
MemSpy: Analyzing Memory System Bottlenecks in Programs

Margaret Martonosi and Anoop Gupta
Computer Systems Laboratory
Stanford University, CA 94305

Thomas Anderson
Computer Science Division,

Univ. of California, Berkeley, CA 94720

Abstract
To cope with the increasing difference between processor
and main memory speeds, modern computer systems use
deep memory hierarchies. In the presence of such hierar-
chies, the performance attained by an application is largely
determined by its memory reference behavior— if most ref-
erences hit in the cache, the performance is significantly
higher than if most references have to go to main memory.
Frequently, it is possible for the programmer to restructure
the data or code to achieve better memory reference behav-
ior. Unfortunately, most existing performance debugging
tools do not assist the programmer in this component of the
overall performance tuning task.
This paper describes MemSpy, a prototype tool that

helps programmers identify and fix memory bottlenecks in
both sequential and parallel programs. A key aspect of
MemSpy is that it introduces the notion of data oriented,
in addition to code oriented, performance tuning. Thus,
for both source level code objects and data objects, Mem-
Spy provides information such as cache miss rates, causes
of cache misses, and in multiprocessors, information on
cache invalidations and local versus remote memory misses.
MemSpy also introduces a concise matrix presentation to
allow programmers to view both code and data oriented
statistics at the same time. This paper presents design and
implementation issues for MemSpy, and gives a detailed
case study using MemSpy to tune a parallel sparse matrix
application. It shows how MemSpy helps pinpoint mem-
ory system bottlenecks, such as poor spatial locality and
interference among data structures, and suggests paths for
improvement.

1 Introduction
While processor speeds have increased by more than two
orders of magnitude over the last decade, main memory
(DRAM) speeds have barely increased by a factor of two
[10]. In response to this ever increasing speed of proces-
sors, modern computer systems are designed with sophis-
ticated memory systems that include small on-chip caches,
large external caches, and interleaved main memory. The
memory hierarchies are even deeper and more complex for
multiprocessors. One consequence of these deep memory

In Proc. 1992 ACM SIGMETRICS
Conference on Measurement and Modeling of
Computer Systems

hierarchies is that cache miss latencies have become ex-
tremely large when counted in processor clocks. As a re-
sult, if an application is to attain good performance, it must
exhibit memory reference behavior that exploits caches well
— the reference pattern must exhibit high spatial, temporal,
and processor locality [1].
The memory reference behavior of an application, at the

most basic level, depends on the intrinsic nature of the ap-
plication; however, the programmer still has considerable
flexibility in manipulating the algorithm, data structures,
and program structure to change the memory reference pat-
terns in order to better exploit the memory hierarchy. We
find that a tool designed to help in this task must (i) sepa-
rately report processor and memory time, so that program-
mers can discern when the memory behavior is the bottle-
neck, (ii) link bottlenecks back to data objects, as well as
code, and (iii) give memory statistics at a level of detail that
allows the programmer to identify and fix the bottlenecks.
The latter, in our experience, requires detailed information
on which code and data objects are responsible for the most
cache misses, and reasons for why those misses occurred.
Understanding the cause of misses is important, since some
of those misses may be essential misses (e.g., cold-start
misses), while others may be more easily optimized away
(e.g., replacement or invalidation misses).
Most existing performance debugging tools [2, 3, 5, 7,

8, 9, 15], do not provide the detailed information mentioned
above. In this paper, we describe MemSpy, a prototype tool
that provides such information and helps programmers im-
prove the memory reference behavior of applications. The
paper outlines two case studies showing the usefulness of
MemSpy’s detailed information in tuning applications with
poor memory referencing behavior.
While the detailed information provided by MemSpy is

beneficial, it comes at the price of higher overhead. For
applications whose performance is limited by memory ref-
erence behavior, the power of the information provided by
MemSpy warrants the extra overhead; however, one may
first want to perform more general code optimizations us-
ing simpler tools. Consequently, we envision MemSpy as
part of a hierarchy of performance debugging tools. At
higher levels we expect tools that have low overhead and
that provide only basic application statistics. These tools
will identify coarse bottlenecks in the program. Lower in
the hierarchy we expect tools like MemSpy that provide
detailed outputs with somewhat higher overheads.



The remainder of the paper is structured as follows.
The next section describes related work. Following that,
in Section 3, we present an overview of MemSpy. Next,
we present a case study using MemSpy to tune the per-
formance of a parallel sparse matrix application. Section 5
gives the implementation details and presents data on Mem-
Spy’s execution time overhead. In Section 6, we discuss our
experiences with the system, and Section 7 presents con-
clusions.

2 Related Work
In recent years, there has been a surge of interest in devel-
oping tools to support application performance debugging,
rather than simply correctness debugging. Many perfor-
mance debuggers now exist, occupying points along a spec-
trum from high-level, low-overhead tools to more detailed,
higher overhead tools. At one end of this spectrum, tools
such as gprof are intended to produce simple, high-level
statistics with minimal overhead. At the other end, tools
like SHMAP and MemSpy are intended to give more de-
tailed information to the user with commensurate increase
in overhead. This section discusses a selection of relevant
tools over the range of this spectrum, and motivates our
choice for MemSpy’s level of detail.
Gprof [9] is a commonly used execution profiler for

sequential programs. By giving a hierarchically arranged
profile of the execution time of a program’s procedures, it
offers a high level view of which procedures have the great-
est potential for optimization. Gprof, however, does not
distinguish between computation time and memory system
time, and it therefore provides no help in locating memory
system bottlenecks.
Quartz [2] is an execution profiler for parallel programs;

in many ways, it is an extension of gprof into the parallel
domain. Quartz reports normalized processor time as its
primary metric. This is defined as the total time all proces-
sors spend in each section of code, divided by the number
of other processors concurrently busy when that section of
code was being executed. Quartz presents normalized pro-
cessor time statistics for a program’s procedures, and also
reports the amount of normalized processor time spent in
critical sections. Normalized processor time emphasizes the
point that optimizing an application’s less parallel code can
have more impact on overall performance than improving
code executing with high parallelism. Like gprof, Quartz
aggregates computation time and memory system time to-
gether, making it difficult to determine when the memory
behavior is a bottleneck. However, Quartz is quite good at
focusing the user’s attention on those procedures that are
most critical to performance; we have incorporated some
of Quartz’s functionality into MemSpy.
MTOOL [7, 8] is a system specifically designed to de-

tect memory bottlenecks in both sequential and parallel pro-
grams. MTOOL’s basic performance metric is the differ-
ence between a program’s actual execution time with non-
ideal memory system behavior, and the execution time of
the same code with an ideal memory system. This differ-
ence is the amount of execution time for which the pro-
cessor was stalled due to memory system delays. This

information is presented for loops and procedures within
the program. While MTOOL is a useful tool for focusing
attention on the primary memory bottlenecks in the code,
it provides no statistics on the specific behavior (cold-start
misses, interference, sharing, etc.) responsible for the prob-
lems. Furthermore, since MTOOL’s output is procedure and
loop oriented, it often provides little or no insight into which
data objects are responsible for the poor memory system be-
havior.
Another tool for studying memory referencing patterns

in programs is SHMAP [5]. This system annotates se-
quential FORTRAN programs, collects memory reference
traces, and produces an animated picture of references to
the program’s main data objects. While SHMAP is useful
for detecting patterns in references to array data objects, it
offers only limited help for references to more complex data
structures, such as lists and trees. SHMAP also offers little
summary information about the program’s behavior; miss
rates are computed only on a per-processor, rather than per-
data-object or per-procedure basis, and the user must glean
information on cache replacements by carefully examining
the animation. For long running simulations of program
execution, watching the animations and discerning patterns
may become quite tedious.
In summary, current performance monitors exist at many

points of the spectrum of possible tradeoffs between effi-
ciency and level of detail in their output. We introduce
MemSpy to provide a useful level of detail in memory sys-
tem performance statistics that has not yet been explored;
further, we examine methods for reducing MemSpy’s over-
head as much as possible.

