
Privacy-Preserving P2P Data Sharing with OneSwarm
Tomas Isdal Michael Piatek Arvind Krishnamurthy Thomas Anderson

University of Washington

ABSTRACT
Privacy—the protection of information from unauthorized disclo-
sure—is increasingly scarce on the Internet. The lack of privacy
is particularly true for popular peer-to-peer data sharing applica-
tions such as BitTorrent where user behavior is easily monitored by
third parties. Anonymizing overlays such as Tor and Freenet can
improve user privacy, but only at a cost of substantially reduced
performance. Most users are caught in the middle, unwilling to
sacrifice either privacy or performance.

In this paper, we explore a new design point in this tradeoff be-
tween privacy and performance. We describe the design and imple-
mentation of a new P2P data sharing protocol, called OneSwarm,
that provides users much better privacy than BitTorrent and much
better performance than Tor or Freenet. A key aspect of the One-
Swarm design is that users have explicit configurable control over
the amount of trust they place in peers and in the sharing model
for their data: the same data can be shared publicly, anonymously,
or with access control, with both trusted and untrusted peers. One-
Swarm’s novel lookup and transfer techniques yield a median fac-
tor of 3.4 improvement in download times relative to Tor and a
factor of 6.9 improvement relative to Freenet. OneSwarm is pub-
licly available and has been downloaded by hundreds of thousands
of users since its release.

Categories and Subject Descriptors C.2.4 [Computer-
Communication Networks]: Distributed Systems

General Terms Design, Performance, Security

1. INTRODUCTION
Privacy—the protection of information from unauthorized disclo-

sure—is increasingly scarce on the Internet due to the increasing
centralization of data sharing. Most Internet users are both content
consumers and content producers, with their data shared with oth-
ers through centralized web sites such as Facebook, YouTube, and
Flickr. However, most popular web sites collect, store, and share
vast amounts of personal data about their users, despite users find-
ing such behavior objectionable [36]. Even if we trust web sites
with our usage data, centralization makes censorship much easier,
a practical concern in many places around the globe.

Peer-to-peer (P2P) systems potentially provide an alternative for
achieving scalable file sharing without a trusted web site as me-
diator. However, the P2P systems available today offer users an
unattractive choice between privacy and reasonable performance.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’10, August 30–September 3, 2010, New Delhi, India.
Copyright 2010 ACM 978-1-4503-0201-2/10/08 ...$10.00.

On one side, protocols like BitTorrent are high performance and
robust, but participants are easily monitored by anyone who cares
to look [33, 30, 29]. On the other, anonymization networks (e.g.,
Tor [14] and Freenet [12]) emphasize privacy, but offer compara-
tively poor performance.

In this paper, we explore a new design point in this tradeoff be-
tween privacy and performance. We describe the design and imple-
mentation of a file-sharing protocol called OneSwarm, intended to
provide much better performance than Tor and Freenet, and much
better privacy than BitTorrent. Our goal is to provide good enough
performance that users turn on privacy by default for all of their
non-public data sharing. To this end, data objects shared via One-
Swarm are located and transferred using disposable, temporary ad-
dresses and routed indirectly through an overlay mesh, providing
resistance to the systematic monitoring of user behavior. Content
lookup and transfer is congestion-aware and uses multiple overlay
paths, providing good performance at reasonable overhead even for
rare objects and diverse peer bandwidths.

Central to our design is a notion of flexible privacy. OneSwarm
does not adopt a universal guarantee regarding information expo-
sure; each individual user is free to control the tradeoff between
performance and privacy by managing trust in peers as well as
sources of peers. Mesh connectivity can be bootstrapped by manu-
ally approving only trusted friends, automatically importing peers
by piggy-backing on existing social networks, and/or via a random
set of untrusted users provided by a matching service. Restrict-
ing sharing to only trusted contacts provides few avenues of attack
for would-be monitoring agents, but can be an obstacle to early
adopters who by definition have no one in the system they trust.
Alternatively, untrusted peers improve performance and availabil-
ity by increasing redundancy, but widen the attack surface.

While stronger restrictions on user behavior permit stronger state-
ments of system-wide security properties, our deployment expe-
rience has been that support for divergent, individual notions of
privacy is essential for adoption. In the year since its release, One-
Swarm has been downloaded hundreds of thousands of times, trans-
lated to more than half a dozen languages, and is in active daily use
by thousands of people world-wide. The feedback and behavior
of this community has guided the evolution of the protocol, driv-
ing our design towards increased user control, while nevertheless
retaining resistance to systematic, third-party monitoring.

In addition to its qualitative impact on design, OneSwarm’s user
community serves as the basis for our evaluation. We report mea-
surements of data transfers between instrumented clients running
on PlanetLab communicating through the OneSwarm mesh. De-
spite the overhead of providing privacy, we find that OneSwarm’s
performance is competitive with unanonymized BitTorrent. Fur-
thermore, our novel lookup and transfer techniques yield a median
factor of five improvement in large file download times relative to
Tor and a median factor of twelve improvement relative to Freenet.

Measurements of some system properties of OneSwarm are lim-
ited by our need to protect the privacy of our users. To gain in-
sight into the behavior of our system, we complement our Planet-

111

?
Figure 1: An example of the range of data sharing scenarios supported by OneSwarm. Bob downloads public data using One-
Swarm’s backwards compatibility with existing BitTorrent implementations, and makes the downloaded file available to other One-
Swarm users. Alice downloads the file from Bob without attribution using OneSwarm’s privacy-preserving overlay, but she is then
free to advertise the data to friends. Advertisements include a cryptographic capability, which allows only permitted friends to
observe the file at Alice.

Lab study with simulations of OneSwarm. For this, we use a trace
of the object sharing patterns and social connectivity of more than
1 million users of last.fm, a popular music-focused website that ag-
gregates the playback histories and social network of its users [2].
Trace replay shows that OneSwarm provides high availability, with
95% of satisfiable requests being fulfilled by the overlay during
peak load.

The remainder of this paper is organized as follows. Section 2
outlines the OneSwarm data sharing and workload model. One-
Swarm’s protocol is described in Section 3. We conduct a security
analysis in Section 4 before evaluating the performance of our sys-
tem in Section 5. We discuss related work in Section 6 and con-
clude in Section 7.

2. DATA SHARING WITH ONESWARM
OneSwarm is designed to allow users to share data efficiently

and securely while preserving their privacy when desired. Virtually
everyone on the Internet is both a content producer and a content
consumer, with a diverse set of constraints on who should be al-
lowed access to any piece of content or usage pattern. While some
may believe that the need for privacy is the uncommon case, even
something as innocuous as using BitTorrent to download a Linux
security patch has privacy implications, as it exposes that the user’s
machine is currently vulnerable to a known exploit.

Supporting the diversity of sharing scenarios common on the In-
ternet today precludes a system-wide definition of privacy in our
design. Even for a single data object, different users may have
different notions of what constitutes private information. And dif-
ferent peers may be more or less trustworthy with a particular bit
of information: users may trust their friends more than an anony-
mous peer found through a rendezvous service, or they may distrust
everyone equally.

One could design separate systems for each usage model, e.g.,
one for anonymous publication (Freenet [12]), another for anony-
mous download (Tor [14]), yet another for controlled sharing with
friends. A tenet of our work is to support a range of data sharing
scenarios efficiently within a single framework. Our motivation is
pragmatic: the performance of our system improves with increas-
ing number of users, and it is more natural to present the user with
a single interface than separate systems for each type of data.

Figure 1 provides an example illustrating the range of privacy
preserving options supported by OneSwarm. In this case, suppose
users Alice and Bob both want to download a left-leaning political
podcast. Suppose further that Bob does not consider his political

views to be sensitive information, but Alice would prefer that her
political views not be made public; instead, she might want to share
the podcast with just a few like-minded friends.

OneSwarm supports all of these levels of privacy within the con-
text of a single swarm. Bob downloads the podcast from a public
set of existing BitTorrent and OneSwarm peers. During the down-
load, Bob also acts as a replica for sharing without attribution using
an overlay consisting of OneSwarm peers only. This overlay acts
as a mix [10], using source-address rewriting and multi-hop overlay
forwarding to obscure the identities of a path’s source and destina-
tion. Alice is one such destination, and she downloads the podcast
using only anonymizing paths to protect her from third-party moni-
toring. But, she is free to advertise the file explicitly to friends who
may also be interested in the content.

