
1

ReceiverBasedManagementof Low Bandwidth
AccessLinks

Neil T. Spring,MaureenChesire,Mark Berryman,VivekSahasranaman,
ThomasAndersonandBrianBershad
Submittedto IEEE INFOCOM2000

Abstract—In this paper, wedescribea receiver basedcon-
gestioncontrol policy that leveragesTCP flow control mech-
anismsto prioritize mixed traffic loads acrossaccesslinks.
We managequeuing at the accesslink to: (1) impr ove the
responsetime of interactive network applications; (2) re-
ducecongestion-relatedpacket losses;while (3) maintaining
high thr oughput for bulk-transfer applications. Our policy
controlsqueuelength by manipulating receivesocket buffer
sizes. We have implemented this solution in a dynamically
loadableLinux kernel module, and testedit over low band-
width links. Our approach yields a 7-fold impr ovement in
packet latency over an unmodified systemwhile maintain-
ing link utilization at 94%. In the commoncase,congestion-
related packet lossesat the accesslink can be eliminated.
Finally, by prioritizing short flows,we show that our system
reducesthe time to download a complexweb pageduring a
largebackground transfer by a factor of two.

I . INTRODUCTION

TohandleincreasingInternettraffic, network backbones
havebeenequippedwith highspeedlinks andfastrouters.
Overprovisioning backbonesalleviatescongestionwithin
the network, but also moves it to the edges: the access
links of sendersand receivers. Studieshave shown that
Internettraffic is asymmetric:mosttraffic is sentfrom the
server to theclient [1], [2], [3]. Whenaclient’saccesslink
(e.g.,modemor DSL connection)haslimited bandwidth,
this link is often the location of the network bottleneck.
Managingcontentionbetweenincomingtraffic flowsatthe
receiver’s accesslink is thefocusof thispaper.

Althoughaccesslinks aretypically usedto performone
operationat a time today, this will be lesstrue in the fu-
ture.Usersnaturallywantto continueto work duringlong
latency operations.For example,ausermightbrowseweb
pageswhile listeningto real-timestreamingaudio,down-
loada softwarepackagewhile participatingin a chatses-
sion with a friend, or download imagesfrom a mailbox
while checkingstockquotes. In eachof thesescenarios,
performancesuffers becauseof contention. The aggres-
sive download behavior of web browsersoften degrades

email:
�
nspring, maureen, markb, vivek, tom, bershad�

@cs.washington.edu

the quality of the streamingaudio by overwhelmingthe
link. A long runningdownloadintroducesqueuingdelay
that may make the chatsessionlessresponsive. Finally,
a new webconnectionmaynot beableto geta fair share
of bandwidthquickly if a long runningtransferhasfilled
theaccesslink’squeue.Wepresentoneaspectof thiscon-
tentionin Figure1: the responsetime of a telnetsession
becomesintolerableasa backgroundtransferaddsqueue-
ing delay.

20� 40� 60� 80� 100�
time (s)�0

1

2

3

4

5

te
ln

et
 la

te
nc

y
(s

)�

Fig. 1. Effectsof queuingdelayon thelatency of telnetpackets
during an ftp transferover a 28.8 modem. Dotted lines at
left andright representthestartandendof the ftp transfer.
The 4 seconddelay representssignificantbuffering at the
accesslink. Roundtrip time without queueingdelay was
0.16seconds.

It is in theclient’s interestto reducequeueingat theac-
cesslink in orderto solve the problemspresentedby the
scenariosdescribedabove. Furthermore,theclient hasall
the informationnecessaryto determinethe rateat which
packetsshouldbesentby theserver. Thebandwidthof the
link is known, becausetheusertypically paysfor it. The
receiveralsoknowsthenumberof connectionsthatareac-
tiveaswell astherelative importanceof differentstreams.
Whenthereareseveral concurrentconnectionsusingthe
receiver’s accesslink, it is naturalfor thereceiver to man-
agetheresultingcongestion,usingtheinsightbehindshar-
ing per-pathstatebetweenconnectionsasdescribedin [4]
and[5]. We believe thata cooperative congestioncontrol
strategy, wherethereceiver limits congestionat theaccess
link andtheserver limits congestionin therestof thenet-
work, is the mosteffective approach.Our receiver based
policy managescongestionby controllingthesizeof each
connection’s advertisedwindow.

While TCPis thedefaultprotocolfor implementingnet-

2

work services,it isnotwell suitedfor managingcontention
at a user’s accesslink. TCP congestioncontrol schemes
rely entirelyonparametersmaintainedby thesender(gen-
erally theserver),which is compelledto infer thenetwork
characteristics(bandwidth,sharing,queuecapacity)of the
receiver’s accesslink. Theonly signala TCPsenderuses
to infer thesecharacteristicsis packet loss.AlthoughTCP
will adjustto the accesslink after loss detection,it will
overestimatelink capacity, filling router buffers (poten-
tially causinglosson unrelatedlinks sharingthe router),
andwill notprioritizeamongflows.

We have implementedour receiver basedpolicy in the
context of a standardTCP/IPprotocol. Most importantly,
our policy hasbeenimplementedentirely within the re-
ceiver’s stack,andrequiresnoprotocolchanges.

The restof the paperis organizedas follows. In Sec-
tion II, wepresentanoverview of ourapproach.SectionIII
presentsourmodelof network performance,which is used
in SectionIV to defineareceiver basedcongestioncontrol
policy. In SectionV, we presenta summaryof observed
performanceimprovements. In SectionVI, we describe
existing solutionsthat shareour goals. Finally, we con-
cludein SectionVII.

