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ABSTRACT
BLAST [Altschul et al., 1990] statistics have been shown to

be extremely useful for searching for significant similarity hits,
for amino acid and nucleotide sequences. While these statis-
tics are well understood for pairwise comparisons, there has
been little success developing statistical scores for multiple
alignments. In particular, there is no score for multiple align-
ment that is well founded and treated as a standard. We extend
the BLAST theory to multiple alignments. Following some
simple assumptions, we present and justify a significance
score for multiple segments of a local multiple alignment. We
demonstrate its usefulness in distinguishing high and mode-
rate quality multiple alignments from low quality ones, with
supporting experiments on orthologous vertebrate promoter
sequences.

1 INTRODUCTION
Sequence alignment is usually the first step when compar-
ing multiple protein or DNA sequences, for comparative
genomics and database similarity searches. While assessing
significance of alignments is an important task, this becomes
all the more important when aligning sequences with low
similarity. Given any local alignment, it is very important
to know how likely we are to see an equally good alignment
on unrelated sequences.

Karlin and Altschul, 1990 employed the theory proposed
by Gumbel, 1958 and presented the statistics for pairwise
ungapped local alignments. Today, this has become the basis
of the widely uses BLAST searches. The theory was also
extended to assess the significance of multiple segments of a
pairwise alignment [Karlin and Altschul, 1993]. Later, it was
shown that the theory works for gapped local alignments [Alt-
schul and Gish, 1996, Waterman and Vingron, 1994], though
it is hard to theoretically estimate the Karlin-Altschul para-
meters (K, λ, H) [Karlin and Altschul, 1990] in this case.
Recently Altschul et al., 2001 presented faster methods to
estimate these parameters.

As more and more sequence data becomes available, multi-
ple alignments have become increasingly important. In the last
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few years, many new multiple alignment tools have emerged,
e.g. TBA [Blanchette et al., 2004], MLAGAN [Brudno et al.,
2003], MAVID [Bray and Pachter, 2004], DIALIGN [Mor-
genstern, 1999], ClustalW [Chenna et al., 2003], etc. But
on the statistical significance front, there has been little
development. Ideas were presented to extend the statistics
to 3-way alignments [Altschul and Lipman, 1990], but these
ideas were not scalable. While it is believed that the theory
extends to multiple alignments, it is a hard problem to solve.
The main reasons for this are the lack of availability of a
good scoring function, and an inherent problem in the null
hypothesis (Stephen Altschul, personal communication). The
commonly used sum-of-pairs scores are not well justified
theoretically [Altschul, 1991] and exhibit a high entropy as
the number of aligned sequences grows. The null hypothesis
should be chosen so that, when it is rejected, all the sequences
are related. This means that the null hypothesis must allow for
arbitrary proper subsets of the sequences to be related, which
is unwieldy.

Here we present a simple yet robust way to assess signifi-
cance of multiple segments of a local multiple alignment.
We expect these sequences to be related to each other, i.e.
they have a high local sequence similarity (e.g. orthologous
sequences). First we develop a null hypothesis that includes
the possibility of only a subset of sequences being related.
Making some strong yet reasonable assumptions we keep this
set of possibilities small, which makes the whole approach
scalable. Secondly, we develop a log-likelihood based scoring
function that is consistent with the Karlin-Altschul statis-
tics. Using these two ideas, we extend the BLAST theory
to develop methods for assessing significance of multiple
local alignments. With some simple assumptions we also
handle gapped alignments and extend the analysis to multiple
segments.

In the Results section, we apply this new theory to thousands
of sets of orthologous promoter regions from a genome-wide
study in the vertebrates.We demonstrate that the new statistics
are capable of distinguishing between multiple alignments of
truly orthologous sequences and those of “nearly orthologous”
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Fig. 1. Phylogenetic tree relating the vertebrate species used in this
study. The branch lengths are estimates from Blanchette et al. (in
preparation).

sequences. Although we apply this theory only to promo-
ter sequences here, it applies equally to many other multiple
alignment situations.