Each case shown in Figure 1 imposes a different tradeoff be-
tween privacy and efficiency. Publicly distributed data is not pri-
vate, and direct transfers between a large set of replicas yield effi-
cient distribution. Sharing data with permissions limits access and
hence distribution capacity. Finally, data shared without attribu-
tion is accessible by anyone, but the set of users sharing the data is
obscured, which increases overhead. To summarize:
• Public distribution: All data sharing need not be private. This

is the case for which existing P2P systems excel, and OneSwarm
draws on this strength by serving as a fully backwards compat-
ible BitTorrent client. This helps bootstrap content into One-
Swarm’s privacy preserving overlay; data originally obtained us-
ing legacy protocols can be easily shared using any other mode.
Sharing recorded course lecture videos is an example of this type
of distribution.

• With permissions: Persistent identities allow OneSwarm users
to define per-file permissions. In this case, access to files is re-
stricted (rather than attribution of source or destination). In One-
Swarm, capabilities restrict access to protected files, allowing all
permitted users to recognize one another and engage in swarm-
ing downloads for scalability.1 For example, OneSwarm can be
used to restrict the distribution of a photo archive to friends and
family only.

• Without attribution: When sharing sensitive data, privacy de-
pends on obscuring attribution of source and/or destination. Un-
like data shared with permissions, which is directly advertised,

1Of course, the data itself can be relayed to others once obtained,
but OneSwarm’s default behavior is to maintain restrictions on data
shared with permissions unless explicitly overridden.

112

data shared without attribution is located using privacy-preserving
keyword search, and data transfers are relayed through an un-
known number of intermediaries to obscure source and destina-
tion. This type of distribution is appropriate for sensitive ma-
terial. Since it is up to the user to define what is sensitive, the
same data object may be shared under all three of the models
simultaneously.
To the best of our knowledge, OneSwarm is the first data shar-

ing system that unifies all of these common data sharing scenarios
without relying on centralized trust. Many existing P2P systems
like BitTorrent provide efficient public distribution, but lack basic
mechanisms for supporting access control or privacy. Anonymous
publishing systems, e.g., Freenet [12], allow data sharing without
attribution, but require participants to act as a cache for the (po-
tentially objectionable) content shared by others. A similar prob-
lem exists in Tor [14], wherein potentially malicious traffic is at-
tributable to the exit node of an onion route, creating a severe disin-
centive to host a node. We consider these and other related systems
in more detail in Section 6.

3. PROTOCOL DESIGN

3.1 Overview
In this section, we describe the OneSwarm protocol. Table 1

provides a road map. We first provide an overview before describ-
ing each mechanism in detail; we defer a detailed security analy-
sis to the next section. Broadly, the protocol supports two tasks:
1) defining and maintaining the overlay topology and 2) locating
and transferring data objects. A key design insight is that good P2P
data sharing performance results from being able to optimize over
multiple options for each data transfer. Thus we explicit designed
OneSwarm to make it easy for users to configure a rich peering
topology and then to use that topology efficiently for each transfer.

Topology: OneSwarm users define overlay links by exchanging
public keys, which identify nodes in the mesh and bootstrap au-
thenticated and encrypted direct connections between peers in the
underlying IP network. Thus, hassle-free key distribution is es-
sential for usability, and OneSwarm uses social graph import and
community server mechanisms to make key distribution straight-
forward for users. A distributed hash table (DHT) serves as a name
resolution service; each client maintains encrypted entries advertis-
ing their IP address and port to authorized peers.

OneSwarm peers are either trusted or untrusted.2 Trusted peers
reflect real-world relationships, e.g., friends and family, and object
permissions are defined in terms of access control lists of trusted
identities. Untrusted peers are used only for data sharing without
attribution, serving to bootstrap mesh connectivity for users with
few trusted friends.

Supporting a mix of trusted and potentially untrusted peers pro-
vides greater performance than using only trusted peers and en-
hances privacy relative to using only untrusted peers. Moreover,
our experience has shown it to be a practical necessity for user
adoption. Our initial implementation assumed mutual pairwise trust
among directly connected peers in order to simply our protocol and
security analysis. But, this restriction was widely criticized (or ig-
nored) by many early adopters, leading us to a design supporting
variable trust in peers. Untrusted peers are treated differently by
the protocol; the timing and delivery of messages are randomized
to frustrate statistical attacks.

2In practice, trust can be defined on both a per-object and per-peer
basis. We discuss trust at the granularity of peers for simplicity.

Transport: The mesh defined by the web of trust among users
is used to locate and transfer data. Our overall approach is in-
spired by the success of existing P2P swarming systems, e.g., Bit-
Torrent, and we adopt existing swarming techniques wherever pos-
sible, with three adaptations to enhance privacy. First, instead of
sharing all data publicly with distinct and dynamic sets of peers,
each OneSwarm client restricts direct communication to a small
number of persistent contacts, which provide indirect connectivity
to the rest of the mesh. Second, instead of centralizing information
about which peers have which data objects, e.g., at a coordinat-
ing tracker as in BitTorrent, OneSwarm peers locate distant data
sources by flooding object lookups through the overlay. Third, in-
stead of sources sending data directly to receivers, data transfers
occur over the reverse search path in the mesh, obscuring the iden-
tities of sender and receiver when sharing data without attribution.

Flooding lookup and indirect transfers increase the overhead of
OneSwarm relative to existing protocols, potentially creating ca-
pacity constraints and/or bottlenecks. To cope with this, OneSwarm’s
search and data forwarding protocols are congestion-aware, auto-
matically routing around overloaded intermediaries and allowing
such nodes to shed load at will. To provide high performance in the
face of overloaded or slow paths, OneSwarm transfers use multiple
paths to each data source. To incentivize users to contribute capac-
ity, each OneSwarm client maintains a history of traffic volumes
provided by its peers, using this information to prioritize service
during periods of congestion.

3.2 Linking peers with trust relationships
Each OneSwarm user generates a 1024 bit RSA public/private

key pair when installing the client, with the public key serving as
its identity among its peers. OneSwarm identities are persistent,
allowing two users that have exchanged keys to locate and connect
to one another whenever both are online even though their IP ad-
dresses might change. In existing social-sharing P2P designs [12,
31], key exchange is typically manual. We view manual exchange
as a hindrance to adoption and include multiple methods for users
to more easily distribute keys.

Between two OneSwarm users that share a real-world trust rela-
tionship, OneSwarm automates key exchange in three ways. First,
as in UIA [16], the OneSwarm client discovers and exchanges keys
with other OneSwarm users over the local area network. Second,
we piggy-back on existing social networks, e.g., Google Talk, to
distribute public keys automatically among friends. Third, users
can email invitations. Invitations include a one-time use capability
that authenticates the recipient during an initial connection, during
which public key exchange occurs.

For all methods described above, users can choose whether to
accept new overlay links. This allows users to maintain separate
lists of OneSwarm contacts and contacts from other social services,
while still avoiding the inconvenience of manually exchanging keys
with friends out-of-band.

3.3 Managing groups and untrusted peers
Exchanging keys manually allows for fine-grained control, but in

many circumstances explicitly authorizing every peer relationship
is cumbersome and unnecessary. Further, OneSwarm is frequently
used by communities of users with dynamic membership but mu-
tual pairwise trust, e.g., a group of colleagues at the same institu-
tion. In such cases, users can benefit from an automated service
that provides subscription to keys.

To support key management within a group, OneSwarm allows
users to subscribe to one or more community servers. A community
server maintains a list of registered users and provides authorized

113

Mechanism Description Purpose Sec.
To

po
lo

gy
Social import Automatic key exchange via email invitations, LAN discovery, or ex-

isting social network services.
Bootstrapping trusted mesh
links

3.2

Community servers A publish/subscribe coordination server for clients. Used to bootstrap
new users with a random set of peers or to manage group membership
for private communities.

Bootstrapping untrusted links,
group management

3.3

Distributed hash ta-
ble

Encrypted key/value storage service maintained by clients to map iden-
tities to current IP addresses and ports.