I I . OVERVIEW

The primary goal of our work is to reducethe re-
sponsetime of interactive applicationscontendingwith
bulk-transferflows. Responsetimerepresentsuserpercep-
tible performance,andcontentionfrom backgroundtrans-
fers is common.We hopethatby reducingresponsetime,
theoverall utility of theseaccesslinks is improved.

To realize this goal, we leverageTCP’s flow control
mechanismto limit the size of the sender’s sliding win-
dow. Thiswindow isanabstractionfor themaximumnum-
berof bytesa senderis allowedto transmitbeforegetting
an acknowledgmentfrom the receiver. Threeparameters
control the size of this window: the congestionwindow
(cwnd), thesender’s buffer size,andthe receiver’s adver-
tised window. At any given time, the smallestof these
parametersdefinesthesizeof thewindow. The cwnd pa-
rameterreflectsthesender’sestimateof thecapacityof the
network. That is, ���	��
��� is rateat which the senderthinks
the network canabsorbtraffic. The receiver’s advertised
window is includedin eachacknowledgmentreturnedto
thesender, andcorrespondsto theamountof buffer space
availableto receive additionaldata. For all but very high
bandwidthconnections,the sizeof the sliding window is
usuallyboundby thecwnd parameter. However, areceiver
can limit the sizeof the window by allocatinga smaller
buffer.

The fundamentalideabehindour solutionis to control

the receiver’s advertisedwindow of eachopensocket by
manipulatingits receive buffer size. At a high level, we
shrink the receive buffers of long lived trasfersto reduce
thequeueingdelayexperiencedby interactive applications
andincreasethethroughputseenby shorttransfers.Each
flow receivesa differentallocationbasedon its roundtrip
time andrelative priority. Our approachis simpleandhas
severalbeneficialproperties:
Managesqueuingdelayexperiencedby incoming traf-

fic: By reducingthe sizeof buffers allocatedto connec-
tions, we have the ability to limit the numberof packets
queuedat the bottlenecklink, control the compositionof
the queue,and boundqueuingdelay. This is useful for
the following reasons.First, it allows us to reducethere-
sponsetime observed by usersof interactive network ap-
plications.Second,controllingthequeueenablesustopre-
emptthepacket lossthatoccurswhenTCP’sadaptivecon-
gestioncontrolalgorithmoverestimatesthecapacityof the
network. Third, a shortqueueallows new connectionsto
progressthroughconnectionsetupandslow startquickly
andachieve a largeshareof thelink’s bandwidth.
Preserves link utilization: By allocatingbulk-transfer

connectionsbuffer sizesequivalentto thebandwidth-delay
product,wehave theability to reducequeuingwithoutad-
verselyimpactingthroughputperformance.
Adapts to changingworkloads: Sincewe candynam-

ically adjustbuffer sizesand changethe size of the ad-
vertisedwindow in eachacknowledgment,wecanquickly
respondto changesin workloads.In latersections,we de-
scribethealgorithmsusedto guidebuffer allocationdeci-
sions.
Deployseasily: We believe our solutionhasfewer barri-

ersfor acceptancebecauseit is terminal,requiresnomodi-
ficationsto thenetwork, serveror applicationsoftwareand
requiresnosupportfrom aserviceprovider.

I I I . MODELLING LATENCY AND THROUGHPUT OF

LOW BANDWIDTH L INKS

To controlqueueingby adjustingreceivebuffer sizesef-
fectively, we needto relatea connection’s window sizeto
the lengthof the queueat the bottlenecklink. This rela-
tionshipdependson two factors: the connection’s round
trip time, andits shareof throughput.In this section,we
describea simple,steady-statemodelthat illustrateshow
thesefactorsinfluencebuffer size selection. The model
assumesconnectionsarereceiver-window limited andthat
significantqueueingoccursonly at the accesslink. The
effectsof lossandvariancein network delayareignored.
While this model is highly simplified, it is sufficient for
our purposessincewe focuson the performanceof low-
bandwidthlinks. More generalmodelsof TCP perfor-

3

mancearepresentedin [6] and[7].
In the absenceof queueingand loss, the window size

(i.e., numberof bytessentwithout waiting for acknowl-
edgments)necessaryto keepa network link busy is equal
to theproductof theconnection’s bandwidth(���������) and
its round trip propagationdelay (������� �"!#! �). If more
bytesaresent,thoseadditionalpacketsarequeuedin the
network, typically at the bottlenecklink. Restatedalge-
braically, the numberof packets in the network for each
connection$ in steadystateis equalto thenumberof pack-
etswaitingin thequeue,plusthebandwidthdelayproduct.% $'&)(+* % �,$.-+�/�10324�5�7698��,�:� ��;<�=�5�����?>@������� �"!#!A�
The packets making up the first term increasequeueing
delay, while the packets making up the secondpreserve
throughput.

Thequeueandlink arebothsharedbetweenall B con-
nectionstransferringdata:

2C�5�76/8��/�D�,EGF�EGHJIK0 LMDN � N5O 2C�5�+6/8��,�:� �
�=�5���:I �QP�RTS �������:HJU�EWV�HJI	0 LMDN � N5O ���������

�=�5���:I �QP�R is the maximum bandwidth of the link and�=�5���:HJU�EWV HXI is its deliveredthroughput. The challengeis
to globallychooseall % $'&)(+* % �,$.-+�/� sothat �������:HJU�EWV�HJI	Y�=�5���:I �QP�R and 2C�5�76/8��/�D�,EGF�EGHXIAY[Z .

