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ABSTRACT
Many end-users wish to customize their applications, au-
tomating common tasks and routines. Unfortunately, this
automation is difficult today — users must choose between
brittle macros and complex scripting languages. Program-
ming by demonstration (PBD) offers a middle ground, al-
lowing users to demonstrate a procedure multiple times and
generalizing the requisite behavior with machine learning.
Unfortunately, many PBD systems are almost as brittle as
macro recorders, offering few ways for a user to control
the learning process or correct the demonstrations used as
training examples. This paper presents CHINLE, a system
which automatically constructs PBD systems for applica-
tions based on their interface specification. The resulting
PBD systems have novel interaction and visualization meth-
ods, which allow the user to easily monitor and guide the
learning process, facilitating error recovery during training.
CHINLE-constructed PBD systems learn procedures with con-
ditionals and perform partial learning if the procedure is too
complex to learn completely.
ACM Classification D.2.2 [Design Tools and Techniques]:
User Interfaces, H1.2. [Models and principles]: User/Machine
Systems
General Terms Algorithms, Human Factors
INTRODUCTION
The constantly-growing complexity of software applications
and greater diversity in the way that people use these appli-
cations is increasing the desire of users to customize these
applications and their interfaces.

Programming by demonstration (PBD) is one promising cus-
tomization technique; previous work has resulted in both
successful applications, a general machine-learning frame-
work for the problem, and an understanding of the expres-
siveness / sample-complexity tradeoff [7, 21, 22]. However,
several problems remain with most PBD systems:

• Considerable Domain Engineering: Substantial domain
engineering is required to modify PBD systems to work
with a new application. This need to have a human ‘in the
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Figure 1. CHINLE generates a PBD system for an application from the
SUPPLE functional specification of its interface.

loop’ acts as a barrier to the creation of integrated PBD
across the whole suite of a user’s applications.

• Inscrutability of the Learning Process: It is often hard
for users to understand or influence a PBD system’s learn-
ing process. What actions are being predicted with what
confidence? What hypotheses are being considered? If a
hypothesis has been discarded by the system, why did that
happen and because of which data?

• Difficulty Recovering from Training Errors: A primary
motivation for PBD systems is the realization that macro
recorders are brittle, but many PBD systems are likewise
intolerant of user errors. If a user errs during demonstra-
tion, it can be hard to recover from the mistake — without
restarting training from scratch.

• All-or-Nothing Learning: Sometimes a user’s intended
procedure is too complex to be automatically learned; in
this case, most PBD systems fail to learn anything, rather
than learning a partial procedure and presenting it as a
wizard. For example, when processing photos, a user
might load them into Photoshop, enhance saturation and
contrast, resize, save the result as a jpeg, post it into blog-
ging software, and write a caption. Automating this pro-
cess is impossible today, because no PBD system works
across applications. Furthermore, since one typically se-
lects different saturation settings for each picture, PBD
systems can’t automate that command (or write the cap-
tion), but they shouldn’t give up. Instead, the PBD system
should learn a partial procedure, which automates what
it can and allows the user to speedily focus on the parts
requiring human judgement.

This paper describes CHINLE a novel system which addresses
these challenges, automatically constructing PBD systems
for an application program from its high-level interface de-



scription (Figure 1). While previous researchers have tack-
led some of the problems before, CHINLE confronts all prob-
lems in concert, introduces new interaction methods, and
(we believe) it is the first to use partial learning to create
wizards. The resulting PBD systems allow users to quickly
detect and correct errors made during training.

The remainder of this paper is organized as follows. First,
we explain how CHINLE reuses an application’s SUPPLE in-
terface specification to generate the version-space algebraic
description necessary for learning. Second, we define a novel
probabilistic bias, which guides learning. Third, we intro-
duce the interface, which lets users visualize the state of
CHINLE’s learning progress, its confidence in hypotheses and
in predictions; novel interactors allow the user to quickly re-
cover from errors which might occur during the demonstra-
tion process. Some of the recovery techniques lead to inter-
esting learning problems: learning from incomplete data and
partial learning from inconsistent traces. Finally, we review
related work, state our contributions, and highlight future
work.

AUTOMATIC VERSION-SPACE GENERATION
In Lau et al.’s SMARTEDIT system, the human designer man-
ually specified the version-space (VS) algebraic description,
which guides learning. In contrast, CHINLE generates the
VS automatically from the application’s declarative inter-
face specification. We first describe this specification lan-
guage and then explain how CHINLE automatically trans-
forms these descriptions into version spaces, applying a novel,
probabilistic bias.