2 METHOD
2.1 Null Hypothesis
If we build the multiple alignment statistics on the same ideas
as the BLAST statistics, the null hypothesis would be that all
of the sequences are completely unrelated. This is a very weak
null hypothesis because in most cases of multiple alignments,
a subset of the sequences will be related to each other and
unrelated to the rest. We want to distinguish these cases from
those where all the sequences are related to each other. So
we want our null hypothesis to consider the cases where any
proper subset of the sequences might be related to each other
but unrelated to others, so that when we reject it, we can claim
that all the sequences in the multiple alignment are related to
each other.

Listing all the possible cases of the partition of S sequences
being related will result in a number super-exponential in S,
thus resulting in a nonscalable solution. To manage this we
make an assumption. We assume that there is an unrooted
phylogenetic tree relating the sequences, and for ease of dis-
cussion will think of the sequences as coming from different
species. The null hypothesis will be restricted to those cases
where a single branch (whose removal disconnects the species
into two subsets) is exhibiting unrelated behavior, i.e. the two
subsets are related amongst themselves, but unrelated to each
other.

Suppose we have a sequence from each of the species from
the tree in Figure 1. Thus the null hypothesis covers seven
cases, corresponding to the seven branches of Figure 1. As
an example, the branch with length 5.01 corresponds to the
case when the human and chimp sequences are related, and
the mouse, rat and chicken sequences are related, but these
two subsets of sequences are unrelated to each other. The
assumption we make is that when we reject all the cases of

the null hypothesis, we can infer that all the sequences are
related.

What motivates this is that, in practice, the greatest diffi-
culty for the scoring function is to distinguish between the
case when all sequences are related and the case when there
is unrelated behavior only on a single branch. If the scoring
function can distinguish these, it will also distinguish the cases
that show even more unrelatedness. Our experiments on ver-
tebrate promoter sequences confirm this belief (see Figures 2
and 3). As an example, consider the case when the chicken
and human sequences are related and the rat,mouse and chimp
sequences are related, but these two subsets are unrelated to
each other. This would be approximated by the case in the
null hypothesis where the human sequence is unrelated to the
other four sequences, because a mutation on the long branch
to chicken is not unlikely.

Even when a phylogenetic tree is not readily available,
most multiple alignment tools still require a tree relating the
sequences. They either generate this tree themselves (Clus-
talW) or the user uses some phylogeny building tool to output
a tree. This same tree can be used to list all the cases covered
by the null hypothesis.

2.2 Scoring function
As suggested by Karlin and Altschul, 1990, the ideal sco-
ring function for their theory is the log likelihood score.
For pairwise comparison, the score for residues i and j is
sc(i, j) = log(

qij

pipj
) where qij is the target frequency of

seeing i and j aligned and pi (pj) is the background frequency
of i (j). We built our scoring function on the same ideas.

First we need to build an alphabet. Suppose we have a mul-
tiple alignment of DNA sequences. (The ideas apply equally
well to protein sequences.) In a multiple alignment it is possi-
ble that for some regions, some sequences are too dissimilar
to align. Obviously, we would like to know the evolutionary
history of every residue of every species,but our current under-
standing of evolution is insufficient to do this reliably.Thus for
understanding the history of such dissimilar regions, aligning
to segments that are most similar by simple sequence simi-
larity or treating these regions as insertions/deletions may be
unrealistic and may penalize the overall alignment heavily. It
is quite likely that these regions have mutated to the extent
that they cannot be aligned. The multiple alignment program
TBA [Blanchette et al., 2004] is built on these premises, and
thus it outputs threaded local alignments, each of which may
contain only a subset of species. To handle such cases, we
will introduce a special character ε. Thus an ε-added align-
ment states that any sequence containing ε in these regions
looks no different than an unrelated sequence. This problem
does not come up in a pairwise alignment. Table 1 gives an
example of a TBA alignment and the corresponding ε-added
alignment for our purposes.
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Table 1. Table showing the TBA alignment and the corresponding ε-added
alignment for a handcrafted example containing sequences from human,
chimp, mouse and rat. The first row shows two blocks of the TBA align-
ment and the second row shows the conversion of each block to an ε-added
alignment containing all species. The species having no data in the block are
assigned a sequence consisting of ε.