Name resolution for mesh IDs 3.4

D
at

a
tr

an
sp

or
t

Congestion-aware
search

Controlled flooding of search queries to locate data and construct for-
warding paths without overwhelming the network or exposing end-
points.

Locating objects, discovering
paths, avoiding hotspots

3.5

Swarming data
transport

Data is split into blocks, with active downloaders redistributing com-
pleted blocks. Transfers use multiple paths and multiple sources, if
available.

Load balancing, efficiency 3.6

Long-term history Each client maintains transfer volumes for each peer, using these to
prioritize service during periods of congestion.

Resource allocation, contribu-
tion incentives

3.7

Table 1: A summary of protocol mechanisms used by OneSwarm.

subscribers with a current set of public keys via a secure web con-
nection. In effect, subscribers to a given community server dele-
gate trust regarding a subset of their peers to the operator, who vets
prospective members. These private community servers mediate
key exchange among users with existing trust relationships.

In contrast with private community servers, public community
servers have open membership, allowing new OneSwarm users to
easily obtain a set of untrusted peers. Bootstrapping early adopters
is a significant challenge for overlay networks based on pairwise
trust. But, in the case of sharing without attribution, trusted peers
are not required; privacy depends on the obfuscation provided by
forwarding data through multiple unknown intermediaries. Un-
trusted peers are used only for this type of sharing and serve to
bootstrap overlay connectivity for users with few trusted friends.

Community server registration is designed to inhibit systematic
crawling of the membership list of a public community server. Ver-
ifying keys with a challenge/response allows the server to limit the
number of registrations by a single IP address, consistent hashing
limits the information obtained from repeated membership queries,
and each connection is established only when both nodes have ob-
tained the identity and the location of the other node from the com-
munity server.3 Although an attacker with significant resources can
evade these restrictions by creating many Sybil identities from dis-
tinct IPs, doing so is of limited value. The overlay topology is
an amalgam of links from community servers, manual exchanges,
email invitations, and other social networks; a crawl of community
servers provides only a partial view, and more privacy conscious
users need not subscribe to any community server whatsoever. We
consider the effectiveness of attacks enabled by public community
servers in more detail in Section 4.

3.4 Identity and connectivity
Long-term identities are linked to transient IP addresses and port

numbers via a distributed hash table (DHT) maintained among all
users. On startup, each client P inserts a copy of its current IP ad-
dress and port into the DHT. This value is inserted multiple times—
once for each peer.

DHT entries for a client P are signed by P and encrypted with
the public key of a given peer. Each entry is indexed by a 20 byte
randomly generated shared secret, which is agreed upon during the
first successful connection between two peers. Inserting connec-

3An alternate approach would be to obtain a random set of peers
from a DHT, but a significant limitation is that current DHTs are
not robust to Sybil creation from a single IP.

tivity information individually for each peer enables fine-grained
control over network address information. A simple alternative is
indexing connectivity information by the public key of P alone.
But, in that case, any user that learned P ’s public key could moni-
tor P ’s IP location as long as P maintained its identity. By encrypt-
ing updates and publishing connectivity information for each peer
individually, P can control and revoke each peer’s access to its IP
location updates.

In our implementation, ID → {IP, Port} mappings are stored in
a Kademlia-based DHT using twenty-fold replication for fault tol-
erance [23]. This level of replication has been shown to provide
high availability for DHTs running on end-hosts [15]. Each client’s
location in the DHT is independent of its identity and is determined
by hashing the client’s current IP address and DHT port.

Taken together, OneSwarm’s various key exchange mechanisms
and DHT are the basis for creating and maintaining the overlay
mesh. We next turn to the protocol details of naming, searching
for, and transferring data.

3.5 Naming and locating data
OneSwarm peers connect to one another using secure sockets

(SSLv3) bootstrapped by their RSA key pairs. When two peers
connect, they exchange file list messages. file list messages are com-
pressed XML including attributes describing the name, size, and
other meta-data for files for which a particular peer has permis-
sions. (The node sends an empty list to each untrusted peer, or if it
has nothing to share with a specific peer.) For each privately shared
file the meta-data includes a 256-bit key that is used as a symmetric
encryption key for use during transfers.

Naming: Shared files (or groups of files) are named in OneSwarm
using the 160 bit SHA-1 hash of their name and content. The low
order 64 bits of this hash are used as an ID in search messages;
these messages are flooded to discover potential data sources. For
public data, users obtain content hashes 1) out-of-band, e.g., from
an email or website, 2) from file list messages exchanged with peers,
or 3) from keyword search in the overlay. For private data the user
must obtain both the hash of the data as well the key used for de-
cryption. We describe transfer negotiation via search since this sub-
sumes the other cases.

Congestion aware search: OneSwarm search is designed to man-
age the tradeoff between overhead and performance by being con-
gestion aware. Using the shortest path minimizes overhead, but

114

risks poor performance if the shortest path is slow or overloaded.
Given that highly connected users are more likely to appear in a
path, this is a practical concern.

OneSwarm addresses this by managing the propagation of searches.
Because the path taken by a search message determines the path of
data transfer, the key idea is to forward searches along the short-
est path possible (to limit overhead) subject to each intermediary’s
current load (to improve performance).

To discover shortest paths, OneSwarm relies on flooding. Key-
word search messages include a randomly generated search ID and
list of keywords. Unlike flooding search in other P2P file sharing
networks, OneSwarm search messages do not include a time-to-
live value since this information would allow intermediaries nearby
the source or destination to easily reason about behavior. Instead,
OneSwarm forwards searches to trusted peers provided the for-
warder has idle capacity and the search has not been forwarded
previously. By maintaining a set of rotating Bloom filters, an hour
of search history can be remembered space-efficiently, ruling out
the possibility of searches living forever in the overlay.

Among untrusted peers, forwarding is randomized to prevent
collusion attacks. Instead of forwarding unmatched search mes-
sages to all peers, OneSwarm forwards searches to untrusted peers
probabilistically. This inhibits colluding untrusted peers from infer-
ring a data source by observing the lack of a forwarded search mes-
sage. To prevent information leakage through repeated queries, the
decision to forward a search is made randomly —but deterministi-
cally— so repeated queries for the same data will yield the same
result. We explore the privacy implications of this in Section 4.4.

To avoid the propagation of every search to every client in the
overlay, each client delays each search message for at least 150
milliseconds before forwarding it to peers. The search source (or
any forwarder) may terminate the search, once enough data sources
have been discovered, by sending a search cancel message to nodes
to which they have sent or forwarded a search message. (Search
cancels are also sent if the upstream peer disconnects.) The search
cancel message is forwarded along the same paths as the corre-
sponding search message but without any forwarding delay, allow-
ing cancel messages to quickly reach the search frontier. Previous
studies have shown that most searches in P2P network are for files
with many replicas [11] and as a result these popular searches will
be canceled quickly, reducing overhead.4 Our design trades global
reachability for lower overhead. Specifically our design does not
guarantee that each object can be found by all nodes at all times.
During times of congestion searches for objects that lack nearby
replicas are likely to fail. An evaluation of the efficiency of the
search algorithm is provided in Section 5.2.

In addition to the fixed forwarding delay for search cancellation,
OneSwarm also delays messages based on the load at each inter-
mediary. Where load is high, search propagation will tend to route
around it, improving performance. When excess capacity exists,
search messages will follow the shortest path, reducing transfer
overhead.

Path setup: If a node is sharing a file that matches a search query, it
does not forward the search and instead responds with a search re-
ply message. Among trusted peers, this response is immediate. But,
receiving a search reply message in less than 150 ms (our default
per-hop forwarding delay) would reveal the responder as a data
source to potentially untrusted peers. To prevent this, users delay
search reply messages (and all protocol messages) sent to untrusted

4Search overhead could also be reduced by routing queries through
super-nodes or performing random walks [11], but such optimiza-
tions either impact privacy or result in transfers over long paths.

1

4

32

5

Figure 2: An example of end-to-end path ID computation.
Client 5 searches for peers with file ID 0xABC and queries are
forwarded along the dashed links. In this case 2 unique paths
are found.

peers in order to emulate the delay of a longer path. This value is
chosen randomly between 150-300 ms (i.e., 1–2 hops). As with
forwarding of search messages, the delay value is persistent for a
particular file and a particular peer to prevent information leakage
from repeated queries.

