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Abstract
Recently there has been a surge of interest in developing perfor-
mance debugging tools to help programmers tune their applications
for better memory performance [2, 4, 10]. These tools vary both
in the detail of feedback provided to the user, and in the run-
time overhead of using them. MemSpy [10] is a simulation-based
tool which gives programmers detailed statistics on the memory
system behavior of applications. It provides information on the
frequency and causes of cache misses, and presents it in terms of
source-level data and code objects with which the programmer is
familiar. However, using MemSpy increases a program’s execu-
tion time by roughly 10 to 40 fold. This overhead is generally
acceptable for applications with execution times of several min-
utes or less, but it can be inconvenient when tuning applications
with very long execution times.
This paper examines the use of trace sampling techniques to

reduce the execution time overhead of tools like MemSpy. When
simulating one tenth of the references, we find that MemSpy’s exe-
cution time overhead is improved by a factor of 4 to 6. That is, the
execution time when using MemSpy is generally within a factor of
3 to 8 times the normal execution time. With this improved per-
formance, we observe only small errors in the performance statis-
tics reported by MemSpy. On moderate sized caches of 16KB to
128KB, simulating as few as one tenth of the references (in sam-
ples of 0.5M references each) allows us to estimate the program’s
actual cache miss rate with an absolute error no greater than 0.3%
on our five benchmarks. These errors are quite tolerable within the
context of performance debugging. With larger caches we can also
obtain good accuracy by using longer sample lengths. We con-
clude that, used with care, trace sampling is a powerful technique
that makes possible performance debugging tools which provide
both detailed memory statistics and low execution time overheads.

1 Introduction

Modern computers exhibit an increasingly wide gap between pro-
cessor and memory speeds. With increases in processor clock rates
outpacing improvements in memory speeds [6], memory system
performance has become a significant bottleneck to achieving good
overall application performance. Cache misses on typical current
generation uniprocessors can incur delays of tens of processor cy-
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cles, and in multiprocessor machines, remote memory latencies
can be hundreds of cycles. For an application to achieve good
performance, it must use locality to exploit the memory hierarchy
effectively.
The application programmer has considerable flexibility in tun-

ing the program for better memory system performance. How-
ever, tuning the memory behavior of large programs is a complex
task requiring detailed information on the program’s access pat-
terns. Some performance monitoring systems (such as MTOOL
[3, 4]) give only code oriented information indicating the amount
of memory overhead in particular loops or procedures. This in-
formation is useful for initial queries about application behavior;
however, it is often not detailed enough to help the user fix the
application’s performance bottlenecks. Detailed statistics summa-
rizing the frequency and causes of cache misses, as well as the
behavior of different data structures in the code, are extremely
useful in understanding and fixing memory bottlenecks. Gener-
ally these detailed statistics can be gathered in one of two ways,
using (i) hardware performance monitors or (ii) software simula-
tion. Software simulation is the more widely applicable of these
approaches, because most machines do not provide support for
hardware performance monitoring. Furthermore, software simula-
tion allows programmers to evaluate application performance with
different cache sizes and speeds.
Unfortunately, detailed software simulation can often be quite

slow. However, careful attention to the simulation environment
can reduce simulation overhead, making detailed software simula-
tion fast enough to be part of an interactive performance debugging
tool. An example of this is MemSpy [10]. MemSpy gives pro-
grammers detailed, data-oriented information to help locate and
fix memory bottlenecks in their code. Its output presents users
with statistics in terms of source level data objects, as well as
code objects. MemSpy’s simulation overhead is approximately a
factor of 10 to 40 times the actual execution time of the program.
For applications with relatively short run times (up to a few min-
utes) this overhead is often acceptable, given the utility of the
data it produces. For applications with longer run times, several
approaches are available to reduce the simulation time. These in-
clude scaling data sets and cache size, or for iterative algorithms,
reducing the number of iterations studied. While these approaches
are often useful for certain classes of problems, we believe that
the complementary approach of trace sampling is a promising and
more general method for reducing simulation overhead.
Reference trace sampling is the technique of simulating only

randomly chosen portions of a reference trace, rather than simu-
lating the full trace. Intuitively, this promises significant speedup,
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since one incurs the full simulation overhead only on a fraction of
the full reference stream. If one samples such that only one tenth
of the references are simulated, one can hope for a speedup of up
to a factor of ten. Our results show that significant performance
improvements can be obtained using sampling within MemSpy.
When simulating one tenth of the total references, we get 4 to 6
fold speedups compared to non-trace-sampled MemSpy. For the
benchmarks studied here, this reduces MemSpy’s overhead to a
factor of 3 to 8. With execution time overheads in this range,
MemSpy’s performance becomes competitive with other tools [4]
that present less detailed statistics.
This paper makes several main contributions. As previously

stated, we show that within the context of a performance debug-
ging tool, reference trace sampling can be used effectively to im-
prove the tool’s performance. We go on to present results showing
how the accuracy of the sampled results varies with key param-
eters such as number of samples, sample length, and cache size.
We find that the parameter settings required for accurate sam-
pled output do not excessively limit performance. For example
in 16KB and 128KB caches, when simulating about one tenth of
the total references in about 20 samples of 0.5M references each,
the absolute errors in cache miss rate never exceed 0.3%. Larger
caches (e.g., 1MB) can obtain good accuracy by using longer sam-
ples (4 million to 8 million references each), while continuing to
only sample one tenth of the references total. Programs running
with larger caches will generally make more total data references,
in order to make use of the cache, so we do not consider indi-
vidual samples of this length to be a serious restriction. Finally,
we present performance results which show the success of this
approach, and present suggestions for further optimizations.
The paper is structured as follows. Sections 2 and 3 give back-

ground information on trace sampling and on the MemSpy tool.
In Section 4, we describe our sampling implementation within
MemSpy. Section 5 describes our architectural assumptions and
benchmark applications, before presenting results in Section 6.
Section 7 discusses possible extensions to our current approach to
incorporate set sampling, as well as time sampling, and to support
sampling in multiprocessor simulations. We present our conclu-
sions in Section 8.