3 MemSpy Overview
MemSpy is a performance debugging tool designed to help
programmers locate and fix memory bottlenecks in applica-
tions. MemSpy first helps in locating bottlenecks by pro-
viding high-level information that focuses the programmer’s
attention on the problem areas in the application. Then, it
helps the programmer fix the bottlenecks by providing de-
tailed information on the application’s memory behavior at
these bottlenecks. MemSpy’s key features can be summa-
rized as follows:

Both data oriented and code oriented output.

An initial attention-focusing mechanism based on the
fraction of time spent stalled for memory.

Detailed information on the causes of poor memory
performance.

Applicability to both serial and parallel applications.

Traditionally, performance monitoring tools have pre-
sented primarily code oriented output; that is, the statis-
tics are presented for different procedures, loops, or source
lines in the code. However, many performance bottlenecks
are more naturally viewed in terms of data oriented statis-
tics, where statistics are presented for different application
data objects. In contrast to earlier approaches, we believe



that both data and code oriented statistics are important for
performance debugging; they provide orthogonal views of
program performance, and the combination of the two can
be quite powerful. For example, consider pthor [17], a
parallel logic simulation application in the SPLASH bench-
mark suite [16]. In pthor, the ElementArray, an array
of logic elements, is responsible for more of the program’s
cache misses than any other data object. However, these
misses are distributed across several procedures. Code ori-
ented output cannot emphasize ElementArray’s perfor-
mance problems as well as data oriented output, because no
single section of code is the bottleneck. In this case, the
bottleneck lends itself to data oriented viewing.
The blocked matrix multiplication code ( )

shown in Figure 1 gives another example of the power
of combining data oriented statistics with code oriented
statistics. Blocked algorithms such as this operate on sub-
matrices or blocks of the originalmatrix, so that data fetched
into the cache are reused before replacement. The bulk of
the computation is performed in line 13. In this line, the
appropriate elements of X and Y are multiplied, and the
result is accumulated in an element of Z. Code oriented
statistics are useful for focusing the programmer’s attention
on this section of the code. However, with code oriented
statistics alone, it would be difficult to determine which of
the matrices in the loop is causing the bottleneck. With data
oriented statistics, one learns that the bottleneck on this line
is almost entirely due to misses generated by the Y matrix.

1) BlkMultiply(X, Y, Z, N, B)
2) Matrix *X, *Y, *Z;
3) int N,B;
4) {
5) int kk,jj,i,j,k;
6) double r;
7) for kk = 1 to N by B do
8) for jj = 1 to N by B do
9) for i = 1 to N do

10) for k = kk to min(kk+B-1,N) do
11) r = X[i,k];
12) for j = jj to min(jj+B-1,N) do
13) Z[i,j] = Z[i,j] + r*Y[k,j];
14) }

Figure 1: Blocked matrix multiply code.

For both code and data oriented statistics, it is impor-
tant to provide the user with a focusing mechanism; that
is, a metric or display that initially helps the user locate
bottlenecks in the code. In MemSpy, the primary focusing
mechanism is the percentage of total memory stall time as-
sociated with each monitored object. That is, code and data
objects are ranked according to the fraction of stall time
they are responsible for. We have found this more useful
than other metrics such as cache miss rates for identify-
ing problem sections in the program. This is because code
or data segments with high miss rates, but low total stall
time (because there are few references) do not impact per-
formance as much as segments with lower miss rates but
more total stall time.

Figure 2 shows an example of the initial display pro-
duced by MemSpy for blocked matrix multiply. In this run,
we multiply two 295 x 295 element matrices together; we
use a block size of 64 so that a single block just fits into
the simulated 32Kbyte cache. In the output table, data ob-
jects are ranked across the horizontal axis, and code objects
are ranked vertically. This output matrix presents a concise
breakdown of how code and data objects contributed to the
program’s total memory stall time. The legend at the top
gives the names of the data and code objects. Here, we can
see that 85% of the program’s memory stall time occurs in
the variable in BlkMultiply(), the routine shown in
Figure 1. It is surprising that is responsible for so much
stall time (and so many cache misses), since the block is
sized to fit in the cache. As we proceed, MemSpy’s output
will provide more information about the precise cause of
this problem.

TOTAL APPLICATION STATISTICS

Execution Time: 649.0M cycles
Total Memory Stall Time: 509.5M cycles

Overall Miss Rate: 37.8%

Total References: 26.93M
-Reads: 19.99M (74.2%) -Writes: 6.94M (25.8%)
Total Misses: 10.19M
-Reads: 9.92M (97.4%) -Writes: .26M (2.6%)
------------------------------------------
Percentage of Total Memory Stall Time,
broken down by data and code

Data Bins: Code Segments:
0 : Matrix.Y 0 : BlkMultiply
1 : Matrix.Z 1 : main
2 : Matrix.X 2 : ClearProduct

Data Bins
Code | | 0 1 2
Segments | Tot% | 86.4 8.5 5.1
------------------------------------------
0 | 97.5 | 85.5 7.7 4.3
1 | 1.7 | 0.9 -- 0.8
2 | 0.8 | -- 0.8 --

Figure 2: MemSpy initial output: Blocked matrix multiply.

For each data-bin–code-segment combination, users can
request detailed statistics about the behavior of references in
that “bin”. The display gives information such as: miss rate,
read and write statistics, statistics on local versus remote
misses, and memory latency statistics. Finally, a key feature
of this output is the breakdown of the types of cache misses.
Cache misses occur in the following situations: (i) if the
line has never been referenced before by this processor,
(ii) if the line has been replaced out of the cache since its
last reference, or (iii) if the line has been invalidated since
its last reference. MemSpy provides statistics which break
down the misses occurring due to each of these situations.