A. Reducing Latency

For interactive applications,userresponsetimedepends
primarily on the latency experiencedby thatapplication’s
packets. This latency is thesumof propagationdelayand
queueingdelay:

�"!#! � 0[���7���,�"!#! � ;\2](+�,^_�+`
The delayassociatedwith queuedpackets is equalto the
sizeof thosepacketsdividedby thelink’s throughput:

2](+� ^a�+`�0 24�5�7698��,�:� EGF�EGHJI?>@bc�76/8��/�d� $.-e��=�5���:I �QP�R
The way to decrease 2 (+�,^_�+` is by reducing2f�5�7698��,�:� EGF�EGHJI , which is in turn decreasedby reducing% $.&)(e* % � $.-e� s.

B. Preserving Throughput

Theactualthroughputdeliveredby thelink is limited by
two factors:thespeedof thelink, �������:I �QPgR , andtheratio
of thenumberof packetsin flight to theroundtrip time of

a connection.The secondfactorreflectsthat at mostone
window size worth of datacan be transferredper round
trip, and that eachround trip, when the link is underuti-
lized,experiencesnoqueueingdelay.

�������:HJU'EWV HJIA0[hji+B<ka�������:I �QPgRel LMDN � N5O
% $.&)(e* % � $.-e�/�������� �"!#! �\m

To make certain that all available bandwidthis being
consumed,that �������:HJU'EWV HJIn0f�=���5��I �oPgR , it is desirableto
queuea smallnumberof extra packets.Queueingalsoen-
suresthat the link remainsbusywhile thesenderoperates
with a reducedwindow sizeduring lossdetectionandre-
covery.

IV. RECEIVER WINDOW CONTROL STRATEGY

The modelsdecribedabove guideus in improving re-
sponsetime on a low-bandwidthlink by manipulatingan
individual receiver’s advertisedwindow. TCPdetermines
the advertisedwindow basedon the spaceavailable in a
socket’s receivebuffer, which is allocatedby theoperating
system.In thissection,wedescribeapolicy for settingthe
receive buffer sizesof all openconnectionsthatprioritizes
short,interactive flows to reduceresponsetime.

Implementing an adaptive buffer allocation policy
presentsseveral challenges. First, we must definehow
flows areclassified. We classifyflows to enableprioriti-
zationof interactive andshort-lived flows over long-lived
bulk-transferflows. Second,wemustdecidewhenthepol-
icy makesbuffer allocationdecisions.Finally, wemustde-
terminetheamountof buffer spacethatshouldbeallocated
to flowsof eachclassto reduceresponsetime. Weaddress
eachof theseissuesin greaterdetail in thefollowing sec-
tions.

We valuedapplication-transparency in our design,and
avoidedintroducingadditionalprogramminginterfacesto
supportapplication-specificfunctionality. Specifically, we
do not considerreal-timetraffic, which would likely re-
quireaninterfacefor specifyingreal-timerequirements.In
addition,we do not supportapplicationdictatedpriorities,
like thosesupportedby WebTP[8]. Extensionsto support
thesefeaturesarereasonablystraightforward.

A. Classifying Flows

Classificationallows us to expresspreferencesthat in-
fluencehow limited link resourcesarepartitionedbetween
competingflows. Sincethe degreeof contentionfor the
link changesasconnectionsarecreatedor destroyed,and
sincethe characteristicsof a flow may vary over time, a
dynamicclassificationschemeis necessary.

4

Weclassifyflows into four priority classes:
i) Interacti ve flows are are sensitive to latency perfor-
mance,but do not careaboutthroughput(e.g. a chatses-
sion).
ii) Short-lived bulk-transfer flows aresensitive to both
latency and throughputperformance(e.g., a HTTP con-
nectiondownloadingasmallwebpage.)
iii) Long-lived bulk-transfer flows are throughput-
intensive (e.g.,anftp downloadof a largeimagefile)
iv) Idle connectionsneithersendnor receive data.

Connectionsareinitially classifiedby port numberand
then by their observed behavior. This quickly separates
well known applications,likeftp andtelnet,into long-lived
bulk-transferandinteractive classes,respectively.

Thepolicy classifiesflows dynamicallyby maintaining
modestadditionalconnectionstate. When an unknown
connectionis opened,it is consideredinteractive. By keep-
ing track of the numberof bytesreceived by a connec-
tion since its last sent packet, we identify bulk-transfer
flows. Oncea connectionreceivesat least prqtsvuxw,y�z�{ , cur-
rently 2KB, it is classifiedas a short-lived bulk-transfer
flow. Whentheamountof datareceivedexceedsprqXs}|~yx��� ,
currently8KB, theconnectionbecomesa long-livedbulk-
transferflow. Idle connectionsarediscoveredby monitor-
ing thetimeelapsedsinceapacket waslastreceived.This
thresholdis currently30seconds.

B. Scheduling Buffer Allocation Decisions

When a connectionis established,destroyed or re-
classified,receive buffer sizesfor all active socketsarere-
calculated.

Buffer allocationchangesareappliedconservatively to
promotestability. The Linux implementationof TCP al-
readyclosesthewindow slowly asnew packetsfill it. That
is, it doesnot move the right edgeof the sliding window
to the left, asspecifiedin [9].1 Our policy increasesthe
buffer sizeon receiptof eachpacket until thetargetsizeis
reached,similar to slow start.

