
Learning from PlanetLab

Thomas Anderson
University of Washington

Timothy Roscoe
Intel Research Berkeley

Abstract

PlanetLab has been an enormously successful testbed for
networking and distributed systems research, and it is likely
to have a significant influence on future systems. In this pa-
per, we examine PlanetLab’s success, and caution against
an uncritical acceptance of the factors that led to it. We
discuss nine design decisions that were essential to Planet-
Lab’s initial success and yet in our view should be revisited
in order to better position PlanetLab for its future growth.

Introduction

PlanetLab was designed and constructed as a global plat-
form for supporting distributed systems and network re-
search [23]. Although not the first project to attempt
this (earlier examples include CAIRN [13], Active Net-
works [31, 28], the MBone [15], NIMI [21], Access [29],
and RON [3]), PlanetLab has been by far the most success-
ful. When PlanetLab was started almost five years ago, dis-
tributed systems and network researchers lacked any mean-
ingful way of deploying their code in the wide area. Today,
PlanetLab spans over three hundred sites in thirty countries,
hosting over five hundred research projects [22]. More im-
portantly, it has become part of the standard methodology
of distributed systems research to evaluate research ideason
PlanetLab prior to publication.

However, in our view PlanetLab has not yet reached its
full potential. PlanetLab is widely used for experiments, but
that was only half the vision – the other was to foster a new
generation of distributed services. It is true that PlanetLab-
hosted services communicate with over a million hosts per
day, transferring over 4 TB of traffic [22] – services that
researchers could not have contemplated building without
PlanetLab. More telling, in our view, is thatnoneof those
services have proven sufficiently popular to drive increased
deployment of PlanetLab nodes.

With few exceptions, no-one has joined PlanetLab or up-
graded their sites in order to gain better access to the ser-
vices that run on the platform – PlanetLab’s growth has
been driven almost entirely by researchers wanting to run
their own experiments on the basic PlanetLab infrastruc-
ture. In other words, the hoped-for “ecosystem” of services
and tools built by and for the research community has not
appeared.

The few exceptions have been organizations deploying
their own “private” PlanetLab, disconnected from the pub-
lic PlanetLab, as a way of better managing their own in-
tranets. These “MyPLC” deployments are encouraging, but
since they do not peer with the “public” PlanetLab, they

do not contribute directly to the platform as a whole. The
result can be seen in the rate of new public PlanetLab de-
ployments, currently 15% per year, down from over 100%
per year just two years ago.

It is our thesis that design decisions that have made Plan-
etLab successful have also set it up to fall short over the
long term – in other words, “what makes you strong kills
you” [8].

We proceed by listing nine fundamental design decisions
in PlanetLab, each individually well-intentioned, that wear-
gue have collectively limited PlanetLab’s potential to foster
the development of a robust set of services running on Plan-
etLab. Some of these observations have been made before,
but we feel a synthesis is timely. Given that the commu-
nity is in the midst of designing a successor to PlanetLab,
our goal in writing this paper is not to point fingers – af-
ter all, the authors are among PlanetLab’s designers, and as
we argue below, many of these decisions were instrumen-
tal in PlanetLab’s success to date. Rather, our goal is to
help define the agenda for the next generation PlanetLab.
By not blindly following the recipe for PlanetLab’s past
success, we argue we can build a system that can achieve
PlanetLab’s enormous potential as a global platform for dis-
tributed and network services.

1 Centralize trust

A key design decision taken early in PlanetLab’s lifetime
was to centralize trust: PlanetLab Central (PLC) was des-
ignated as a trusted intermediary between node owners and
node users. In practice, PLC is in control of everything hav-
ing to do with the public PlanetLab: what operating system
is run on each node, whether a particular user or service is
allowed to run on a specific node, which services are given
special permissions, what resources are allocated to each
service, and so forth. This is despite the fact that nominally
the resources in PlanetLab are “owned” by the hosting or-
ganization. Control is universally delegated to PLC, which
in turn operates PlanetLab.