Specifying Interfaces
We build upon the open-source SUPPLE model-based interface-
generation toolkit [11], which uses decision-theoretic opti-
mization to render interfaces in a device-independent man-
ner (Figure 1). For the purposes of this paper, however, the
only pertinent aspect of SUPPLE is its functional interface
specification (FS) language, described below.

Following earlier work on model-based UIs [31, 13, 27],
SUPPLE represents an interface functionally, e.g., specify-
ing what capabilities the interface should expose, instead of
how to present those features (SUPPLE’s optimization algo-
rithm makes these rendering decisions). Formally, an inter-
face comprises a pair, 〈G, C〉, where G is a directed acyclic
graph of typed elements and C is a set of constraints. Ele-
ments correspond to units of information that need to be con-
veyed via the interface between the user and the controlled
appliance or application. Each element is defined in terms
of its type. Primitive types include integers, floats, strings,
Booleans, dates, times, images, etc. Container types, akin
to Pascal records, are used to create groups of simpler ele-
ments.

As a running example, consider the functional specification
of a Windows-style printer control panel (Figure 2). Interior
nodes, such as paper quality, are represented as container
types, while leaves are primitives, such as the switch for
color vs. black and white printing, which is represented as

Figure 2. Part of the functional specification (FS) for a printer control
panel.

Figure 3. PBD control menu atop SUPPLE’s rendering of the printer
control panel defined in Figure 2.

a Boolean. SUPPLE renders this specification as shown in
Figure 3.

Version-Space Algebra
CHINLE compiles functional specifications into a version-
space algebraic description for learning. Before describing
the compilation process (next subsection), we briefly review
VS algebra. A hypothesis is a function h that takes as input
an element of its domain Ih and produces as output an ele-
ment of its range Oh. A hypothesis space is a set of functions
with the same domain and range. The bias determines which
subset of the universe of possible functions is part of the hy-
pothesis space; a stronger bias corresponds to a smaller hy-
pothesis space. We say that a hypothesis, h, is consistent
with a training example (i, o), for i ∈ Ih and o ∈ Oh, if and
only if h(i) = o. A version space, VSH,D, consists of only
those hypotheses in hypothesis space H that are consistent
with the sequence D of examples [26]. When a new example
is observed, the version space must be updated to ensure that
it remains consistent with the new example. For example, we
may define a ConstInt version space containing functions of
the form f(x) = C for every integer value, C. Given a train-
ing example (input: 0, output: 4), the ConstInt version space
is updated to contain only the function f(x) = 4. Further
training examples will either be consistent with this version
space’s single hypothesis, or cause the version space to col-
lapse, i.e., contain no hypotheses. This simple version space
becomes more powerful when used as a building block in
version space algebra, which is a method for composing to-
gether version spaces to build a complex version space out
of simpler parts. The two most important operators are:



• Union: combine two or more version spaces to form one
space containing the union of the functions in the member
spaces, and

• Join: combine two or more version spaces to form one
space containing the cross product of the functions in the
member spaces, subject to a consistency predicate.

Continuing our example, when modeling an n-step program,
one uses a join of n actions (Figure 4). Each action can
change the value of any parameter in the control panel, and
is hence represented as the union of all parameter values.
CHINLE considers a wide range of individual hypotheses for
each of these parameters. In particular, one possible repre-
sentation for String is a conditional, which is represented as
a join of a version space for the condition being tested, and
values for the true and false branches [18].

Lau’s framework allows the application designer to specify
a preference bias by defining a probability distribution over
the hypotheses in the hypothesis space. CHINLE uses a par-
ticularly useful distribution to weight hypotheses, as we de-
scribe in a later section.

A version space is executed on an input, i, by applying every
hypothesis in the version space to the input and collecting
the set of resulting outputs. Formally, after a version space
is executed on an input i, a set of outputs o1, o2, ..., on is
generated such that oj = hj(i) for some hj in the version
space. Given a probability distribution over the hypotheses,
one can then compute the maximum-probability prediction,
by summing the probabilities of all hypotheses that agree,
hj(i) = hk(i), and choosing the o with the greatest proba-
bilistic support.

Lau et al. showed that in many cases, version spaces may
be represented efficiently by constraints on the set of con-
sistent hypotheses, such as the boundaries of the set relative
to a partial order (one that is convex and definite [12], but
not necessarily the generality ordering [19]). The next sec-
tion explains how CHINLE automatically generates a VS, de-
scribes how conditionals are handled, and defines our prob-
abilistic bias.