2 Trace Sampling Background
MemSpy implements reference trace sampling by gathering evenly
spaced samples to be simulated from the full reference trace. This
is illustrated in Figure 1. The sampling ratio is the ratio of the
total number of references within the samples, divided by the to-
tal number of references. Thus, the performance improvement
possible in a sampling system is limited by the reciprocal of the
sampling ratio. For example, if one uses a sample length of 0.5M
references and a sampling interval of 5M references, the sampling
ratio would then be 1/10, and one could not expect more than a
factor of 10 speedup over full simulation.
Reference trace sampling is subject to two types of inaccura-

cies. First, the samples gathered may not be representative of the
full trace. This error is common to all forms of sampling, includ-
ing the program counter sampling already used in a number of
performance monitoring systems [1, 3, 4, 5]. This sort of error
can generally be controlled by taking a number of samples over
the course of the program’s execution. Section 6.1 discusses the
relationship between accuracy and the number of samples taken.
The second inaccuracy occurs because the state of the cache is

Figure 1: Samples in reference trace.

unknown at the beginning of each sample (because the cache’s true
state depends on events which have occurred during the unmoni-
tored section of the program.) Therefore, within each sample, the
first reference to each cache line (for a direct-mapped cache) is an
unknown reference that could either be a hit or a miss. Estimat-
ing the miss ratio of these unknown references can be a source
of inaccuracy when using reference trace sampling. Because any-
where from none to all of the unknown references could actually
be misses, miss rate calculations for the sample depend both on the
number of known misses and the number and miss rate of the un-
known references. By using longer sample lengths, we can make
the number of unknown references less significant when compared
to known misses. Section 6.3 will discuss the relationship between
sample length and the accuracy of miss rate statistics.
Several studies have examined the applicability of sampling in

the context of architectural studies of cache performance. Laha et
al. [8] studied the accuracy of memory reference trace sampling
using caches that were 128KB in size and smaller. Their study
concludes that sampling techniques allow accurate estimates of
the miss rate for caches of this size. However, their results were
presented with sample lengths of 60,000 references every 100,000
references, or a sampling ratio of 0.6. Sampling ratios in this range
offer little promise for improved performance. Furthermore, they
presented simulation data only for caches with 1024 lines or fewer,
so sample lengths of 60,000 were in general long enough to prime
the cache.
Wood et al. [15] developed a model for estimating the miss

rates of unknown references in sampled traces. They found that
their model predicted the behavior of unknown references better
than several previous methods [8, 14]. Most importantly, they
point out that unknown references typically have miss rates sig-
nificantly higher than the application’s steady state miss rate. We
will evaluate the effectiveness of the Wood et al. estimators on
our benchmarks.
In later work, Kessler et al. [7] studied trace sampling for large

secondary caches of 1MB to 16MB, and with sampling ratios down
to 1/10. For their benchmarks, they noted that unknown references
at the beginning of a sample can dominate known misses, poten-
tially making miss rate estimates quite inaccurate. We believe this
large inaccuracy arose in part because the benchmarks they used
had few cache misses. (Seven of the eight traces had misses per
instruction (MPI) values less than 0.003, while one had an MPI
of roughly 0.021. With a cache miss latency of 20 cycles, an MPI
of 0.003 corresponds to spending only 6% of program runtime in
memory stalls.) Thus, for these benchmarks, the total number of
known misses in each sample was often very small.
From a performance debugging point of view, it is not important

to pinpoint with high accuracy the miss rate of applications with
very low miss rates. The primary purpose of MemSpy is to tune
applications with poor memory system behavior. These programs
will typically have higher miss rates; their larger proportion of

1[7] does not report cache miss rates directly.
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known misses to unknown references will allow miss rates to be
estimated more accurately. Also, within the context of a perfor-
mance debugging tool (as opposed to more forward looking archi-
tectural studies), it is still quite relevant to focus on smaller caches
than those used by Kessler et al. With smaller (e.g., primary,
on-chip) caches, sampling’s accuracy improves. Finally, within
the context of performance debugging, we can tolerate slightly
larger errors in the statistics generated. To tune an application,
one needs to have a good idea of the location and magnitude of
the bottlenecks, but not a perfectly precise cache miss rate value.
We will show that trace sampling reproduces MemSpy’s statistics
with quite acceptable accuracy in most cases.
For these reasons, we feel that trace sampling is a promising

approach to reducing the execution time of performance debug-
ging tools like MemSpy. In this paper, our goal is not simply to
reiterate the results given by Laha et al. or Kessler et al., but to
reevaluate the efficacy of trace sampling in a new context. In this
new context, performance debugging, our constraints on the ac-
curacy of results may be somewhat looser, while the performance
savings offered by sampling are of central importance.

3 MemSpy Background

This section gives a brief summary of MemSpy’s features in order
to understand how trace sampling will affect their accuracy.
MemSpy is a performance debugging tool designed to help

programmers locate and fix memory bottlenecks in applications.
MemSpy first helps in locating bottlenecks by providing high level
information to guide the user towards potential memory bottle-
necks. This high level information (illustrated by the MemSpy
output in Figure 2) breaks down the total execution time of the
program by procedures. Within each procedure, MemSpy presents
a breakdown of how much time was spent in memory stalls due
to cache misses, versus how much time was spent in computation.

Figure 2: Initial MemSpy output display.

MemSpy can then help in fixing bottlenecks by providing more
detailed, low-level information on source-level code and data
objects. For these MemSpy statistics, data objects correspond
roughly to particular classes of data in a program, and code objects
correspond to procedures. For each data object in each procedure,
MemSpy provides information on the number of cache misses, the
percentage of the total memory stall time incurred, and the causes
of the cache misses. An example of this sort of information is
shown in Figure 3.
MemSpy has been used to tune a number of applications, as de-

scribed in [10]. The detailed, data-oriented information given by

Figure 3: Detailed MemSpy output display.