On the positive side, in a small scale system, centralized
trust builds robustness for both site administrators and re-
searchers using the system. PlanetLab has been remarkably
successful at a key deployment hurdle: to convince site ad-
ministrators that hosting a PlanetLab node running arbitrary
experimental code would not open their networks to attack
(trust of remote users has also been a significant hurdle lim-
iting Grid deployments [27]). By controlling the operating
system on each node, PLC can ensure that kernel security
patches are applied in a timely fashion, reducing the like-

lihood of node compromise. If a research experiment goes
awry, site administrators can turn to PlanetLab Central to
suspend the slice system-wide, at the first sign of trouble.

Similarly, PLC limited the power of site administrators
to customize their systems; for example, site administra-
tors cannot decide what services are provided on the node,
which slices are allowed to run, or (except by email request
to PLC) how many resources are to be provided to a given
slice. Many site administrators, if given the flexibility to
do so, would have crafted their own Acceptable Use Policy
(AUP) for their nodes; navigating several hundred AUP’s
would have been quite difficult in practice for experimenters
in the early PlanetLab.

While perhaps essential early in PlanetLab’s lifetime, we
argue that centralized trust is unsustainable over the long
term. Clark et al. argue this point: interfaces should be
designed to foster competition both above and below the
interface, and steps should be taken to avoid inadvertently
creating a natural monopoly over the interface [9]. Sup-
pose industry took over operation of the PlanetLab plat-
form, would we be happy if only a single company was
allowed to run the system? There is little in the Planet-
Lab architecture that would prevent a monopoly from oc-
curring. As an analogy, when the Internet’s operation was
moved from the non-profit to the commercial sector, would
we have been happy if there was only room for a single
worldwide Internet service provider?

What could we do instead? We believe PlanetLab should
be redesigned with flexible, explicit trust. This would mean
real competition – node owners get to select who manages
their nodes, what runs on it, and how many resources those
nodes receive. In the short term, this might result in chaos –
different nodes configured in radically different ways, mak-
ing it more difficult for experiments to span the entire sys-
tem. But decentralized trust could also yield a diversity of
management styles. To take one example, RON has long
been managed according to different principles than Plan-
etLab. Only a few, well chosen experiments were allowed
on RON, while PlanetLab was managed to support largest
and greatest variety of simultaneous experiments. The re-
sult is that packet forwarding services can effectively runon
RON, but are not well supported on PlanetLab today [3, 6].
The best way to discover the best management styles is to
foster this competition, rather than to suppress it.

2 Centralize resource control

Another key design decision in PlanetLab is that almost all
resources are managed centrally by PLC; the owners of in-
dividual nodes have only very limited control over their own
resources. For example, a node owner may ask PLC (via
email) to increase the resource allocation given to a specific
slice, but may not decrease it or bar it from running. Note
that this is orthogonal to central trust: PLC could choose
to delegate its power over resources to the sites owning the
individual nodes.

As with trust, the centralization of resource control was
important in getting PlanetLab running quickly. Central al-
location also allows PlanetLab to provide a uniform view
of the system; every slice is able to receive a fixed share of
resources on every node in the system. Further, PlanetLab
typically operates in a highly resource constrained environ-
ment [22]. Central allocation allows PLC to favor slices that
serve PlanetLab’s end goals, such as those that are widely
used or perform essential management services. The notion
of centralized control is taken even further in VINI, where
the solution to resource scarcity is to give PLC the power to
grant a few slices priority over the entire system [6].

However, a perverse side effect of central resource allo-
cation is to reduce the incentive on both site administrators
and users to address resource scarcity by provisioning more
resources and reducing resource waste, respectively. As just
one example, a quarter of all PlanetLab nodes are off-line
at any given time, yet the owners of those nodes are free
to launch experiments on other nodes that are better main-
tained. As another example, there is little incentive for Plan-
etLab users to use less than their fair share of CPU, memory
or disk space, regardless of whether that use is productive.

What could we do instead? Some have argued for a
PlanetLab-wide virtual currency that would be handed out
by PLC for desirable behavior (such as upgrading nodes
or keeping their nodes online) and deducted for undesir-
able behavior (such as triggering security alarms) [17, 4].
While this would help, we believe a central currency is
the wrong approach because it requires centralized trust in
whoever mints the currency, trust that we would ultimately
regret granting. Using real currency instead of virtual cur-
rency would avoid issues of trust, but would encourage
strategic gaming and might significantly discourage Plan-
etLab’s reason for existence: widespread experimentation
and use. Instead, we advocate solutions based on bilateral
peering [10, 12], to provide a mild incentive that is never-
theless sufficient to engage people in using and providing
resources responsibly. It remains an open research chal-
lenge how best to make such an approach effective and easy
to configure.