Search reply messages include a search identifier, a list of con-
tent hashes which identify matching files, file metadata, and a path
identifier. The path identifier allows clients to distinguish among
multiple paths even if those paths partially overlap. We first de-
scribe how path IDs are computed and then how they are used to
enable multi-path and multi-source downloading. Each peer main-
tains a randomly chosen link ID for each peer link and keeps this
information private.5 The data source sets the initial value of the
path ID to the lower 32 bits of the first matching file’s hash. Next,
the search reply is sent (to each peer who forwarded the data re-
quest) with the SHA-1 hash of the initial value XOR’d with the
link ID of the given peer. This process of updating the path ID is
repeated at each overlay hop, resulting in a unique ID for each path
back to the sender. A simple example of path ID computation is
shown in Figure 2. The ability to recognize unique paths allows the
receiver to add new paths during the course of a download. Trans-
fers can start as soon as one path is discovered, and new searches
can be launched to replace paths that fail.

3.6 Swarming data transfer
A path identifier indexes routing tables at each overlay hop and

effectively identifies a circuit from data source to receiver. Keep-
alive messages refresh paths, which expire after thirty seconds of
inactivity. OneSwarm uses the wire-level protocol from BitTor-
rent to transfer data [13]. But, rather than connecting directly to
peers, OneSwarm tunnels BitTorrent traffic through overlay paths.
Each overlay path is treated as a virtual BitTorrent peer, even those
that terminate at the same endpoint. Of course, the receiver has
no definitive way to know which paths terminate where. Rather
than obtaining a list of peers from a centralized tracker, as in Bit-
Torrent, OneSwarm discovers new paths by periodically flooding
search messages for active downloads.

Basing OneSwarm’s wire-level protocol on BitTorrent draws on

5Though randomly chosen, this value is fixed for the lifetime of the
connection.

115

BitTorrent’s strengths. Swarming file downloads minimize redun-
dant data transfers in the overlay. If multiple users are downloading
a popular file, OneSwarm will discover and use paths to those new
partial sources.

Like the unpredictable and heterogeneous end-hosts BitTorrent
is designed for, multi-hop overlay paths have highly variable band-
width and end-to-end latency. Scheduling block requests over un-
predictable paths requires careful engineering to avoid wasting ca-
pacity or inducing lengthy data queues. We take advantage of parts
of the BitTorrent protocol that allow multiple requests to be queued
at the data source, effectively giving the host control over the end-
to-end transfer window size. For example, if a path becomes con-
gested, traffic will automatically be shifted to paths that do not tra-
verse the congested link. If a forwarding node disconnects, the
capacity of the data source is automatically shifted to other paths.
As in BitTorrent, content integrity is protected by SHA-1 hashes of
file blocks, allowing recipients to detect data corruption.

3.7 Incentives
Persistent identities and long-term relationships provide a rich

foundation on which to implement different incentive strategies.
Each OneSwarm client maintains transfer statistics for each peer
including total data uploaded and downloaded, maximum transfer
rates, control traffic volume, and uptime.

We retain BitTorrent’s default tit-for-tat policy for making ser-
vicing decisions among multiple virtual BitTorrent peers. This cre-
ates an incentive to contribute capacity while downloading, im-
proving swarm performance. Persistent identities among directly
connected peers provide an incentive to continue sharing data af-
ter downloads complete. During periods of contention, our default
policy is to allocate bandwidth among directly connected peers pro-
portionally; each peer is assigned a weight equal to the ratio of their
net contribution and net consumption. A client improves its stand-
ing over time by participating in the system whenever possible.

Across all peers, forwarding data is zero sum. Data consump-
tion from the ingress peer connection is matched by contribution
at the egress. At the granularity of individual paths, it is difficult
to reason about whether a particular forwarding connection is help-
ful for a peer’s long-term interests. If the egress peer is often on
the path of a client’s own transfers, forwarding contributions will
improve subsequent local performance. But, if the ingress peer is
a more useful data source, forwarding will reduce long-term per-
formance. To cope with this, OneSwarm uses a default forwarding
policy inspired by peering relationships between ISPs. If the in-
coming/outgoing traffic ratio of a peer is approximately balanced
or greater than 1 over the long-term, forwarding is permitted. But,
if this ratio is significantly unbalanced, forwarding is not permitted
during periods of contention. This default policy can be overrid-
den. Users are free to assign static weights per-peer or forward
data without regard to traffic imbalance.

In practice, our default policy has proven sufficient to induce a
surplus of forwarding capacity in the system. We verify this in our
evaluation (Section 5).

4. SECURITY ANALYSIS
OneSwarm’s overarching security goal is to improve privacy by

allowing users to control information disclosure. When sharing
data with permissions, disclosure is limited by familiar mecha-
nisms: strong identities, capabilities, and end-to-end encryption. In
this section, we focus on analyzing privacy properties in the more
challenging case of data sharing without attribution.

4.1 Threat model
Our goal is to be resistant to the disclosure of user behavior to

an attacker with control over a limited number of overlay nodes.
Native BitTorrent is susceptible to just this attack, enabling a small
number of monitoring agents to infer the behavior of tens of mil-
lions of users [33, 29]. Specifically, we assume that an attacker
that can join the network with a limited number of nodes, monitor
network traffic to/from its nodes, and generate, modify, and delete
OneSwarm overlay messages flowing through its nodes. The at-
tacker can record timing information about the messages it sends/receives
to infer information about the behavior of the rest of the OneSwarm
network, and may spawn any number of OneSwarm instances on
its nodes. We do not attempt to guarantee privacy against attackers
that can sniff, modify, or inject traffic on arbitrary network links, or
attackers that can seize the physical hardware of OneSwarm users,
e.g., law enforcement.

OneSwarm assumes that users are conservative when specifying
trust in peers, as trusted peers can view files for which they have
permissions. If trust is misplaced or a peer compromised, One-
Swarm limits the resulting disclosure to only the trusted peers of
the compromised nodes. This is in sharp contrast to private BitTor-
rent communities [38], wherein a single compromised member can
monitor all users of the service.

4.2 Attacks and defenses
In this section, we outline several potential attacks and quantify

their effectiveness using measurements of OneSwarm users in the
wild. In a technical report [20], we explore a wider range of threats:
associating search requests to users, identifying trusted links, im-
pact of additional attacker capabilities, and so on. Because of space
limitations, we restrict our attention to what we believe to be the
most likely attackers conducting the most likely attacks: one or
more colluding OneSwarm users bootstrapped via public commu-
nity servers attempting to infer the source of a data transfer. The
discussion highlights the following aspects of the OneSwarm pro-
tocol that significantly enhance user privacy.
• Persistent peering relationships limit monitoring power: In Bit-

Torrent, peers are dynamically assigned, allowing attackers to
become a peer of virtually everyone, given enough time. By
contrast, OneSwarm peers are persistent, improving contribu-
tion incentives but also limiting the ability of attackers to snoop
from arbitrary locations in the overlay.

• Heterogeneity of trust relationships foils timing attacks: One-
Swarm users define links as either trusted or untrusted and keep
this information private. As the protocol behavior varies with
link type, the combined use of trusted and untrusted links greatly
diminishes an attacker’s ability to infer path properties based on
timing information.

• Lack of source routing limits correlation attacks: OneSwarm
does not provide peers with the ability to construct arbitrary
overlay paths. Attackers could use this to correlate performance
with ongoing transfers. Such an attack is known to degrade pri-
vacy in Tor, for example [39]. Individual clients have a limited
view of the overlay and cannot control path setup beyond di-
rectly connected neighbors.

• Constrained randomness frustrates statistical attacks: The un-
certainty arising from random perturbations in the protocol could
be reduced through statistical analysis if repeated probes yielded
different draws. OneSwarm prevents such analysis by making all
random decisions deterministically with respect to a given query
and link.

116

Figure 3: The distribution of search / response RTTs and the
distribution of variance for RTTs on identical overlay paths
with more than 10 search responses. Even for identical paths,
variation in delay is significant.

• Network dynamics limit value of historical data: While relation-
ships in OneSwarm are long lived, the end-to-end paths between
senders and receivers change rapidly due to churn and transient
congestion. This reduces the window of opportunity for adver-
saries to combine data from multiple observations in order to
reverse-engineer user behavior.