Figure 3 is an example of a detailed display from the
blocked matrix multiply example.1 In this case, we are
examining the detailed statistics for the matrix in the
BlkMultiply routine. We can see that this particular
data-code combination has a miss rate of 68%. This is sur-
prisingly high, because blocking is used specifically to re-
duce cache misses to . The output shows that the misses
to in this routine are all due to cache replacements.2
MemSpy gives a breakdown of which data objects caused
replacements, and we see that roughly 90% of all replace-
ments were caused by itself. To summarize, (i) has
a surprisingly high miss rate, (ii) the misses are primarily
due to replacements, and (iii) the replacements are mainly
caused by other references to the data object. These
three facts alert the programmer to the problem of self-
interference.3 The programmer can now minimize this ef-
fect by choosing a block size with less interference, or by
copying the block so that it occupies a contiguous region
of memory [11].

DETAILED OUTPUT: Matrix.Y in BlkMultiply

Elapsed Time in BlkMultiply: 627.6M cycles
Memory Stall Time in bin: 435.5M cycles

Percentage of Total Memory Stall Time: 85.5%
Percentage of Total Misses: 85.5%
Miss Rate: 67.6%
Percentage of Total Refs: 47.8%

REFERENCES: 12.88M --
Reads: 12.88M (100.0%) Writes: 0 (0.0%)

MISSES: 8.71M --
Read misses: 8.71M (100.0%)
Write misses: 0 (0.0%)

1st Ref Miss: 0 (0.0%)
Inval Miss: 0 (0.0%)
Repl Miss: 8.71M (100.0%)

Memory Stall Time (Cycles):
Total = 435.5M, Avg per reference= 33.8
Memory Read Stall Time = 435.5M,
Memory Write Stall Time = 0
Avg Memory Read Stall Time = 33.8

Causes of Replacements:
bin Matrix.Y: 90.0%
bin Matrix.Z: 6.9%
bin Matrix.X: 3.1%

Figure 3: MemSpy detailed output: in BlkMultiply.

1In this figure, the Percentage of Total Memory Stall Time equals the
Percentage of Total Misses because in this case we use a simple memory
simulator, with a constant latency for all cache misses.

2There are no first reference misses in this routine, because all the
matrix elements are first referenced in a separate initialization procedure.

3To discover the effect shown here, Lam et al. [11] manually instru-
mented the code to gather data similar to MemSpy’s. MemSpy automates
and generalizes this process, making these statistics more accessible to
programmers.

This example has illustrated the usefulness of MemSpy’s
output. Section 4 also shows a more detailed case study us-
ing MemSpy. However, MemSpy’s detailed statistics have
a cost. Information at MemSpy’s level of detail is available
in two ways: simulation or hardware tracing. The prototype
version of MemSpy uses simulation to gather the necessary
information. We are optimizing this simulator-based ver-
sion and examining the basic performance limitations of this
approach. We also intend to create a version of MemSpy
that uses the hardware tracing facilities of the DASH mul-
tiprocessor [12] to gather this information. To further re-
duce the cost of gathering MemSpy’s detailed information,
we view MemSpy as part of a hierarchy of performance
debugging tools. High level tools provide coarse-level in-
formation to focus the user on these selected performance
bottlenecks; then, MemSpy can be used to monitor partic-
ular data objects or sections of code. In this way, one pays
for MemSpy’s detail only when it is useful.
There are several other important issues that arise as a

result of MemSpy’s detailed, data oriented output. How
does MemSpy decide which data object a particular ref-
erence belongs to? Should it keep separate statistics for
each individually allocated range of memory? Or for each
class of data objects? Furthermore, how can we automati-
cally assign the bins names that best correspond to variable
names the user recognizes? For example, memory may be
allocated and assigned temporarily to pointer name tmp,
before being assigned to a more intuitively named variable.
We also need to optimize the speed of statistics gathering
in general. These issues will be examined more closely in
Section 5.

4 A Performance Tuning Case Study

In this section, we present a step by step description of how
MemSpy may be used to tune a parallel application. As we
proceed through the case study, it is important to note how
simple statistics become much more powerful when pre-
sented for individual data structures as well as for sections
of code. The application we have chosen is tri. It is
a parallel program that implements the triangular system
solve phase of the incomplete Cholesky conjugate gradi-
ent (ICCG) algorithm. (The ICCG algorithm is a widely
used iterative method for solving large sparse systems of
equations that arise in engineering applications.) The work
shown here is an illustration of work previously described
in [14]. In the original study, the authors had gathered these
statistics using a version of the ICCG code with very low
level instrumentation added by hand. MemSpy automates
and generalizes this process.
The statistics shown here were collected using Mem-

Spy with a simulated bus-based multiprocessor consisting
of 4 processors, each with 64Kbytes of cache. The cache
line size is assumed to be 64 bytes and the miss latency is
assumed to be 50 clock cycles. This roughly models the
architecture of the Silicon Graphics 4D/340 multiprocessor
on which the original tri study was done.



for i = 1 to N {
x[i] = b[i];
for j = 1 to i-1 {
x[i] = x[i] - M[i][j] * x[j];
}

}

Figure 4: Serial pseudo-code for tri.

4.1 Example Application: Tri

The basic problem solved by tri is: , where is
a sparse, lower triangular matrix with unit diagonal, and
and are vectors. and are known; is to be computed.
The pseudo-code in Figure 4 gives a straightforward, serial
solution to this problem. Since is lower triangular, is
always less than in the summation and the sum involves
only that have already been computed.
The actual parallel solution we study differs from Figure

4 in several ways. First, the sparse matrix is stored in
the following compact format. The non-zero elements of
M are stored contiguously by row in the one dimensional
array . Another array, , stores the column number
of each non-zero in . A third array stores pointers to
the beginning of each row in . To parallelize tri,
the algorithm attempts to compute values for several
concurrently. Of course, not all iterations can be performed
at once, because computing in row may require
from a previous row . To exploit parallelism, the depen-
dencies between rows (various ) can be determined in
advance, and an acyclic dependency graph built. By doing
a topological sort on this graph, we can assign each row
( ) to a discrete level of computation so that it depends
only on rows in lower levels (i.e., those that have been
computed earlier). In the version of tri we begin with
here, processors are assigned the rows from each level in
a round-robin fashion. Figure 5 shows the pseudo-code
executed by each processor.

1) For each "row" assigned to me {
2) /* initialize accumulator variable*/
3) accum = b[row];
4) For each non-zero entry,j,in this row{
5) /* wait until x[j] is ready */
6) while (!Ready[col[j]]) ;
7) /* update accum using M.nz and x */
8) accum = accum - M.nz[j] * x[col[j]];
9) }

10) /* set x[row] to its final value */
11) x[row] = accum;
12) /* x[row] is now usable by others */
13) Ready[row] = 1;
14) }

Figure 5: Parallel tri implementation.