Recursive-Descent Transformation
Since the user explicitly segments the trace into fixed-length
iterations, the number of actions (say n) in the program is
known before learning begins.1 CHINLE creates the version
space for the whole program by joining n identical action
version spaces.

An individual action version space is computed from the
functional specification tree 2 with a simple depth-first traver-
sal as shown in Algorithm 1. The real generalization power
1In fact, the user may add new steps in subsequent iterations and
CHINLE will revise the length of learned procedure, but at any time
CHINLE knows the current length.
2We believe it is straightforward to extend CHINLE to use other
specification languages such as Nichols’ Pebbles [27], Windows
resource files, AppleEvents, or similar semantic descriptions, but
we have not yet done this extension.

Algorithm 1 FS2VS(FS-tree T): version-space
1: if T is a single leaf then
2: return TypedVS(T.type)
3: else
4: for all immediate subtrees S in T do
5: return

⋃
S FS2VS(S)

6: end for
7: end if

Figure 4. A portion of the automatically generated version space for
the printer control panel. For clarity, only one action node is expanded.
Note that all string and Boolean nodes would have constant and condi-
tional hypotheses beneath them. The integer and vector nodes would
also have delta hypotheses.

comes from the CHINLE’s treatment of the leaves in the func-
tional specification, which are each assigned a type-specific
version space by the TypedVS routine. For all data types,
these base-case version-spaces contain a union of several
possible hypotheses, some of which are conditioned on pre-
vious actions and others which are unconditional.

For example, consider an integer-valued state variable, such
as pages-per-sheet in our printer (Figure 2) or the index into
the vector of file names. These variables will be assigned a
version space which is the union of the following:

• A constant value. This hypothesis would be appropriate
if the user selects the same number of pages per sheet each
job.

• A constant delta — useful if the user linearly increases
(or decreases) the value on each iteration. This probably
wouldn’t make sense for pages per sheet, but would be
applicable if the user sequentially prints the files in a di-
rectory.

• A conditional statement of the form “if cond then value1

else value2. We restrict the condition of each rule to a sin-
gle equality (no logical connectives) comparing the value
of some other state variable. A hypothesis of this form
would enable the PBD system to learn that if the file type
is .ppt, then pages-per-sheet should be four, otherwise it
should be one.

Other data types (strings, enumerations, etc) afford the same
types of hypotheses, with the exception of deltas which re-
quire an addition operator and so only apply to numbers (and
vector indices).



Figure 4 shows the structure of the version space generated
for the printer example. Note that, if fully expanded, the
space is quite large. Since many of these hypotheses will
be inconsistent with the trace’s first iteration, CHINLE en-
sures efficiency through lazy evaluation; it doesn’t actually
generate the whole space until it has received the first trace
iteration, at which point it can avoid generating many incon-
sistent elements.

PROBABILISTIC WEIGHTING FOR DISAMBIGUATION
Recall that a version space is simply the set of possible pro-
grams (hypotheses) which are consistent with all evidence
seen so far. Learning would be simple if the user supplied
precisely enough trace data to remove all but a single pro-
gram from the version space; execution would then be sim-
ple. But what should happen if there are multiple consis-
tent programs? In this case, CHINLE iterates through ev-
ery consistent hypothesis, recording the action which each
predicts. If there is disagreement, then CHINLE has the hy-
potheses vote to determine the actual course of action (fol-
lowing [19]).

But not all hypotheses are equally likely. Occam’s Razor
suggests that unconditional hypotheses should be preferred
over conditional ones. Furthermore, a hypothesis conditioned
on the value of the most recently changed variable is more
likely than a hypothesis which is conditioned on a variable
whose value has never been modified.3 To model these pref-
erences, CHINLE uses a novel probabilistic weighting scheme.

At version-space unions for functional-specification interior
nodes, a uniform distribution is used. Unions correspond-
ing to leaf nodes, i.e. primitive types, give equal proba-
bility, P , to each unconditional hypothesis as they do the
group of all conditional hypotheses. The relative probabili-
ties of conditional hypotheses are normalized based on how
recently their conditioning variable has been changed, using
an exponential backoff. Suppose the action in question is the
(n + 1)st action in the procedure being learned; then up to
n variables have been modified previously. If a hypothesis
is conditioned on a variable which was changed t steps pre-
viously, it is assigned a probability of P

2t . All k hypotheses
whose conditioning variables haven’t changed are assigned
the weight P

k2n .