MemSpy has been instrumental in understanding and fixing a va-
riety of performance bugs, such as interference between different
data structures in the cache and excess communication in paral-
lel programs. However, collecting this information comes at the
cost of higher execution time overhead than tools which provide
only high level statistics [3, 4]. Depending on the reference rate
and miss rate of the application, the MemSpy overhead is typi-
cally a factor of 10 to 40 times the actual execution time of the
application. Table 1 gives the overheads for running the original
MemSpy for the applications used in this study, when simulat-
ing a 128KB cache2. The runs were performed on a DECstation
5000/240 with 80 megabytes of memory. Section 5.2 gives more
detailed information on the characteristics of each benchmark.

Table 1: Original MemSpy overheads. (128KB cache)

Actual MemSpy
Application Exec. Time Exec. Time Overhead

(sec.) (sec.) Factor
MP3D 41.7 954.6 22.9
MATMAT 66.1 998.7 15.1
TRI 73.5 782.1 10.6
ESPRESSO 23.5 866.0 36.9
PTHOR 16.0 672.8 42.1

To understand this performance overhead, we examine the se-
quence of operations MemSpy uses to simulate a memory ref-
erence. At compile time, each memory reference in the original
application assembly code is instrumented with a procedure call to

2Note that these baseline overheads already represent an improvement over
those presented in [10].
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the memory system simulator. At run time, within this procedure,
MemSpy performs the following actions:

1. Save application registers so that the memory system simu-
lator will not destroy them.

2. Use a cache simulator to determine whether the reference is
a cache hit or a cache miss.

3. Update MemSpy statistics for the relevant code and data ob-
jects.

4. Restore application registers to their original values.

5. Return control to the application.

Cache simulation and statistics updates can take from roughly
20 cycles (if the reference is a cache hit), to roughly 200 cycles
(if the reference is a cache miss). Saving and restoring application
registers comprise roughly 60 cycles. Even in applications with
poor memory behavior, generally a majority of the references are
still cache hits, so we find the bulk of MemSpy’s overhead is spent
in saving and restoring registers when switching from application
to MemSpy and vice versa. While we are currently working on
techniques to reduce this overhead, this paper focuses on using
trace sampling as an orthogonal technique for improving Mem-
Spy’s performance.

4 Implementation of Trace Sampling

Our discussion of the trace sampling implementation within Mem-
Spy is divided into two subsections. The first deals with perfor-
mance issues in the implementation, while the second deals with
issues related to the accuracy of the results.

4.1 Performance Issues

Obviously, our primary purpose in using trace sampling is to im-
prove MemSpy’s performance. Therefore, it is important to pro-
duce a sampling implementation which promises substantial per-
formance improvements over the current full-trace simulation. We
have seen that the bulk of MemSpy’s time is spent in the register
saves and restores required when switching from application to the
memory simulator and vice versa. So, an implementation which
simply turns off simulation within the MemSpy simulator will not
improve performance significantly. Rather, to be worthwhile the
implementation must circumvent the overheads of register saves
and restores whenever the simulation is turned off.
To accomplish this, we modify the normal MemSpy assem-

bly time instrumentation of memory references. In addition to
the usual call to the MemSpy memory simulator, additional in-
strumentation is added. In this extra instrumentation, a sampling
counter is decremented and checked against zero to see if simula-
tion is currently ON or OFF. If simulation is OFF, control branches
around the memory simulator procedure call. If simulation is ON,
the simulator is called as in a full simulation. Figure 4 illustrates
the original and new instrumentation.
Section 6.6 will show that this implementation gives us a sizable

performance improvement. A sampling ratio of 1/10 leads to 4
to 6 fold performance improvements. Section 6.6 also discusses
ways of further reducing this overhead.

Figure 4: Inlined assembly code for sampling.

4.2 Accuracy Issues

As we noted earlier, trace sampling is subject to two orthogonal
forms of inaccuracy:

Error due to non-representative samples: The deviation be-
tween the application’s true miss rate when fully simulated,
and the application’s true miss rate measured during sampled
regions only.

Error due to unknown references: Within each sample, the de-
viation between the application’s estimated miss rate (includ-
ing an estimate of the miss rate of unknown references), and
the application’s true miss rate during the sampled region.

For the results presented in this paper, the true miss rate during
sampled regions is generally a good estimate of the application’s
true overall miss rate. The error in this estimate can be controlled
by increasing the number of samples taken. The bulk of the error
we measure is of the second type: error due to unknown refer-
ences. For a particular sample, the cache miss rate, , can be
expressed as

where is the number of known hits, is the number of known
misses in the sample, is the number of unknown references,
and is the fraction of unknown references which are actually
cache misses. Knowing , , and , we can estimate by
estimating the unknown reference miss rate, . Wood et al. [15]
show that miss rates for unknown references are typically higher
than the overall application miss rate, so assuming that is equal
to the steady state miss rate will result in optimistic performance
estimates. They introduce a method for estimating by estimating
the fraction of time that lines in the cache are dead (i.e. will not
be referenced again before a new line replaces them in the cache).
In Section 6.4, we will evaluate this method’s effectiveness within
our framework. Note that one can always compute a range of
possible values by allowing to vary from 0 to 1. Thus,
can be expressed with symmetric error bounds as follows:

0 5 5
1

In general, one can reduce the error due to unknown references
by lengthening samples so that known misses dominate unknown
references. However for a fixed desired sampling ratio, increases
in sample length must be traded off against the number of samples
taken. Sections 6.1 and 6.3 discuss this tradeoff in more detail.
Because we are studying trace sampling within the MemSpy

context, it is important to also study how errors in cache miss rate
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translate into errors in the statistics reported by MemSpy. Will
errors in cache statistics for individual data structures, as well as
overall cache statistics, be acceptable? Will the sampling approach
be accurate enough to allow the program’s true bottlenecks to be
identified? Section 6.5 discusses the errors in MemSpy metrics
which we have observed for the benchmarks studied.

5 Experimental Setup
This section briefly presents necessary background information on
the architectures and the benchmark applications we examined.

5.1 Architectures Simulated

The statistics shown here were gathered using a very simple mem-
ory simulator that does not model network contention. While the
model is simple, we have found that it captures most of the impor-
tant memory system behavior in applications used with MemSpy.
In these studies, cache are direct mapped, and have one of the
following organizations: (i) 16KB, with 16 byte lines, (ii) 128KB,
with 32 byte lines, or (iii) 1MB, with 64 byte lines. The 16KB
cache is a typical size for an on-chip first level cache. The 128KB
cache represents a reasonable size for an off-chip cache. The 1MB
cache, large by today’s standards, might be used as a secondary
cache.