C. Dynamic Buffer Allocation

Thesizeof thereceive buffer allocatedto a connection
dependsontheflow’spriority andthedegreeof contention
betweenexisting flows. Interactive flows have thehighest
priority. Short-livedbulk-transferflows arenext, followed
by long-lived bulk-transferflows. We give idle flows the
leastpriority. This prioritization schemeis influencedby
processschedulingalgorithmsin operatingsystemsthat
improve responsetime by favoring short jobs over long
runningprocesses.To avoid starvation,eachconnectionis�

Thisdiscrouragedbehavior is alsocalled“shrinking thewindow.”

guaranteedaminimumbuffer sizeequivalentto oneMTU
(i.e., one packet). In this section,we describehow the
policy determinesbuffer sizeallocationsfor flows in each
class,in orderof increasingpriority.

Therearetwo principlesthat guidedecisionsof buffer
allocations. First, we want to control the length of the
queueat theupstreamrouter. Second,we wantto allocate
bandwidthby giving largerbuffersto shortlivedflows.

Therearetwo target queuelengthsour policy attempts
to maintainat the accesslink. First is �����/�A�e�D������|��J� ,
which representsthequeueingdelaytheuseris willing to
tolerateto preserve throughput.Whenthereareinteractive
flows, this valuelimits thequeuelength.An emptyqueue
makesit harderfor the long livedflow to achieve the full
throughputof thelink, andthistargetvalueallowstheuser
to controlthebalancebetweenlatency andthroughputpri-
oritization.

If thereareno interactive flows, or if �����,�A�e�:�5���x|~���
is larger, the queuelengthis limited by thesecondtarget
queuelength, �����,�A�e�D��� y:u�u . This is the target lengthto
avoid queueoverflow andlossattheaccesslink. In thefor-
mulaspresentedin thissection,theapplicabletargetqueue
lengthis presentedas �\���/�A�e�D��� ��z:�J�x{ .
C.1 Idle Connections

Idle connectionsreceive one-packet buffers. This small
buffer sizeis allocatedto avoid unpredictablebehavior in
casethe connection’s classificationchanges.If the con-
nectionbecomesactive, thepolicy canincreasetheadver-
tisedwindow to theappropriatesizewithin oneroundtrip
time,while theconnectionis still in slow-start.By detect-
ing connectionsthatbecomeidle, we canredistribute link
resourcesto otherflowsandimprove their performance.

C.2 Long-LivedBulk-TransferFlows

Thereare two casesto considerwhenselectingbuffer
sizesfor long livedflows. Whenthereareno higherprior-
ity flows, link resourcesaredividedequally. Whenhigher
priority flows exist, buffer allocationis limited to improve
theresponsetimeof thehigherpriority flows. Thesecases
arepresentedin moredetailbelow.

Case1: No Short-lived Connections.In the absenceof
short-lived flows, thepolicy’s goal is to ensurethat long-
livedflowsusethefull bandwidthof thelink, while bound-
ing thequeuelengthto �j���,�A�e�D��� �Jz��X�.{ . Thebuffer size
allocatedto eachlong-lived connection� is thendefined
as:�J�7�J�

�/��� �.�e�,�) (1)¡�¢ � �:| � �g£¥¤@¦�§���� p"¨#¨	��©ª�c���/�A�+�:� � ��z:�J�x{«T¬_ |~£

5

where ®°¯_± ²~³ correspondsto the numberof bulk-transfer
flowsin thesystem.Thisallocationapproximatesanequal
shareof the throughputandbuffer spaceof the link, for
connectionsof varying ´�µ�¶�· ¸"¹#¹ . In SectionIV-D we
describehow parametervaluesin this equationaredeter-
mined.

Case2: Contentionwith Short-livedFlows.To increasethe
bandwidthavailableto short-livedflows,wechooseto sac-
rifice the throughputof long-lived flows. Eachlong-lived
flow gets the minimum buffer allocationof one packet.
Although this may severely impactthe throughputof the
long-lived connection,the long lived transferis not throt-
tled for long: theshort-lived connectionwill eithertermi-
nateor quickly bedemotedasit getsservice.

C.3 Short-livedbulk-transferflows

When there are no interactive flows contendingwith
short-lived flows, each connection’s buffer size is de-
termined using equation 2 with º¼»�·,½A¾e¿DÀ�Á5ÂJÃ�ÄXÅ.ÆÈÇº »�·/½A¾e¿DÀ�É7ÊDËxË . When interactive flows are intro-
duced, the policy reducesbuffer sizes further, usingº]»�·,½A¾e¿DÀ�Á5ÂJÃ�ÄXÅ.ÆdÇ3º]»�·/½A¾e¿DÀ�Ì Å ² ÂJÍ .
C.4 Interactive flows

Interactiveflowstypically receiveafew smallpacketsat
a timeandthereforedonotconsumemuchbandwidth.For
this reason,thesizeof thebuffer allocatedto this typeof
flow haslessimportance.To guardagainstthecasewhere
an interactive flow becomesa bulk-transferflow, we allo-
catethesamebuffer sizeasotherbulk-transferflows,using
equation2 above.

