
Efficient Software-Based Fault Isolation

Robert Wahbe Steven Lucco Thomas E. Anderson Susan L. Graham

Computer Science Division

University of California

Berkeley, CA 94720

Abstract

One way to provide fault isolation among cooperating

software modules is to place each in its own address

space. However, for tightly-coupled modules, this so-

lution incurs prohibitive context switch overhead, In

this paper, we present a software approach to imple-

menting fault isolation within a single address space.

Our approach has two parts. First, we load the code

and data for a distrusted module into its own fault do-

main, a logically separate portion of the application’s

address space. Second, we modify the object code of a

distrusted module to prevent it from writing or jump-

ing to an address outside its fault domain. Both these

software operations are portable and programming lan-

guage independent.

Our approach poses a tradeoff relative to hardware

fault isolation: substantially faster communication be-

tween fault domains, at a cost of slightly increased

execution time for distrusted modules. We demon-

strate that for frequently communicating modules, im-

plementing fault isolation in software rather than hard-

ware can substantially improve end-to-end application

performance.

This work was supported in part by the National Sci-

ence Foundation (CDA-8722788), Defense Advanced Research

Projects Agency (DARPA) under grant MDA972-92-.J-1028 and

contracts D ABT63-92-C-0026 and NO0600-93-C-2481, the Digi-

tal Equipment Corporation (the Systems Research Center and

the External Research Program), and the AT&T Foundation.

Anderson was also supported by a National Science Foundation

Young Investigator Award. The content of the paper does not

necessarily reflect the position or the policy of the Government

and no official endorsement should be inferred.

Email: {rwahbe, lUCCO, tea, grahefn}@cs .berkeley. edu

Permission to copy w!thout fee all or pa~t of th!s material IS

H,ented prov,ded that the GVPIeSW%not mode or d,arr(buceu’ for

d!rect commercial advantage, the ACM copyright notice and the

title of the publ!catlon and Its date appear, and not[ce IS given

that copying IS by permission of the Association for Computing

Machinery. To copy otherwtse, or to republish, requires a fee

andlor specific permtsslon.

SIGOPS ‘93/12 /93/N. C., USA

0 1993 ACM 0-89791 -632 -S/93 /0012 . ..$l .50

1 Introduction

Application programs often achieve extensibility by

incorporating independently developed software mod-

ules. However, faults in extension code can render a

software system unreliable, or even dangerous, since

such faults could corrupt permanent data. To in-

crease the reliability of these applications, an operat-

ing system can provide services that prevent faults in

distrusted modules from corrupting application data.

Such fault isolation services also facilitate software de-

velopment by helping to identify sources of system fail-

ure.

For example, the POSTGRES database manager in-

cludes an extensible type system [Sto87]. Using this
facility, POSTGRES queries can refer to general-purpose

code that defines constructors, destructors, and pred-

icates for user-defined data types such as geometric

objects. Without fault isolation, any query that uses

extension code could interfere with an unrelated query

or corrupt the database.

Similarly, recent operating system research has fo-

cused on making it easier for third party vendors

to enhance parts of the operating system. An ex-

ample is micro-kernel design; parts of the operat-

ing system are implemented as user-level servers that

can be easily modified or replaced. More gener-

ally, several systems have added extension code into

the operating system, for example, the BSD network

packet filter [M RA87, MJ93], application-specific vir-

tual memory management [HC92], and Active Mes-

sages [vCGS92]. Among industry systems, Microsoft’s

Object Linking and Embedding system [Cla92] can

link together independently developed software mod-

ules. Also, the Quark Xprem desktop publishing sys-

tem [Dys92] is structured to support incorporation of

general-purpose third party code. As with PO ST GRES,

203

faults in extension modules can render any of these

systems unreliable.

One way to provide fault isolation among cooperat-

ing software modules is to place each in its own address

space. Using Remote Procedure Call (RPC) [BN84],

modules in separate address spaces can call into each

other through a normal procedure call interface. Hard-

ware page tables prevent the code in one address space

from corrupting the contents of another.

Unfortunately, there is a high performance cost

to providing fault isolation through separate address

spaces. Transferring control across protection bound-

aries is expensive, and does not necessarily scale

with improvements in a processor’s integer perfor-

mance [ALBL91]. A cross-address-space RPC requires

at least: a trap into the operating system kernel, copy-

ing each argument from the caller to the callee, sav-

ing and restoring registers, switching hardware ad-
dress spaces (on many machines, flushing the transla-

tion lookaside buffer), and a trap back to user level.

These operations must be repeated upon RPC re-

turn. The execution time overhead of an RPC, even

with a highly optimized implementation, will often

be two to three orders of magnitude greater than

the execution time overhead of a normal procedure

call [BALL90, ALBL91].

The goal of our work is to make fault isolation cheap

enough that system developers can ignore its perfor-

mance effect in choosing which modules to place in

separate fault domains. In many cases where fault iso-

lation would be useful, cross-domain procedure calls

are frequent yet involve only a moderate amount of

computation per call. In this situation it is imprac-

tical to isolate each logically separate module within

its own address space, because of the cost of crossing

hardware protection boundaries.

We propose a software approach to implementing

fault isolation within a single address space. Our ap-

proach has two parts. First, we load the code and data

for a distrusted module into its own fault domain, a

logically separate portion of the application’s address

space. A fault domain, in addition to comprising a con-

tiguous region of memory within an address space, has

a unique identifier which is used to control its access to

process resources such as file descriptors. Second, we

modify the object code of a distrusted module to pre-

vent it from writing or jumping to an address outside

its fault domain. Program modules isolated in sepa-

rate software-enforced fault domains can not modify

each other’s data or execute each other’s code except

through an explicit cross-fault-domain RPC interface.

We have identified several programming-language-

independent transformation strategies that can render

object code unable to escape its own code and data

segments. In this paper, we concentrate on a sim-

ple transformation technique, called sandboxing, that

only slightly increases the execution time of the mod-

ified object code. We also investigate techniques that

provide more debugging information but which incur

greater execution time overhead.

Our approach poses a tradeoff relative to hardware-

based fault isolation. Because we eliminate the need to

cross hardware boundaries, we can offer substantially

lower-cost RPC between fault domains. A safe RPC in

our prototype implementation takes roughly 1. lps on a

DECstation 5000/240 and roughly 0.8ps on a DEC Al-

pha 400, more than an order of magnitude faster than

any existing RPC system. This reduction in RPC time

comes at a cost of slightly increased distrusted module

execution time. On a test suite including the the C

SPEC92 benchmarks, sandboxing incurs an average of

4% execution time overhead on both the DECstation

and the Alpha.

Software-enforced fault isolation may seem to be

counter-intuitive: we are slowing down the common

case (normal execution) to speed up the uncommon

case (cross-domain communication). But for fre-

quently communicating fault domains, our approach

can offer substantially better end-to-end performance.