5.2 Benchmark Applications

The results of trace sampling studies are clearly dependent on the
applications used for gathering the results. For our benchmarks,
we have found that sampling provides significant execution time
benefits with little sacrifice in accuracy. For tuning the memory
behavior of these applications, the sampled results are in most
ways interchangeable with the full-trace results.
The applications presented here span a wide range of mem-

ory behaviors. Two of the benchmarks, MP3D and PTHOR, are
applications from the SPLASH benchmark suite [12]. Their mem-
ory system performance has been studied extensively in the past.
Likewise, the memory referencing characteristics of MATMAT [9]
and TRI [11] have also been studied. (We use untuned versions
of these applications, to observe behavior typical of applications
one might use with MemSpy.) The fifth application, ESPRESSO,
from the SPEC benchmark suite [13], has much better memory
performance than the others (0.2% cache miss rate on a 128KB
cache). This application is useful for showing how sampling be-
haves on applications with very low miss rates. Of the five, it
is the most sensitive, in terms of relative error, to changes in the
length of individual samples and the particular estimate chosen.
Table 2 gives some basic information on each of the applications
studied, including their cache miss rates for a 128KB cache.

6 Results

This section presents our results on the accuracy and performance
of trace sampling within MemSpy. In general, we find that trace
sampling is quite effective at reproducing the statistics from a full
trace run of MemSpy. As a preview, Table 3 compares estimated
cache miss rates from sampling to (i) the program’s true miss rate
calculated over all references and (ii) the program’s true miss rate

Table 2: Application Characteristics

Application Data Set Size Refs True Miss
(MB) (M) Rate (%)

MP3D:
Hypersonic 33.4 150.4 3.8
Particle-based
Simulator
MATMAT:

Blocked Matrix 6.4 139.7 18.2
Multiply
TRI:

Triangular 68.2 109.8 6.1
Sparse Matrix

Solver
ESPRESSO:
Boolean 1.3 143.8 0.2
Function
Minimizer
PTHOR:

Discrete Logic 4.6 67.2 4.0
Simulator

calculated over only those references occurring during a sample.3
In each of the applications, the absolute error in miss rate never
exceeds 0.4%. Errors in this range are generally acceptable for use
in a performance debugging context. MemSpy’s execution time
overhead for these applications generally ranged from factors of
3 to 8. This overhead makes MemSpy an attractive alternative to
other less detailed performance monitoring tools.

Table 3: Estimated and True Miss Rates. (128KB cache, 10%
sampling ratio, 0.5M Refs/sample)

Overall True Estimated
True Miss Rate Miss Rate

Miss Rate During During
Appl. Samples (%) Samples (%)
MP3D 3.8 3.8 3.5
MATMAT 18.2 17.9 17.8
TRI 6.1 6.4 6.1
ESPRESSO 0.23 0.14 0.20
PTHOR 4.0 3.8 3.7

While this data shows reasonable accuracy for trace sampling in
one configuration, a more general evaluation of trace sampling for
performance debugging must examine several issues. The most
important questions to be answered are:

How does the number of samples taken affect the error due
to non-representative samples?

How does the accuracy vary with cache size?

How does the length of each sample affect the error due to
unknown references?

3Except when stated otherwise, all estimated miss rates in this section are
reported using a of 0.5 as in Equation 1. This allows us to separate the issue
of estimation from the other issues being studied.
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Figure 5: Relative Error vs. Number of Samples. (128KB cache, 0.5M Refs/sample)

How well can we estimate the miss rate for unknown refer-
ences?

How does sampling affect specific MemSpy output, such
as the ordering of memory bottlenecks and statistics on the
causes of cache misses?

Subject to constraints on accuracy, what performance im-
provement can we expect when incorporating sampling into
MemSpy?

To some extent, these questions are all interrelated. The per-
formance gains realized from trace sampling are bounded by the
sampling ratio, which is the product of the number of samples
taken during a run, multiplied by the sample length, and divided
by the trace length. However, choosing the sample length and
the number of samples has implications for the accuracy of the
resulting run as well. The cache size being simulated is also a
strong determinant of sampling accuracy, with implications on the
required sample length. We must also examine how these errors
in the overall miss rate translate into errors in MemSpy metrics.
If we understand each of these trends and tradeoffs, we can de-
cide when, and to what extent, additional sampling error may be
accepted in exchange for better performance.

6.1 Accuracy vs. Number of Samples

The number of samples taken partly determines how representative
the trace will be of the overall program performance. Intuitively,
a single large sample will not reproduce the overall program’s
behavior as well as several smaller ones. Program behavior can
vary over the run time of the program, with some phases (such as
initialization) characterized by very poor memory system behavior
while other phases have much better cache performance. Laha et
al. [8] mention the importance of capturing representative samples
and present data indicating that using 35 samples was generally
sufficient to characterize the miss rates for their Lisp benchmarks.
Here, we present more comprehensive data showing how accuracy
varies across a wide range of values for number of samples. To

do this, we fix the total number of references simulated and vary
the number of samples taken. This allows us to study the effect
of changing the number of samples, while holding the sampling
ratio (and therefore performance) constant. To study the repre-
sentativeness of different collections of samples, we examine the
deviation between the true miss rate during sampled regions, and
the application’s overall true miss rate. (This is the error due to
non-representative samples mentioned in Section 4.2.) Note that
we are not studying the effects of unknown references in this sec-
tion.
Figure 5 presents the relative deviation between the true miss