4.3 Timing attacks
By measuring the round trip time (RTT) of search / response

pairs, an attacker can estimate the proximity of a data source. Usu-
ally, paths are lengthy, making the chances of being next to a par-
ticular data source quite low. If the attacker has sufficient resources
to connect nodes at many different points in the mesh, however,
some of them might be able to infer that they are near to or di-
rectly connected to a data source based on the low RTT of response
messages.

To frustrate this attack, OneSwarm artificially inflates delays for
queries received from untrusted peers. Recall that attackers boot-
strapped via community servers are marked as untrusted by default.
All responses to untrusted peers are delayed by a random but de-
terministic amount (computed based on the content hash and a per-
sistent local salt value) in order to emulate the delay profile of for-
warded traffic from one or more hops away. The RTT observed by
an attacker over an untrusted link is similar to that of a data source
that is one or two overlay hops away and connected via low la-
tency, trusted forwarding links. In other words, the combined use
of trusted and untrusted links provides more possible explanations
for a given delay profile than a design using untrusted links only.

We now consider two experiments that illustrate the uncertainty
associated with inferring data proximity based on timing informa-
tion. First, we measure the variability of latency and path properties
in practice using our PlanetLab deployment. Next, we consider the
effectiveness of this attack for the last.fm topology and workload.

PlanetLab: The feasibility of inferring behavior based on mes-
sage timings depends on the length, stability, and diversity of paths
to the object. Lengthy paths have greater variability due to mesh
dynamics and network level effects. Similarly, the existence of a
large, dynamic replica set and/or many paths confounds inference
based on search response RTTs.

To evaluate this, we analyze search response RTT measurements
collected by a set of PlanetLab nodes running instrumented One-
Swarm clients. As with would-be attackers, these nodes are boot-
strapped via public community servers. Each node monitors all
search requests it forwards, recording the RTTs of search response
messages. For a given search, the peer responding with the small-
est RTT across all measurement nodes is the likely closest hop to

Figure 4: Using a latency and topology oracle, the number
of potential data sources (x-axis) for a cumulative fraction of
searches by attackers (y-axis). Even with thousands of at-
tackers and complete topology/latency information, search re-
sponse delays do not localize data sources.

the data source. We measure the stability of first responders for
back-to-back search requests; i.e., is the first responder for a given
search the same as the first responder for the next search? With ten
vantage points, 65% of back-to-back searches have the same first
responder. Increasing the number of vantage points to 100 reduces
back-to-back consistency to 63% as multiple attacker nodes at sim-
ilar distance to the source get responses within a small enough in-
terval that traffic conditions on the paths determines which attacker
to first see the response. On the whole, it is difficult to reason about
the likely direction of search response messages since the ordering
of responses is highly variable.

The unpredictable ordering of search response messages is at-
tributable to the naturally large variations in message delays. Fig-
ure 3 summarizes the distribution of response RTTs for more than
42 million searches, collected prior to the public release of a One-
Swarm client incorporating artificial delays. Large RTTs suggest
lengthy paths; the majority of search response messages are ob-
served more than one second after forwarding their corresponding
search. Even so, a variety of confounding factors make reasoning
about path length on the basis of delay difficult. OneSwarm is will-
ing to tolerate lengthy queueing delays at congested nodes (up to
7 seconds in our current implementation). Since search response
messages are interleaved with data traffic, response times may be
controlled by either 1) network delay, 2) lengthy overlay queueing
delay at congested intermediaries, or 3) the protocol-imposed prop-
agation delay of search messages. These effects manifest in signif-
icant variations in RTTs for even identical paths (i.e., responses
carrying the same path ID).

Trace replay of last.fm: To complement our PlanetLab study,
we use trace data from the last.fm music website to drive a large-
scale simulation. The site allows users to publish their music play-
back histories to others and define social relationships. We crawl
these histories to build a trace of the user behavior and social re-
lationships of 1.7 million users, interpreting last.fm friend links
as trusted links in the overlay topology. For users with less than
26 friends, we add additional untrusted links. Object download
histories determine object placement and popularity, and latencies
for overlay links are drawn randomly from measured latencies pro-
vided by the iPlane project [22].

We use this trace to revisit timing attacks in the idealized set-
ting of an unloaded network and attackers with complete informa-
tion regarding the overlay topology and the network delay of every
link. For varying numbers of attackers bootstrapped via a com-
munity server, we simulate 1,000 searches in the last.fm topology,
sampled to match the measured popularity of objects. For each

117

A1

C2

Ck

T

C1

forwarded?

Figure 5: An attacker, A, with C1, ..., Ck colluders tests if a
target T is sharing a file by sending a targeted search and ob-
serving a lack of forwarding.

search, we record the delay of the first response, and then inspect
the topology and link delays to compute the number of possible
data sources associated with a given delay and vantage point. Fig-
ure 4 summarizes the results. Even with complete topology and
latency information as well as 250,000 vantage points, search re-
sponse latencies do not localize a single data source.

4.4 Collusion attack
Next, we analyze the case of multiple peers colluding to infer

whether a directly connected user is sharing a particular file. In this
case, an attacker A sends a targeted search to target T , receives a
search response, and observes whether the search was forwarded
to colluders C1, ..., Ck who are also peers of T . (This attack is
illustrated in Figure 5.) Recall that forwarding search messages is
probabilistic. Each search message has a configurable probability,
pf , of being forwarded to a particular peer. As a result, a lack
of forwarding does not definitively identify a data source; missing
search messages may arise from random chance. But, a lack of
forwarding observed by many colluding peers is highly suggestive
of T sourcing the object. Assuming a fixed forwarding probability
of pf and k colluding attackers, Pr[Not source|response received]
= (1 − pf)k. With just a few colluders, an attacker can gain high
confidence.

This attack requires both the attacker and colluders to be directly
connected to the target. When matched randomly by a public com-
munity server, the likelihood of an individual attacker being as-
signed a specific target for a community server with N members is
nc
N

, where nc is the number of peers returned for a single request.
As a specific example, consider achieving greater than 95% confi-
dence in the identification of a data source given pf = 0.5 for peers
received from a community server.6 Achieving 95% confidence in
identification requires at least six directly connected peers (an at-
tacker and five colluders). For a community server with N users,
the likelihood of achieving a particular number of direct connec-
tions is given by the complement of a binomial CDF with success
probability nc

N
.

In practice, the effectiveness of systematic monitoring depends
on the resources of an attacker relative to the population of a pub-
lic community server. Privacy depends on this ratio being small,
and privacy-conscious users are free to decrease their forwarding
probability (pf), avoid public community servers completely, or
request fewer peers than nc. Figure 6 provides several concrete
examples of the relationship between exposure, forwarding proba-
bility, topology, and the number of untrusted peers. In these exam-
ples, pf = 0.5, and we vary nc. Decreasing the maximum number

6Low values of pf for community server peers are offset by the
high amount of path diversity among them.

Figure 6: The cumulative fraction of nodes whose behavior can
be inferred with 95% confidence (x-axis) by a given fraction of
colluding attackers (y-axis). Even assuming widespread use of
public community servers, a significant fraction of colluding
attackers is required to infer user behavior.

of peers provided by a community server makes compromising its
users more difficult. But, we find in our evaluation that increasing
peers improves performance (Section 5).

Figure 6 also shows the privacy benefits associated with a mix
of trusted and untrusted peers. For this case (Untrusted, 26 peers),
we considered the vulnerability of clients in our last.fm trace when
adopting a policy of peering with untrusted clients only when they
did not have nc or more contacts from their social network. Users
with a large number of trusted friends are completely isolated from
colluding attackers, shifting risk to others that are forced to more
heavily rely on untrusted peers.

5. EVALUATION
To evaluate OneSwarm, we measure its performance and robust-

ness both in the wild and synthetically using trace replay. One-
Swarm has been downloaded hundreds of thousands of times to
date, and we use a combination of both voluntarily reported user
data as well as instrumented clients to quantify OneSwarm’s real-
world effectiveness at the scale of thousands of users. To examine
OneSwarm’s operation at even larger scale, we replay traces of the
social graph and usage behavior of more than one million last.fm
users. In both cases, our main result is that OneSwarm provides
high throughput and availability in spite of the overhead arising
from preserving privacy. In support of this conclusion, we also
measure the effectiveness of OneSwarm’s protocol mechanisms and
report usage and workload statistics.