D. Determining Parameters

Valuesfor parametersusedby the policy aregenerally
suppliedby the user, but could easilybe determineddy-
namically. In this subsection,we describehow we cur-
rently set theseparametersand strategies that could be
usedto dynamicallyestimatethem.Î�Ï�Ð ¿:²ÒÑQÓg³ , thebandwidthof theaccesslink, is currently
a user-specifiedparameter. Several tools are available
for dynamicallymeasuringlink throughput[10], [11], al-
thoughthereceiver couldsimplyobserve therateatwhich
packetsarereceived.ºÔ»�·,½A¾e¿:À�É+ÊDË�Ë is set to onehalf the sizeof the queue
of buffers available at the accesslink. We estimatethe
availablequeuelengthby notinghow many consecutively
sentUDP packetsarereceivedfrom a hoston theInternet
closeto theaccesslink. A usefulestimatecouldbederived
passively from the patternof lossduring TCP slow start.
Toolslike thosedescribedin [12], [13] couldalsobeused.

ºÕ»�·/½A¾e¿DÀ�Ì Å ² ÂJÍ is definedby a user-supplied value.
Thisvalueexpressesmaximumincreasein latency theuser
is willing to toleratedueto packets queuedat the access
link. Wehaveconfiguredthis lengthto correspondto a0.4
seconddelay. A reasonablevaluefor this parametermay
decreasewith increasedlink speed.®°¯_± ²�³ , the total number of bulk-transfer flows, is a
countermaintainedby thepolicy.¸rÖt× Ë.Ø ÊxÃ:Æ and ¸rÖX×}² Ê Ó Ä aresetto 2KB and8 KB, respec-
tively, but couldincreasewith

Î=Ï5Ð ¿:²ÒÑQÓ�³ .
Gettinganaccuratevaluefor ´�µ�¶�· ¸"¹#¹ Ñ is difficult be-

causeround trip time measurementsmaintainedby TCP
variablesareaggregatedinto a smoothedroundtrip time
estimate,srtt, which includesqueueingdelay. Our policy
estimatespropagationdelayusingtheminimumroundtrip
time observed. This is the sameapproachusedin TCP
Vegas[14].

Althoughthereareseveralimportantparametersusedby
the policy, they arereasonablyeasyto derive. Thosepa-
rametersthatreflectlink characteristicscanbedetermined
dynamicallyusingsimpletools. The effectivenessof the
systemdoesnot seemto be sensitive to the higher-level
parameterslike ºÙ»�·,½A¾e¿DÀ�Ì Å ² Â�Í and ¸rÖX× ËxØ,Ê�Ã:Æ . Automati-
cally determiningappropriatevaluesfor theseparameters
is thesubjectof futurework.

V. RESULTS

In this section,we evaluatetheeffectivenessof our ap-
proach.Eachof theseperformancemeasurementsdemon-
stratesan aspectof our goal to improve responsetime
while maintaininghigh throughput.Specifically, we show
that:Ú

thelatency of aninteractive application(telnet)compet-
ing with a backgroundtransferover a modemcanbe re-
ducedfrom over4 secondsto 0.6seconds,with only a4%
sacrificein throughput;Ú

even whentransferringfrom a distanthostover a vari-
able network, latency can be controlled, which demon-
stratesourability to adaptto changingworkloads;Ú

the time to downloada webpagewhile runninga large
backgroundtransfercanbereducedby a factorof two;Ú

in thecommoncase,congestionrelatedpacket lossesat
theaccesslink canbeeliminated.

A. Experimental Setup

In eachexperiment,our client machinewasa Pentium
running a stableversion of the Linux operatingsystem
(2.2.7).Thesystemwasmodifiedto includeakernelmod-
ule with animplementationof our congestioncontrolpol-
icy. For the first threeexperimentswe present,this ma-
chineis connectedto theInternetvia a 28.8Kbpsmodem

6

0
Û

20
Û

40
Û

60
Û

80
Û

time(s)Ü0

1

2

3

4

T
hr

ou
gh

pu
t (

K
B

/s
)Ý 0

Û
20
Û

40
Û

60
Û

80
Û0

1

2

3

4

5

te
ln

et
 la

te
nc

y
(s

)Þ

(a)unmodifiedsystem

0
Û

20
Û

40
Û

60
Û

80
Û

time(s)Ü0

1

2

3

4

T
hr

ou
gh

pu
t (

K
B

/s
)Ý 0

Û
20
Û

40
Û

60
Û

80
Û0

1

2

3

4

5

te
ln

et
 la

te
nc

y
(s

)Þ

(b) receivermanaged

Fig. 2. Latency for telnetpacketssentduring an FTP down-
loadof 240KBdownload.In (a),thedurationof thetransfer
was73 seconds,for a throughputof 3.3KB/s. For (b), 76
seconds,for a throughputof 3.1KB/s. Thelargernumberof
pointsin thelowergraphis dueto Nagle’salgorithm.

to theUniversityof Washingtondial-in modempool. For
thelasttwo, asimilarmachineis connectedthroughDum-
mynet[15] to simulatelinks of varyingspeed.

In almostall experiments,weexecuteftp transfersfrom
thecomputersciencedepartment’s anonymousftp server.
For thedistanthostscenario,wetransferfrom anftp server
in Australia.

The modem’s PPPsoftware was configuredto usean
MTU of 576bytes.This is smallerthanthedefault MTU,
andwaschosenbasedon initial experimentsanda recom-
mendationpresentedin [16]. We also usedthis smaller
MTU for theotherwiseunmodifiedsystem.

B. The Classic Scenario

The scenariothat served as our early motivation con-
sistsof a telnetsessionrunningsimultaneouslywith asin-
gle ftp download. An Expectscript simulatesa usertyp-

ing commandsin the telnetsession.We usethis scenario
to show that: (1) the default policy for assigningreceive
buffer sizesprovidespoorlatency performanceto interac-
tive applications;and (2) a smallerwindow is sufficient
to saturatethe link, with muchlessqueueing.To demon-
stratethis,weruntheexperimentusingboththeOSdefault
buffer sizeandour congestioncontrol policy. The telnet
latency for eachcaseis graphedin Figure2.