rate during sampled regions and the overall true miss rate, plotted
against the number of samples taken. (In this case, the sampling
ratio was 1/10.) Three of the applications: MATMAT, MP3D, and
PTHOR, show excellent behavior. Even after as few as 10 sam-
ples, the relative error in these three cases is roughly 5% or less.
Except for initialization periods, MP3D, MATMAT, and PTHOR
are characterized by relatively constant memory behavior through-
out their program. For these types of programs, fewer samples are
required to capture the “typical” memory behavior. A fourth pro-
gram, TRI, shows large relative fluctuations in error for less than
20 samples, but settles down with greater numbers of samples.
Comparing the true miss rate over time for TRI with that of MP3D
(Figure 6), we see that TRI’s miss rate fluctuates much more with
time than that of MP3D. Thus, more samples are needed to cap-
ture its behavior. Finally, the fifth application, ESPRESSO, shows
relative errors greater than 20% even at 100 samples. Espresso
has a very low miss rate, so even tiny fluctuations in its absolute
miss rate over time show up as large relative swings. When an
application has so few known misses over its entire execution, the
relative error due to sampling is higher. However, the absolute
error from sampling may still be quite small. Low-miss-rate ap-
plications typically do not require memory system tuning at all,
so MemSpy’s performance on them is less relevant.
As expected, the presence of phases in the memory behavior of

a program (such as TRI) mandates the use of more samples to ac-
curately represent its memory behavior. Here MemSpy can lever-
age off users’ knowledge of how their programs behave. When
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Figure 6: Overall True Miss Rate vs. Time. (128KB Cache)

programmers know that their application has basically constant
memory behavior, they can request that a reduced number of sam-
ples be taken, for higher performance. While users do not want
full control of the sampling setup, directives like these allow them
to speed up the tuning process in specific cases. Furthermore,
since tuning is iterative, users can choose to have only a few sam-
ples collected in early runs, and then simulate a higher fraction of
references as they move to more detailed tuning.

6.2 Accuracy vs. Cache Size
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Figure 7: Relative Error vs. Cache Size. (10% sampling ratio,
0.5M Refs/sample)

As previous studies have shown [7, 15], the accuracy of miss
rate estimates is a strong function of the cache size used. Figure
7 shows the relative error in cache miss rate estimates for 16KB,
128KB and 1MB caches at a sampling ratio of 1/10, with a sample
length of 0.5M references. Here, these errors are shown relative
to the true miss rate during the sample. Within each sample, the
best we can hope to achieve is to re-create the true miss rate of
that sample. The error with respect to the overall miss rate may
be slightly more or less than the error shown here, depending on
how accurately the sampled regions capture the behavior of the
full trace.
For the 16KB and 128KB caches, the relative errors are all less

than 10%, with one exception. Espresso’s miss rate has a relative
error of nearly 40% for the 128KB cache. However, its absolute
miss rate (.144% within the sampled regions) is so small that
these large relative errors are neither surprising nor problematic,
from a performance debugging point of view. Since ESPRESSO’s
memory stall time is a small fraction of its total execution time,
even the sampled version of MemSpy will accurately point out that

ESPRESSO does not have any substantial memory performance
bottlenecks.
With 1MB caches, the relative error is greater than 10% for

four of the five applications. The higher relative errors noticed
here are due to two factors. First, as the cache size increases,
more references are needed to prime the cache state. This causes
the number of unknown references to increase. Second, as the
cache size increases, the application’s cache miss rate generally
decreases. This causes a decrease in the number of known misses.
From Equation 1, both of these effects tend to increase the size of
the error bounds on estimated miss rate. To improve the miss rate
estimates with large cache sizes, we have two options. First, we
can reduce ’s significance in the equation, by lengthening each
sample taken. Alternatively, we can improve our estimate of ,
the miss rate for unknown references. The following subsections
address these two issues. Note first however, that despite the
large relative error, the absolute errors remain quite small. Figure
8 shows a plot for the 1MB cache of both the true cache miss rate
(stars) and the sampled cache miss rate (circles) with error bounds
as expressed in Equation 1. Absolute error of this magnitude is
generally considered acceptable when tuning programs.
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Figure 8: Actual and estimated cache miss rates. (1MB Cache
10% sampling ratio, 0.5M Refs/sample)

6.3 Accuracy vs. Sample Length

Section 6.2 illustrates the fact that a single choice of sample length
may not work effectively across a range of cache sizes and appli-
cation behaviors. For larger caches, unknown references become
significant, and one must use longer samples to mitigate their ef-
fect.
To gather the data shown here, we divide the trace into con-

tiguous samples, and collect data for all of them, averaging the
results. This allows us to study more samples per application than
if we restricted ourselves to a sampling ratio of, say, 1/10. The
errors are shown relative to the true miss rate during the sampling
region.
Figure 9 shows relative errors in miss rate estimates for the

five benchmark applications with a 1MB cache. As expected,
longer samples dramatically improve accuracy. At 8M references
per sample, all applications have relative errors less than 10%.
Absolute errors on these applications are all under 0.1%. For even
moderately long running applications, 8M references per sample
is not a prohibitively long sample length. To collect 50 samples
of this size with a sampling ratio of 1/10, the total application
would need to have 4 billion data references. Assuming one data
reference every 3 instructions, this would be roughly 12 billion
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Figure 9: Relative Error vs. Sample Length. (1MB cache)

instructions, or about 2 minutes of execution time on a 100 MIPS
machine. We feel that these are not prohibitive requirements on
either the run time or the reference rate of a program.

6.4 Miss Rate of Unknown References

Section 6.3 shows that reducing error by using longer samples
works quite well. However, many interesting applications do not
have run times long enough to use long sample sizes and aggres-
sive sampling ratios. For this reason, we now evaluate a proposed
model for estimating the miss rate of unknown references, , in
Equation 1.
Wood et al. [15] developed a renewal theoretic model for esti-

mating the miss rates of unknown references. The model predicts
based on two characteristics. (We refer to their estimate as .)

The first characteristic 4 is the ratio of the amount of time a
cache line holds a memory line which will not be referenced again
(dead time) divided by the total time that memory line spent in the
cache (generation time). This ratio approximates the probability
that the unknown references will be directed at “dead” lines in the
cache, and will therefore be cache misses. The second character-
istic used in this model is the number of cache lines referenced
during a sample. This accounts for the fact that many short and
even moderate length samples will not reference all lines of the
cache. Thus not all the dead lines estimated by will be
referenced.
Column three of Table 4 shows the estimates of that are

obtained by calculating “true” dead times and generation times
based on all references in the trace (not just references within
the sampled regions). However with sampling, it is not realistic
to monitor dead and generation times on all references, so the
rightmost column shows the same estimator calculated using
only dead times and generation times for generations which were
contained within simulation ON periods. A generation is defined
to start and end with a cache miss. Thus, within a sampling
system, collecting generation data requires that two known misses

4[15] referred to this as .