To demonstrate this, we applied software-enforced

fault isolation to the POSTGRES database system run-

ning the Sequoia 2000 benchmark. The benchmark

makes use of the POSTGRES extensible data type sys-

tem to define geometric operators. For this bench-

mark, the software approach reduced fault isolation

overhead by more than a factor of three on a DECsta-

tion 5000/240.

A software approach also provides a tradeoff be-

tween performance and level of distrust. If some mod-

ules in a program are trusted while others are dis-

trusted (as may be the case with extension code), only

the distrusted modules incur any execution time over-

head. Code in trusted domains can run at full speed.

Similarly, it is possible to use our techniques to im-

plement full security, preventing distrusted code from

even reading data outside of its domain, at a cost of

higher execution time overhead. We quantify this ef-

fect in Section 5.

The remainder of the paper is organized as follows.

Section 2 provides some examples of systems that re-

quire frequent communication between fault domains.

Section 3 outlines how we modify object code to pre-

vent it from generating illegal addresses. Section 4

describes how we implement low latency cross-fault-

domain RPC. Section 5 presents performance results

for our prototype, and finally Section 6 discusses some

related work.

204

2 Background

In this section, we characterize in more detail the

type of application that can benefit from software-

enforced fault isolation. We defer further description

of the POSTGRES extensible type system until Section

5, which gives performance measurements for this ap-

plication.

The operating systems community has focused con-

siderable attention on supporting kernel extensibil-

ity. For example, the UNIX vnode interface is de-

signed to make it easy to add a new file system into

UNIX [Kle86]. Unfortunately, it is too expensive to

forward every file system operation to user level, so

typically new file system implementations are added

directly into the kernel. (The Andrew file system is

largely implemented at user level, but it maintains a

kernel cache for performance [HKM+88].) Epoch’s ter-

tiary storage file system [Web93] is one example of op-

erating system kernel code developed by a third party

vendor.

Another example is user-programmable high perfor-

mance 1/0 systems. If data is arriving on an 1/0

channel at a high enough rate, performance will be

degraded substantially if control has to be transferred

to user level to manipulate the incoming data [FP93].

Similarly, Active Messages provide high performance

message handling in distributed-memory multiproces-

sors [vCGS92]. Typically, the message handlers are

application-specific, but unless the network controller

can be accessed from user level [Thi92], the message

handlers must be compiled into the kernel for reason-

able performance.

A user-level example is the Quark Xpress desktop

publishing system. One can purchase third party soft-

ware that will extend this system to perform func-

tions unforeseen by its original designers [Dys92]. At

the same time, this extensibility has caused Quark a

number of problems. Because of the lack of efficient

fault domains on the personal computers where Quark

Xpress runs, extension modules can corrupt Quark’s

internal data structures. Hence, bugs in third party

code can make the Quark system appear unreliable,

because end-users do not distinguish among sources of

system failure.

All these examples share two characteristics. First,

using hardware fault isolation would result in a signif-

icant portion of the overall execution time being spent

in operating system context switch code. Second, only

a small amount of code is distrusted; most of the exe-

cution time is spent in trusted code. In this situation,

software fault isolation is likely to be more efficient

than hardware fault isolation because it sharply re-

duces the time spent crossing fault domain boundaries,

while only slightly increasing the time spent executing

the distrusted part of the application. Section 5 quan-

tifies this trade-off between domain-crossing overhead

and application execution time overhead, and demon-

strates that even if domain-crossing overhead repre-

sents a modest proportion of the total application ex-

ecut ion time, software-enforced fault isolation is cost

effective.

3 Software-Enforced Fault Iso-

lat ion

In this section, we outline several software encapsula-

tion techniques for transforming a distrusted module

so that it can not escape its fault domain, We first

describe a technique that allows users to pinpoint the

location of faults within a software module. Next, we

introduce a technique, called sandboxing, that can iso-

late a distrusted module while only slightly increasing

its execution time. Section 5 provides a performance

analysis of this technique. Finally, we present a soft-

ware encapsulation technique that allows cooperating

fault domains to share memory. The remainder of

this discussion assumes we are operating on a RISC

load/store architecture, although our techniques could

be extended to handle CISCS. Section 4 describes

how we implement safe and efficient cross-fault-domain

RPC.

We divide an application’s virtual address space into

segments, aligned so that all virtual addresses within

a segment share a unique pattern of upper bits, called

the segment identifier. A fault domain consists of two

segments, one for a distrusted module’s code, the other

for its static data, heap and stack. The specific seg-

ment addresses are determined at load time.

Software encapsulation transforms a distrusted

module’s object code so that it can jump only to tar-

gets in its code segment, and write only to addresses

within its data segment. Hence, all legal jump tar-

gets in the distrusted module have the same upper bit

pattern (segment identifier); similarly, all legal data

addresses generated by the distrusted module share

the same segment identifier. Separate code and data

segments are necessary to prevent a module from mod-

ifying its code segmentl. It is possible for an address

with the correct segment identifier to be illegal, for in-

stance if it refers to an unmapped page. This is caught

by the normal operating system page fault mechanism.

3.1 Segment Matching

An unsafe anstructzon is any instruction that jumps to

or stores to an address that can not be statically ver-

10ur system supports dynamic linking through a special

interface.

205

ified to be within the correct segment. Most control

transfer instructions, such as program-counter-relative

branches, can be statically verified. Stores to static

variables often use an immediate addressing mode and

can be statically verified. However, jumps through reg-

isters, most commonly used to implement procedure

returns, and stores that use a register to hold their

target address, can not be statically verified.

A straightforward approach to preventing the use of

illegal addresses is to insert checking code before ev-

ery unsafe instruction. The checking code determines

whether the unsafe instruction’s target address has the

correct segment identifier. If the check fails, the in-

serted code will trap to a system error routine outside

the distrusted module’s fault domain. We call this

software encapsulation technique segment matchzng.

On typical RISC architectures, segment matching

requires four instructions. Figure 1 lists a pseudo-code

fragment for segment matching. The first instruction

in this fragment moves the store target address into

a dedzcated r-eg~ster. Dedicated registers are used only

by inserted code and are never modified by code in

the distrusted module. They are necessary because

code elsewhere in the distrusted module may arrange

to jump directly to the unsafe store instruction, by-

passing the inserted check. Hence, we transform all

unsafe store and jump instructions to use a dedicated

register.

All the software encapsulation techniques presented

in this paper require dedicated registers. Segment

matching requires four dedicated registers: one to hold

addresses in the code segment, one to hold addresses

in the data segment, one to hold the segment shift

amount, and one to hold the segment identifier.

Using dedicated registers may have an impact on

the execution time of the distrusted module. However,

since most modern RISC architectures, including the

MIPS and Alpha, have at least 32 registers, we can

retarget the compiler to use a smaller register set with

minimal performance impact. For example, Section 5

shows that, on the DECstation 5000/240, reducing by

five registers the register set available to a C compiler

(gee) did not have a significant effect on the average

execution time of the SPECg~ benchmarks.