3 Decentralize management

A stated goal of PlanetLab has always been decentralized
management [5]: it should be easy for third parties to plug
new management services into PlanetLab. A compelling
reason for this is to enlist the community in building in-
frastructure services. By design, PlanetLab provides only
the barest management services to users and leaves the re-
mainder to be developed by the community. The idea was
to foster innovation and competition among these services,
rather than forcing a specific solution.

With very few exceptions, this hasn’t worked out in
practice – a point eloquently made by Cappos and Hart-
man [7]. Almost all non-PLC management services were
developed in Princeton, co-located with PLC, or at insti-

tutions with close ties to Princeton. Several third-party
management services that did appear have been abandoned
(e.g. [26, 32, 30]). Users are left with the worst of both
worlds – few services and little progress towards improving
matters.

As Cappos and Hartman [7] point out, there can be a
lack of incentive for researchers to develop long-running
services. It is hard work to develop a service, work that
does not always pay out in terms of research reputation.
However, in our view, incentives are not the whole story,
since some researchers have published successfully based
on their experience in “real” service deployment and main-
tenance [25, 20, 22].

We claim instead that the underlying reason for the lack
of deployment and adoption, particularly for infrastructure
services, is that the PlanetLab trust model discourages inno-
vation and competition in management applications. Most
new management services either require some type of priv-
ileged operation from PLC, or PLC to make changes in the
core PlanetLab software, or both. As we describe below, the
PLC interfaces were not designed to be general, but rather
to evolve as needed. Thus, in practice, deployment of a pro-
posed new service depends crucially on PLC’s willingness
and ability to commit to supporting the new service.

This provides an effective disincentive to innovation even
if the support is almost always (eventually) provided. A
researcher considering whether to put the effort into build-
ing a production quality infrastructure service must face the
possibility that PLC won’t view it as an important com-
ponent of the wider PlanetLab, no matter how attractive
or useful it might be to individual site administrators or
to individual researchers. This cuts both ways. Naturally
PLC can’t adopt an infrastructure service in advance (or put
significant development effort into supporting its require-
ments), without knowing how useful, robust, and reliable it
will be.

In retrospect, there is a clear contradiction between cen-
tralized trust and resource control on the one hand, and de-
centralized management on the other. The result is glacially
slow progress towards building services that would round
out the platform.

What could we do instead? We observe that it is much
easier to improve an existing system than it is to create one
from scratch. With the benefit of hindsight, we believe it is
now possible to identify a key set of management services,
such as a debugger, global file system, process manager,
and so forth. We believe initial versions of these services
should be built and supported, not to dictate a single solu-
tion, but rather to provide a (low) benchmark that the Plan-
etLab community could work over time to improve. Only
by removing all possible barriers to researchers deploying
infrastructure services can we expect the ecosystem to flour-
ish.

4 Treat bandwidth as free

PlanetLab by design does not charge users for bandwidth.
Making resources free fosters use. While it might be diffi-
cult for a novel experimental service to justify in advance
the bandwidth charges it might incur system-wide, over
time it might be able to demonstrate its value to hosting
institutions.

However, bandwidth can be a significant cost of oper-
ating a PlanetLab node. A single experiment blasting at
the full rate of a fast Ethernet could cost a local site over
$100,000/year at current market rates of $0.20/GB trans-
ferred [2]. In some locations bandwidth can be obtained
more cheaply, but in others it is much more expensive –
the University of Canterbury in New Zealand, for example,
was one of the original PlanetLab sites, but soon afterwards
had to shut down their nodes due to excessive bandwidth
charges. In practice, most operational PlanetLab sites place
strict limits on the maximum rate a node can transfer; the
average PlanetLab node in practice incurs bandwidth costs
of less than $1,000/year.