Table 4: Accuracy of estimators. (1MB Cache,
0.5Mrefs/sample)

Actual
Application (All Refs) (Sampled)
MP3D .966 .952 .637 2.8
MATMAT .880 .882 .854 21.3
TRI .877 .903 .942 11.5
ESPRESSO .116 .823 .990 0.04
PTHOR .267 .205 .468 3.3

occur to a particular cache line within a particular sample. With
low miss rates and short samples, many cache lines do not meet
this requirement, so this model does not measure their behavior.
Thus the model is inaccurate in two ways. First, the model is
skewed towards counting statistics on shorter generations which
can fit within the sample. Second, statistics for cache lines which
have such generations are applied to other cache lines as well.
For MP3D and PTHOR, the error in the sampled is especially
pronounced. The error with ESPRESSO is also large, because it
has very few generations total. Here, severely overestimates
, because cache lines with poor behavior are more likely to be
counted than those with good behavior. Intuitively, we see that the
accuracy of the Wood et al. model improves when there are more
known misses in a sample. However, it is exactly under these
conditions that unknown references, , are small with respect
to known misses. When is less dominant, simultaneously
becomes more important to relative error and less accurate.
We can use a heuristic metric to evaluate the degree of error

in by computing the average number of known generations per
sample. This metric, in Table 4, is computed by dividing the
total number of generations in the sampled regions by the product
of the number of samples and the number of cache lines. When
there is one generation per cache line per sample, will equal
1. When there are a large number of generations per cache line
per sample, will be greater than 1. Intuitively, we expect to
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be more accurate when a large number of generations were used
in calculating it. For our benchmarks, increases monotonically
with the absolute deviation of from , indicating it is effective
in gauging the deviation in the estimate.

Table 5: Using in miss rate calculations. (1MB cache, 0.5M
Refs/sample)

Application Actual Using Using 0 5
Miss Miss Error Miss Error
Rate Rate (%) Rate (%)

MP3D 1.61 1.21 -24.8 .92 -42.9
MATMAT 1.30 1.29 -0.8 1.14 -12.3
TRI 2.38 2.42 1.7 1.93 -18.9
ESPRESSO .011 0.08 627 0.04 263.6
PTHOR .92 1.09 18.5 1.11 20.7

Table 5 shows a summary of miss rate estimations based on
and the deviation from the true miss rate value. Not surprisingly,
in spite of its inaccuracies, performs better than more simplistic
models, such as assuming 0 5. For ESPRESSO, however, it
overestimates the miss rate for unknown references, which leads
to a large absolute error in the estimated miss rate.
We feel that estimation within the MemSpy system could

be improved further. A major feature of the MemSpy tool is
the presentation of statistics in terms of data objects, as well as
code objects. Thus, within that framework, it would be quite
natural to keep dead time and generation statistics on individual
data structures. These could be used to better estimate the behavior
of unknown references to these data structures.
Finally, although an accurate estimation of would be helpful in

some situations, the ability to provide error bounds around the miss
rate estimate makes the accuracy of the estimation less crucial.

6.5 Error in MemSpy Metrics

Until this point, we have presented our results in terms of their
effect on the overall cache miss rate. However, MemSpy presents
more detailed statistics than just the cache miss rate; we now ex-
amine the sensitivity of these statistics to inaccuracies introduced
by sampling.
The key statistics presented by MemSpy fall into three basic

categories. First, MemSpy presents displays which show memory
stall time as a percentage of total execution time (memory stall
time plus compute time) for different code and data objects in the
application. This allows the user to determine if memory behavior
is a significant bottleneck or not. Because of sampling, both the
memory stall time (estimated cache miss rate multiplied by the
latency of a cache miss) and the total execution time potentially
can be inaccurate. However, we find that the sampling of compute
time is in general quite accurate. Thus, the main error in the
percentage memory stall time follows directly from the error in the
cache miss rate. Relative errors in estimating this metric parallel
the errors in cache miss rate estimates. The magnitude of these
errors is largely determined by the cache miss latency and the
relative magnitude of the compute time. When compute time is
small, the error in this fraction will roughly match the error in the
cache miss rate. However, the presence of a large compute time
in the denominator of the expression:
can decrease the sensitivity of this statistic to errors in miss rate.

Table 6: Memory bottleneck identification in PTHOR.

Data Object Procedure Memory Stall Time (%)
True Sampled

Element Array EvalElement 16 15
Element Array StimFanOuts 11 12
Free List for
GateChanges EvalElement 9 9
Time Valid EvalElement 6 6

MemSpy’s second type of statistic breaks down memory stall
time by procedure–data pairings. In this way, MemSpy allows
the user to see which data structures are most responsible for the
program’s poor memory performance. We can collect this bot-
tleneck information from a full MemSpy run, and compare it to
a sampled MemSpy run. For a 128KB cache, and a sampling
ratio of 1/10, we find excellent agreement between the sampled
and true statistics. For the four applications studied (we omitted
ESPRESSO since the overall miss rate indicates it needs little tun-
ing), the orderings of bottlenecks reported by the sampling version
exactly matched the orderings for the true version through the top
90% of the memory stall time. As an example, Table 6 shows the
bottleneck orderings, and percentage breakdowns for PTHOR.
MemSpy also presents a breakdown of the causes of a bin’s

cache misses. In sequential programs, a cache miss can either be
a cold miss or a replacement miss. Cold misses occur when mem-
ory is referenced for the first time in a program. Replacement
misses occur when data which was previously in the cache has
been replaced by other data before it is re-referenced. Unfortu-
nately, accurate reproduction of these statistics is more challeng-
ing. There are two possible types of errors which can cause these
statistics to be inaccurate when sampling. The first error occurs if
a cache line is referenced for the first time during a period when
simulation is turned off. In this case, this cold miss will not be
noted, so the first subsequent reference that occurs when simula-
tion is on, will be counted as a cold miss. In reality, it was a
replacement miss.
The second type of error pertains to correctly attributing the