Note that this system of probabilistic weighting means that
if the user demonstrates only a single iteration of the proce-
dure, then CHINLE’s voting will be dominated by the con-
stant hypotheses, and execution will be identical to that of a
standard macro.

VISUALIZING SYSTEM CONFIDENCE
To elaborate our running example, suppose that Sue regu-
larly prints files of different formats sent from her European
clients. She typically changes the paper size, paper per sheet
and color settings according to the properties of the file to be
printed. Because her clients are European, she often uses A4
3To see this, note that the user has already signified the relevance
of any variable she recently changed, whereas there will always be
numerous irrelevant variables.

Figure 5. When performing successive demonstrations, CHINLE guides
the user to ensure that actions are aligned. Here, the system expects the
user to set the Paper Size to A4. The color of the highlight corre-
sponds to the confidence of the system’s prediction; dark green means
very confident.

Figure 6. A simple viewer lets the user see a summary of the learned
procedure, color coded to denote the system’s confidence in each step
with darker green indicating higher probability. If the user clicks on
the predicted action, alternatives are shown; selecting one adds another
training example.

paper; however, she prefers Letter size for her own doc-
uments. She prefers Pages Per Sheet to be 1, except
for PowerPoint presentations, where she uses 4. Unless the
file is in color, she prefers the cheaper Black-And-White
setting. Sue finds it annoying to manually change these print-
ing settings, since she often forgets and wastes paper. So, she
wants to automate this repetitive task. Since she needs to
print sale.ppt, she starts the PBD recorder and changes
Paper Size from Letter to A4. Next, she changes
Pages Per Sheet from 1 to 4. Finally, she presses End
Demonstration on the PBD menu to stop recording.

A bit later, Sue needs to print envelop.doc so she re-
sumes recording. Since the PBD system knows the rough
flow of actions, it guides her to ensure that the actions in
the two demonstrations are aligned. It does this by high-
lighting the expected step4 (set Paper Size) and filling in
the anticipated value A4; see Figure 5. To indicate the sys-
tem’s confidence in its predictions, CHINLE uses a 6-level
sequential color scheme [5], generated by COLORBREWER;
its confidence in A4 is very high (72%), which maps to dark
green.

Recovering by Adding a Missing Step

4Note that highlighting was similarly used to guide users in PBD
systems such as Eager [7, Chapter 9] and DocWizards [2].



Figure 7. If the user desires, they can inspect the state of the learning process. Additional columns show the training data for each demonstration,
and by expanding a step (e.g. Step 2) we see an ordered list of hypotheses, color-coded to mark CHINLE’s confidence.

Sometimes a user forgets to execute a step during a demon-
stration. Many PBD systems fail when actions don’t align,
requiring the user to reinitiate demonstration. In contrast,
CHINLE uses a technique like that of DOCWIZARDS [2] to
continue learning.

In our example, Sue realizes that the system is erroneously
set to print sale.ppt again. To correct this, she selects
envelope.doc instead. The key point is that while CHINLE
tries to align actions with those from a previous demonstra-
tion, it is flexible and allows new actions to be added at any
point in time — even if this changes the length of the pro-
gram. In this case, CHINLE adds a matching action to the
first demonstration explicitly selecting sale.ppt.

At this point Sue inspects the partially-learned procedure
in the viewer (Figure 6). CHINLE continues to wait for a
Paper Size setting, and by clicking on the A4 prediction,
Sue can see the alternative predictions, whose color indicates
low probability. In fact, Sue wants to choose Letter size,
which she can do in several ways: 1) she can select this op-
tion in the viewer pulldown (Figure 6), or 2) she can simply
click on Letter in the application interface (Figure 5). If
she had instead wished to keep the A4 setting, she could have
clicked Skip to Next Step (top of Figure 5).

Inspecting the Learning Process
Figure 6 provides a high-level summary of the learned pro-
cedure, but sometimes a user wants to understand the learn-
ing process in more detail. In this case, one may switch to
an expanded view as shown in Figure 7. The first column
shows the partially-learned procedure using a two-level for-
est (set of trees) depiction. The leaves of each tree denote
hypotheses, sorted and colored by their estimated probabil-
ity. In the figure, only the hypotheses of Step 2 can be seen
— the others are minimized. The root nodes in the forest
represent steps in the program. As in the simple view (Fig-
ure 6), a step node is colored to indicate confidence in the
step’s prediction — the intensity of the green is proportional
to the probability mass associated with the most likely pre-
diction, summing the weighted votes of all hypotheses. Note
that this means that a step may have high confidence even if
none of the underlying hypotheses do.