The lack of accurate cost accounting has two pernicious
effects. The first is to encourage the development of ser-
vices that use bandwidth in ways that can’t possibly be sup-
ported over the long term. For example, the heaviest band-
width consumer on PlanetLab is a content distribution ser-
vice that advertises that a key benefit is to shift bandwidth
costs from the content provider to PlanetLab [11]. The sec-
ond is to discourage the development of services that use
bandwidth in cost-effective ways. For example, it would be
impossible on today’s PlanetLab to provide a performance-
competitive global file service to replace NFS, given cur-
rent per-node bandwidth limits. Who would volunteer to
use an experimental file system that could serve data at a
maximum of 10Mbps, the maximum bandwidth allowed at
many PlanetLab sites? Yet with effective caching, most of
the bytes served by the file system are likely to be to local
users and therefore would not even incur wide area band-
width costs.

What could we do instead? We believe that it is necessary
to reflect true bandwidth costs to services, either implic-
itly through bandwidth trading between peers, or explicitly
through cash transfers. Equally importantly, a fine-grained
charging model is needed, to reflect that bandwidth to local
addresses is typically free and to reflect that some sites are
charged only for peak instead of average usage. Even so,
research challenges remain. The level of indirection that
makes PlanetLab so valuable can foil the accounting that is
needed to make PlanetLab realistic. For example, a Plan-
etLab service that compresses client data before sending it
out might appear to incur high bandwidth charges because
the data seems to come from PlanetLab rather than directly
from the client, even though the compression service isre-
ducingoverall bandwidth usage across the site.

5 Provide only best-effort service

PlanetLab is designed to provide only best effort service to
each slice. PlanetLab is implemented on Linux, and Linux
offers only limited support for real-time guarantees. Planet-
Lab goes beyond this, however, in placing no practical limit
on how many slices can be run on a particular node (the
number of total slices in the system is somewhat arbitrarily
capped at about 4000, ten per site). Because every node is
open to all comers, it is easy for experiments to be tested at
scale across the entire system.

The downside of this approach, however, is that cer-
tain types of experimental services can crowd out other
types. We noted earlier that PlanetLab is often resource
constrained. If a slice uses a sufficiently large amount of
disk space, that can prevent others from running. If several
CPU intensive slices share a node, scheduling delay can
crowd out any services that need real-time or predictable
response time. Recent work has proposed addressing this
last problem by granting some slices priority over the entire
system [6]. However, this solution requires central trust,is
not scalable to PlanetLab-like workloads, and abandons the
benefits of best effort service.

What could we do instead? A simple fix would be to
cluster experiments by their resource usage profile. The av-
erage PlanetLab site has at least two nodes. If a slice runs
rarely and uses few resources, it can get to run on one of
the nodes; if it uses lots of resources, it is automatically re-
stricted to running only on the node reserved for heavy users
(note that full process migration is not needed; most Planet-
Lab slices are designed to gracefully handle being killed
and restarted). By contrast, today PlanetLab slices typi-
cally configure themselves to run on the most lightly loaded
node; this has the perverse effect of uniformly spreading out
heavy users. One nice consequence of this design would be
that novice users would always find PlanetLab unloaded,
thereby encouraging more use. A longer term research chal-
lenge is to redesign the Linux scheduler to better support
the diversity of resource demands posed by PlanetLab-like
workloads.

6 Make Linux the execution environment

PlanetLab distinguishes between theexecution environment
in which services run and theAPI for explicitly talking to
PlanetLab infrastructure [24].

An early design decision in PlanetLab was to provide
experimenters with the standard Linux execution environ-
ment on each node. Because some slices need privileged
services, such as the ability to send an arbitrary packet, a
modified version of Linux is now run that provides each
slice the illusion that it is running as root on a dedicated
node, by catching and translating kernel system calls [18].

Providing a nearly unmodified Linux API has been cru-
cial to PlanetLab’s success, by providing a familiar pro-
gramming environment that is minimally constraining on

the behavior of each slice. However, the decision to run on
top of Linux has come at a cost. Even ignoring the secu-
rity vulnerabilities of Linux, it provides very weak isola-
tion between experiments. For example, physical memory
is shared, so that one thrashing slice can cause performance
problems for all other slices running on the same node. Al-
though virtual machines have been proposed as a solution to
the PlanetLab resource isolation problem, the typical Plan-
etLab node runs many tens of slices at a given time. It is
infeasible with today’s virtual machine implementations to
run more than a few PlanetLab slices, each in their own
Linux instance, at a time. While more concurrent slices
can run if they are programmed directly on the bare virtual
machine, this would impose a high cost in terms of pro-
grammability.