cause of a replacement miss. For each replacement miss, Mem-
Spy records the data item which caused the replacement, so that it
can give statistics on which data items caused replacement misses
to other data items. If a cache line is pushed out of the cache
during a period when sampling is off, then no statistics will be
recorded indicating which data item pushed it out. If a subsequent
replacement miss occurs, one of two things may happen. First,
intervening references to that line may occur between when sam-
pling is turned on, and when the replacement miss occurs. In this
case, a Cause data structure is updated to indicate the first of
these intervening references is the replacement cause. This infor-
mation is correct in one sense, since these references would have
caused a replacement miss as well; they are simply not the direct
cause of replacement that would have been seen in the full trace.
In the second case, if no intervening references occur, then the
cause of replacement is considered to be unknown. In general, we
have found that with severe interference, replacements occur often
enough that the sampled version is able to detect and indicate the
problem. As the users begin to to fine tune their code, they may
choose to simulate a higher fraction of references, to detect the
more subtle performance bugs.
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6.6 Performance

Having presented statistics on the accuracy of a sampled version
of MemSpy, we now evaluate its performance. The goal of imple-
menting trace sampling within MemSpy is to reduce the execution
time overhead needed to collect MemSpy statistics. Section 4 gave
a description of our current sampling implementation. To reiter-
ate, for every assembly level call to the MemSpy simulator, we
add extra instrumentation which decrements a reference counter
and branches around the simulator call if simulation is OFF. This
introduces an overhead of 6 instructions per instrumented memory
reference. When simulation is ON, there is additional overhead
to (i) save application registers, (ii) switch to the simulator, (iii)
simulate, (iv) restore application registers and (v) return to the
application.
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Figure 10: Sampled MemSpy performance overhead. (128K
cache)

Figure 10 shows the simulation overhead of all five benchmarks
under different configurations. All overheads shown are for sim-
ulations of 128KB caches. (Overheads for other cache sizes are
similar, although slightly dependent on the application’s miss rate.)
The bars labeled “Full” show the (multiplicative) overhead of a
full MemSpy simulation as compared to the uninstrumented appli-
cation run. The bars labeled “1/10” show the overhead for sampled
runs with a sampling ratio of 1/10. At this ratio, the overheads are
reduced by roughly 4 to 6 fold from the original MemSpy imple-
mentation. They now range from 2.9 for TRI to 16 for PTHOR.
Four of the five benchmarks have overheads less than 8.
These are acceptable overheads in many cases, given the de-

tailed statistics MemSpy provides. Nonetheless, we should exam-
ine why the speedup obtained was not closer to 10, the reciprocal
of the sampling ratio. The third bar for each application (“0”)
shows the overhead when the reference instrumentation is present,
but the simulator is never called, a sampling ratio of 0. The fourth
bar for each application (“Proc”) shows the overhead when no ref-
erence instrumentation is added; all overhead here is due to Mem-
Spy’s logging of procedure entries and exits, as well as MemSpy
initialization time. The difference in height between the “1/10”
bars and the “0” bars represents the cost of reference simulation.
The difference in height between the “Proc” and “1/10” bars is
the cost of both reference simulation and additional instrumenta-
tion for sampling. For most applications, reference simulation is
responsible for roughly half of the overhead in a run. MemSpy’s
procedure logging is responsible for much of the rest of the over-
head, with the additional sampling instrumentation responsible for
up to about 25% of the overhead. To reduce MemSpy’s overhead,

one could consider approaches which try to reduce (i) procedure
logging overhead, (ii) sampling instrumentation overhead, and (iii)
simulation overhead. The following paragraphs discuss each of
these three axes for optimization.
Procedure logging overhead could be reduced to some degree

through simple optimizations of the logging code; however, pro-
cedure events cannot be sampled as with memory events, since
procedure calls and returns must occur in matched pairs to to
maintain the state of the stack.
The second source of overhead, sampling instrumentation, is

defined as the additional instructions needed to switch simulation
ON and OFF, as opposed to simulating all references. In the
implementation presented here, this overhead is primarily the six
additional instructions per memory reference which allow control
to branch around the memory simulator when simulation is OFF.
To try to avoid this overhead, we have implemented a preliminary
version of a more aggressive approach. In this new approach, con-
trol switches back and forth between two different versions of the
application: one version fully instrumented to simulate all memory
references, and another version only instrumented to log procedure
entries and exits, not memory references. The program executes in
the fully instrumented version when simulation is turned ON, and
then switches to the minimally instrumented version when simula-
tion is turned OFF. These mode switches are determined by virtual
timer interrupts using the UNIX setitimer call. This version
is still subject to the overhead of procedure event logging, and
in addition, has double the application code size (because there
are two versions of all application code), which has a detrimental
effect on instruction cache behavior. For these reasons, its per-
formance benefits thus far have been moderate at best. It offers
no better than a 20% speedup for the benchmarks presented here.
However, further work on efficiently handling the mode switch in
this approach may make this an attractive alternative to our initial
implementation.
The third overhead, simulation overhead, is comprised of both

the time spent to simulate the memory system, as well as the time
spent saving and restoring registers in order to “context switch”
to the memory simulator. For the simple memory simulator used
here, register saves and restores are responsible for more than half
of the “simulation” overhead. One way to reduce the time spent
performing register saves and restores would be to circumvent
these register operations for all cache hits. We have implemented
this optimization in the following way. On each memory reference,
we save a small subset of the application registers, and then do
a preliminary check to determine if the memory reference is a
cache hit. If it is a hit, we branch around the memory simulation
and remaining register saves and restores. We need only restore
the small subset of registers we saved before the hit check. An
untuned implementation of this optimization offers a further 12 to
23% speedup to the benchmarks shown here.