4.2 Performance of Original Tri Code
When we run the original tri code using the benchmark
matrix BCSSTK15 [6], we find that the speedup with 4
processors is very low, only a factor of 1.4. To explore the
cause, we use MemSpy to first look at the total number of
misses. These numbers are shown in a summarized form
on line 2 of Table 1. This figure also shows the breakdown
of cache misses among program data objects.
The first thing that stands out is that the total number

of cache misses rises sharply, by a factor of 3.3, as we
go from the sequential to the multiprocessor version of the
code. Though the total time spent doing real work has re-
mained roughly the same, the time spent stalled for memory
has more than tripled. Furthermore, in the parallel version,
when one process is stalled waiting for memory, others may
be forced to spin-wait until that process gets the needed
memory item and produces the elements the other processes
wait for. Thus, memory behavior is likely to be the prime
reason for the poor speedups. To see how the misses may
be reduced, we now look at the composition of misses in the
two cases. We see that the number of misses has increased
for all data objects;4 however since causes the most
misses in the multiprocessor version, we focus first on its
behavior.
We first note that the non-zero elements of matrix M are

accessed only once in both the sequential and parallel ver-
sion of the code; thus, ideally the total number of misses
for the matrix should not increase as we go from the
sequential to the parallel code. Yet the data show that the
number of misses increases by over 50%. When we request
more detailed information about the bin from Mem-
Spy, it shows us the data in Figure 6. It indicates that most
of the misses (over 90%) are first reference (cold) misses
and not invalidation or replacement misses.

Percentage of Total Memory Stall Time: 42.2%
Percentage of Total Misses: 42.2%
Percentage of Total Refs: 55.9%
Miss Rate: 9.4%

1st Ref Miss: 16482 (91.4%)
Inval Miss: 0 (0.00%)
Repl Miss: 1556 (8.6%)

Causes of Replacements:
bin double*.M.nz: 55.5%
bin x: 21.7%
bin int*.Ready: 12.3%
bin b 9.9%

Figure 6: MemSpy detailed output: bin in tri.

Once MemSpy points out that most of the misses are
first reference misses, it is not so hard for the application
programmer to figure out that the real cause for increased
misses is poor spatial locality for . In particular, the
number of non-zeroes per row of is very small in input

4Since the data vector is not needed for the uniprocessor ver-
sion, it obviously causes no misses there.



Table 1: Summary of MemSpy output after various tuning steps.

Cache Misses (x 1000) Execution Time
Version Total (x 1000 cycles) Speedup
Sequential 12.9 11.2 (86.7%) — 1.2 (9.3%) 0.5 (3.9%) 2,580 1.0
Original Parallel 41.6 17.8 (42.2%) 11.9 (27.9%) 10.5 (24.6%) 2.3 (5.4%) 1860 1.4
Tuning Step 1 39.2 11.3 (28.8%) 13.2 (33.7%) 14.2 (36.2%) 0.5 (1.3%) 1742 1.5
Tuning Step 2 18.1 11.2 (61.9%) — 6.4 (35.4%) 0.5 (2.8%) 967 2.6
Tuning Step 3 16.0 11.2 (70.0%) — 4.3 (26.9%) 0.5 (3.1%) 890 2.9

matrices for the computation.5 Since cache lines are
8 double words long (64 bytes), each cache line contains
multiple rows. In the parallel code, successive rows are
frequently assigned to different processors, and as a result,
when a processor fetches the contents of a row it needs,
it also fetches useless data (adjacent rows relevant only to
other processors). This does not occur in the uniprocessor
code where adjacent rows are accessed consecutively by the
same processor.
We emphasize that MemSpy has facilitated this observa-

tion about spatial locality by allowing us to isolate the miss
statistics for , and letting us compare the uniprocessor
and multiprocessor values. Without such detailed data ori-
ented statistics, the lack of spatial locality would be difficult
to infer.

4.3 Step 1: Restoring Spatial Locality
The goal of this tuning step is to improve the spatial lo-
cality of references to in tri. This is accomplished
by symmetrically reordering the rows and columns of the
matrix , so that the row indices of rows assigned to
a particular processor are contiguous and appear in the or-
der in which the rows are processed. The details of the
reordering method are discussed in [14].
When the program is rerun, using the new ordering

scheme for spatial locality, MemSpy produces the new miss
composition data summarized on line 3 of Table 1. This out-
put indicates that now only 29% of the misses are due to
the , with 34% of the misses in the vector, and
36% of the misses in the vector. Misses in have
been reduced from 17.8K to 11.3K, and are now only 1%
greater than misses in in the sequential version. The
reordering for spatial locality has been effective in reducing
the misses to almost the intrinsic number required by
the application.
While the misses in have been reduced signifi-

cantly, this change leads only to a very minimal improve-
ment in overall performance, about 6%. MemSpy again
tells us (as seen in Table 1), that this is because the decrease
in misses for is partly offset by an increase in misses
for the and vectors. Figure 7 shows the detailed
output for the vector after step 1. Here, 81% of

’s misses are due to replacements, and 87% of these
replacements are caused by references to the vector. The

5For example, if comes from a partial differential equation corre-
sponding to a 5-point stencil, each row has two off-diagonal non-zeroes.

introduction of the new ordering scheme, which renumbers
the rows in the and vectors, has resulted in a
pathological memory mapping; cross-interference between
the and vectors in the cache causes the misses in
these data objects to increase dramatically.6

Percentage of Total Memory Stall Time: 33.7%
Percentage of Total Misses: 33.7%
Percentage of Total Refs: 26.2%
Miss Rate: 13.7%

1st Ref Miss: 988 (7.5%)
Inval Miss: 1502 (11.4%)
Repl Miss: 10749 (81.1%)

Causes of Replacements:
bin x: 86.7%
bin double*.M.nz: 13.3%

Figure 7: MemSpy detailed output: in step 1.

We again note that without a tool like MemSpy, it would
be difficult to understand the effects of this tuning step.
In fact, one might have jumped to the wrong conclusion
that reordering was not effective in improving spatial
locality; in reality, MemSpy shows that the reordering was
effective, but that the potential improvement was offset by
interference in the and vectors. The following
two subsections will discuss further steps taken to reduce
the and misses.

4.4 Step 2: Reducing Traffic
Following the reduction in traffic, two other data
objects, and have become the leading contributors
to the cache misses. Although generates more misses than

, we first show the effect of reducing the misses due
to because it is more readily apparent.
The vector indicates when a particular element

has been computed and is ready for use by later computa-
tions. After step 1, the MemSpy output shows (see Figure
7) that the misses constitute roughly one third of all
misses. Of these, a majority are due to cross-interference
between and (indicated by replacements), a small
fraction (7.5%) are partly intrinsic and partly due to lack

6This cross-interference is data dependent, and does not occur as
severely in other matrices we have studied.



of spatial locality (indicated by first reference misses), and
another small fraction (11.5%) are due to sharing or inval-
idations.
To reduce misses in , one might first consider

ways of reducing cross-interference and sharing. How-
ever, Rothberg and Gupta, in fact, devised a new form of
self-scheduling that allows to be eliminated entirely.
This method takes advantage of the NaN (Not a Number)
value provided for by the IEEE 754 Standard for Binary
Floating Point Arithmetic. The NaN value is stored into
each element of the vector before the tri phase begins.
Then, instead of using the vector to indicate an
element has been computed, processes waiting for ele-
ments can simply spin on the value itself. When the
value changes from NaN to a valid floating point value, it
is ready for use.
This change substantially improves program perfor-

mance due to two effects on the memory system behavior
of the program. As shown in Table 1, misses are
eliminated entirely; furthermore, misses due to the vector
are also substantially reduced due to a decrease in the cross-
interference described above. The next subsection focuses
on improving the performance of .