The rightmost column of Figure 7 shows the system’s pre-
diction, as before. In this case, CHINLE is confident that Sue
will want 4 Pages per Sheet in Step 3.

The two middle columns of the figure show the actions recorded
in the two previous demonstrations. These actions are repre-
sented as state transitions, A → B, where A is the old value
of the state variable and B is the new value.5

CORRECTING DEMONSTRATION ERRORS
Sometimes a user may make a mistake while demonstrating
a procedure, and CHINLE provides methods to recover from
such mistakes without starting training again from scratch.

Consider Figure 7 and note that a checkbox precedes each
recorded action in the demonstration columns. By uncheck-
ing (or rechecking) this checkbox, a user can retract (or re-
assert) a training example. For example, if when looking at
the expanded procedural visualizer, Sue realizes that she has
incorrectly selected Letter in Step 2 of Demonstration 2,
she may simply uncheck that box.

Learning from Incomplete Data
Such a change initiates incremental learning. Unfortunately,
the resulting learning problem is complicated, because the
state of that variable is now unknown at that time. This is a
problem because several types of hypotheses are conditioned
on the values of other variables. For example,

• A delta hypothesis predicts that the next value of a vari-
able will be its old value plus some constant c, but this
prediction is undefined if the old value is unknown. For
example, the system might conjecture that the next file to
be printed is the next one listed in a directory, but how can
it evaluate the hypothesis if it doesn’t know the last file
printed?

• Conditional hypotheses (e.g. “If file Type is WORD then
set Paper Size to Letter”) reference the values of

5Note that the first demonstration of Step 1 has a null transition
sale.ppt -> sale.ppt; indeed, Sue skipped this step in the
first demonstration. A user can similarly indicate that the current
value of a widget is ok in subsequent demonstrations by clicking
the Skip to Next Step button.



Figure 8. By crossing a hypothesis’ box, the user may reject it from consideration. In contrast, a check tells CHINLE that the user has manually
selected the hypothesis, overriding all others. Normally, CHINLE doesn’t display inconsistent hypotheses, but in this view the user has requested to see
them; note that each is associated with yellow shading in one or more “Recorded Action” columns, indicating which previously demonstrated actions
conflict with the hypothesis’ prediction.

other variables. How can CHINLE evaluate this hypothesis
if it doesn’t know the file being printed, or its type?

The simplest way of allowing users to retract actions from
the training data is to remove all actions after the one which
has been retracted. This makes learning easy, because the
training data again forms a continuous sequence of fully-
specified actions; however, it wastes valuable training data.

Instead, CHINLE treats retracted actions as missing values
during learning. The key question is how to define the con-
sistency of hypotheses defined in terms of missing values.
Borrowing a technique from model-based diagnosis, CHINLE
uses constraint suspension [8]; all constraints referencing a
missing value are automatically considered consistent. For
example, a conditional hypothesis is considered consistent
with a state transition, A → B, if the value of the hypothesis
antecedent is missing, A is missing, or B is missing.

Manual Selection of Hypotheses
Sophisticated users may wish even more direct control over
the learning process. For these users, CHINLE provides a
check box to the immediate left of each hypothesis. As can
be seen from Figure 8, hypothesis boxes have three possible
states:

• Blank. This is the default state, indicating that the nor-
mally computed probabilistic weighting is in effect.

• Crossed. This indicates that the user has manually re-
jected this hypothesis and it will not vote during predic-
tion or execution. Its color is still automatically updated
by CHINLE to show what the probability would be if the
cross were removed.

• Checked. This indicates that the user has manually se-
lected this hypothesis, overriding all other unchecked pos-
sibilities. Again, CHINLE still computes the probability
and sets the color.

Understanding why Hypotheses are Inconsistent
Figure 8 illustrates additional aspects of CHINLE’s visualiza-
tion and interactions. Normally, CHINLE doesn’t show hy-
potheses which conflict with the training data, but the user
may request to see inconsistent hypotheses — which are col-
ored yellow. Each row corresponding to such an inconsistent
hypothesis has one or more demonstration columns shaded
as well; this indicates which training examples are inconsis-
tent with the demonstrated action. The user may manually
retract the conflicting training example if she decides that it
was a mistake. However, the user may instead just select an
inconsistent hypothesis if she so desires.

PARTIAL LEARNING FROM INCONSISTENT TRACES
Because it uses version-space algebra, CHINLE handles in-
consistent training data differently from most machine-learn-
ing systems, which strive to be tolerant of noisy data. Sys-
tems based on decision trees [29], HMM derivatives [16],
support-vector machines, or similar methods continue to pre-
dict the highest probability action, even when the user’s ac-
tions contradict all representable hypotheses.