3.2 Address Sandboxing

The segment matching technique has the advantage

that it can pinpoint the offending instruction. This

capability is useful during software development. We

can reduce runtime overhead still further, at the cost

of providing no information about the source of faults.

2For architectures with limited register sets, such as the

80386 [Int86], it is possible to encapsulate a module using no re-

served registers by restricting control flow within a fault domain.

dedicated-reg + target address

Move target address into dedicated register.

scratch-reg + (dedicated-reg> >shift-reg)

Right-shift address to get segment identifier.

s crat ch-reg is not a dedicated register.

shift-reg is a dedicated register.

compare s crat ch-reg and segment -reg

segment -reg is a dedicated register.

trap if not equal

Trap if store address is outside of segment.

store instruction uses dedicated-reg

Figure 1: Assembly pseudo code for segment matching.

dedicated-reg ~ target-reg&and-mask-reg

Use dedicated register and-mask-reg

to clear segment identifier bits.

dedicated-reg += dedicated-reg I segment-reg

Use dedicated register segment-reg

to set segment identifier bits.

store instruction uses

Figure 2: Assembly pseudo

in target-reg.

dedicated-reg

code to sandbox address

Before each unsafe instruction we simply insert code

that sets the upper bits of the target address to the

correct segment identifier. We call this sandboxzng the

address. Sandboxing does not catch illegal addresses;

it merely prevents them from affecting any fault do-

main other than the one generating the address.

Address sandboxing requires insertion of two arith-

metic instructions before each unsafe store or jump

instruction. The first inserted instruction clears the

segment identifier bits and stores the result in a ded-

icated register. The second instruction sets the seg-

ment identifier to the correct value. Figure 2 lists the

pseudo-code to perform this operation. As with seg-

ment matching, we modify the unsafe store or jump

instruction to use the dedicated register. Since we are

using a dedicated register, the distrusted module code

can not produce an illegal address even by jumping

to the second instruction in the sandboxing sequence;

since the upper bits of the dedicated register will al-

ready contain the correct segment identifier, this sec-

ond instruction will have no effect. Section 3.6 presents

a simple algorithm that can verify that an object code

module has been correctly sandboxed.

Address sandboxing requires five dedicated registers,

One register is used to hold the segment mask, two

registers are used to hold the code and data segment

206

Guard Zones

(

—

Segment

Figure 3: A segment with guard zones. The size of

the guard zones covers the range of possible immediate

offsets in register-plus-offset addressing modes.

identifiers, and two are used to hold the sandboxed

code and data addresses.

3.3 Optimization

The overhead of software encapsulation can be re-

duced by using conventional compiler optimizations.

Our current prototype applies loop invariant code mo-

tion and instruction scheduling optimizations [ASU86,

ACD74]. In addition to these conventional techniques,

we employ a number of optimizations specialized to

software encapsulation.

We can reduce the overhead of software encapsula-

tion mechanisms by avoiding arithmetic that computes

target addresses. For example, many RISC architec-

tures include a register-plus-offset instruction mode,

where the offset is an immediate constant in some lim-

ited range. On the MIPS architecture such offsets are

limited to the range -64K to +64K, Consider the

store instruction store value, off set (reg), whose

address off set (reg) uses the register-plus-offset ad-

dressing mode. Sandboxing this instruction requires

three inserted instructions: one to sum reg+offset

into the dedicated register, and two sandboxing in-

structions to set the segment identifier of the dedicated

register.

Our prototype optimizes this case by sandboxing

only the register regj rather than the actual target ad-

dress reg+of f set, thereby saving an instruction. To

support this optimization, the prototype establishes

guard zones at the top and bottom of each segment.

To create the guard zones, virtual memory pages ad-

jacent to the segment are unmapped (see Figure 3).

We also reduce runtime overhead by treating the

MIPS stack pointer as a dedicated register. We avoid

sandboxing the uses of the stack pointer by sandboxing

this register whenever it is set. Since uses of the stack

pointer to form addresses are much more plentiful than

changes to it, this optimization significantly improves

performance.

Further, we can avoid sandboxing the stack pointer

after it is modified by a small constant offset as long as

the modified stack pointer is used as part of a load or

store address before the next control transfer instruc-

tion. If the modified stack pointer has moved into a

guard zone, the load or store instruction using it will

cause a hardware address fault. On the DEC Alpha

processor, we apply these optimizations to both the

frame pointer and the stack pointer.

There are a number of further optimizations that

could reduce sandboxing overhead. For example,

the transformation tool could remove sandboxing se-

quences from loops, in cases where a store target ad-

dress changes by only a small constant offset during

each loop iteration. Our prototype does not yet imple-

ment these optimizations.

3.4 Process Resources

Because multiple fault domains share the same virtual

address space, the fault domain implementation must

prevent distrusted modules from corrupting resources

that are allocated on a per-address-space basis. For

example, if a fault domain is allowed to make system

calls, it can close or delete files needed by other code

executing in the address space, potentially causing the

application as a whole to crash.

One solution is to modify the operating system to

know about fault domains. On a system call or page

fault, the kernel can use the program counter to deter-

mine the currently executing fault domain, and restrict

resources accordingly.

To keep our prototype portable, we implemented

an alternative approach. In addition to placing each

distrusted module in a separate fault domain, we re-

quire distrusted modules to access system resources

only through cross-fault-domain RPC. We reserve a

fault domain to hold trusted arbitration code that de-

termines whether a particular system call performed

by some other fault domain is safe. If a distrusted

module’s object code performs a direct system call, we

transform this call into the appropriate RPC call. In

the case of an extensible application, the trusted por-

tion of the application can make system calls directly

and shares a fault domain with the arbitration code.

3.5 Data Sharing

Hardware fault isolation mechanisms can support data

sharing among virtual address spaces by manipulat-

ing page table entries. Fault domains share an ad-

207

dress space, and hence a set of page table entries,

so they can not use a standard shared memory im-

plementation. Read-only sharing is straightforward;

since our software encapsulation techniques do not al-

ter load instructions, fault domains can read any mem-

ory mapped in the application’s address space 3.

If the object code in a particular distrusted mod-

ule has been sandboxed, then it can share read-write

memory with other fault domains through a technique

we call lazy pointer swizzling. Lazy pointer swizzling

provides a mechanism for fault domains to share ar-

bitrarily many read-write memory regions with no ad-

ditional runtime overhead. To support this technique,

we modify the hardware page tables to map the shared

memory region into every address space segment that

needs access; the region is mapped at the same offset

in each segment. In other words, we alias the shared

region into multiple locations in the virtual address

space, but each aliased location has exactly the same

low order address bits. As with hardware shared mem-

ory schemes, each shared region must have a different

segment offset,

To avoid incorrect shared pointer comparisons in

sandboxed code, the shared memory creation inter-

face must ensure that each shared object is given a

unique address. As the distrusted object code ac-

cesses shared memory, the sandboxing code automati-

cally translates shared addresses into the correspond-

ing addresses within the fault domain’s data segment.

