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Abstract

Many researchers are trying to use information
extraction (IE) to create large-scale knowl-
edge bases from natural language text on the
Web. However, the primary approach (su-
pervised learning of relation-specific extrac-
tors) requires manually-labeled training data
for each relation and doesn’t scale to the thou-
sands of relations encoded in Web text.

This paper presents LUCHS, a self-supervised,
relation-specific IE system which learns 5025
relations — more than an order of magnitude
greater than any previous approach — with an
average F1 score of 61%. Crucial to LUCHS’s
performance is an automated system for dy-
namic lexicon learning, which allows it to
learn accurately from heuristically-generated
training data, which is often noisy and sparse.

1 Introduction

Information extraction (IE), the process of gen-
erating relational data from natural-language text,
has gained popularity for its potential applications
in Web search, question answering and other tasks.
Two main approaches have been attempted:
• Supervised learning of relation-specific ex-

tractors (e.g., (Freitag, 1998)), and
• “Open” IE — self-supervised learning of

unlexicalized, relation-independent extractors
(e.g., Textrunner (Banko et al., 2007)).

Unfortunately, both methods have problems.
Supervised approaches require manually-labeled
training data for each relation and hence can’t
scale to handle the thousands of relations encoded
in Web text. Open extraction is more scalable,
but has lower precision and recall. Furthermore,
open extraction doesn’t canonicalize relations, so
any application using the output must deal with
homonymy and synonymy.

A third approach, sometimes refered to as weak
supervision, is to heuristically match values from
a database to text, thus generating a set of train-
ing data for self-supervised learning of relation-
specific extractors (Craven and Kumlien, 1999).
With the Kylin system (Wu and Weld, 2007) ap-
plied this idea to Wikipedia by matching values
of an article’s infobox1 attributes to corresponding
sentences in the article, and suggested that their
approach could extract thousands of relations (Wu
et al., 2008). Unfortunately, however, they never
tested the idea on more than a dozen relations. In-
deed, no one has demonstrated a practical way to
extract more than about one hundred relations.

We note that Wikipedia’s infobox ‘ontology’ is
a particularly interesting target for extraction. As a
by-product of thousands of contributors, it is broad
in coverage and growing quickly. Unfortunately,
the schemata are surprisingly noisy and most are
sparsely populated; challenging conditions for ex-
traction.

This paper presents LUCHS, an autonomous,
self-supervised system, which learns 5025 rela-
tional extractors — an order of magnitude greater
than any previous effort. Like Kylin, LUCHS cre-
ates training data by matching Wikipedia attribute
values with corresponding sentences, but by itself,
this method was insufficient for accurate extrac-
tion of most relations. Thus, LUCHS introduces
a new technique, dynamic lexicon features, which
dramatically improves performance when learning
from sparse data and that way enables scalability.

1.1 Dynamic Lexicon Features

Figure 1 summarizes the architecture of LUCHS.
At the highest level, LUCHS’s offline training pro-
cess resembles that of Kylin. Wikipedia pages

1A sizable fraction of Wikipedia articles have associated
infoboxes — relational summaries of the key aspects of the
subject of the article. For example, the infobox for Alan Tur-
ing’s Wikipedia page lists the values of 10 attributes, includ-
ing his birthdate, nationality and doctoral advisor.
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Figure 1: Architecture of LUCHS. In order to
handle sparsity in its heuristically-generated train-
ing data, LUCHS generates custom lexicon features
when learning each relational extractor.

containing infoboxes are used to train a classi-
fier that can predict the appropriate schema for
pages missing infoboxes. Additionally, the val-
ues of infobox attributes are compared with article
sentences to heuristically generate training data.
LUCHS’s major innovation is a feature-generation
process, which starts by harvesting HTML lists
from a 5B document Web crawl, discarding 98%
to create a set of 49M semantically-relevant lists.
When learning an extractor for relation R, LUCHS

extracts seed phrases from R’s training data and
uses a semi-supervised learning algorithm to cre-
ate several relation-specific lexicons at different
points on a precision-recall spectrum. These lex-
icons form Boolean features which, along with
lexical and dependency parser-based features, are
used to produce a CRF extractor for each relation
— one which performs much better than lexicon-
free extraction on sparse training data.

At runtime, LUCHS feeds pages to the article
classfier, which predicts which infobox schema
is most appropriate for extraction. Then a small
set of relation-specific extractors are applied to
each sentence, outputting tuples. Our experiments
demonstrate a high F1 score, 61%, across the 5025
relational extractors learned.

1.2 Summary

This paper makes several contributions:
• We present LUCHS, a self-supervised IE sys-

tem capable of learning more than an order
of magnitude more relation-specific extractors
than previous systems.
• We describe the construction and use of dy-

namic lexicon features, a novel technique, that

enables hyper-lexicalized extractors which
cope effectively with sparse training data.
• We evaluate the overall end-to-end perfor-

mance of LUCHS, showing an F1 score of 61%
when extracting relations from randomly se-
lected Wikipedia pages.
• We present a comprehensive set of additional

experiments, evaluating LUCHS’s individual
components, measuring the effect of dynamic
lexicon features, testing sensitivity to varying
amounts of training data, and categorizing the
types of relations LUCHS can extract.