5.1 Real-world deployment

Methodology: Although many aspects of user behavior are (delib-
erately) obscured by designing for privacy, we draw on two sources
of data to profile OneSwarm’s structure, performance, and utiliza-
tion in the wild. The first of these is voluntarily reported summary
statistics from more than 100,000 distinct users collected over a ten
month period since the public release of our software. These in-
clude the total number of peers, the method used for key exchange,
and aggregate data transfer volumes.

Our second source of data is instrumented OneSwarm clients
running on hundreds of PlanetLab [27] machines. Subscribing to
several public community servers bootstraps connectivity for these
clients, providing each with dozens of OneSwarm peers drawn ran-
domly from the user population. Our PlanetLab nodes act as pas-
sive vantage points, measuring the the background traffic generated
by users. (This includes both data forwarding and control traffic.)
On average, these nodes relay more than one terabyte of data per
day.

118

Figure 7: Cumulative distribution of peers per-client. The up-
per half of the bimodal shape is due to community server sub-
scriptions. The wide range of the distribution reflects the diver-
sity of usage behavior.

Figure 8: A comparison of single and multi-path transfer per-
formance. Because most individual paths are slow, multi-path
transfers are essential for achieving good performance.

Overlay structure: Although many overlay links in OneSwarm
are based on social relationships, the graph structure is also influ-
enced by the random matching of public community servers, as
well as the tendency for some users to import a large number of
keys en masse from websites maintaining active user lists.

Both of these effects are reflected in the distribution of overlay
peers per user shown in Figure 7. This distribution shows signif-
icant variations in connectivity. While some users maintain hun-
dreds or even thousands of peer connections, the median value is
22. For clients reporting data, 53% of peers are imported from
community servers, 46% are entered manually, with the remaining
1% of peers coming from LAN, email invitations, or social network
import.

Multi-path transfers: Unlike systems that anonymize traffic at
the granularity of TCP connections, OneSwarm tolerates out-of-
order data delivery, allowing us to use multi-path and multi-source
transfers to improve performance and robustness. This is crucial
in wide-area P2P environments defined by heterogeneity, since an
individual path is limited by the bandwidth capacity of its slowest
link. Given the highly skewed bandwidth capacities typical of P2P
participants [28], the capacity of any single multihop path is likely
to be low.

To confirm this, we compare the multipath transfer rates achieved
between PlanetLab nodes during overlay transfers to the perfor-
mance of separately measured individual forwarding paths. Both
distributions are summarized in Figure 8. Multi-path transfers aver-
age 457 KBps, while single path transfer rates average just 29 KBps.
Among PlanetLab nodes, routing single path transfers over Tor
yields similar results; transfer rates average 20 KBps.

Comparison with existing systems: Tor’s comparable single path
transfer performance suggests that simply tunneling multiple Bit-

Torrent connections over Tor might suffice to achieve the benefits
of multi-path transfers. But, in practice, we find that OneSwarm
significantly outperforms Tor. To evaluate this, we compared the
transfer performance of BitTorrent, BitTorrent over Tor, and One-
Swarm. Tor’s reliance on address translation at exit nodes pre-
cludes bidirectional connectivity and, when used by a BitTorrent
client as a tunneling agent, limits the benefits of swarming data
transfer by creating bottlenecks at nodes with bidirectional con-
nectivity. To limit overhead, Tor defaults to creating new paths
only once every ten minutes. We modified Tor in our experiments,
instead creating new paths every ten seconds to increase the op-
portunity for multi-path transfers7. To measure the scalability of
BitTorrent over Tor, we compare transfer performance when 50%
of downloaders use Tor to performance when 90% of downloaders
use Tor. In back-to-back trials, we used each of these methods to
download a 20 MB file hosted at UW from a set of 120 Planet-
Lab machines. In each case, all participants joined the swarm si-
multaneously and remained available as sources after completion.
Figure 9 summarizes the results.

OneSwarm improves both the performance and scalability of
data transfer relative to Tor, which increases median download times
relative to OneSwarm by a factor of 1.9 and 3.4 when used by 50%
and 90% of participants, respectively. BitTorrent clients masked by
Tor cannot communicate directly with one another, creating a scal-
ability bottleneck as the fraction of Tor users increases. Downloads
are effectively serialized by the limited capacity of a small number
of detour nodes.

In addition to Tor, we also compared OneSwarm’s transfer per-
formance to that provided by Freenet, an anonymous P2P publish-
ing system [12], and found that it provides performance far short
of either OneSwarm or BitTorrent/Tor. In Freenet, data distribu-
tion is a two step process. First, data is published, which involves
proactive caching at several points in the mesh. Afterwards, client
requests are serviced from this set of replicas, with more popular
files becoming more widely replicated.

As in our previous experiments, we attempted to distribute a
20 MB file from a set of Freenet nodes running on PlanetLab.8 But,
a large fraction of these transfers failed to complete, and publish-
ing of 20 MB files often failed. Reducing the file size to 5 MB im-
proved robustness, allowing us to compare Freenet and OneSwarm
on the basis of transfer rate rather than completion time. For our
PlanetLab nodes, Freenet’s median transfer rate was just 17 KBps,
compared to a median 118 KBps achieved by OneSwarm. This
rate does not include publishing time, which would further reduce
Freenet’s effective distribution rate.

Overhead: Despite performance improvements compared to Tor
and Freenet, the results of Figure 9 suggest that OneSwarm in-
curs a performance penalty relative to BitTorrent. We attribute
this difference largely to the resource constraints typical of Planet-
Lab nodes rather than a fundamental performance property of One-
Swarm. OneSwarm transfers are encrypted while BitTorrent trans-
fers are not, and the OneSwarm transfer rate for (oversubscribed)
PlanetLab nodes is often limited by the available CPU rather than
their network capacity.

To verify this, and to directly measure the influence of multi-
hop forwarding on transfer performance, we compare the perfor-
mance of OneSwarm transfers 1) when mediated by the overlay and

7This configuration provides nearly a factor of 2 performance im-
provement relative to the default, but aggressive path creation is
discouraged as it increases CPU load on intermediate routers.
8We allowed these nodes to operate for several hours before our
experiments in order to quiesce in Freenet’s mesh.

119

Figure 9: Transfer performance of OneSwarm, BitTorrent,
and BitTorrent/Tor on PlanetLab. OneSwarm significantly out-
performs existing anonymization systems and is performance
competitive with BitTorrent.

Figure 10: Comparing transfer times mediated by the One-
Swarm overlay to direct transfer. Averaged over many tri-
als, overlay transfers are performance competitive with direct
point-to-point transfers.

2) when using a direct point-to-point connection between sender
and receiver. (In both cases, transfers are encrypted, providing an
apples-to-apples comparison.) If the overlay is not capacity con-
strained, we would expect both direct and overlay transfers to have
a similar duration, on average, and we do find this to be the case for
transfers conducted between PlanetLab nodes.

Figure 10 summarizes the ratio of the overlay and direct One-
Swarm transfer times between PlanetLab nodes. We measured
transfer times between pairs of 20 PlanetLab nodes while all other
PlanetLab clients were disabled; i.e., the overlay did not benefit
from any forwarding capacity beyond that of its existing user base.
We measured transfers between 75 pairs chosen randomly without
replacement. A ratio of 1.0 means that overlay and direct transfers
took identical time, with ratio > 1 indicating a faster direct transfer
and ratio < 1 indicating a faster overlay transfer. This is a challeng-
ing case for OneSwarm as PlanetLab nodes are generally of higher
capacity than typical OneSwarm peers, which are often hosted from
ordinary home broadband connections. Even without the addition
of PlanetLab forwarding capacity, overlay transfer does not impose
a performance bottleneck in most cases. Some transfers are faster,
and some transfers slower, but the median ratio of overlay and di-
rect transfer times, 0.94, suggests that overlay forwarding is not a
fundamental performance bottleneck.

Next, we repeated the transfer measurements, restricting the num-
ber of peers connected to each PlanetLab node to a randomly cho-
sen value between 1 and 35. Performance increases with the num-
ber of connected peers. For example, increasing the number of
connected peers from 17 to 29 doubles median transfer perfor-
mance. But, returns are diminishing; a further increase to 35 peers
improves median performance by just 1%. Our default value for
the maximum number of peers provided by a community server—

Figure 11: The distribution of client upload capacity utiliza-
tions over the course of one day. Although most clients have
excess capacity, transient congestion occurs at many nodes.