At issue here is not necessarily the simple resource over-
head of the Linux kernel. While exceptionally large by
1980’s standards, the kernel’s size and overhead is dwarfed
by, say, a Java virtual machine running over it. The issue
instead is the constraint on resource policy imposed by the
design of the Linux API. Since users aren’t charged for the
resources they consume, there is no incentive or visibility
for them to use resources more wisely.

What could we do instead? We advocate going back to
the future. When virtual machines were first developed,
IBM built an extremely simple and highly popular sin-
gle user operating system called CMS [14] that ran only
in a virtual machine, and not standalone. CMS could be
lightweight because it did not need to do sophisticated re-
source management; its sole role was to provide a conve-
nient programming interface. We believe something similar
is needed today for PlanetLab.

To put a more radical spin on things, there seems little
evidence that POSIX is a suitable API for planetary-scale
services, any more than it is appropriate for mobile or wire-
less devices like phones or sensor nodes. Surely as systems
researchers we can do better than this, if provided with the
ability to deploy service-specific kernels (albeit in a virtual
machine)? Now that PlanetLab is the norm for evaluat-
ing research distributed systems, it seems counterproduc-
tive to require everyone to keep using the same old inter-
faces, which were never designed for the task at hand.

7 Don’t Provide Distributed OS Services

In many respects, PlanetLab is a distributed operating sys-
tem, but it doesn’t act like one: it provides a distributed
process abstraction (the slice), but little else. Above we dis-
cussed the lack of management services, such as a global
file system. Here we discuss kernel level distributed oper-
ating system services: security and isolation.

While PlanetLab provides weak isolation between slices
at the node level, it provides no isolation at the level of ag-
gregate resources across the entire system. While designing
such a distributed bounding box is a research challenge, it
is an essential one to prevent PlanetLab from being mis-

used to launch distributed denial of service attacks. Simi-
larly, PlanetLab has only a single type of user; all experi-
ments are equally powerful, even those written by novices.
It is equally important to be able to prevent inadvertent dis-
tributed denial of service attacks.

What could we do instead? We feel two aspects of the
PlanetLab’s current design have received insufficient atten-
tion to date. The first is resource control “in the large” - it
should be possible to talk about the resource usage of an en-
tire slice and make statements about the limits of resource
usage of that slice. Such statements might be complex, a
canonical example being constraining the volume of traffic
to any single destination address from the slice as a whole.

The second, related, aspect is per-slice control of packet
transmission and reception on a node: to implement fea-
tures like a distributed bounding box, the current “special
case” of restrictions on raw socket access should be gener-
alized and become the way all slices talk to the network
– in other words, enforceable policies describing traffic
rates, characteristics, and formats should be the norm for
all slices.

8 Evolve the API

The PlanetLab API was designed to evolve: get it running
quickly, and learn as we go [22]. While appropriate in the
early stages of PlanetLab’s life cycle, there is a need now
for a thorough rethinking to ensure that the API is suffi-
ciently general to support any legitimate service. To take
one example, it should be straightforward to build a debug-
ger for a PlanetLab slice, but it is not given the current API.
The most obvious way to support a debugger would be to
be able to suspend a sliver, and then examine the sliver’s
state. However, in today’s API, these are privileged opera-
tions that only PlanetLab operations staff can perform.

As another example, in an earlier section we described
a resource allocation service that migrated slices based on
their pattern of resource usage. While there is a sensor in-
terface to export this type of information to a monitoring
slice, it is not designed to be general purpose. For example,
the sensor interface aggregates data at a time interval cho-
sen by the system designer (today, a second). Thus a slice
consuming 100 ms of sequential CPU time is equivalent to
another slice consuming CPU time in 100 1 ms intervals,
despite the fact that these two profiles are very different in
terms of their impact on real-time delivery constraints.

A related issue is that the PlanetLab API is not a stan-
dard [22]. Although the API is documented, the documen-
tation has frequently been out of date, is not in machine-
readable form suitable for stub compilers, and is maintained
by hand rather than being generated from a specification.
Furthermore, there is no community approval process for
proposed changes; the API is whatever PLC defines it to be
at a given moment. On the positive side, this makes the sys-
tem highly adaptable; problems can be fixed and function-
ality added (by PLC) as soon as needed. However, on the

downside, this means that developers have little guarantee
of stability or sustained backward compatibility. Severalin-
frastructure services have been abandoned over the past few
years due to changes in the API (for example, [26, 32, 1]),
not only wasting effort, but also making it less likely for
anyone else to step in to adopt the service. Even successful
infrastructure services have reported on the difficulties of
working with PlanetLab’s changing API [7].