HUMAN CCCGTGTGT
CHIMP CCCGTTTGT
MOUSE CCGCTTTGT

TBA
alignment

MOUSE GTACGT—-TTTGTGTGTAAAAAC
RAT GGACGAGGATTTGGGGGTAAAAC
HUMAN CCCGTGTGT
CHIMP CCCGTTTGT
MOUSE CCGCTTTGT
RAT ε ε ε ε ε ε ε ε ε

ε-added
alignment

HUMAN ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε

CHIMP ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε

MOUSE GTACGT—-TTTGTGTGTAAAAAC
RAT GGACGAGGATTTGGGGGTAAAAC

We would also like to handle gaps in our alignments. It
has been shown that the BLAST theory extends to affine gap
penalties [Altschul and Gish, 1996, Waterman and Vingron,
1994, Altschul et al., 1997]. Building affine gap penalties is
a much more difficult problem in multiple alignments than in
pairwise alignments. Thus we make the standard simplifying
assumption here. We will treat gaps as individual characters.
This strategy has been followed by Cooper et al., 2004 to com-
pute evolution matrices using multiple alignments of human,
mouse and rat sequences. While this assumption is surely
unrealistic as it penalizes long gaps very heavily, we chose
to use it as it gives us a first handle on gaps for multiple
sequences.

We will assume a model of evolution M for the resi-
dues. McGuire et al., 2001 suggested a version of the F81
model [Felsenstein, 1981] that included gaps. Cooper et al.,
2004 used the same gapped version of the Jukes-Cantor
model [Jukes and Cantor, 1969] (a simplified version of the
F81 model) to contrast the evolutionary rates in the primate
and rodent lineages. The model treats the gaps in the same
way as it treats nucleotides. The theory that we present below
can be extended for any evolutionary model. We use the F81
model for simplicity.

Thus our character set is {A,C,T,G,ε,-}. Now, suppose we
have S sequences of length N related by a phylogenetic tree
T (having branch lengths). Let α1, α2, ...αS be the characters
observed at a particular column of the multiple alignment.
Suppose we need to reject the hypothesis that there is an

unrelated behavior at branch k. Suppose branch k joins sub-
trees t1 (having characters β1, β2, ...βi at the leaves) and t2
(having characters βi+1, βi+2, ...βS at the leaves). Then, ana-
logous to the Karlin-Altschul log likelihood score, the score
for observing this column of multiple alignment is as follows:

sck(α1, ...αS |T, M) =

log(
Pr(α1, ...αS |T, M)

Pr(β1, ...βi|t1, M)Pr(βi+1, ...βS |t2, M)
)

(1)

We assume a background distribution of the characters
{A,C,T,G,-} and assume ε to be sampled from that distri-
bution. We tried different values for the background proba-
bility of gaps and found the Karlin-Altschul parameters to
be similar in the various cases. Thus for our simulations, we
assumed the background probability of the gap character to be
0.01, and the various nucletotides {A,C,T,G} to be uniformly
distributed. Using these probabilities as priors, we compute
the probability of observing specific characters at the leaves of
a tree (the numerator and denominator of Equation 1), using a
dynamic programming algorithm very similar to the one used
by Felsenstein, 1981.This scoring function behaves in the way
that we would want it to. A column in which all sequences
in the multiple alignment have the same residue scores higher
than a column in which some sequences have ε.

2.3 Computing the significance
Again following the BLAST statistics, we write down the
equation to compute the p-value of the scoring function.While
doing this, we make another assumption. In the null hypo-
thesis, our cases assumed that the sequences in each of the
subtrees joined by branch k are completely related to each
other. We will assume the number of possible choices of
aligned segments to be quadratic in the length of the sequence
(N choices from each of the two subtrees). This assumes that
whenever we choose a position in a particular sequence, this
determines the corresponding position in the other sequences
of the related subtree.

We will also assume the Karlin-Altschul parameters [Kar-
lin and Altschul, 1990] to be the average over all the null
hypothesis cases (in our experiments, we find these para-
meters to be fairly similar over the various cases of the null
hypothesis). We convert the score of Equation 1 to the norma-
lized score sc′k = λsck − ln(KN2), where K and λ are the
Karlin-Altschul parameters.