7 Discussion

The previous section has shown that, for the benchmarks consid-
ered, reference trace sampling is effective at improving MemSpy’s
performance, with only a small decrease in the accuracy of the re-
ported statistics. This section will addresses several side issues
not yet touched upon.
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7.1 Applications Suitable for Trace Sampling

While we consider the benchmarks used here to be representative
of applications used with MemSpy, not all programs being tuned
will be amenable to sampling. In general, we can divide appli-
cations roughly into the categories shown in Table 7. This table
divides programs according to two characteristics, miss rate and
total references. It shows that the applications most suited to sam-
pling generally coincide with the applications that need memory
tuning. Applications with high miss rates and many references
are most amenable to sampling. A large number of known misses
decreases the effect of unknown references; a long reference trace
allows enough samples to be taken, with each sample long enough
to prime the cache. By contrast, applications with low miss rates
and few references have little need for MemSpy tuning, so the
high error due to unknown references is not relevant. Applica-
tions with high miss rates, but few references will likely have an
execution time short enough to be run without sampling.

Table 7: Applications amenable to sampling and MemSpy.

Miss Number of References
Rate Few Moderate Many
low No Use MemSpy, Use MemSpy,

MemSpy without with long
needed sampling samples

med. Use MemSpy, Use MemSpy, Use MemSpy,
without possible with medium
sampling sampling samples

high Use MemSpy, Use MemSpy, Use MemSpy,
without with with short
sampling sampling samples

7.2 Avoiding Periodic Behavior

One of the pitfalls of trace sampling is the possibility that the
samples will repeatedly coincide with periodic application phases,
resulting in a cache miss estimate that is not necessarily repre-
sentative of the program as a whole, even when gathering a large
number of samples. While we have not implemented it here,
a straightforward solution is to use samples whose length varies
randomly around a chosen mean, with a specified variance. This
would introduce some randomness into the sampling interval, to
make it less likely to repeatedly coincide with a particular phase
of the application.

7.3 Set Sampling

Up to this point, this paper has only treated issues related to time
sampling. In set sampling, one simulates the behavior of selected
cache lines or sets, rather than simulating the entire cache. From a
performance standpoint, an implementation of set sampling offers
speedups similar to those in our current implementation of time
sampling. As with time sampling, one could augment the applica-
tion assembly code to branch around the MemSpy procedure call
for references which are not to be simulated. As described in [7],
one could use a bit mask to select some fraction of the addresses
to simulate. This implementation would require the same number
of instructions as our current time sampling implementation.

Set sampling is promising from an accuracy standpoint as well.
Whereas time sampling suffers from errors due to unknown refer-
ences, in set sampling the cache state is always known; there are
no unknown references to contend with. However, set sampling is
still subject to inaccuracies when the sets chosen for sampling are
not representative of the overall cache behavior. Since the cho-
sen sets are fixed over the duration of the trace, set sampling is
more sensitive than time sampling to error from non-representative
samples. A combination of both approaches may be the most
promising alternative; thus, for a given performance goal, neither
sampling method need be pushed into the extreme regions where
it is less accurate.

7.4 Multiprocessor Behavior

MemSpy is designed to be used with both sequential and shared
memory parallel programs. However, we have thus far only exam-
ined issues related to trace sampling in sequential reference traces.
The parallel domain has its own unique characteristics that affect
the accuracy and performance of a sampling MemSpy implemen-
tation.
On shared memory multiprocessors, “typical” cache miss rates

can be considerably higher than on a sequential machine. Data
sharing between processors can result in frequent invalidation
misses, which are likely to increase the known misses and decrease
the effect of unknown references. However, the disadvantage is
that a parallel machine can have a much larger amount of state to
be primed at the start of each sample. In addition to determining
whether the reference is a cache hit or miss, the simulator may
also need to determine which other processors have copies of a
cache line, in order to determine whether invalidations are needed.
Furthermore, our current parallel simulator is designed to inter-

leave execution of multiple threads on a uniprocessor. In order to
simulate a realistic interleaving of program threads, the simulator
does frequent context switches between threads, always running
the one that is “farthest behind”. Maintaining this proper inter-
leaving will interfere with running the program at full-speed when
not instrumented, because the simulator will still have to check
for context switches. We intend to examine ways of doing peri-
odic low overhead checks to determine whether context switches
need to occur, rather than the current method of checking for po-
tential context switches on each memory reference. We will also
examine the potential of parallel simulation on a true multiproces-
sor, to eliminate the need for these context switches, and improve
performance.

8 Conclusions
We have presented an analysis of the effectiveness of trace sam-
pling within the context of a performance debugging tool. In
general, we found that sampling parameter settings (such as sam-
ple length and number of samples) required for good accuracy
also allowed significant performance improvements. With sam-
ple lengths of roughly 4M references, all benchmarks could be
sampled with less than 0.5% absolute error in cache miss rate,
even in large 1MB caches. With this setup, MemSpy performance
improvements of 4 to 6 fold were obtained. In general, the sam-
ple length required to achieve good accuracy will increase as the
application’s miss rate decreases. This means that performance
debugging is an excellent application of memory reference trace
sampling. Since we expect the target applications to have fairly
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high miss rates, we should be able to use shorter sample lengths
to achieve a particular level of accuracy. This in turn allows us
to use more aggressive sampling ratios (with higher performance)
when generating MemSpy statistics.
We are also able to reproduce the more detailed statistics pro-

duced by MemSpy with good accuracy. In the four applications
studied, the sampled version of MemSpy produced an ordering
of program memory bottlenecks which exactly matched the true
program bottlenecks for all bottlenecks totalling up to 90% of the
memory stall time. The percentages of memory stall time incurred
by different program data structure and procedures also retained
useful accuracy, within 20% of their true values.
Performance debugging is especially suited to sampling imple-

mentations, because it is an iterative process with different de-
grees of accuracy warranted at different stages. Sampling allows
the MemSpy user to get a fast initial view of program behavior
using sampling ratios of 1/10 or less. Then, as the users begin
to fine tune performance, they can switch to higher sampling ra-
tios which may provide better accuracy for capturing more subtle
details of program behavior. Used with care, sampling can al-
low accurate estimates of detailed memory system statistics to be
produced with execution time overheads that are competitive with
other much less detailed performance monitors.
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