This translation works exactly like hardware transla-

tion; the low bits of the address remain the same, and

the high bits are set to the data segment identifier.

Under operating systems that do not allow virtual

address aliasing, we can implement shared regions by

introducing a new software encapsulation technique:

shared segment mat thing. To implement sharing, we

use a dedicated register to hold a bitmap. The bitmap

indicates which segments the fault domain can access.

For each unsafe instruction checked, shared segment

matching requires one more instruction than segment

matching.

3.6 Implementation and Verification

We have identified two strategies for implementing

software encapsulation. One approach uses a compiler

to emit encapsulated object code for a distrusted mod-

ule; the integrity of this code is then verified when the

module is loaded into a fault domain. Alternatively,

the system can encapsulate the distrusted module by

directly modifying its object code at load time.

3 We have implemented versions of these techniques that per-

form general protection by encapsulating load instructions as

well as store and jump instructions. We discuss the performance

of these variants in Section 5.

Our current prototype uses the first approach. We

modified a version of the gcc compiler to perform soft-

ware encapsulation. Note that while our current imple-

mentation is language dependent, our techniques are

language independent.

We built a verifier for the MIPS instruction set

that works for both sandboxing and segment match-

ing. The main challenge in verification is that, in the

presence of indirect jumps, execution may begin on

any instruction in the code segment. To address this

situation, the verifier uses a property of our software

encapsulation techniques: all unsafe stores and jumps

use a dedicated register to form their target address.

The verifier divides the program into sequences of in-

structions called unsafe regions. An unsafe store re-

gion begins with any modification to a dedicated store

register. An unsafe]ump region begins with any mod-

ification to a dedicated jump register. If the first in-

struction in a unsafe store or jump region is executed,

all subsequent instructions are guaranteed to be exe-

cuted. An unsafe store region ends when one of the

following hold: the next instruction is a store which

uses a dedicated register to form its target address,

the next instruction is a control transfer instruction,

the next instruction is not guaranteed to be executed,

or there are no more instructions in the code segment.

A similar definition is used for unsafe jump regions.

The verifier analyzes each unsafe store or jump re-

gion to insure that any dedicated register modified in

the region is valid upon exit of the region. For ex-

ample, a load to a dedicated register begins an unsafe

region. If the region appropriately sandboxes the ded-

icated register, the unsafe region is deemed safe. If an

unsafe region can not be verified, the code is rejected.

By incorporating software encapsulation into an ex-

isting compiler, we are able to take advantage of com-

piler infrastructure for code optimization. However,

this approach has two disadvantages. First, most mod-

ified compilers will support only one programming lan-

guage (gee supports C, C++, and Pascal). Second, the
compiler and verifier must be synchronized with re-

spect to the particular encapsulation technique being

employed.

An alternative, called binary patching, alleviates

these problems. When the fault domain is loaded, the

system can encapsulate the module by directly modi-

fying the object code. Unfortunately, practical and ro-

bust binary patching, resulting in efficient code, is not

currently possible [LB92]. Tools which translate one

binary format to another have been built, but these

tools rely on compiler-specific idioms to distinguish

code from data and use processor emulation to han-

dle unknown indirect jumps[SCK+93]. For software

encapsulation, the main challenge is to transform the

code so that it uses a subset of the registers, leav-

208

Tmsted Untrusted

Mler Domain Cake Domain

callcall Add F
Stub

Add:

return

Return

Stub ~ – T

Jump Table

I

Figure 4: Major components of a cross-fault-domain

RPC.

ing registers available for dedicated use. To solve this

problem, we are working on a binary patching proto-

type that uses simple extensions to current object file

formats. The extensions store control flow and register

usage information that is sufficient to support software

encapsulation.

4 Low Latency Cross Fault Do-

main Communication

The purpose of this work is to reduce the cost of fault

isolation for cooperating but distrustful software mod-

ules. In the last section, we presented one half of our

solution: efficient software encapsulation. In this sec-

tion, we describe the other half fast communication

across fault domains,

Figure 4 illustrates the major components of a cross-

fault-domain RPC between a trusted and distrusted

fault domain. This section concentrates on three as-

pects of fault domain crossing. First, we describe

a simple mechanism which allows a fault domain to

safely call a trusted stub routine outside its domain;

that stub routine then safely calls into the destination

domain. Second, we discuss how arguments are effi-

ciently passed among fault domains. Third, we detail

how registers and other machine state are managed on

cross-fault-domain RPCS to insure fault isolation. The

protocol for exporting and naming procedures among

fault domains is independent of our techniques.

The only way for control to escape a fault domain

is via a jump table. Each jump table entry is a con-

trol transfer instruction whose target address is a legal

entry point outside the domain. By using instructions

whose target address is an immediate encoded in the

instruction, the jump table does not rely on the use of

a dedicated register. Because the table is kept in the

(read-only) code segment, it can only be modified by

a trusted module.

For each pair of fault domains a customized call and

return stub is created for each exported procedure.

Currently, the stubs are generated by hand rather than

using a stub generator [J RT85]. The stubs run unpro-

tected outside of both the caller and callee domain.

The stubs are responsible for copying cross-domain

arguments between domains and managing machine

state.

Because the stubs are trusted, we are able to copy

call arguments directly to the target domain. Tra-

ditional RPC implementations across address spaces

typically perform three copies to transfer data. The

arguments are marshaled into a message, the kernel

copies the message to the target address space, and

finally the callee must de-marshall the arguments. By

having the caller and callee communicate via a shared

buffer, LRPC also uses only a single copy to pass data

between domains [BALL91].

The stubs are also responsible for managing machine

state. On each cross-domain call any registers that are

both used in the future by the caller and potentially

modified by the callee must be protected. Only regis-

ters that are designated by architectural convention to

be preserved across procedure calls are saved. As an

optimization, if the callee domain contains no instruc-

tions that modify a preserved register we can avoid

saving it. Karger uses a trusted linker to perform this

kind of optimization between address spaces [Kar89].

In addition to saving and restoring registers, the stubs

must switch the execution stack, establish the correct

register context for the software encapsulation tech-

nique being used, and validate all dedicated registers.

Our system must also be robust in the presence of

fatal errors, for example, an addressing violation, while

executing in a fault domain. Our current implementa-

tion uses the UNIX signal facility to catch these errors;

it then terminates the outstanding call and notifies the

caller’s fault domain. If the application uses the same

operating system thread for all fault domains, there

must be a way to terminate a call that is taking too

long, for example, because of an infinite loop. Trusted

modules may use a timer facility to interrupt execu-

tion periodically and determine if a call needs to be

terminated.

5 Performance Results

To evaluate the performance of software-enforced fault

domains, we implemented and measured a prototype

of our system on a 40 MHz DECstation 5000/240 (DEC-

MIPS) and a 160iMhz Alpha 400 (DEC-ALPHA).