While noise-tolerant methods are crucial for many learn-
ing tasks, we believe PBD is the exception. It is especially
important for a PBD system to be predictable, so the user
can trust that the system will act correctly when executed.
Thus, the learner should be conservative, communicating
its confidence at every step and admitting when it is con-
fused. CHINLE’s probabilistic color scheme achieves the for-
mer and the version-space representation ensures the latter.
If the user ever demonstrates a set of actions which, taken
together, contradict every hypothesis, then the version space
collapses and CHINLE notifies the user, giving her a chance
to recover by retracting actions, manually selecting a hy-
pothesis, or accepting partial learning. We have already ex-
plained the first two options; we now describe partial learn-
ing.

Continuing our example from the situation depicted in Fig-



Figure 9. If the version space collapses for a step, the user is given
the option of correcting a possible demonstration error, selecting an
inconsistent hypothesis, or proceeding with partial learning — leading
to a mixed-initiative wizard, which automates part of the procedure.

ure 7, suppose Sue completes the second demonstration by
selecting a single page per sheet. Later, when she starts
recording a third demonstration, CHINLE confidently pre-
dicts that she will print product_p01.ppt, because it
has matched a delta hypothesis and CHINLE thinks she is
iterating through the complete set of files, printing each one.
In fact, the system is wrong, and Sue wants to print iui.doc.
When Sue selects this value, however, the version space for
Step 1 collapses — unsurprisingly, none of CHINLE’s hy-
potheses can predict which file Sue wants on paper. CHINLE
pops up a warning message (Figure 9) and asks whether
the system wants to correct an error or continue with par-
tial learning.

SMARTEDIT [19] also used version-space algebra for PBD,
but when confronted with a version-space collapse, SMARTE-
DIT just reported failure to the user, who could then provide
a new trace. In contrast, CHINLE exploits the fact that the
algebraic description (illustrated as the tree in Figure 4) fac-
tors the version space wherever there is a VS join operator
(1). Specifically, if the sub-version-space for any action col-
lapses, the VS for the whole program collapses. But such a
case just means that CHINLE can’t predict one of the actions
— it might have a single, clear hypothesis for each of all
other steps in the program. In such a case, CHINLE learns a
partial program. When executed, CHINLE performs as many
of the actions as it can, but uses a wizard (or mixed-initiative
interface) to ask the user to guide the actions which it was
unable to learn.

CHINLE supports two types of wizards. Figure 10 illustrates
an in-situ wizard — the original control-panel interface is
used to prompt the user to perform parts of the procedure by
herself, while the system automates the rest. The advantage
of this approach is its familiarity. Not only does the user get
to use a well-known interface to guide the new procedure,
but the prompting metaphor is adopted from the guide used
during the PBD training phase.

In some cases, however, an in-situ wizard is inappropriate.
Suppose, for example, that less screen real-estate were avail-
able to render the printer control panel, and as a result it
looked as shown in Figure 11. Furthermore, suppose that
Sue trained a slightly more complex procedure which used
color printing for some documents and not for others. In ad-
dition to the version-space collapse for File Name CHINLE
wasn’t able to learn a deterministic rule for Color. It might
confuse the user to use an in situ wizard to ask for these val-
ues, since it would require switching tabs and the resulting

Figure 10. An in situ wizard interface which uses the original interface
to prompt for necessary values.

Figure 11. An alternate rendering of the printer control panel, which
occupies less screen space. Because functionality is hidden behind tab
panes, it might be confusing to use this interface to prompt for unlearn-
able values when a partially-learned PBD procedure is executed.

activity would deprive the user of a feeling of control.

Instead, CHINLE generates a traditional (Microsoft-style) wiz-
ard (Figure 12) which prompts for all necessary values and
then executes the procedure autonomously.

RELATED WORK
General PBD reviews can be found in [7, 21]. In the follow-
ing, we discuss related work from three different viewpoints:
automatic construction of PBD Systems, use of general ma-
chine learning algorithms, and user control of the learning
process.

Automatic Construction of PBD Systems
Little work has been done on the automatic generation of
PBD systems, but Frank and Foley’s early work [10] is an
important exception. Unfortunately, the PBD systems it was
able to generate had limited generalization capabilities, fo-
cusing only on the size and placement of 2D objects.