4.5 Step 3: Reducing Traffic due to
Cache misses for primarily occur when an element
produced by one processor is subsequently used by another
processor. Thus, the goal of this step is to devise strate-
gies for assigning elements to processors such that each
element primarily depends on other elements assigned to
the same processor. This reduces the need for interprocessor
communication of these values, and reduces the traffic.
Rothberg and Gupta investigate several heuristics for ac-
complishing this, and MemSpy is helpful in comparing the
effects of these different heuristics.
For brevity, we present results for only the final heuristic

proposed by Rothberg and Gupta. In it, each is assigned
to the processor that currently owns the most previous ele-
ments required to compute that . MemSpy shows (see
line 5 of Table 1) that misses due to the vector decrease
from 6.4K to 4.3K—around 41% of these misses are first
reference misses, 12% are due to invalidations, and 47% are
due to replacements. MemSpy further indicates that almost
all (99%) of the replacements are due to the matrix.
Since tri streams through the data in the very large M
matrix, these replacements are essentially unavoidable.

4.6 Summary
This case study has highlighted how MemSpy may be used
to tune an application’s memory behavior. In the first tun-
ing step, MemSpy was used to calculate miss counts for
the data. These played a key role in pointing out
that poor spatial locality was the cause of the increase in
misses. Based on this information, we reordered the matrix
to improve spatial locality. MemSpy’s information on the
causes of misses was also instrumental in helping us under-
stand the cross-interference that resulted from reordering.
Without MemSpy, it would have been difficult to separate

the two effects. In Step 2, we eliminated misses.
MemSpy’s data oriented output was key in indicating that

was responsible for a large amount of traffic. In the
final tuning step, a heuristic for improving access patterns
was examined. Here again, MemSpy’s miss counts were
useful in showing the improvement in x behavior. Further-
more, MemSpy’s data indicating which data object caused
replacements was also useful. By knowing that most of ’s
replacements were caused by , we were able to reason
that they are largely unavoidable.

5 MemSpy Implementation
As we have shown, MemSpy presents detailed statistics on
low-level memory system events. Gathering data at this
level requires support from either a software memory sys-
tem simulator or a hardware tracing system. This section
discusses the implementation details of the prototype ver-
sion of MemSpy, which uses the former, software-based
approach. MemSpy is implemented as part of a memory
simulator using the Tango [4] system to instrument the code
for memory monitoring. In this section, we first give some
necessary background information on Tango memory simu-
lations. Following that, we discuss issues in generating data
and procedure oriented statistics, labeling the data oriented
statistics with intuitive names from the user program, and
designing the user interface. Finally, we present data on
MemSpy’s performance.

5.1 Tango Memory System Simulation
Tango is a software simulation and tracing system, used
by MemSpy in monitoring the memory system behavior of
programs. Its tracing and memory simulation facilities are
useful in both the sequential and parallel domains.7
When using Tango, the application to be studied is first

instrumented by a special preprocessor. At each memory
reference, the instrumentation adds procedure calls to a
memory simulator. The memory simulator procedure then
calls MemSpy procedures to maintain statistics on simulator
events such as cache hits, cache misses, etc. The simula-
tor maintains the state of each processor’s cache, while the
additional MemSpy code tracks the causes and frequency
of misses. The modular interface between MemSpy and
the memory simulator allows MemSpy to be implemented
easily with a variety of memory simulators. Because this
method uses no intermediate trace files, one can run detailed
simulations of large benchmarks without the disk space lim-
itations imposed by trace-file based approaches.

5.2 Grouping Statistics into Bins
MemSpy presents data and code oriented statistics. To do
this, both the code “axis” and the data “axis” of the appli-
cation are subdivided into logical units; we call these units
code segments and data bins. Statistics are then maintained

7Tango simulates multiprocessors by multiplexing the execution of sev-
eral application processes on a single real processor.



for each pairing of code segment and data bin; each such
pairing is referred to as a statistical bin. The following
subsections describe the methods of determining appropri-
ate code and data divisions.

5.2.1 Separation of Statistics by Code Objects

Along the code axis, MemSpy separates statistics by proce-
dures. It is straightforward to determine which procedure
the process is currently in, because Tango supports event
logging on procedure entry and exit. These entry and exit
events are passed to the memory system simulator, and us-
ing them, MemSpy maintains a procedure stack for each
process. In this way, the current procedure is always known,
and can be used to select the appropriate procedure bin in
which to place statistics.

5.2.2 Separation of Statistics by Data Objects

Along the data axis, MemSpy separates statistics by data
bins. Some data bins correspond to a single data object in
the application source code. In other cases, it is appropriate
to group together statistics from several data objects into a
single data bin. Thus, a data bin may contain statistics from
several non-contiguous ranges of memory. The following
paragraphs discuss (i) how the memory space is divided into
data bins and (ii) how these data bins are given names which
are intuitive and useful to the programmer using MemSpy.

Data Division As a first approach to this data binning
problem, the program’s entire memory space could be di-
vided into memory ranges, where each memory range cor-
responded to a single data object in the program, and statis-
tics are kept for each individual memory range. However,
considering each individual data object to be a separate sta-
tistical unit would likely result in cases where there are
many bins with very similar behavior. For example, in Lo-
cusRoute, a CAD wire routing program from the SPLASH
benchmarks, the program allocates storage for thousands of
wires. Since all the wires have similar memory behavior,
keeping separate statistics on each wire is not as useful as
aggregating statistics for all wires. To automatically aggre-
gate statistics for all wires, we might use an approach which
groups into a single data bin all memory ranges allocated
at the same point in the source code. However, the op-
posite extreme, combining too many data objects together
in a single data bin, must also be avoided. For example,
in a benchmark program which performs LU decomposi-
tion, the program’s main data structures are two matrices
which are allocated at exactly the same point in the source
code, within a NewMatrix routine. Here, the program-
mer would like to view separate statistics for each matrix,
since their memory behavior is quite different. Because of
cases like this, MemSpy maintains separate statistics for all
memory ranges allocated at the same point in the source
code with identical call paths. That is, data allocated in
different calls to a procedure from different call paths will
be monitored in separate bins.8 We claim that data objects

8The exact method used for tracking the call path is similar to that used
by Zorn and Hilfinger in their memory allocation profiler, mprof [18].

allocated at the same point in the source code via the same
call path are usually similar in memory behavior, and their
statistics, in general, should be aggregated.
To implement this proposed method of data division,