YVe consider three questions. First, how much over-

209

head does so ftware encapsulation incur? Second, how

fast is a cross-fault-domain RPC? Third, what is the

performance impact of using software enforced fault

isolation on an end-user application? We discuss each

of these questions in turn.

5.1 Encapsulation Overhead

We measured the execution time overhead of sand-

boxing a wide range of C programs, including the C

SPEC 92 benchmarks and several of the Splash bench-

marks [Ass91, SWG9 1]. We treated each benchmark

as if it were a distrusted module, sandboxing all of

its code. Column 1 of Table 1 reports overhead on

the DEC-MIPS, column 6 reports overhead on the DEC-

ALPHA. Columns 2 and 7 report the overhead of using

our technique to provide general protection by sand-

boxing load instructions as well as store and jump

instructions. As detailed in Section 3, sandboxing

requires 5 dedicated registers, Column 3 reports the

overhead of removing these registers from possible use

by the compiler. All overheads are computed as the

additional execution time divided by the original pro-

gram’s execution time.

On the DEC-MIPS, we used the program measure-

ment tools pixie and qpt to calculate the number

of additional instructions executed due to sandbox-

ing [Dig, BL92]. Column 4 of Table 1 reports this

data as a percentage of original program instruction

counts.

The data in Table 1 appears to contain a num-

ber of anomalies. For some of the benchmark pro-

grams, for example, 056. ear on the DEC-MIPS and

026. compress on the DEC-ALPHA, sandboxing reduced

execution time. In a number of cases the overhead is

surprisingly low.

To identify the source of these variations we de-

veloped an analytical model for execution overhead.

The model predicts overhead based on the number

of additional instructions executed due to sandbox-

ing (s-tnstructtons), and the number of saved float-

ing point interlock cycles (interlocks). Sandboxing in-

creases the available instruction-level parallelism, al-

lowing the number of floating-point interlocks to be

substantially reduced. The integer pipeline does not

provide interlocking; instead, delay slots are explicitly

filled with nop instructions by the compiler or assem-

bler. Hence, scheduling effects among integer instruc-

tions will be accurately reflected by the count of in-
structions added (s-mstructtons). The expected over-

head is computed as:

(s-instructions – interlocks) /cyc!es-per-second

ortglnal-execut ton-t zme-seconds

4Loads in the libraries, such as the standard C library, were
not sandboxed.

The model provides an effective way to separate known

sources of overhead from second order effects. col-

umn 5 of Table 1 are the predicted overheads.

As can be seen from Table 1, the model is, on aver-

age, effective at predicting sandboxing overhead. The

differences between measured and expected overheads

are normally distributed with mean 0.770 and standard

deviation of 2.6?10. The difference between the means
of the measured and expected overheads is not statisti-

cally significant. This experiment demonstrates that,

by combining instruction count overhead and floating

point interlock measurements, we can accurately pre-

dict average execution time overhead. If we assume

that the model is also accurate at predicting the over-

head of individual benchmarks, we can conclude that

there is a second order effect creating the observed

anomalies in measured overhead.

We can discount effective instruction cache size and

virtual memory paging as sources for the observed ex-

ecution time variance. Because sandboxing adds in-

structions, the effective size of the instruction cache is

reduced. While this might account for measured over-

heads higher than predicted, it does not account for

the opposite effect. Because all of our benchmarks are

compute bound, it is unlikely that the variations are

due to virtual memory paging.

The DEC-MIPS has a physically indexed, physically

tagged, direct mapped data cache. In our experiments

sandboxing did not affect the size, contents, or starting

virtual address of the data segment. For both original

and sandboxed versions of the benchmark programs,

successive runs showed insignificant variation. Though

difficult to quantify, we do not believe that data cache

alignment was an important source of variation in our

experiments.

We conjecture that the observed variations are

caused by instruction cache mappzng conj?icts. Soft-

ware encapsulation changes the mapping of instruc-

tions to cache lines, hence changing the number of in-

struction cache conflicts. A number of researchers have

investigated minimizing instruction cache conflicts to

reduce execution time [McF89, PH90, Sam88]. One

researcher reported a 2070 performance gain by sim-

ply changing the order in which the object files were

linked [PH90]. Samples and Hilfinger report signif-

icantly improved instruction cache miss rates by re-

arranging only 3% to 8!Z0 of an application’s basic

blocks [Sam88].

Beyond this effect, there were statistically significant

differences among programs. on average, programs

which contained a significant percentage of floating

point operations incurred less overhead. On the DEC-

MIPS the mean overhead for floating point intensive

benchmarks is 2.5’%0, compared to a mean of 5.6% for

the remaining benchmarks. All of our benchmarks are

210

DEC-~lIPS DEC-ALPHA

Fault Protection Reserved Instruction Fault Fault Protection

Benchmark Isolation Overhead Register Count Isolation Isolation Overhead

Overhead Overhead Overhead Overhead Overhead

(predicted)

052. alvinn FP 1.4% 33.4% -0.3% 19.4% 0.2% 8.1% 35.5%

bps FP 5.6% 15.5% -0.1% 8.9% 5.7% 4.7% 20.3%

cholesky FP 0.0% 22.7% 0.5% 6.5% -1.5% 0.0% 9.3%

026.compress INT 3.3% 13.3% 0.0% 10.9% 4.4% -4.3% 0.0%

056, ear FP -1.2% 19.1% 0.2% 12.4% 2.2% 3.7% 18.3%

023.eqntott INT 2.9% 34.4% 1.0% 2.7% 2.2% 2.3% 17.4%

008.espresso INT 12.4% 27.0% -1.6% 11.8% 10.5% 13.3% 33.6%

ooi.gcci.35 INT 3.1% 18.7% -9.4% 17.0% 8.9% NA NA

022.li INT 5.1% 23.4’% 0.3% 14.9% 11.4% 5.4% 16.2%

locus INT 8.7% 30.4% 4,3% 10.3% 8.6% 4.3% 8.7%
mp3d FP 10.7% 10.7% 0.0% 13.3% 8.7% 0.0% 6.7%
psgrind INT 10.4% 19.5% 1.3% 12.1’% 9.9% 8.0% 36.0%
qcd FP 0.5% 27.0% 2.0% 8.8% 1.2% -0.8% 12.1%

072.sc INT 5.6% 11.2% 7.0% 8.0% 3.8% NA NA
tracker INT -0.8% 10.5% 0.4% 3.9% 2.1% 10.9% 19.9%

water FP 0.7% 7.4% 0.3% 6.7% 1.5% 4.3% 12.3%

Average 4.3% 21.8’%0 0.4’%0 10.5% 5.070 4.3% 17.6’Zo

Table 1: Sandboxing overheads for DEC-MIPS and DEC-ALPHA platforms. The benchmarks OOi.gccl.35 and

072.sc are dependent ona pointer size of32 bits and do not compile on the DEC-ALPHA. The predicted fault

isolation overhead for choleskyis negative due to conservative interlocking on the MIPS floating-point unit.

compute intensive. Programs that perform significant

amounts of 1/0 will incur less overhead.