For this scenario, the Linux default receive buffer
(32KB) is far toolarge,andtheconnectionis actuallysend
buffer limited to 16KB.With amoremodestreceivebuffer
of 8KB, thedefault for Windows98andNT, thelatency in
Figure2(a)couldbeexpectedto dropto around2 seconds
from 4.

We notice in Figure2(b) that telnet latency is reduced
to 0.6 seconds(ß�à�á/âAãeäDå�æ�ç�è�éJê"ë]ì�í7î�á,ï"ðñð) from four
secondsby restrictingthesizeof thebuffer allocatedto the
ftp dataconnection.Ftp throughputis not affectedsignif-
icantly, confirmingthat theexcessreceiver buffer sizeac-
tually doesnot improve throughputperformance,but only
addsqueueingdelay.

An interestingobservation is thatFigure2(a)hasfewer
datapointsthanFigure2(b). This is an effect of Nagel’s
algorithm [17]. Nagel’s algorithm restricts the number
of small,unacknowledgedpacketsin thenetwork for any
connectionto one,to preventconnectionsfrom sendinga
largenumberof verysmallpacketsin succession(aswould
telnet for every keystroke). Becauseof this restriction,a
new telnetpacket entersthenetwork only whenits prede-
cessorhasbeenacknowledged.

C. Large RTT

Connectionswith a large round trip time are handled
gracefully by our system. To demonstratethis, we sim-
ulate a telnet sessionin contentionwith an ftp down-
load. The backgroundftp transferin this casewasfrom
ftp.cc.monash.edu.auwith a ì�í7î�á,ï"ð#ð of 560ms(370ms
acrosstheInternet,andaround190msfrom themodem).
Figure3 compareslatency andthroughputmeasurements
obtainedfrom anunmodifiedsystemandasystemrunning
thereceiver basedpolicy.

D. The Web

Prioritizationof short-lived bulk transferflows enables
a reductionin webaccessresponsetime.

We conductedan experiment to test the improve-
ment in response time downloading complex web
pages. While downloading a large (970 KB) file,
we loaded a locally mirrored copy of the contentsof
http://www.amazon.com/usingNetscapeCommu-
nicator4.5. Thebrowsercachewasempty, andwe do not

7

0
Û

20
Û

40
Û

60
Û

time(s)Ü0

1

2

3

4

T
hr

ou
gh

pu
t (

K
B

/s
)Ý 0

Û
20
Û

40
Û

60
Û0

1

2

3

4

5

te
ln

et
 la

te
nc

y
(s

)Þ

(a)unmodifiedsystem

0
Û

20
Û

40
Û

60
Û

time(s)Ü0

1

2

3

4

T
hr

ou
gh

pu
t (

K
B

/s
)Ý 0

Û
20
Û

40
Û

60
Û0

1

2

3

4

5

te
ln

et
 la

te
nc

y
(s

)Þ

(b) receivermanaged

Fig. 3. Latency for telnetpacketsduring oneFTP download
from Australia. The 106KB download took (a) 38.6 sec-
onds,(b)38.8secondsto complete,atanaveragethroughput
of (a)2.7KB/s (b) 2.7KB/s.

considerthetime taken for namelookups.Theserver ran
Microsoft IIS on Windows NT 4.0. The throughputob-
served by the backgroundtransfer, alongwith a cumula-
tive representationof thenumberof objectsfrom theweb
pagedownloadedover time,areshown in Figure4.

Thewebrequeston thesystemgovernedby our policy
is ableto consumemoreinstantaneousbandwidth.In the
lower graphsof Figure4, we show the numberof bytes
transferredby ftp. Thegraphonly shows thefirst 130sec-
ondsof the970KBtransfer. Noticethattheftp clientunder
our policy sacrificesmorebandwidthwhile thewebtrans-
fer completes.This differencein performanceis typical
whenthereis limited queuespaceat theaccesslink.

E. Congestion Related Losses

In this section,we demonstratethe performanceof the
congestionavoidancepolicy in the absenceof interactive
traffic. Theexperimentalsetupconsistsof an ADSL link

0
Û

50
Û

100
Û

Time (s)Ü
1

2

3

4

T
hr

ou
gh

pu
t (

K
B

/s
)Ý

0
Û

50
Û

100
Û0

5

10

15

20

C
um

ul
at

iv
e

ob
je

ct
s

re
ce

iv
ed

ò

(a)unmodifiedsystem

0
Û

50
Û

100
Û

Time (s)Ü
1

2

3

4

T
hr

ou
gh

pu
t (

K
B

/s
)Ý

0
Û

50
Û

100
Û0

5

10

15

20

C
um

ul
at

iv
e

ob
je

ct
s

re
ce

iv
ed

ò

(b) receivermanaged

Fig. 4. Web downloadin contentionwith a long runningftp.
Thedottedlinesrepresentthestartandendof thewebdown-
load,andthe squarerepresentsthe completionof the main
page. The web transfercompletedin (a) 121 seconds,(b)
40 seconds.The970KB backgroundtransfer, shown in the
lowergraphs,completedin (a) 5 minutes,21 seconds,(b) 5
minutes32 seconds.

simulatedusingtheDummynetpackagefor FreeBSD.The
downlink bandwidthis 512Kbits/s,and the simulatedla-
tency of the link is 22ms. The maximumqueuecapac-
ity wassetto 10, 536bytepackets. We set órô�õ/öA÷eøDù�ú7ûDüxü
in the policy to 6 packets. For this experiment,we run
two concurrentfile transfers,thesecondof whichis started
50msafter thefirst. This separationgivesthefirst a little
timeto getstarted,but notenoughtimeto fill thequeue.In
theunmodifiedsystem,thesecondtransferwouldstarve if
it startswhenthereis a full queuebecauseof synchroniza-
tion effects[18].