Thus the p-value for the null hypothesis case k (unre-
lated behavior on branch k) [Karlin and Altschul, 1990] is
as follows:

p-value(xk|k) = Pr(sc′k ≥ xk|k) = 1 − exp(−e−xk) (2)
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Letting E be the number of branches of the tree, the p-value
for the full null hypothesis is as follows:

p-value(x1, ..., xE |one branch has unrelated behavior)

=

E∑
k=1

Pr(k|one branch has unrelated behavior)

×p-value(xk|k)

=
1

E
×

E∑
k=1

p-value(xk|k)

(3)

Here we have assumed all branches to be contributing
equally. We can instead alter it to make the contribution
weighted by the branch lengths, so the longer branch lengths
contribute more.

When we have multiple segments, we will use the sum sta-
tistics proposed by Karlin and Altschul, 1993. For the null
hypothesis case k, let sc′k,1, sc

′

k,2, ..., sc
′

k,r be the normalized
scores of the best r nonoverlapping segments. Let us define
totalk,r as : totalk,r =

∑r
i=1 sc′k,i− ln(r!). Thus the p-value

is as follows:

p-value(zk,r|k) = Pr(totalk,r ≥ zk,r|k)

=

∫
∞

zk,r

e−t

r!(r − 2)!
(

∫
∞

0

yr−2exp(−e(y−t)/r)dy)dt
(4)

and the p-value for the full null hypothesis is as follows:

p-value(z1,r, ..., zE,r|one branch has unrelated behavior)

=
1

E
×

E∑
k=1

p-value(zk,r|k)

(5)

When deciding the best value of r, we can choose the value
that results in the best p-value.

3 ESTIMATING THE PARAMETERS
Figure 1 shows all the species that we have used in our anal-
ysis. The first step in this analysis is the estimation of the
Karlin-Altschul parameters. This is done using simulations.

We simulated evolution over the phylogeny shown in
Figure 1 using a tool by Blanchette et al. (in preparation).
Using models for substitutions, insertions, deletions and
inversions, this tool generates sequences for the leaves of the
phylogeny (the various species). We created 1000 such data
sets, where each data set contained a sequence for each of
the species shown in Figure 1. From these, 5000 data sets
were generated for each branch k of the tree, such that the
branch k exhibited unrelated behavior. This was simulated by
choosing orthologous sequences from the two different sets
of species (the two subtrees joined by k), for example picking

orthologous sequences from human and chimp, and another
orthologous set from mouse and rat for the branch joining
rodents and primates. In this way we generated random data
sets from the null hypothesis. Now we need to compute the
highest scoring local alignments for these data sets.

In another study [Prakash and Tompa, 2005], we compared
many multiple alignment tools and showed TBA [Blanchette
et al., 2004] to perform the best for our specific purpose of
aligning regulatory elements. Ideally, we would like to report
the highest scoring local alignment, but this is an NP-hard
problem. As a proxy, we parse the TBA alignment for the
highest scoring segment using the scoring function of Equa-
tion 1. Another advantage of using TBA alignments is that the
segments that it reports as aligned may contain only a subset
of species (i.e. TBA doesn’t align a species in a region if it
does not look similar enough). We take the unaligned seg-
ments to be made up of ε. A handcrafted example was shown
in Table 1.

As described above, we created random data sets following
our null hypothesis. We created 5000 data sets for each branch
exhibiting unrelated behavior and let TBA report the highest
scoring local alignment on each.

Equation 2 can be rewritten as follows:

ln(KN2) − λxk = ln(−ln(Pr(sck < xk |k))) (6)

Doing a least square linear fit using Equation 6, we estimate
the Karlin-Altschul parameters K and λ. The other Karlin-
Altschul parameter (H) that accounts for edge effects and
better estimates of effective sequence lengths is not important
in these cases as the sequence lengths are much longer than
the aligned segment lengths.

Table 2 shows the values of K and λ estimated for
human/chimp/mouse/rat and human/chimp/mouse/rat/chicken
data sets. Experiments were done for different values of N
(sequence length). The RMS error of the least square linear
fit of K and λ is also shown.

