would present the



1038 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 4, JULY 2007

Fig. 5. Smooth value function obtained for  = 0:02. We note that the HJB
residual for this function was smaller by more than an order of magnitude than
for the “sharp” solution.

Fig. 6. Approximation of the optimal value function for the car-on-the-hill
problem. Compare to [14, Figs. 3 and 4] (available at www.cmap.polytech-
nique.fr/~munos).

NN with an unpleasant challenge, and therefore, we are lim-
ited in this case to working with the smoothing term only. The
smooth value function obtained by setting for all iter-
ations (Fig. 5) has a small HJB residual and is quite immune to
the local divergence described previously. By letting decrease
from to , we end up with a “sharp” value function
(Fig. 6), without exposing ourselves to the danger of local mis-
extrapolation. A typical simulation usually takes about 100 iter-
ations to converge in about 10-min time. The value and policy of
Figs. 6 and 7, which were generated with an 800 weight NN, are
comparable to the nearly optimal discretization-based solutions
in [14], which are described by 66 000 parameters, and appear
to be far better than the NN solution therein.

C. Cart Pole Swing-Up

Last, we demonstrate our algorithm on the 4-D system known
as the cart-pole dynamical system in the RL community and

Fig. 7. Approximate optimal policy obtained for the car-on-the-hill problem.
Gray and white areas indicate the maximum and minimum control values, re-
spectively. Lines indicate some trajectories integrated using this policy. Com-
pare to [11, Fig. 4].

Fig. 8 Time course of the swing-up trajectory for the cart-pole dynamical
system, starting from the motionless hanging-down position in the center of the
track. The solid line denotes the angle of the pole and the dashed line denotes
the position of the cart. Note that the horizon time scale � is only 1.5 s, far
shorter than the total swing-up time.

the inverted-pendulum in the control community, as described
in [5] and elsewhere. It consists of a mass (the cart) on a 1-D
horizontal track to which another mass (the pole) is attached.
The pole swings freely under the effect of gravity. The con-
troller may apply force to the cart in order to achieve the goal of
swinging the pole up and then stabilizing it over the cart in the
center of the track. The volume of state space where we solve
the problem is 3 m
5 m/s 10 rad/s . We used a reward function of

, cart mass 1 kg, pole length 1
m, and pole mass 0.1 kg. The parameters of (8) were
3 N and , and the maximal horizon time scale was

1.5 s. The learning took place over 10 000 points gener-
ated quasi-uniformly across the entire volume, and another 500
points for clamping constraints at exit regions from the state
space. Here, we used both the increase of and the decrease
of . As described earlier, we first increased with a high con-
stant value of and then decreasing after had plateaued.
Using a 1049-weight NN, a typical simulation took about 250
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Fig. 9. Pineda weight matrix W for q = 11 neurons. Dark-gray squares in-
dicate feedback (recurrent) connections, unused here. Light-gray subdiagonal
squares indicate the maximally connected topology enabled by the formalism, of
these, indicated by white, are the weights of a regular two hidden-layer network
with two input neurons, a four-layer, a three-layer, and a scalar linear output,
which would usually be written as y(x) = A �(A �(A x+b )+b )+b .
As described in the text, the first neuron is the bias neuron with constant output
1. In all of our experiments, the topology used was the maximal topology minus
the weightsW , for which j + q + 1 < 2i.

iterations to converge in about 4 h. In Fig. 8, we show the so-
lution trajectory starting from the difficult position of the pole
hanging straight down in the middle of the track with no linear or
angular velocity. From this position, the controller must jiggle
the cart for a while to accumulate energy in the pole, then swing
the pole up and stabilize it around the origin. Quite remarkably,
the swing-up process requires almost 30 s to complete which is
considerably longer than the horizon time scale 1.5 s.

IV. CONCLUSION

In this paper, we have shown how using batch least squares
minimization of the squared HJB residual is a simple and ef-
fective method for solving nonlinear optimal control problems.
As a preliminary study, this paper can be extended in numerous
ways. The two methods proposed here can probably be put to
good use in many other numerical algorithms, and perhaps also
in an analytical context. The use of fixed, uniformly distributed
points over which the residual is minimized is an obvious place
for improvement. A more disciplined approach would be to use
some statistically sound method like Kalman filtering to sequen-
tially estimate the update vector at randomly generated
points, and accept an update only when the estimate reaches
some prescribed confidence threshold. Another approach would
be to use advanced stochastic methods like those proposed in
[33]. Recent advances in other types of function approximation
schemes for the solution of differential equations, such as sup-
port vector regression [34] seem promising. Our hope is that by
using these or other techniques, even more difficult nonlinear
optimal control problems, such as those ostensibly solved by
biological nervous systems, might soon become accessible.

APPENDIX I

The measurement and backpropagation w.r.t. differential
quantities in NNs is a rather esoteric art. First proposed in-
directly in [20], their description and formulation reappears,
apparently independently, every several years [5], [21], [22].
We believe these approximators can find good use in many
fields and, therefore, give their explicit formulation, up to the
second order. The Pineda feedforward topology, first described
in [25] and popularized by [35], is a generalization of classical
layered topologies and allows for a maximally connected feed-
forward topology. Indexing the neurons of the network in an
order allowing feedforward computation, i.e., the th neuron
depending only on neurons , we arrange the weights in
a strictly lower triangular matrix , the weight
denoting the connection from neuron to neuron .

A. Regular Forward Propagation

For an input vector , we fix the outputs of the first
neurons to be the augmented input vector

, set for , and then, pro-
gressively compute for

(9)

where is the input to the th neuron, and the nonlinearity.
Here, we assume the scalar output of the network to be the
value of the last neuron, with no squashing nonlinearity to avoid
bounding the outputs: . By making some
of the weights zero, or simply ignoring them in the calculations,
any topology can be easily implemented, e.g., the matrix of a
layered network will have a chain of blocks below the diagonal
(see Fig. 9).

B. Regular Backpropagation

When calculating , we first compute
in reverse order, i.e., , and then, for

(10)

and then

Note that in (9) we sum over the th row of , the weights into
neuron , and in (10), over the th column, the weights out of
neuron .

C. First-Order Differential Propagation

We use the superscript to denote ,
differentiation w.r.t. the th coordinate of the input vector.
The initial input to the derivative network
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is a vector of all zeros with 1 in the
th place. Then, is given by

The backpropagation of the quantities
is then given by first

setting and computing in reverse order

and then

D. Second-Order Differential Propagation

The initial input to the second-order derivative network
is now a vector of all zeros.

Then, is given by

The backpropagation of the quantities
is given by

setting and then

and then
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