In Figure5, we show the cumulative numberof bytes
transferredand the queuelengthat the simulatedADSL
link over time for both the default systemand a sys-
tem managedby our policy, respectively. Beneaththe
queuelengthgraph,diamondsymbolsindicatelossesdue

8

0
ý

5
þ

10
ý

15
þ

time (s)ÿ0
2
4
6
8

10

qu
eu

e
le

ng
th

0
ý

5
þ

10
ý

15
þ0

100

200

300

400

F
T

P
 K

B
 r

ec
ei

ve
d

(a)unmodifiedsystem

0
ý

5
þ

10
ý

15
þ

time (s)ÿ0
2
4
6
8

10

qu
eu

e
le

ng
th

0
ý

5
þ

10
ý

15
þ0

100

200

300

400

F
T

P
 K

B
 r

ec
ei

ve
d

(b) receivermanaged

Fig.5. Top: Cumulativebytestransferredby two ftp’sunderthe
default (congestionlimited) system.Bottom: Queuelength
at the bottlenecklink. Diamondsbeneaththe graphrepre-
sentcongestionlosses.Therewereno congestionlossesfor
thereceivermanagedsystem.

to queueoverflow.

Threethingsareapparentin Figure5b. First, thenum-
berof packetsqueuedremainsstableat around6, demon-
stratingthat the connectionsarereceiver window limited
by our policy. The variation is likely the effect of de-
layedacknowledgments.Second,thereareno congestion
relatedlosses,even beforethe connectionsreachstabil-
ity. Third, the transfershave reasonablyfair throughput.
Eachof theserepresentspotentialperformanceimprove-
ment.Althoughthetime to downloadbothfiles is similar,
server performanceis improvedbecauseresourcesarenot
wastedon theretransmissionof lostpackets.

VI. RELATED WORK

There is extensive literature on managing network
queueing.We presentthosewith similar goals: to reduce
queueingandprioritizeflows. Weseparatethesequeueing
strategiesby thegoalsthey address.

A. Queue Reduction

RandomEarly Detection(RED) [18] gateways reduce
queueingby monitoringtheaveragequeuelengthandran-
domly selectingpackets to be droppedbeforethe queue
becomesfull. Packet lossessignalthesenderto decrease
thesendrate.This reducesqueueoccupancy, andthusde-
lay. Althoughclever, RED is not enabledon many routers
ataccesslinks.

TCPVegas[14] sendersreducequeueingby monitoring
the rateat which packetsareacceptedby thesender, and
usinga congestionwindow sizedslightly larger than the
bandwidthdelayproduct.Unfortunately, Vegasis aserver-
sidesolution,so its advantagescanonly berealizedat the
accesslink if it is deployedon all servers. Our solutionis
similar in spirit, but receiverbasedfor explicit controlover
theaccesslink.

B. Prioritized Flows

In Weighted Fair Queueing[19] (WFQ) and related
queuemanagementschemes,packets from eachflow are
queuedseparately. Eachqueueis given a weight, corre-
spondingto the shareof bandwidththe router will allo-
cateto it. Interactive flowsexperiencelesscontention.Al-
thoughWFQ would solve mostof theissuesraisedin this
paper, it is notwidely deployedbecauseof implementation
complexity.

We also sharemotivation with Packeteer[20], which
seeksto “condition” incomingtraffic bydelayingacknowl-
edgementsreturnedto servers.Packeteertargetsabusiness
environment whereseveral userssharea mediumband-
width (T1 or T3) link, andusesspecializedhardware.

WebTP [8] is an alternative protocol to TCP specifi-
cally designedfor web traffic. WebTPsharesour goalof
supportingthe prioritization of incoming traffic. WebTP
achieves this by giving the browser applicationexplicit
control over which packets to download, and the oppor-
tunity to acceptout of orderdatadelivery. WebTPis de-
signedspecificallyfor webtraffic andwould requiremod-
ification bothto clientsandserversor widespreaddeploy-
mentof WebTPproxies.

C. Buffer Tuning for Performance

Semke, Mahdavi, and Mathis [21] developeda mech-
anismthat tunessenderbuffer sizesto improve through-

9

put on high bandwidthnetworks. Allocating a sendbuffer
that is too smallunderutilizesa link, while allocatingone
too largeconsumesvaluableserver memorywhichcanul-
timately impactthe throughputwhenseveral connections
are active. Our work is complementaryto theirs: while
they managecontentionbetweenoutgoingflowsfor shared
memorybuffers,wemanagecontentionbetweenincoming
flows for sharedqueuespaceat theaccesslink.

D. Summary

Although well developedand studied,thesestrategies
arenot widely deployed andavailablefor usetoday. Our
receiver basedsolutioncanbe installedby the client and
providesthe relevant benefitswithout relying on ISP’s or
webservers.