There are a few observations that we can make looking at
Table 2. The first is the small values of the RMS error, thus
giving us confidence in the linear relationship. Secondly, the
values of K and λ seem to be dependent on the sequence
length, perhaps because the main assumption made while
inferring Equation 2 (number of choices of aligned segments
being quadratic in N ) may not be entirely accurate. Thirdly,
the values of K and λ are comparable whether we include
chicken or not. We need to do additional experiments with
more species, but we believe that the values of these para-
meters will be robust to small changes in the tree. We also
observe a variation of less than 5% in the values of these
parameters when we repeat the experiments. While this is
an acceptable variance for K, we would like to improve this
estimate for λ as Equation 2 is doubly exponential in it.
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Table 2. Table showing the values of the Karlin-Altschul parameters for
various choices of sequence lengths. Experiments are done for two types of
data sets : human/chimp/mouse/rat and human/chimp/mouse/rat/chicken. For
each experiment, 5000 data sets are generated and for each, every branch is
forced to induce unrelated behavior. The parameters are calculated using a
least square linear fitting and the RMS error of the fit is also reported.

Sequence Chicken K λ RMS
Length (N) included ? Error
800 n 4.4 ×10−5 0.35 0.074
1000 n 2.9 ×10−5 0.33 0.055
1200 n 2.5 ×10−5 0.34 0.046
1500 n 2.3 ×10−5 0.35 0.062
800 y 6.5 ×10−5 0.37 0.038
1000 y 6.2 ×10−5 0.38 0.049
1200 y 5.0 ×10−5 0.38 0.058
1500 y 3.7 ×10−5 0.38 0.060

4 RESULTS
Once we have estimated values of K and λ, we can use Equa-
tions 4 and 5 to compute p-values of multiple alignments. In
this section, we exhibit the usefulness of this work.

In another study [Prakash and Tompa, 2005], we collected
large sets of high confidence orthologous promoter sequences
from human, chimp, mouse, rat and chicken. This was done by
collecting orthologous genes and filtering out those that did
not have orthologous transcription start sites. The upstream
sequences were masked for repeats using RepeatMasker [Smit
et al., 1996-2004] and DUST [Tatusov and Lipman]. This left
us with 4215 data sets of orthologous genes from human,
chimp, mouse and rat and 777 data sets from human, chimp,
mouse, rat and chicken. For each of these, we align the length
1000 upstream sequences using TBA and then compute the
p-value of each. Figure 2 plots the cumulative distribution
function of this p-value for the human/chimp/mouse/rat data
sets. Using these data sets, we also create 5000 data sets
having one branch exhibiting unrelated behavior and 5000
data sets having multiple branches exhibiting unrelated beha-
vior. The cumulative distribution function of the p-value of the
alignments of each of these two sets is also plotted in Figure 2.

Using the parameters trained on the simulated data sets
having chicken, we repeated the above experiment for human,
chimp, mouse, rat, chicken using all of the 777 high confi-
dence upstream regions. The results are shown in Figure 3.

Using Figures 2 and 3, we can decide to use a p-value
threshold that makes most of the multiple alignments of single
branch random data sets insignificant (say, 10−4, plotted as a
vertical line in the two figures). Thus, we can conclude that we
have high confidence multiple alignments on the orthologous
data sets for approximately 90% of human/chimp/mouse/rat
data sets and 40% of the human/chimp/mouse/rat/chicken
data sets. Using such computations, we can differentiate high
quality multiple alignments from lower quality ones.
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Fig. 2. Cumulative distribution function of the p-value computed
for many human/chimp/mouse/rat data sets. Graphs are plotted for
the 4215 orthologous data sets, 5000 random data sets having unre-
lated behavior on a single branch and 5000 random data sets having
unrelated behavior on multiple branches.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
F

un
ct

io
n

-log10(p-value)

Orthologous Dataset
One branch random dataset

Multiple branches random dataset

Fig. 3. Cumulative distribution function of the p-value computed for
many human/chimp/mouse/rat/chicken data sets. Graphs are plotted
for 777 orthologous data sets, 7000 random data sets having unre-
lated behavior on a single branch and 5000 random data sets having
unrelated behavior on multiple branches.