Piernot and Yvon’s AIDE system [7, Chapter 18] provides
developers a system substrate for creating application-independent
PBD so that developers can add advanced macro capabili-
ties to Smalltalk applications without re-implementing ev-
erything from scratch. In particular, AIDE adopts a hier-
archical representation of the application history and AIDE



Figure 12. A traditional wizard interface which pops up as a separate
window to prompt for necessary parameter values. This form of mixed-
initiative interface is more appropriate if the main interface (Figure 11)
uses tab panes.

generalizes arguments in different events of the same class.
AIDE can detect loops but does not learn conditionals or
partial procedures. FAMILIAR [21, Chapter 15] is an inte-
grated PBD system for Apple computers, which creates do-
main independent programming by demonstration with the
AppleScript language.

General Machine Learning Approaches to PBD
Many PBD systems are essentially rule-based expert sys-
tems, but some researchers have used a general machine-
learning framework. Our work is based on Lau et al.’s frame-
work [17, 19] and exploits their compact, factored represen-
tation of the version space. In Lau et al.’s SMARTEDIT
system, the designer manually specified the VS algebraic
description, but CHINLE generates it automatically from the
application’s functional specification. We also extend their
framework by 1) learning partial procedures, 2) learning from
incomplete training data, and 3) using a novel probabilis-
tic weighting scheme, and 4) providing a rich visualization
scheme for controlling the learning process and recovering
from training errors.

FAMILIAR [29] applies decision-tree learning and then com-
bines different predictions with a meta-learner trained on of-
fline training data provided by an experienced user. In con-
trast, CHINLE uses probabilistic execution to combine differ-
ent hypotheses and requires no off-line training data.

Several researchers use fully-probabilistic learning approach-
es, such as IOHMMS [16], and Relational Markov Models [20],
but these approaches are so robust to noise that they may in-
correctly generalize a user’s actions rather than indicating
an inconsistency in demonstration — potentially surprising
the user. We believe that the ability to detect a version-
space collapse is a crucial benefit of Lau and our approach.
In other words, a PBD system should predict a user’s in-
tent with extreme confidence — not just 51% probability.
CHINLE’s color-mapped visualization of probability unob-
trusively communicates the system’s confidence in its pre-
dictions.

One limitation of CHINLE is its requirement that the user
manually segment the execution trace into demonstrated seg-
ments of fixed length. Other methods, such as IOHMMs [16],
Augmentation-Based Learning [28] and Distributed Augmen-
tation-Based Learning [6] relax this assumption, solving the
alignment and generalization problem.

To the best of our knowledge, partial learning has not been
discussed in the PBD literature, and no one has tackled miss-
ing-value problems in the context of PBD. Of course, missing-
values have been extensively studied in the broader statistics
and machine learning fields. For example, [25] is a classic
reference on incomplete data in statistics, and [30] explains
how C4.5 deals with missing attribute values.

In addition to machine learning, researchers have suggested
using common-sense knowledge bases to power PBD gen-
eralization. For example, Creo [9] is a PBD web browser,
which allows users to create a general-purpose procedure
from a single example; Creo’s generalization ability comes
from ConceptNet and TAP.

User-Control of the Learning Process
In order to control automatic generalization of procedures,
users must understand the programmatic representations. Ko
and Myers’s WHYLINE [15] answers users’ “Why?” and
“Why not?” questions; they show that this capability greatly
helps users, reducing debugging time. A recent study on
supporting end-user debugging [14] shows that the greatest
need for explanation falls in the Oracle/Specification cate-
gory: figuring out whether a value was right or wrong and
how to fix values. The DOCWIZARDS [2] system addresses
the understandability of learned procedures, allowing human
annotation and integrating with documentation. CHINLEś
ability to determine which demonstrated actions contradict
a hypothesis might enable a similar facility.

Many systems ask users to help disambiguate the generaliza-
tion process by selecting one of several consistent hypothe-
ses [7, 19]; however, we aren’t aware of previous PBD sys-
tems which allow users to select inconsistent hypotheses as a
form of error recovery. Nor are we aware of a prior PBD sys-
tem which uses sequential color-coding [5] to indicate con-
fidence in its predictions.

Witten and Mo’s TELS system [7, Chapter 8] supported mixed-
initiative PBD procedures. If TELS makes a mistake, the
user is invited to enter a debugging phase which reverts to
learning mode. Active-learning approaches, such as that of
Wolfman et al. [32], use the system’s understanding of its
uncertainty to proactively determine which question might
best be asked of the user in order to speed learning. We wish
to incorporate these ideas into CHINLE. On the other hand,
partial procedure learning can be helpful for mixed-initiative
PBD systems because the time of version-space collapse is
likely a good opportunity to ask the user for help.