MemSpy needs to be able to map every possible memory
address to its corresponding data bin. To maintain mappings
between ranges of memory and the data to which they cor-
respond, one needs to know the size and starting positions
of all memory allocated by the application. In general, pro-
grams use three types of memory allocation: (i) static, (ii)
stack, and (iii) dynamic. In this version of MemSpy, we
automatically maintain mappings only for dynamically al-
located data. This fits in well with the parallel programming
model we currently use, in which all shared memory must
be heap allocated.9 When users want to monitor a vari-
able which is not heap allocated, they can manually add
a procedure call into the application to define that map-
ping. For MemSpy to maintain mappings for static and
stack allocated data, it would require data type information,
in order to know the sizes of the individual data objects.
A later version of MemSpy will provide the compile time
instrumentation support necessary to produce mappings for
statically and stack allocated variables.
For mappings of dynamically allocated data objects,

MemSpy maintains a log of all heap allocated memory, and
records which memory ranges belong to which program
variables. Logging memory allocations from the heap is
fairly straightforward; we simply instrument the code to log
(i) the pointer returned by the malloc routine, (ii) the size
of the allocated block of memory, (iii) the name of the vari-
able to which the malloc return value is assigned. (Naming
will be discussed in more detail later.) This instrumentation
generates events which become part of the input event trace
for the MemSpy memory simulator. MemSpy then builds
up a data structure to store these memory ranges.
We have found this method for data division to be quite

effective in practice. However, there will still be cases in
which the user would like some manual control over the
division of data. We are interested in extending the current
scheme to allow the user to give suggestions or directives
on how the statistical bins should be composed, as well as
to provide automatic support for static and stack allocated
memory objects.

Data Bin Naming In assigning names to data bins, we
want to use symbolic variable names from the source
program since these have some intuitive meaning to the
programmer. Furthermore, clearly, the names should be
unique. To satisfy the first requirement, intuitiveness, con-
sider each static appearance of a malloc in the code: we
name the associated bin with a string that concatenates the
data type and variable name of the pointer which receives
the malloc return value. However, as stated above, multiple
data bins are created for the same malloc if the malloc is
encountered through different procedure call paths. Thus,
to guarantee uniqueness, the names are disambiguated by
prepending a string summarizing the state of the call stack.

9Our parallel programming model uses C language programs aug-
mented with Argonne National Laboratory parallel programming macros
[13]. In this model, all shared memory is dynamically allocated using the
G MALLOC macro.



The final full name is of the form:

"ProcName.return_pc.ProcName.return_pc...
.DataType.VarName"

This method has both strengths and weaknesses. By
prepending the bin name with call stack information, we
guarantee a unique name for each bin. However, in our ex-
perience with MemSpy, we have found that a short version
of the name: DataType.VarName is usually unique and
sufficiently intuitive for the programmer. It works espe-
cially well when important program variables are directly
assigned the pointer returned by malloc, so that the vari-
able name in the short form is a familiar program name.
However, sometimes the allocated memory is assigned to a
temporary variable and then later assigned to a more “sig-
nificant” variable in the program. In these cases, the data
bin will receive the name of the temporary variable, rather
than the preferred name. Another weakness of this method
appears in cases where the long form is necessary to dis-
tinguish between data bins; the name it produces, with pro-
gram counter values interspersed, is often inconvenient or
difficult to read. Both of these weaknesses are hidden from
the user by allowing the user to rename variables to a new
unique name of their choosing.

5.3 Storing Information on Causes of Misses
Statistics on the causes of application misses are an impor-
tant part of MemSpy; to provide this data, MemSpy needs to
store information to explain the cause of each miss. Cache
misses are caused by one of the following: (i) the line has
never been referenced before by this processor, (ii) the line
has been replaced out of the cache since its last reference,
or (iii) the line has been invalidated since its last reference.
To distinguish between these three cases, 2 bits of state in-
formation are required for each memory line in use by each
processor.
To store this state information, MemSpy defines a one

dimensional array that is indexed by the lower bits of the
referenced address. The array contains the state bits indi-
cating the cause of the miss. It also contains the remaining
upper portion of the address, to act as an identifier. The
array size can be varied depending on the size of the ap-
plication’s data set. If the array is defined to be smaller
than the data set of the application, then several referenced
addresses might index into the same location of the array;
we define a hash table to handle these overflow cases. The
overflow state information is hashed based on the refer-
enced address and stored in linked lists. Clearly, there is a
tradeoff here: A smaller primary array will have less space
overhead, but with poor performance for applications with
large data sets that overflow into the hash table. A larger ar-
ray will handle a larger data space more efficiently, but with
higher space overhead. One could improve the performance
of this system by taking advantage of temporal locality in
the reference patterns. If an object from the overflow table
has just been referenced, it is likely to be referenced again
soon; performance may be improved by moving its state
information out of the overflow table and into the primary
array.

5.4 User Interface

The user interface of a performance monitor must guide
the user towards bottlenecks in the code, and then give
the information necessary to remedy them. This subsection
gives an overview of MemSpy’s user interface. The current
user interface has been intentionally kept quite simple.
A MemSpy session begins by presenting initial data us-

ing the focusing mechanism Percentage of Total Memory
Stall Time as the primary means of sorting the output. That
is, for each code object and data bin pair, MemSpy com-
putes the ratio of the memory stall time incurred in this
statistical bin, compared to the total memory stall time in
the program. When MemSpy output is first displayed, this
information is presented as an ordered matrix in which one
axis shows the different data bins, and the other axis shows
the different procedures. Each row and each column of the
matrix are sorted, so that the upper left corner of the matrix
contains the procedure-data pair with the highest percentage
of total memory stall time, and the numbers decrease as one
moves down and to the right. A sample output was shown
in Figure 2. The initial display also summarizes information
on the program’s execution time, and aggregate cache mem-
ory statistics. From this starting point, users have several
options available to them. These options include display-
ing more information about a bin, renaming data bins, or
combining bins and displaying the total information.
The most basic operation a user can perform after start-

ing up MemSpy is to request a display for a particular statis-
tical bin using the DisplayAll command. This display,
shown for example in Figure 3, gives detailed information
about the statistical bin. This data allows the user to reason
about the types of memory system problems in the appli-
cation. For example, if a particular data object has a high
miss rate, the misses are primarily due to replacements, and
the replacements are primarily caused by other references
to the same data object, one concludes that self-interference
is a problem.
The DisplayAll command may also be used on com-

binations of multiple data and/or code divisions. That is,
one may request the statistics of a particular data object in
several procedures, or several data objects within a proce-
dure, and so on. By building the basic information given
by MemSpy into other useful combinations, the user can
adapt the output to the specific high-level structure of the
code.
Other commands allow the user to manipulate the

names of the data bins to allow for easier debugging. A
fullname command allows the user to see a data bin’s
full name, including the stack trace. Note that, to save
space, the main display gives only the partial names of
the data bins in the form data type.variable name.
With fullname, the user can distiguish between data bins
whose partial names are identical. The rename command
allows the user to change the label of a data bin to a more
appropriate name. (The most effective method for assign-
ing intuitive names to data bins is still an open question.
Until we arrive at a more satisfactory conclusion, we find
this intermediate approach, giving the bin a unique name
that the user is then free to change, quite useful.)
In the future, we will extend the user interface to give the



user greater control over monitoring. For example, the user
can currently request that only a subset of code segments
be monitored; we would like to extend this to give the
user control over which data objects are monitored as well.
The user should also be allowed to direct the automatic
division of data into bins, in cases where a non-default
binning is needed. We will also provide the user with a
database of statistics from previous runs. This will allow
the user to easily compare results from a current version
of an application with previous results. Finally, we are
currently implementing a graphical user interface, to make
MemSpy more convenient to use.