5 DISCUSSION
We have presented a way to extend the BLAST statistics to
multiple segments of a multiple local alignment. While the
method is itself generic, we show a particular application
for promoter regions of vertebrates. The results show its use-
fulness in distinguishing high (human/chimp/mouse/rat) and
moderate (human/chimp/mouse/rat/chicken) quality align-
ments from low quality ones. Also, instead of averaging the
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p-values of the individual null hypothesis cases in Equation 5,
we can report the case with maximum p-value,and thus predict
the most likely branch that is exhibiting unrelated behavior.

In this work we have made certain assumptions. Here we
discuss their validity and the possibilities to remove these in
the future.

• We assumed that there is a phylogenetic tree relating the
sequences (along with the branch lengths). This is parti-
cularly hard when the sequences being aligned may not be
orthologous, but as most progressive multiple alignment
tools follow a phylogeny to create a multiple alignment,
the same tree can be used for computing the significance.

• We assumed an evolutionary model for the purposes
of computing the scoring matrices. While we used the
F81 model, any other model can be substituted in this
analysis. For protein sequences, we can use varying
BLOSUM [Henikoff and Henikoff, 1992] matrices (cor-
responding to the evolutionary distances) or use a single
evolutionary matrix as suggested by Altschul, 1993.

• To restrict the number of choices for subsets of species
being related to each other and unrelated to others, we
assumed that the unrelated behavior can happen only on
one branch of the phylogenetic tree. In the Results section
we showed that the performance is similar even when the
unrelated behavior happens on multiple branches. When
we reject the hypothesis that a single branch of the tree
exhibits unrelated behavior, our assumption allows us to
infer that all the sequences are related. Thus this method
scales very nicely with the number of sequences in the
analysis.

• For managing gaps, we treated a single gap as a charac-
ter. While this is surely unrealistic, there are no better
methods currently known for scoring gaps in multiple
alignments. When better understanding of the scoring of
gaps develops, we can modify our analysis to include it.

• To estimate the Karlin-Altschul parameters, we need to
find the highest scoring multiple local alignment. This is
an NP-hard problem. Thus we assumed that if the score of
the highest scoring segment is high enough TBA would
find it. While we could use any other tool for this pur-
pose, the reason we chose to use TBA was because in
another analysis [Prakash and Tompa, 2005] we showed
TBA to be very sensitive and specific for similar purposes.

• We assumed the Karlin-Altschul parameters to be inde-
pendent of the tree and the branch displaying nonortho-
logous behavior. This is not entirely correct, as we

show small variability in their values. Some initial anal-
ysis shows these values to change by 10%-20% when
we go to very different phylogenies. This shows that
the assumption may not hold beyond small variations
in the phylogeny. So if we are given an entirely new
set of species with a very different phylogeny, it seems
best to re-estimate the values of these parameters using
simulations. Currently we are working on understanding
the relationship between the Karlin-Altschul parameters
and the phylogeny and hope to be able to remove this
bottleneck in future.

We need faster methods to compute the Karlin-Altschul
parameters. The ideas presented by Altschul et al., 2001 are
not directly applicable, as they require us to find all high sco-
ring local multiple alignments for a given set of sequences,
which is a hard problem. Currently this is the computational
bottleneck for our analysis. Exact and fast computation of
these parameters is necessary to understand their relationship
to the phylogeny, unrelated branch, background distribution,
and evolutionary model. This can enhance the analysis and
help us differentiate higher quality multiple alignments from
lower ones at improved resolution.

When we include chicken in our analysis, a smaller frac-
tion of data sets show significant alignments (40% vs. 90%).
This should not be viewed as a negative result: it simply sug-
gests that it is harder to reliably align a chicken promoter
sequence to primates and rodents than it is to align prima-
tes with rodents. A similar observation was made by two
recent studies [Margulies et al., 2003, International Chicken
Genome Sequencing Consortium, 2004] which reported a
very small fraction of regulatory elements to be conserved
between human and chicken.

Simultaneously, we would like to work on showing the
methods’ applicability to other areas, for example assessing
significance of multiple alignments of functionally related
protein sequences. We also plan to work on extending the
ideas to help build a better multiple alignment tool. Also, the
sensitivity of BLAST searches may be improved significantly
by aligning the good hits and assessing the significance of that
multiple alignment.
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