5.2 Fault Domain Crossing

We now turn to the cost of cross-fault-domain RPC.

Our RPC mechanism spends most of its time saving

and restoring registers. As detailed in Section 4, only

registers that are designated by the architecture to be

preserved across procedure calls need to be saved. In

addition, if no instructions in the callee fault domain

modify a preserved register then it does not need to be

saved. Table 2 reports the times for three versions of

a NULL cross-fault-domain RPC. Column 1 lists the

crossing times when all data registers are caller saved.

Column 2 lists the crossing times when the preserved

integer registers are saved. Finally, the times listed in

Column 3 include saving all preserved floating point

registers. In many cases crossing times could be further

reduced by statically partitioning the registers between

domains.

For comparison, we measured two other calling

mechanisms. First, we measured the time to perform a

C procedure call that takes no arguments and returns

no value. Second, we sent a single byte between two

address spaces using the pipe abstraction provided by

the native operating system and measured the round-

trip time. These times are reported in the last two

columns of Table 2. On these platforms, the cost

of cross-address-space calls is roughly three orders of

magnitude more expensive than local procedure calls.

Operating systems with highly optimized RPC im-

plementations have reduced the cost of cross-address-

space RPC to within roughly two orders of magni-

tude of local procedure calls. On Mach 3.0, cross-

address-space RPC on a 25Mhz DECstation 5000/200

is 314 times more expensive than a local procedure

call [Ber93]. The Spring operating system, running on

a 40Mhz SPARCstation2, delivers cross-address-space

RPC that is 73 times more expensive than a local leaf

procedure call [H K93]. Software enforced fault isola-

tion is able to reduce the relative cost of cross-fault-

domain RPC by an order of magnitude over these sys-

tems.

5.3 Using Fault Domains in POSTGRES

To capture the effect of our system on application

performance, we added software enforced fault do-

mains to the PO STGRES database management system,

and measured POSTGRES running the Sequoia 2000

benchmark [SFGIV193]. The Sequoia 2000 benchmark

211

Cross Fault-Domain RPC

Platform Caller Save Save c Pipes

Save Integer Integer+ Float Procedure

Registers Registers Registers Call

DEC-MIPS l.llps 1.81ps 2.83ps O.lops 204.72ps

DEC-ALPHA o.75ps 1.35ps 1.80ps 0.06ps 227.88ps

Table2: Cross-fault-domain crossing times.

Sequoia 2000 Untrusted Soft ware-Enforced Number DEC-MIPS-PIPE

Query Function Manager Fault Isolation Cross-Domain Overhead

Overhead Overhead Calls (predicted)

Query 6 1.4% 1.7% 60989 18.6%

Query 7 5.0% 1.8% 121986 38.6%

Query 8 9.0% 2.7% 121978 31.2%

Query 10 9.6% 5.7% 1427024 31.9%

Table 3: Fault isolation overhead for POSTGRES running Sequoia 2000 benchmark.

contains queries typical of those used by earth scien-

tists in studying the climate. To support these kinds

of non-traditional queries, PO STGRES provides a user-

extensible type system. Currently, user-defined types

are written in conventional programming languages,

such as C, and dynamically loaded into the database

manager. This has long been recognized to be a serious

safety problem [Sto88].

Four of the eleven queries in the Sequoia 2000 bench-

mark make use of user-defined polygon data types. We

measured these four queries using both unprotected

dynamic linking and software-enforced fault isolation.

Since the POSTGRES code is trusted, we only sand-

boxed the dynamically loaded user code. For this

experiment, our cross-fault-domain RP C mechanism

saved the preserved integer registers (the variant cor-

responding to Column 2 in Table 2). In addition, we

instrumented the code to count the number of cross-

fault-domain RPCS so that we could estimate the per-

formance of fault isolation based on separate address

spaces.

Table 3 presents the results. Untrusted user-defined

functions in POSTGRES use a separate calling mecha-

nism from built-in functions. Column 1 lists the over-

head of the untrusted function manager without soft-

ware enforced fault domains. All reported overheads in

Table 3 are relative to original POSTGRES using the un-

trusted function manager. Column 2 reports the mea-

sured overhead of software enforced fault domains. Us-

ing the number of cross-domain calls listed in Column 3

and the DEG-MIPS-PIPE time reported in Table 2, Col-

umn 4 lists the estimated overhead using conventional

hardware address spaces.

5.4 Analysis

For the POSTGRES experiment software encapsulation

provided substantial savings over using native operat-

ing system services and hardware address spaces. In

general, the savings provided by our techniques over

hardware-based mechanisms is a function of the per-

centage of time spent in distrusted code (td), the per-

centage of time spent crossing among fault domains

(ic), the overhead of encapsulation (h), and the ratio,

r, of our fault domain crossing time to the crossing

time of the competing hardware-based RPC mecha-

nism.

savzngs = (1– T)tc– ht~

Figure 5 graphically depicts these trade-offs. The X

axis gives the percentage of time an application spends

crossing among fault domains. The Y axis reports the

relative cost of software enforced fault-domain cross-

ing over hardware address spaces. Assuming that the

execution time overhead of encapsulated code is 4.3Y0,

the shaded region illustrates when software enforced

fault isolation is the better performance alternative.

Software-enforced fault isolation becomes increas-

ingly attractive as applications achieve higher degrees

of fault isolation (see Figure 5). For example, if an ap-

plication spends 3070 of its time crossing fault domains,

our RPC mechanism need only perform 1O$ZObetter

than its competitor. Applications that currently spend

as little as 10YOof their time crossing require only a

39’%0 improvement in fault domain crossing time. As

reported in Section 5.2, our crossing time for the DEC-

MIPS is l.10~s and for the DEC-ALPHA 0.75~s. Hence,

212

1on% .

. .
$5$3 8$$.$$s$$

Percentage of Execution Time Spent Crossing

Figure 5: The shaded region represents when soft-

ware enforced fault isolation provides the better per-

formance alternative. The X axis represents per-

centage of time spent crossing among fault domains

(t.). The Y axis represents the relative RPC crossing

speed (r). The curve represents the break even point:

(l–r)tc = htd. In this graph, h = 0.043 (encapsulation

overhead on the DEC-MIPS and DEC-ALPHA).

for this latter example, a hardware address space cross-

ing time of 1.80ps on the DEC-MIPS and 1.23ps on the

DEC-ALPHA would provide better performance than

software fault domains. As far as we know, no pro-

duction or experimental system currently provides this

level of performance.

Further, Figure 5 assumes that the entire applica-

tion was encapsulated. For many applications, such as

PO STGRES, this assumption is conservative. Figure 6

transforms the previous figure, assuming that 50’%0 of

total execution is spent in distrusted extension code.