What could we do instead? Despite the overhead inherent
in any standardization process, we believe it is now time
that the ownership of the PlanetLab API be turned over to
a standardization process run by the PlanetLab developer
community. The goal would be to develop an API that is
general purpose enough to be stable over the long run.

9 Focus on the machine room

Finally, we note that PlanetLab by design targets machine
rooms. The recommended minimum PlanetLab node con-
figuration has become a hefty server: at the time of this writ-
ing, a 3GHz CPU, 4GB of DRAM and 300GB of disk. Over
time, the minimum configuration has rapidly increased in
power, simply to keep up with the growth in the number of
experiments running on PlanetLab.

However, the future of distributed systems is not servers,
but ubiquitous low power clients such as cell phones and
PDAs. If PlanetLab is to be relevant in the long term, it
needs to extend its slice abstraction to be able to run every-
where.

What could we do instead? Development and widespread
deployment of services like Oasis [19] and OCALA [16]
could enable PlanetLab to run everywhere. Of course, this
is itself predicated on providing more fully decentralized
trust, incentives, heterogeneous execution environments,
and scalable resource allocation (allowing every PlanetLab
experimenter access to every PDA is clearly a non-starter).
Nevertheless, this seems to us the most viable strategy for
expanding PlanetLab’s reach out from the research com-
munity to more ubiquitous deployment across more diverse
networks.

Summary

PlanetLab has been enormously successful, but it could be
even more so. Universal access to programmable platforms
everywhere in the world is our future. We describe nine
decisions that have been crucial to PlanetLab’s success but
which we argue should be rethought now that PlanetLab
is successful. Those familiar with GENI will observe that
many of the ideas in this paper have informed our design
for GENI. Our goal in writing this paper is to encourage
research to understand how to keep the benefits PlanetLab
provides, while repositioning it for its future success.

Acknowledgements

The views in this paper are our own, but they have been in-
spired and enriched by numerous conversations with fellow
researchers. In particular, we are indebted to our colleagues
in the GENI Distributed Services Working Group for the
initial discussion that led to this paper.

References

[1] R. Adams. PlanetLab Slice Tools.http://jabber.services.
planet-lab.org/php/software/tools.ph, March 2005.

[2] Amazon. Amazon Simple Storage Service (Amazon S3).http:

//www.amazon.com/s3.

[3] D. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris. Re-
silient Overlay Networks. InProceedings of the Eighteenth ACM
Symposium on Operating Systems Principles, 2001.

[4] A. AuYoung, B. Chun, A. Snoeren, and A. Vahdat. Resource Alloca-
tion in Federated Distributed Computing Infrastructures. In Proceed-
ings of the First Workshop on Operating System and Architectural
Support for the On Demand IT Infrastructure, Oct. 2004.

[5] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin, L. Peter-
son, T. Roscoe, and M. Wawrzoniak. Operating Systems Supportfor
Planetary-Scale Network Services. InProceedings of the 1st Sympo-
sium on Networked Systems Design and Implementation (NSDI’04),
San Francisco, CA, USA, March 2004.

[6] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford. In
VINI Veritas: Realistic and Controlled Network Experimentation. In
Proceedings of the ACM SIGCOMM 2006, Sept. 2006.

[7] J. Cappos and J. Hartman. Why It Is Hard to Build a Long-Running
Service on PlanetLab. InProceedings of Usenix WORLDS, March
2005.

[8] C. Christensen.The Innovator’s Dilemma. Harvard University Press,
1997.

[9] D. Clark, J. Wroclawski, K. Sollins, and R. Braden. Tusslein Cy-
berspace: Defining Tomorrow’s Internet. InProceedings of the ACM
SIGCOMM 2002, Pittsburgh, PA, Aug. 2002.

[10] B. Cohen. Incentives Build Robustness in Bittorrent. In Proceedings
of the First Workshop on Economics of Peer-to-Peer Systems, June
2003.

[11] CORAL. The Coral Content Distribution Network.http://www.
coralcdn.org/overview.