VII . CONCLUSIONS AND FUTURE WORK

In this paper, we have shown that there is potential
to reduceinteractive delay in the presenceof contention
on a dedicated,low-bandwidthlink. We have developed
a mechanismand policy for manipulatingreceive buffer
sizesto improve performance,and shown that it can be
appliedin avarietyof scenarios,includingwebbrowsing.

Our work is preliminary, in that it doesnot addressap-
plication level priority control or real time constraints.It
would besimpleto allow anapplicationto dictatethepri-
ority classof eachof its connections,so that the system
could leverageapplicationspecificknowledge. We pro-
vide a form of real-timelatency guarantee,in theform of���������
	�����������

, but our systemwasnot designedto ad-
dressgeneralreal-timeissues.

Theapplicabilityof this systemincreaseswith thecur-
rent trendtoward increasingdefault buffer sizesto handle
high bandwidthnetworks. (finishoff thispoint or drop)

Finally, whentheaccesslink is a sharedmedium,such
as a cable modem, contentionfrom traffic received by
otherusersis significant. Sinceour systemadoptssome
of thestrategiesof TCPVegas,it is likely thatsimilar un-
fairnesswill result,andaggressive receivers will tend to
receive an unfair shareof bandwidth. Isolatingreceivers,
eitherby queueingeachreceiver’s packet separatelyor re-
ducing the degreeof sharingon a segment,would both
helpindividual receiversin thepresenceof contentionand
enablereceiver basedprioritization.

REFERENCES

[1] Kevin Thompson,Gregory J. Miller, andRick Wilder, “Wide-
areainternettraffic patternsandcharacteristics,” IEEE Network,
vol. 11,no.6, pp.10–23,Nov. 1997.

[2] K. Claffy, Greg Miller, andKevin Thompson,“The natureof the
beast:Recenttraffic measurementsfrom an Internetbackbone,”
in Proceedings of INET ’98, July1998.

[3] CAIDA, “Traffic workload overview,” �������������! � � #"%$�&�'�()&*"+-,�. ��/)0�& ,�1 �-2)3 +)�-�4$���5�(��#"6���8793 , June1999.
[4] JoeTouch, “TCP control block interdependence,” April 1997,

RFC2140.
[5] Hari Balakrishnan,Hariharan Rahul, and Srinivasan Seshan,

“An integratedcongestionmanagementarchitecturefor internet
hosts,” in Proceedings of ACM SIGCOMM’99, September1999.

[6] Matthew Mathis, Jeffrey Semke, JamshidMahdavi, andT. Ott,
“The macroscopicbehavior of theTCPcongestionavoidanceal-
gorithm,” Computer Communication Review, July1997.

[7] JitendraPadhye,Victor Firoiu, Don Towsley, and Jim Kurose,
“Modeling TCP throughput: A simple model and its empirical
validation,” Computer Communications Review, vol. 28, no. 4,
October1998,a publicationof ACM SIGCOMM.

[8] RajarshiGupta,Mike Chen,StevenMcCanne,andJeanWalrand,
“WebTP:A receiver-drivenwebtransportprotocol,” in Proceed-
ings of IEEE INFOCOM’99, May 1999.

[9] JonPostelet al., “Transmissioncontrol protocolspecification,”
1981, ARPA Working GroupRequestsfor CommentDDN Net-
work Information Center, SRI International,Menlo Park, CA,
RFC-793.

[10] RobertL. CarterandMark E. Crovella, “Dynamic server selec-
tion using bandwidthprobing in wide-areanetworks,” in Pro-
ceedings of IEEE INFOCOM’97, 1997.

[11] Van Jacobson, “Pathchar,” �������#������ � � #"%$-&�'!()&*" +-,�. �: &-���4$��4& , � .
[12] Matthew Mathis, “Windowed ping: an IP layerperformancedi-

agnostic,” in Proceedings of of INET’94/JENC5, June1994.
[13] Matthew Mathis, “Diagnosinginternetcongestionwith a trans-

port layer performancetool,” in Proceedings of INET’96, June
1996.

[14] LawrenceBrakmoandLarry Peterson,“TCP Vegas:Endto end
congestionavoidanceon a global internet,” IEEE Journal on Se-
lected Areas in Communication, vol. 13, no. 8, pp. 1465–1480,
October1995.

[15] Luigi Rizzo, “Dummynet: a simpleapproachto the evaluation
of network protocols,” ACM Computer Communication Review,
vol. 27,no.1, pp.31–41,January1997.

[16] VanJacobson,“CompressingTCP/IPheadersfor low-speedserial
links,” February1990,RFC1144.

[17] JohnNagel, “Congestioncontrol in IP/TCPinternetworks,” Jan-
uary1984,RFC896.

[18] SallyFloydandVanJacobson,“Randomearlydetectiongateways
for congestionavoidance,” IEEE/ACM Transactions on Network-
ing, vol. 1, no.4, pp.397–413,August1993.

[19] Alan Demers,SrinivasanKeshav, andScottShenker, “Analysis
andsimulationof a fair queuingalgorithm,” in Proceedings of
ACM SIGCOMM, 1989,pp.1–12.

[20] Packeteer, “Technologyfor intelligentbandwidthmeasurement,”
�������������! � � #"6�4&�$�;40���0�0 , "%$ + 7<�-��0)$�� 1)+ 3 +-.�= �!��04$�� 14+ 3 +-.�= "
����7 .

[21] Jeffrey Semke, JamshidMahdavi, andMatthew Mathis, “Auto-
matic TCP buffer tuning,” Computer Communications Review,
vol. 28,no.4, October1998,apublicationof ACM SIGCOMM.