Figures 5 and 6 illustrate that software enforced

fault isolation is the best choice whenever crossing

overhead is a significant proportion of an applica-

tion’s execution time. Figure 7 demonstrates that

overhead due to software enforced fault isolation re-

mains small regardless of application behavior. Fig-

ure 7 plots overhead as a function of crossing behavior

and crossing cost. Crossing times typical of vendor-

supplied and highly optimized hardware-based RPC

mechanisms are shown. The graph illustrates the rel-

at ive performance stability of the software solution.

This stability allows system developers to ignore the

performance effect of fault isolation in choosing which

modules to place in separate fault domains.

6 Related Work

Many systems have considered ways of optimizing

RPC performance [vvST88, TA88, Bla90, SB90, HK93,

BALL90, BALL91]. Traditional RPC systems based

Figure 6: The shaded region represents when soft-

ware enforced fault isolation provides the better per-

formance alternative. The X axis represents per-

centage of time spent crossing among fault domains

(t.). The Y axis represents the relative RPC crossing

speed (r). The curve represents the break even point:

(1–r)t. = htd. In this graph, h = 0.043 (encapsulation

overhead on the DEC-MIPS and DEC-ALPHA).

100%, / I

40%

o%

I LJltrix 4.2 Context Switch

DECstation 5000

Software

o 10 20

Crossings/Millisecond

Figure 7: Percentage of time spent in crossing code

versus number of fault domain crossings per millisec-

ond on the DEC-MIPS, The hardware minimum cross-

ing number is taken from a cross-architectural study

of context switch times [ALBL9 1]. The Ultrix 4.2 con-

text switch time is as reported in the last column of

Table 2.

213

on hardware fault isolation are ultimately limited by

the minimal hardware cost of taking two kernel traps

and two hardware cent ext switches. L RPC was one

of the first RPC systems to approach this limit, and

our prototype uses a number of the techniques found

in LRPC and later systems: the same thread runs in

both the caller and the callee domain, the stubs are

kept as simple as possible, and the crossing code jumps

directly to the called procedure, avoiding a dispatch

in the callee domain. Unlike these systems, software-

based fault isolation avoids hardware context switches,

substantially reducing crossing costs.

Address space identifier tags can be used to reduce

hardware context switch times. Tags allow more than

one address space to share the TLB; otherwise the

TLB must be flushed on each context switch. It was

estimated that 25T0 of the cost of an LRPC on the

Firefly (which does not have tags) was due to TLB

misses [BALL90]. Address space tags do not, however,

reduce the cost of register management or system calls,

operations which are not scaling with integer perfor-

mance[ALBL91]. An important advantage of software-

based fault isolation is that it does not rely on special-

ized architectural features such as address space tags.

Restrictive programming languages can also be used

to provide fault isolation. Pilot requires all kernel,

user, and library code to be written in Mesa, a strongly

typed language; all code then shares a single address

space [RDH+ 80]. The main disadvantage of relying on

strong typing is that it severely restricts the choice

of programming languages, ruling out conventional

languages like C, C++, and assembly. Even with

strongly-typed languages such as Ada and Modula-3,

programmers often find they need to use loopholes in

the type system, undercutting fault isolation. In con-

trast, our techniques are language independent.

Deutsch and Grant built a system that allowed

user-defined measurement modules to be dynamically

loaded into the operating system and executed directly

on the processor [D Gi’1]. The module format was a

stylized native object code designed to make it easier

to statically verify that the code did not violate pro-

tection boundaries.

An interpreter can also provide failure isolation. For

example, the BSD UNIX network packet filter utility

defines a language which is interpreted by the operat-

ing system network driver. The interpreter insulates

the operating system from possible faults in the cus-

tomization code. Our approach allows code written in

any programming language to be safely encapsulated

(or rejected if it is not safe), and then executed at near

full speed by the operating system.

Anonymous RPC exploits 64-bit address spaces to

provide low latency RPC and probabdtstzc fault iso-

lation [YBA93]. Logically independent domains are

placed at random locations in the same hardware ad-

dress space. Calls between domains are anonymous,

that is, they do not reveal the location of the caller

or the callee to either side. This provides probabilis-

tic protection – it is unlikely that any domain will

be able to discover the location of any other domain

by malicious or accidental memory probes. To pre-

serve anonymity, a cross domain call must trap to pro-

tected code in the kernel; however, no hardware con-

text switch is needed.

7 Summary

We have described a software-based mechanism for

portable, programming language independent fault

isolation among cooperating software modules. By

providing fault isolation within a singIe address space,

this approach delivers cross-fault-domain communica-

tion that is more than an order of magnitude faster

than any RPC mechanism to date.

To prevent distrusted modules from escaping their

own fault domain, we use a software encapsulation

technique, called sandboxing, that incurs about 4~0

execution time overhead. Despite this overhead in

executing distrusted code, software-based fault isola-

tion will often yield the best overall application per-

formance, Extensive kernel optimizations can reduce

the overhead of hardware-based RPC to within a fac-

tor of ten over our software-based alternative. Even

in this situation, software-based fault isolation will be

the better performance choice whenever the overhead

of using hardware-based RPC is greater than 570.

8 Acknowledgements

We thank Brian Bershad, Mike Burrows, John Hen-

nessy, Peter Kessler, Butler Lampson, Ed Lazowska,

Dave Patterson, John Ousterhout, Oliver Sharp,

Richard Sites, Alan Smith and Mike Stonebraker for

their helpful comments on the paper. Jim Larus pro-

vided us with the profiling tool qpt. We also thank

Mike Olson and Paul Aoki for helping us with POST-

GRES.

References

[ACD74] T.L. Adam, K.M. Chandy, and J.R. Dickson.

A comparison of list schedules for parallel pro-

cessing systems. Communications of the A CM,

17(12):685–690, December 1974.

[ALBL91] Thomas Anderson, Henry Levy, Brian Ber-

shad, and Edward Lazowska. “ “ “”

of Architecture and Operating

1 he interaction

System Design.

214

[Ass91]

[ASU86]

[BALL90]

[BALL91]

[Ber93]

[BL92]

[Bla90]

[BN84]

[Cla92]

[DG71]

[Dig]

[Dys92]

[FP93]

[HC92]

In Proceedings of the ~th International Confer-

ence on Architectural Support for Programming

Languages and Operating Systems, pages 108-

120, April 1991.

Administrator: National Computer Graphics

Association. SPEC Newsletter, 3(4), December

1991.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Unm-

an. Compilers, Principles, Techniques, and

Tools. Addison-Wesley Publishing Company,

1986.

Brian Bershad, Thomas Anderson, Edward La-

zowska, and Henry Levy. Lightweight Remote

Procedure Call. ACM Transactions on Com-

puter Systems, 8(l), February 1990.

Brian Bershad, Thomas Anderson, Edward La-

zowska, and Henry Levy. User-Level Interpro-

cess Communication for Shared-Memory Mul-

tiprocessors. ACM Transactions on Computer

Systems, 9(2), May 1991.

Brian Bershad, August 1993. Private Commu-

nication.

Thomas BaJl and James R. Larus. OptimaJly

profiling and tracing. In Proceedings of the

Conference on Principles of Programming Lan-

guages, pages 59-70, 1992.