Augmentation-Based Learning [28] and its extension, Dis-
tributed Augmentation-Based Learning (DABL) [6], support
learning from multiple traces, demonstrated by disparate users.



Furthermore, they allow users to directly edit the learned
procedure and can learn from both traces and users’ edits.
CHINLE also allows the user to directly modify a procedure,
but through a different interaction method — selection or
rejection of a specific step hypothesis. DABL supports a
greater range of programmatic control, which is appropriate
for the more sophisticated intended users of ECLIPSE; how-
ever, our approach allows CHINLE to continue to update the
likelihood of all hypotheses, even after the user has inter-
vened.

PLOW [1] allows a different type of user input, using a spo-
ken narrative to choose between possible generalizations of
a demonstrated action. Some end-user programming work
takes natural-language instruction even further. Tailor [4, 3]
allows the user to modify a procedure with ordinary English
commands. Sloppy programming [24, 23] lets users auto-
mate Internet browsing actions, again with English instruc-
tions.

CONCLUSIONS
This paper describes CHINLE, which (like FAMILIAR [29])
automatically generates PBD systems for applications, given
only their interface specification. CHINLE is based on the
version-space algebra approach of Lau et al. [19], because
it is intolerant to noise; the ability to detect a version-space
collapse is a crucial benefit, reducing the chance that the sys-
tem will learn an unintended procedure. CHINLE makes two
main contributions:

• Novel Visualization and Interaction Methods. PBD sys-
tems have long sought to communicate to the user the
state of learning and the nature of the generalized pro-
cedure. CHINLE introduces new interactors for this task
ranging from a simple viewer (Figure 6) to an expanded
visualization (Figure 8). The simple view summarizes
the learned procedure, predicts the next action, and com-
municates CHINLE’s confidence using a sequential color
map for probability. The expanded view extends the color
map to indicate confidence in CHINLE’s prediction and
its underlying hypotheses; the expanded view also shows
which hypotheses have been discarded as a result of which
demonstrated actions.

• New Ways to Recover from Errors during Demonstra-
tion. CHINLE provides direct-manipulation metaphors for
several error-correction techniques: 1) if the user executed
the wrong action during demonstration, she can purge it
from the training data with a simple checkbox (Figure 7);
note that implementing this feature requires learning from
incomplete date, which is complicated by cross-action de-
pendencies in the hypothesis space, 2) the user can select
or reject specific hypotheses — regardless of their con-
sistency with training data, 3) when all hypotheses are
inconsistent with an action’s training data, CHINLE per-
forms partial learning to create a wizard, which can be
rendered in situ or traditionally (Figures 10 and 12). Each
of these interactors is integrated with CHINLE’s sequential
color model.

In addition, we present a novel scheme for probabilistic weight-
ing of hypothesized actions which allows iteration over sets
and conditional branches, but ensures that a straight-line “macro”
is learned if the user demonstrates just a single example.

Future Work
The biggest task for future work is a user study to evalu-
ate the usability of our novel visualizations and interactors.
Quite simply, do users find the system useful and do they
have confidence in the learned procedures? We also an-
ticipate more focused studies addressing questions such as
1) which wizard style (in situ or traditional) is preferred by
users and when? 2) which is easier for users to understand,
CHINLE’s representation of conditional actions, that used by
block structured languages, or sequential decision stumps?
3) what kinds of errors do users make when demonstrating
macros and procedures? 4) will users actually understand
and use CHINLE’s error-correction capabilities? 5) do users
understand and find useful CHINLE’s visualizations of the
learning process?

Since CHINLE is built atop SUPPLE and uses the latter’s func-
tional specification as the input for version-space construc-
tion, one must question the scope of this representation. To
date SUPPLE has been used to build one to two dozen appli-
cation interfaces — the most complex being a fully-functional
email client. While these data-rich applications demonstrate
SUPPLE’s generality, we wish to continue to extend the com-
plexity of the PBD systems generated by CHINLE.

On a more technical front, we want to remove CHINLE’ cur-
rent limitations such as manual segmentation, fixed-length
loops, and the inability to use logical connectives inside con-
ditionals. In addition, we note that currently CHINLE allows
symmetric hypotheses in its version space (e.g. “If A then
X else Y” and ‘If not A then Y else X”. It’s well known that
novice users struggle with if/then/else constructs, and unnec-
essary duplication is likely to exacerbate the problem. In the
future, we will revise the version-space generation algorithm
to eliminate symmetries.
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