26—reflects the tradeoff between client performance and resistance
to systematic monitoring (Section 4). Of course, this value is a con-
figurable parameter.

Utilization: Although the overlay benefits from a surplus of ca-
pacity in aggregate, individual paths and individual nodes are of-
ten congested, motivating our use of congestion-aware search and
multi-path transfers. To confirm this, we examine each user’s re-
ported utilization over time. For the set of users reporting trans-
fer volume statistics, we compute the maximum transfer rate over
all reported 15-minute intervals and treat this as the capacity for a
given IP address, computing utilization for all other 15 minute pe-
riods relative to this maximum. These samples are summarized in
Figure 11. Although average utilization is 49%, many nodes are
frequently bandwidth limited; node utilization is 95% or greater
during 23% of measured intervals. In short, temporarily overloaded
clients are not uncommon despite the overlay being over-provisioned
on average.

5.2 Trace replay in the last.fm social graph
As in Section 4.3, we complement our evaluation of OneSwarm

on PlanetLab with trace-driven simulation of its operation when ap-
plied to our measured last.fm workload. While last.fm is focused
on music, making it slightly different than OneSwarm where any
data can be shared, we chose last.fm as it the only service we know
that publishes both the social network and the media consumption
of its users. This data allows us to parameterize the simulator with
real values for both user interest and social network.

To evaluate the impact of user lifetimes on availability, we com-
pare trace playback 1) when all users observed in the last.fm trace
are active (we refer to this as “always on"), and 2) when users per-
sist in the overlay for eight hours after downloading a file. Unlike
Section 4.3, we do not assign clients peers from community servers,
and so our availability results should be taken as a lower bound
(additional paths would increase redundancy), and our overhead re-
sults an upper bound (random shortcuts would lead to shorter paths
and reduced search propagation).

We assume that all users have unconstrained download capacity,
and each user is assigned an upload capacity limit drawn from a
measured distribution of BitTorrent capacities [19]. Each unique
file request made by a user is interpreted as an object request in the
overlay network. Each user starts as a replica for files that the user
had downloaded during the first week of our trace, and we begin
the trace playback at the outset of the second week.

Object availability: A simple metric that distills the feasibility of
overlay forwarding is the fraction of object requests satisfied; i.e.,
those that discover at least one replica in the overlay. During trace

120

Always on
8 hr lifetimes

Figure 12: Path length stretch. For the last.fm workload, the
majority of transfers use shortest paths. As data volume in-
creases, capacity constraints induce stretch.

replay, 11% of searches fail for the last.fm workload with both al-
ways on and 8 hour lifetimes during peak load. During simulations
spanning the time period of minimum load with a smaller number
of users, the fraction of failed searches increases to 24% as a large
fraction of the network becomes disconnected because of the sparse
nature of the last.fm overlay.

Searches can fail for any of three reasons: 1) the file being re-
quested was downloaded only during the second week of our trace
(no replicas exist), 2) all available replicas are offline, or 3) no path
exists to the query source from available replicas due to either over-
loaded or unavailable nodes along the path. Object requests of the
first type (no replicas exist) account for 6% of total demand in our
trace. These searches are certain to fail and correspond to the files
downloaded by just one last.fm user in our trace. This implies that
the remaining cases (capacity overload and/or replica unavailabil-
ity) cause search failures in just 5% of cases during peak load and
in 18% of cases during minimum load.

Overhead: OneSwarm discovers paths to replicas by flooding search
messages among friends. Although the majority of data transferred
is due to popular objects, the majority of control traffic stems from
requests for unpopular object for which search messages are for-
warded to a large number of nodes in the overlay (during periods of
low contention). This is an explicit design choice to improve avail-
ability without compromising privacy (as discussed in Section 3.5).

We compute search overhead as the fraction of control messages
making up overall traffic. For the last.fm workload with always
on lifetimes and average object size of 20 MB, the overhead is 6%
of total data traffic. Overhead with 8 hour lifetimes is higher than
when peers are always on since the relative low density of the graph
makes it difficult to find the 10 unique paths required to cancel the
search. For peers with 8 hour lifetimes, the overhead is 43%. Al-
though large both fractionally and by total volume, this measure-
ment corresponds to a conservative upper-bound as: 1) BitTorrent
downloads are typically larger (about 400 MB [1]), and 2) the con-
nectivity for the last.fm social network is sparser than that of our
deployment (median degree of 3 vs. 22). Further, recall that search
messages are forwarded only when a node has idle capacity. As
a result, capacity consumed by control traffic is not capacity lost
during data transfers, assuming unconstrained download capacity.

We emphasize that control overhead is large only in the pres-
ence of excess capacity; congested clients drop searches. Since
OneSwarm is over-provisioned in practice as well as in our sim-
ulations, overhead is high because search coverage is high. This
promotes availability. Yet, because the mesh is not capacity con-
strained, overhead does not degrade performance.

Stretch: In addition to promoting availability by discovering po-

tentially rare replicas, flood-based search also typically discovers
short paths. When objects are large, trading control traffic for short
paths is preferable; reducing the number of forwarding hops for
bulk data can save the equivalent of an enormous volume of rel-
atively tiny control messages. We measure how often OneSwarm
discovers (and can use) the shortest available paths by computing
the path length stretch for transfers during trace replay. We com-
pute stretch as the average overlay path lengths to all replicas used
during a file download weighted by the fraction of total data at-
tributable to a given replica. The distributions of stretch for various
workload conditions are shown in Figure 12.

For the last.fm workload with always on lifetimes, path diver-
sity is high. In this case, OneSwarm uses shortest paths for 48%
of transfers with an average path length from source to replica of
4.8 overlay hops. 92% of objects have a stretch ≤ 1.2. Path diver-
sity is reduced when lifetimes decrease to 8 hours; this increases
stretch. In both cases, a small fraction of requests traverse paths
with frequent contention, increasing stretch.

6. RELATED WORK
Providing privacy and anonymity for Internet data transfers is

a longstanding goal of the research community, and we draw on
many existing ideas in our design.
Privacy: Relaying electronic messages through intermediaries to
obscure the source and destination from third parties was first pro-
posed for anonymous email by Chaum [10]. Anonymizer provides
anonymization services commercially, providing a centralized ser-
vice that relays web traffic [3]. Crowds [32] provides anonymous
web browsing by randomly tunneling requests via other system
participants. Herbivore [34] enables anonymous file-sharing by
providing a more scalable implementation of DC-nets [9]. Her-
bivore provides strong anonymity at the cost of significantly in-
creased overhead relative to address rewriting. Our focus on bulk
data distribution leads us to adopt a design that adapts these classic
techniques to modern workloads.

Tor [14] uses onion routing techniques to anonymize requests
via a set of relay nodes. More recent work has shown that the
same functionality can be achieved without a public key infrastruc-
ture [21]. Tarzan uses similar address rewriting techniques in a
P2P context [17]. Although we use data forwarding for privacy,
OneSwarm does not have exit-nodes. Often, the malicious activity
emanating from exit nodes is attributed to their hosting organiza-
tions, discouraging users from hosting exit nodes. Also, OneSwarm
is not architected as a service; to use the network, users must run
the client, promoting balanced capacity and demand. A similar
challenge is inherent in BitBlender [7], which attempts to mask de-
liberate participants in BitTorrent swarms by including a number
of randomly selected “blender" nodes in the distribution as well.
More recently, Baden et al. have applied cryptographic techniques
to enable data sharing with permissions in current social web ser-
vices without exposing content to service providers [6]. OneSwarm
supports permissions in addition to allowing users to share data
publicly without attribution.

Broadly, OneSwarm differs from all these systems in its support
for a spectrum of data-sharing models and peer trust relationships,
as well as an evaluation grounded in a large-scale deployment and
user population.
Trust: Incorporating real-world trust relationships has been a cru-
cial design element in several recently proposed systems. Sybil-
Guard [37] uses properties of social networks to ferret out syn-
thetic identities in social systems. Friendstore [35] is a P2P backup
system where users store backup data only on other trusted nodes
owned by friends or colleagues. In Ostra [26], the scarcity of so-

121

cial connections is used to combat spam. UIA [16] provides data
routing and name resolution over a socially constructed overlay of
personal devices. Turtle [31] is a file-sharing application that lim-
its direct communication to only the social graph in an attempt to
circumvent eavesdropping.