David Black. Scheduling Support for Concur-

rency and Parallelism in the Mach Operating

System. IEEE Computer, 23(5):35–43, May

1990.

Andrew Birrell and Bruce Nelson. Implement-

ing Remote Procedure Calls. ACM Transac-

tions on Computer Systems, 2(1):39–59, Febru-

ary 1984.

J.D. Clark. Window Programmer’ Guide To

OLE/DDE. Prentice-Hall, 1992.

L. P. Deutsch and C. A. Grant. A flexible mea-

surement tool for software systems. In IFIP

Congress, 1971.

Digit al Equipment Corporation, Ultrix W/.2

Pixie Manual Page.

Peter Dyson. Xtensions for Xpress: Modular

Software for Custom Systems. Seybold Report

on Desktop Publwhing, 6(10):1–21, June 1992.

Kevin FaJl and Joseph PasquaJe. Exploiting in-

kernel data paths to improve 1/0 throughput

and CPU a vailabilit y. In Proceedings of the

1993 Winter USENIX Conference, pages 327–

333, January 1993.

Keiran Harty and

David Cheriton. Application-controlled physi-

caJ memory using external page-cache manage-

ment. In Proceedings of the 5th International

Conference on Architectural Support for Pro-

gramming Languages and Operating Systems,

October 1992.

[HK93] Graham Hamilton and Panes Kougiouris. The

Spring nucleus: A microkernel for objects. In

Proceedings of the Summer USENIX Confer-

ence, pages 147–159, June 1993.

[HKM+88] J. Howard, M. Kazar, S. Menees, D. Nichols,

M. Satyanarayanan, R. Sidebotham, and

M. West. Scale and Performance in a Dis-

tributed File System. ACM Transactions on

Computer Sgstems, 6(1):51-82, February 1988.

[Int86] Intel Corporation, Santa Clara, California.

Intel 803’86 Programmer’s Reference Manual,

1986.

[JRT85] Michael B. Jones, Richard F. Rashid, and

Mary R. Thompson. Matchmaker: An in-

terface specification language for distributed

processing. In Proceedings of the 12th ACM

SIGA CT- SIGPLAN Symposium on Principles

of Programming Languages, pages 225–235,

January 1985.

[Kar89] Paul A. Karger. Using Registers to Optimize

Cross-Domain CaJl Performance. In Proceed-

ings of the %-d International Conference on

Architectural Support for Programming Lan-

guages and Operating Systems, pages 194–204,

April 3-61989.

[Kle86] Steven R. Kleiman. Vnodes: An Architecture

for Multiple File System Types in SUN UNIX.

In Proceedings of the 1986 Summer USENIX

Conference, pages 238-247, 1986.

[LB92] James R. Larus and Thomas Ball. Rewrit-

ing executable files to measure program be-

havior. Technical Report 1083, University of

Wisconsin-Madison, March 1992.

[McF89] Scott McFarling. Program optimization for

instruction caches. In Proceedings of the In-

ternational Conference on Archztecturai Sup-

port for Programming Languages and Operat-

ing Systems, pages 183–191, April 1989.

[MJ93] Steven McCanne and Van Jacobsen. The

BSD Packet Filter: A New Architecture for

User-Level Packet Capture. In Proceedings of

the 1993 Wznter USENIX Conference, January

1993.

[MRA87] J. C. Mogul, R. F. Rashid, and M. J. Ac-

cetta. The packet filter: An efficient mecha-

nism for user-level network code. In Proceed-

ings of the Sgmposium on Operating System

Principles, pages 39-51, November 1987.

[PH90] Karl Pettis and Robert C. Hansen. Profile

guided code positioning. In Proceedings of

the Conference on Programming Language De-

sign and Implementation, pages 16–27, White

Plains, New York, June 1990. Appeared as

SIGPLAN NOTICES 25(6j.

[RDH+ 80] David D. RedelJ, Yogen K. DaJaJ, Thomas R.

Horsley, Hugh C. Lauer, William C. Lynch,

215

Paul R. McJones, Hal G. Murray, and

Stephen C, Purcell. Pilot: An Operating Sys-

temfora Personal Computer. Communications

of the ACM, 23(2):81–92, February 1980.

[Sam88] A. Dain Samples. Code reorganization for in-

struction caches. TechnicaJ Report UCB/CSD

88/447, University of California, Berkeley, Oc-

tober 1988.

[SB90] Michael Schroeder and Michael Burrows. Per-

formance of Firefly RPC. ACM Tmnsckc-

tions on Computer S~stems, 8(1):1-17, Febru-

ary 1990.

[SCK+ 93] Richard L. Sites, Anton Chernoff, Matthew B.

Kirk, Maurice P. Marks, and Scott G. Robin-

son. Binary translation. Cornmunzcat~ons of

the ACM, 36(2):69–81, February 1993.

(SFGM931 M. Stonebraker, J. Frew, K. Gardels, and

[Sto87]

[Sto88]

[SWG91]

[TA88]

[Thi92]

[vCGS92]

[VVST88]

[Web93]

[YBA93]

J. Meridith. The Sequoia 2000 Benchmark.

In Proceedings of the ACM SIGMOD Inter-

national Conference on Management of Data,

May 1993.

Michael Stonebraker. Extensibility in POST-

GRES. IEEE Database Engineering, Septem-

ber 1987.

Michael Stonebraker. Inclusion of new types in

relational data base systems. In Michael Stone-

braker, editor, Readings in Database Systems,

pages 480–487. Morgan Kaufmann Publishers,

Inc., 1988.

J. P. Singh, W. Weber, and A. Gupta.

Splash: Stanford parallel applications for

shared-memory. Technical Report CSL-TR-91-

469, Stanford, 1991.

Shin-Yuan Tzou and David P. Anderson. A

Performance Evaluation of the DASH Message-

Passing System. Technical Report UCB/CSD

88/452, Computer Science Division, University

of California, Berkeley, October 1988.

Thinking Machines Corporation, CM- 5 Net-

work Interface Programmer’s Guide, 1992.

T. von Eicken, D. Culler, S. Goldstein, and

K. Schauser. Active Messages: A Mechanism

for Integrated Communication and Computa-

tion, In Proceedings of the 19th Annual Symp-

osium on Computer- Architecture, 1992.

Robbert van Renesse, Hans van St averen, and

Andrew S. Tanenbaum. Performance of the

World’s Fastest Distributed Operating System.

(@wzt;?zg systems Review, 22(4) ;25–34, Octo-

ber 1988.

Neil Webber. Operating System Support for

Portable Filesystem Extensions. In Proceed-

ings of the 1993 Winter USENIX Conference,

January 1993.

Curtis Yarvin, Richard Bukowski, and Thomas

Anderson. Anonymous RPC: Low Latency

Protection in a 64-Bit Address Space. In Pro-

ceedings of the Summer USENIX Conference,

June 1993.

216