[12] Y. Fu, J. Chase, B. Chun, S. Schwab, and A. Vahdat. SHARP:An
Architecture for Secure Resource Peering. InProceedings of the
Nineteenth ACM Symposium on Operating Systems Principles, 2003.

[13] Information Sciences Institute. Collaborative Advanced Internet Re-
search Network (CAIRN).http://www.isi.edu/div7/CAIRN.

[14] International Business Machines.z/VM CMS Application Devel-
opment Guide, version 5 release 2 edition, December 2005. Part
number SC24-6069-01,http://publibz.boulder.ibm.com/
cgi-bin/bookmgr OS390/download/hcsd0b10.pdf?ACTION=

SAVE&DT=20051013155749.

[15] Internet Engineering Task Force. MBONE Deployment.http://

www.ietf.org/html.charters/mboned-charter.html.

[16] D. Joseph, J. Kannan, A. Kubota, K. Lakshminarayanan, I.Stoica,
and K. Wehrle. OCALA: An Architecture for Supporting Legacy
Applications over Overlays. InProc. 3rd USENIX/ACM Symposium
on Networked Systems Design and Implementation (NSDI ’06), San
Jose, CA, May 2006.

[17] K. Lai, L. Rasmusson, E. Adar, S. Sorkin, L. Zhang, and B. Huber-
man. Tycoon: An Implementation of a Distributed Market-Based
Resource Allocation System. Technical Report, HP Labs, 2004.

[18] Linux Vserver Project.http://linux-vserver.org.

[19] H. V. Madhyastha, A. Venkataramani, A. Krishnamurthy, and T. An-
derson. Oasis: An overlay-aware network stack.SIGOPS Oper. Syst.
Rev., 40(1):41–48, 2006.

[20] K. Park and V. S. Pai. Scale and Performance in the CoBlitzLarge-
File Distribution Service. InProceedings of the Third Symposium on
Networked Systems Design and Implementation (NSDI 2006), San
Jose, CA, May 2006.

[21] V. Paxson, A. Adams, and M. Mathis. Experiences with NIMI. In
Proceedings of Passive and Active Measurement 2000, 2000.

[22] L. Peterson, A. Bavier, M. Fiuczynski, and S. Muir. Experiences
Building PlanetLab. InProceedings of the 7th Symposium on Oper-
ating Systems Design and Implementation, Nov. 2006.

[23] L. Peterson, D. Culler, T. Anderson, and T. Roscoe. A Blueprint
for Introducing Disruptive Technology into the Internet. In Proc.
HotNets-I, 2002.

[24] L. Peterson and T. Roscoe. The Design Principles of PlanetLab.
ACM Operating Systems Review, 40(1), January 2006.

[25] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy,
S. Shenker, I. Stoica, and H. Yu. OpenDHT: A Public DHT Service
and Its Uses. InProceedings of the ACM SIGCOMM 2005, 2005.

[26] T. Roscoe, R. Mortier, P. Jardetzky, and S. Hand. InfoSpect: Using
a Logic Language for System Health Monitoring in Distributed Sys-
tems. InProceedings of the 10th ACM SIGOPS European Workshop,
pages 00–00, Saint-Emilion, France, September 2002.

[27] J. Schopf and B. Nitzberg. Grids: The Top Ten Questions.Scientific
Programming, 10(2), 2002.

[28] J. Smith and S. Nettles. Active Networking: One View of the Past,
Present, and Future.IEEE Transactions on Systems, Man, and Cy-
bernetics, 34(1), 2004.

[29] Q. Wang. Access: A Communication and Computation Environ-
ment for Wide Area Systems Research. Masters Thesis, University
of Washington, 2000.

[30] M. Wawrzoniak, L. Peterson, and T. Roscoe. Sophia: An Informa-
tion Plane for Networked Systems. InProceedings of the 2nd ACM
Workshop on Hot Topics in Networks (HotNets-II), November 2003.

[31] D. Wetherall. Active Network Vision and Reality: Lessons from
a Capsule-Based System. InProceedings of the Seventeenth ACM
Symposium on Operating Systems Principles, 1999.

[32] C. Yoshikawa. PlanetLab Map Application.http://www.ececs.
uc.edu/∼yoshikco/planetlab/planetlab.htm, March 2005.