Our experience suggests that using social connectivity alone is
insufficient for many users. Instead, OneSwarm augments a social
topology with a variety of additional untrusted links to ease boot-
strapping, improve robustness, and by allowing for a mixture of
peer sources further enhance privacy.
Workload: Our measurements and analysis of the last.fm work-
load are largely consistent with existing work that characterizes
sharing in P2P networks [4, 18, 28] and usage of popular content
sharing sites [8]. Independent measurement efforts have shed light
on the properties of popular online social networks [5, 24, 25]. Our
measurements build on understanding developed in this prior work,
combining measurements of a social graph with a trace of sharing
activity on that graph, and we make this combined data set available
to the community.

7. CONCLUSION
Although widely used, currently popular P2P file sharing net-

works expose users to silent, third party monitoring of their behav-
ior. To address this, we have built OneSwarm, a file sharing system
designed to reduce the cost of privacy to the average user. We de-
velop novel techniques for efficient, robust, and privacy-preserving
lookup and data transfer. We provide users flexible control over
their privacy by defining sharing permissions and trust at the gran-
ularity of individual data objects and peers. The OneSwarm client
is publicly available for download on Windows, Mac OS X, and
Linux, and it is in widespread use around the globe. Our measure-
ments with the live OneSwarm deployment show that it delivers
on its promise: privacy-preserving downloads with OneSwarm are
performance competitive with BitTorrent and substantially outper-
form existing anonymization networks.

8. REFERENCES
[1] BitTorrent Statistics.

http://www.slyck.com/story370_BitTorrent_Statistics.
[2] last.fm. http://last.fm.
[3] The anonymizer. http://anonymizer.com, 1997.
[4] E. Adar and B. Huberman. Free riding on Gnutella. First

Monday, 2000.
[5] Y.-Y. Ahn, S. Han, H. Kwak, S. Moon, and H. Jeong.

Analysis of topological characteristics of huge online social
networking services. In Proc. of WWW, 2007.

[6] R. Baden, A. Bender, N. Spring, B. Bhattacharjee, and
D. Starin. Persona: An online social network with
user-defined privacy. In Proc. of SIGCOMM, 2009.

[7] K. Bauer, D. McCoy, D. Grunwald, and D. Sicker.
BitBlender: Light-weight anonymity for BitTorrent.
SecureComm, 2008.

[8] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon. I
Tube, You Tube, Everybody Tubes: Analyzing the world’s
largest user generated content video system. In IMC, 2007.

[9] D. Chaum. The dining cryptographers problem:
unconditional sender and recipient untraceability. J. Cryptol.,
1, 1988.

[10] D. L. Chaum. Untraceable electronic mail, return addresses,
and digital pseudonyms. Commun. ACM, 24(2):84–90, 1981.

[11] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and
S. Shenker. Making Gnutella-like P2P Systems Scalable. In
Proc. of SIGCOMM, 2003.

[12] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: a
distributed anonymous information storage and retrieval
system. In Proc. of Privacy Enhancing Technologies, 2001.

[13] B. Cohen. Incentives build robustness in BitTorrent. Proc. of
P2PEcon, 2003.

[14] R. Dingledine, N. Mathewson, and P. Syverson. Tor: the
second-generation onion router. In USENIX Sec., 2004.

[15] J. Falkner, M. Piatek, J. P. John, A. Krishnamurthy, and
T. Anderson. Profiling a million user DHT. In IMC, 2007.

[16] B. Ford, J. Strauss, C. Lesniewski-Laas, S. Rhea,
F. Kaashoek, and R. Morris. Persistent personal names for
globally connected mobile devices. In Proc. of OSDI, 2006.

[17] M. J. Freedman and R. Morris. Tarzan: a peer-to-peer
anonymizing network layer. In Proc. of ACM CCS, 2002.

[18] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M.
Levy, and J. Zahorjan. Measurement, modeling, and analysis
of a peer-to-peer file-sharing workload. In SOSP, 2003.

[19] T. Isdal, M. Piatek, A. Krishnamurthy, and T. Anderson.
Leveraging BitTorrent for end host measurements. In Proc.
of PAM, 2007.

[20] T. Isdal, M. Piatek, A. Krishnamurthy, and T. Anderson.
Privacy-preserving data sharing with OneSwarm. Technical
report, Dept. of CSE, University of Washington, 2010.

[21] S. Katti, D. Katabi, and K. Puchala. Slicing the onion:
Anonymous routing without PKI. Proc. of HotNets, 2005.

[22] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon,
T. Anderson, A. Krishnamurthy, and A. Venkataramani.
iPlane: An Information Plane for Distributed Services. In
OSDI, 2006.

[23] P. Maymounkov and D. Mazières. Kademlia: A peer-to-peer
information system based on the XOR metric. In IPTPS,
2002.

[24] A. Mislove, H. S. Koppula, K. P. Gummadi, P. Druschel, and
B. Bhattacharjee. Growth of the flickr social network. In
Proc. of the first workshop on Online social networks, 2008.

[25] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and
B. Bhattacharjee. Measurement and analysis of online social
networks. In Proc. of IMC, 2007.

[26] A. Mislove, A. Post, P. Druschel, and K. P. Gummadi. Ostra:
leveraging trust to thwart unwanted communication. In Proc.
of NSDI, 2008.

[27] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A
blueprint for introducing disruptive technology into the
Internet. SIGCOMM Comput. Commun. Rev., 2003.

[28] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and
A. Venkataramani. Do incentives build robustness in
BitTorrent? Proc. of NSDI, 2007.

[29] M. Piatek, T. Isdal, A. Krishnamurthy, and T. Anderson. One
hop reputations for peer to peer file sharing workloads. In
Proc. of NSDI, 2008.

[30] M. Piatek, T. Kohno, and A. Krishnamurthy. Challenges and
directions for monitoring P2P file sharing networks –or–
Why my printer received a DMCA takedown notice. In Proc.
of HotSec, 2008.

[31] B. C. Popescu, B. Crispo, and A. S. Tanenbaum. Safe and
private data sharing with Turtle: Friends team-up and beat
the system. In Proc. of Intl. Workshop. on Sec. Prot., 2004.

[32] M. K. Reiter and A. D. Rubin. Crowds: anonymity for Web
transactions. ACM Trans. Inf. Syst. Secur., 1998.

[33] G. Siganos, J. M. Pujol, and P. Rodriguez. Monitoring the
Bittorrent Monitors: A Birds Eye View. In PAM, 2009.

[34] E. G. Sirer, S. Goel, M. Robson, and D. Engin. Eluding
carnivores: file sharing with strong anonymity. In Proc. of
ACM SIGOPS European workshop, 2004.

[35] D. N. Tran, F. Chiang, and J. Li. Friendstore: cooperative
online backup using trusted nodes. In Proc. of WSNS, 2008.

[36] J. Turow, J. King, C. J. Hoofnagle, A. Bleakley, and
M. Hennessy. Americans Reject Tailored Advertising and
Three Activities That Enable It. SSRN eLibrary, Sept. 2009.

[37] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman.
Making gnutella-like p2p systems scalable. In Proc. of
SIGCOMM, 2006.

[38] C. Zhang, P. Dhungel, D. Wu, Z. Liu, and K. W. Ross.
BitTorrent Darknets. In Proc. of INFOCOM, 2010.

[39] Y. Zhu, X. Fu, R. Bettati, and W. Zhao. Anonymity analysis
of mix networks against flow-correlation attacks. In Proc. of
GLOBECOM, 2005.

122

	Introduction
	Data sharing with OneSwarm
	Protocol design
	Overview
	Linking peers with trust relationships
	Managing groups and untrusted peers
	Identity and connectivity
	Naming and locating data
	Swarming data transfer
	Incentives

	Security Analysis
	Threat model
	Attacks and defenses
	Timing attacks
	Collusion attack

	Evaluation
	Real-world deployment
	Trace replay in the last.fm social graph

	Related work
	Conclusion
	References