5.5 Performance
This section presents preliminary performance results for
the MemSpy system. While the prototype system is largely
unoptimized, the current execution time overheads seem
reasonable. We also briefly outline methods for improving
MemSpy’s performance, a major thrust of future research.
Table 2 compares the execution times on a DECsta-

tion 3100 for three benchmark applications. Execution
times are presented for three cases: (i) Actual uniprocessor
benchmark runs, with neither simulation nor monitoring.
(ii) Tango simulations of the benchmarks without Mem-
Spy monitoring, and (iii) Tango simulations of uniproces-
sor benchmark runs with MemSpy monitoring as well. The
table shows that MemSpy’s overhead, when compared to a
uniprocessor run with no monitoring, ranges from a factor
of 22 to a factor of 58 for these benchmarks.
In order to understand what contributes to this overhead,

let us examine the sequence of operations needed to log an
event with MemSpy. For each memory reference, the orig-
inal assembly code for the application is instrumented with
a procedure call to the Tango system. Within the proce-
dure, temporary registers (i.e., those whose values are not
preserved across procedure calls) are first saved, so that reg-
isters used by the memory simulator will not overwrite the
values expected in them by the application. Next, the Tango
memory simulator procedure is called. Within the memory
simulator, different MemSpy routines are called to update
the data required for MemSpy’s statistics, such as whether
the reference is a hit or a miss, a read or write, and so on.
In Table 2, simulation overhead refers to time spent in the
memory simulator procedure; MemSpy overhead refers to
time spent in the special MemSpy routines only.
From Table 2, we see that the Tango simulation overhead

dominates the additional MemSpy overhead in monitoring
an application. For the simple simulator used here, more
than half of this overhead is in saving and restoring all tem-
porary registers before calling the memory simulator. One
can reduce this overhead by customizing the register save
routine so that it only saves the temporary registers actually
used by the MemSpy memory simulator. For example, 10
double precision saves and restores of floating point reg-
isters could be eliminated from the current version. This
would result in a roughly 50% reduction in register save-
restore time for each memory reference. Furthermore, note
that many of the integer registers are used only when sim-
ulating a cache miss, not when simulating a cache hit; by
postponing these register saves until after a cache miss is

actually detected, we can significantly reduce the overhead
of invoking the memory simulator on cache hits, the more
common case.
Overhead in MemSpy itself ranges from 30 to 44% of

the total overhead in these benchmarks. This MemSpy over-
head is comprised of (i) time spent determining the bin to
which a reference’s statistics belong, and (ii) time spent
updating statistics, such as counting hits, misses and infor-
mation on the causes of misses. The first factor, searching
for the appropriate statistical bin, is the prime contributor to
MemSpy’s overhead; it accounts for roughly 30% of a pro-
gram’s total execution time. The search for a bin requires
the traversal of a tree data structure containing the map-
pings from dynamically allocated address ranges to bins.
At the root of the tree is an array of pointers; the array
is indexed by the upper log2 bits of the search address,
and each pointer corresponds to a different portion of the
address space. In turn, each of these pointers may point to
another array whose elements correspond to sub-portions
of that memory region, and so on. Where a portion of
memory contains only a single address range, the bin in-
formation is stored, and no further arrays are required. In
pthor, with roughly 50,000 different heap allocated mem-
ory ranges, bin searches require an average of 3.7 pointer
indirections through the tree.
One could further reduce the MemSpy overhead by al-

lowing the user the option of keeping statistics only for
cache misses, not for cache hits. In the current version of
MemSpy, all references require an address-to-bin transla-
tion. By not monitoring hits, we could do bin lookup only
for misses. This would lead to a significant performance
improvement since bin lookup comprises roughly one third
of the application overhead. Without statistics for cache
hits, MemSpy could not produce data on cache miss rates
or total reference counts. However, one could still view
counts of misses, breakdowns of total misses, and data on
causes of misses, some of MemSpy’s primary features.
We feel that with these optimizations, MemSpy can be

made 5 to 10 times faster for uniprocessor simulations. This
overhead is likely to be quite acceptable to many users given
the detailed information MemSpy is providing the user.
Running MemSpy to simulate multiprocessor, rather

than uniprocessor, executions has two additional sources
of overhead. These are related to the fact that Tango inter-
leaves the execution of the multiple application processes
on a uniprocessor. First, the Tango execution time for a
multiprocessor run can be no smaller than the total execu-
tion times for each thread being run. This is because the
threads are run sequentially (although interleaved). Second,
additional overhead is incurred when context switching be-
tween threads: all non-temporary registers must be saved
on a context switch. These factors lead to higher execution
time overheads for multiprocessor runs of MemSpy. For
example, running MemSpy on a 4 process matrix multipli-
cation, with the same input data as the uniprocessor run
shown in Table 2, has an overhead of 120.4 as compared
to the uniprocess overhead of 21.7. One can reduce this
overhead somewhat by optimizing context switching in the
simulation. If we make the assumption that context switches
are only necessary on cache misses, not on all references
as currently assumed, we can greatly reduce the number



Table 2: MemSpy execution time overhead.

Time (s) Time (s) Time (s) Simulation MemSpy and
No Simulation Simulation, Simulation, Overhead Simulation

Application No MemSpy No MemSpy and MemSpy alone Overhead
Tri 4.5 72.0 101.0 16.0 22.4
MatMult 54.3 659.0 1179.3 12.1 21.7
Pthor 9.0 313.0 521.4 34.8 57.9

of context switches attempted by the application, with lit-
tle effect on the simulation results. Finally, future versions
of MemSpy may use the hardware trace facilities available
on the DASH multiprocessor to gather memory reference
statistics without the overheads inherent to Tango’s sequen-
tial simulation-based approach.

6 Discussion
MemSpy’s statistics have proven useful in understanding
the memory system behavior of several applications. First,
our initial focusing mechanism, Percentage of Total Mem-
ory Stall Time, is effective in pointing the user towards prob-
lem areas in the code. Second, we have found the break-
down of the causes of misses to be quite useful. Knowing
whether the memory system problem is one of interfer-
ence, sharing, or poor spatial locality is a large step toward
solving the problem, and MemSpy’s statistics on causes of
misses give the user much of the information needed to
diagnose these problems. However, one level of reason-
ing that is still left to the user is deciding whether misses
are intrinsic to the program, or whether they are “excess”
misses that one can hope to optimize away. For example,
in the tri code, misses in accounted for 70% of
total misses after tuning. By examining the code, the user
can conclude that these misses are intrinsic, and cannot be
significantly reduced. In some cases, a comparison of mul-
tiprocessor misses to uniprocessor misses can act as a guide
in determining what fraction of the misses are intrinsic.
We anticipate several extensions to MemSpy’s user in-

terface. These include integrating MemSpy into a hierarchy
of tools, to provide a complete performance tuning system;
thus, a high-level tool like Quartz would provide initial in-
formation on code bottlenecks, and subsequent runs with
MTOOL and MemSpy would give greater detail on spe-
cific memory performance bottlenecks. Within MemSpy
itself, we intend to implement a database to store informa-
tion about previous runs. Such a database would allow the
user to easily compare statistics from the current run with
statistics from previous runs of the same program.
The current MemSpy prototype is simulator based,

which gives it several advantages and disadvantages. Sim-
ulation allows an application to be tuned with different sets
of architectural parameters, and can be useful in evaluat-
ing expected performance of an application on machines
not yet available. However, MemSpy’s reliance on simula-
tion degrades its performance and somewhat limits its use-
fulness. Clearly, improvements in simulation performance

would make MemSpy a more viable tool for a wider range
of applications. We intend to optimize the performance of
the simulation-based version of MemSpy. Furthermore, for
many applications, one can run them in ways that reduce
execution times while still giving realistic memory behav-
ior. For example, with many numerical applications, one
can run them for a small number of iterations and then
extrapolate their performance to more realistic numbers of
iterations; the tri code is one such example of this. An-
other way to observe realistic behavior with less simulation
time is to study cases where both problem size and proces-
sor cache sizes have been proportionately scaled down.
We are also investigating a MemSpy implementation us-

ing the hardware performance monitor on the DASH multi-
processor. DASH’s hardware monitor collects traces of bus
activity which can then be processed to generate MemSpy
statistics. This approach promises a significant performance
improvement over the current simulator driven prototype.
Furthermore, it allows for a more complete view of program
execution, including effects like virtual to physical memory
mapping, scheduling, and multiprogramming which are of-
ten more difficult (though not impossible) to account for in
simulation-based approaches.

7 Conclusions
In summary, we have found MemSpy’s statistics to be ef-
fective in explaining many of the unknowns of memory
system behavior for both parallel and sequential programs.
MemSpy’s data oriented statistics offer an orthogonal view
to code oriented statistics, and give the user greater leverage
in tuning memory performance. Statistics on the causes of
an application’s cache misses are also an important aid in
performance debugging that has not been adequately pro-
vided previously. We envision using MemSpy as part of
a hierarchy of performance debugging tools: higher level
tools provide initial insight into program behavior, while
MemSpy provides detailed information on memory system
behavior to address memory performance bottlenecks.

8 Acknowledgments
We would like to thank Helen Davis, Doug Pan, and Ed
Rothberg for their comments on previous versions of this
paper. Thanks also go to Ed Rothberg for providing the
case study applications. This work was supported in part
by the Digital Equipment Corporation Systems Research



Center and DARPA contract N00039-91-C-0138. Anoop
Gupta is also supported by a National Science Foundation
Presidential Young Investigator Award.

References
[1] A. Agarwal and A. Gupta. Memory Reference Charac-

teristics of Multiprocessor Applications under MACH.
In Proc. ACM SIGMETRICS Conference on the Mea-
surement and Modeling of Computer Systems, pages
215 – 225, May 1988.

[2] T. E. Anderson and E. D. Lazowska. Quartz: A Tool
for Tuning Parallel Program Performance. In Proc.
ACM SIGMETRICS Conference on the Measurement
and Modeling of Computer Systems, pages 115–125,
May 1990.

[3] Z. Aral and I. Gertner. Non-Intrusive and Interac-
tive Profiling in Parasight. In Proc. ACM SIGPLAN
Parallel Programming: Experience with Applications,
Languages and Systems (PPEALS), pages 21–30, July
1988.

[4] H. Davis, S. R. Goldschmidt, and J. Hennessy. Tango:
A Multiprocessor Simulation and Tracing System. In
Proc. International Conference on Parallel Process-
ing, pages 99–107, Aug. 1991.

[5] J. Dongarra, O. Brewer, J. A. Kohl, and S. Fineberg.
A Tool to Aid in the Design, Implementation, and Un-
derstanding of Matrix Algorithms for Parallel Proces-
sors. Journal of Parallel and Distributed Computing,
9:185–202, June 1990.

[6] I. Duff, R. Grimes, and J. Lewis. Sparse Matrix Test
Problems. ACM Transactions on Mathematical Soft-
ware, 15:1–14, 1989.

[7] A. J. Goldberg and J. Hennessy. MTOOL: A Method
for Isolating Memory Bottlenecks in Shared Memory
Multiprocessor Programs. In Proc. International Con-
ference on Parallel Processing, pages 251–257, Aug.
1991.

[8] A. J. Goldberg and J. Hennessy. Performance Debug-
ging Shared Memory Multiprocessor Programs with
MTOOL. In Proc. Supercomputing, pages 481–490,
Nov. 1991.

[9] S. L. Graham, P. B. Kessler, and M. K. McKusick. An
Execution Profiler for Modular Programs. Software
Practice and Experience, 13:671–685, Aug. 1983.

[10] J. Hennessy and N. Jouppi. Computer Technology and
Architecture: An Evolving Interaction. IEEE Com-
puter, pages 18 – 29, Sept. 1991.

[11] M. Lam, E. Rothberg, and M. Wolf. The Cache Per-
formance and Optimizations of Blocked Algorithms.
In Proc. Fourth International Conference on Architec-
tural Support for Programming Languages and Oper-
ating Systems (ASPLOS), pages 63–74, Apr. 1991.

[12] D. Lenoski, J. Laudon, T. Joe, D. Nakahira,
L. Stevens, A. Gupta, and J. Hennessy. The DASH
Prototype: Implementation and Performance. To ap-
pear in Proc. Nineteenth Annual International Confer-
ence on Computer Architecture, May 1992.

[13] E. Lusk, R. Overbeek, et al. Portable Programs for
Parallel Processors. Holt, Rinehart and Winston, Inc.,
1987.

[14] E. Rothberg and A. Gupta. Parallel ICCG on a Hierar-
chical Memory Multiprocessor— Addressing the Tri-
angular Solve Bottleneck. Technical Report CSL-TR-
90-449, Stanford University Computer Systems Lab-
oratory, Sept. 1989. To appear in Parallel Computing
’92.

[15] Z. Segall and L. Rudolph. PIE: A Programming and
Instrumentation Environment for Parallel Processing.
IEEE Software, pages 22–37, Nov. 1985.

[16] J. P. Singh, W.-D. Weber, and A. Gupta. SPLASH:
Stanford Parallel Applications for Shared-Memory.
Technical Report CSL-TR-91-469, Stanford Univer-
sity, Apr. 1991.

[17] L. Soule and A. Gupta. An Evaluation of the Chandy-
Misra-Bryant Algorithm for Digital Logic Simulation.
In Proc. Sixth Workshop on Parallel and Distributed
Simulation, Jan. 1992.

[18] B. Zorn and P. N. Hilfinger. A Memory Allocation
Profiler for C and Lisp. Technical Report UCB/CSD
88/404, University of California, Berkeley, Feb. 1988.