2 Heuristic Generation of Training Data

Wikipedia is an ideal starting point for our long-
term goal of creating a massive knowledge base of
extracted facts for two reasons. First, it is com-
prehensive, containing a diverse body of content
with significant depth. Perhaps more importantly,
Wikipedia’s structure facilitates self-supervised
extraction. Infoboxes are short, manually-created
tabular summaries of many articles’ key facts —
effectively defining a relational schema for that
class of entity. Since the same facts are often ex-
pressed in both article and ontology, matching val-
ues of the ontology to the article can deliver valu-
able, though noisy, training data.

For example, the Wikipedia article on “Jerry Se-
infeld” contains the sentence “Seinfeld was born
in Brooklyn, New York.” and the article’s infobox
contains the attribute “birth place = Brooklyn”.
By matching the attribute’s value “Brooklyn” to
the sentence, we can heuristically generate train-
ing data for a birth place extractor. This data is
noisy; some attributes will not find matches, while
others will find many co-incidental matches.

3 Learning Extractors

We first assume that each Wikipedia infobox at-
tribute corresponds to a unique relation (but see
Section 5.6) for which we would like to learn a
specific extractor. A major challenge with such
an approach is scalability. Running a relation-
specific extractor for each of Wikipedia’s 34,000
unique infobox attributes on each of Wikipedia’s
50 million sentences would require 1.7 trillion ex-
tractor executions.

We therefore choose a hierarchical approach
that combines both article classifiers and rela-
tion extractors. For each infobox schema, LUCHS

trains a classifier that predicts if an article is likely
to contain that schema. Only when an article



is likely to contain a schema, does LUCHS run
that schema’s relation extractors. To extract in-
fobox attributes from all of Wikipedia, LUCHS

now needs orders of magnitude fewer executions.
While this approach does not propagate infor-

mation from extractors back to article classifiers,
experiments confirm that our article classifiers
nonetheless deliver accurate results (Section 5.2),
reducing the potential benefit of joint inference. In
addition, our approach reduces the need for extrac-
tors to keep track of the larger context, thus sim-
plifying the extraction problem.

We briefly summarize article classification: We
use a linear, multi-class classifier with six kinds of
features: words in the article title, words in the
first sentence, words in the first sentence which
are direct objects to the verb ‘to be’, article sec-
tion headers, Wikipedia categories, and their an-
cestor categories. We use the voted perceptron al-
gorithm (Freund and Schapire, 1999) for training.

More challenging are the attribute extractors,
which we wish to be simple, fast, and able to well
capture local dependencies. We use a linear-chain
conditional random field (CRF) — an undirected
graphical model connecting a sequence of input
and output random variables, x = (x0, . . . , xT )
and y = (y0, . . . , yT ) (Lafferty et al., 2001). In-
put variables are assigned words w. The states
of output variables represent discrete labels l, e.g.
Argi-of-Relj and Other. In our case, variables
are connected in a chain, following the first-order
Markov assumption. We train to maximize condi-
tional likelihood of output variables given an input
probability distribution. The CRF models p(y|x)
are represented with a log-linear distribution

p(y|x) =
1

Z(x)
exp

T∑
t=1

K∑
k=1

λkfk(yt−1, yt, x, t)

where feature functions, f , encode sufficient
statistics of (x, y), T is the length of the sequence,
K is the number of feature functions, and λk are
parameters representing feature weights, which
we learn during training. Z(x) is a partition func-
tion used to normalize the probabilities to 1. Fea-
ture functions allow complex, overlapping global
features with lookahead.

Common techniques for learning the weights λk
include numeric optimization algorithms such as
stochastic gradient descent or L-BFGS. In our ex-
periments, we again use the simpler and more effi-
cient voted-perceptron algorithm (Collins, 2002).
The linear-chain layout enables efficient interence

using the dynamic programming-based Viterbi al-
gorithm (Lafferty et al., 2001).

We evaluate nine kinds of Boolean features:

Words For each input word w we introduce fea-
ture fw

w (yt−1, yt, x, t) := 1[xt=w].

State Transitions For each transition be-
tween output labels li, lj we add feature
f tran
li,lj

(yt−1, yt, x, t) := 1[yt−1=li∧yt=lj ].

Word Contextualization For parameters p and
s we add features fprev

w (yt−1, yt, x, t) :=
1[w∈{xt−p,...,xt−1}] and f sub

w (yt−1, yt, x, t) :=
1[w∈{xt+1,...,xt+s}] which capture a window of
words appearing before and after each position t.

Capitalization We add feature
fcap(yt−1, yt, x, t) := 1[xtis capitalized].

Digits We add feature fdig(yt−1, yt, x, t) :=
1[xtis digits].

Dependencies We set fdep(yt−1, yt, x, t) to the
lemmatized sequence of words from xt to the root
of the dependency tree, computed using the Stan-
ford parser (Marneffe et al., 2006).

First Sentence We set f fs(yt−1, yt, x, t) :=
1[xtin first sentence of article].

Gaussians For numeric attributes, we fit a Gaus-
sian (µ, σ) and add feature fgau

i (yt−1, yt, x, t) :=
1[|xt−µ|<iσ] for parameters i.

Lexicons For non-numeric attributes, and for a
lexicon l, i.e. a set of related words, we add fea-
ture f lex

l (yt−1, yt, x, t) := 1[xt∈l]. Lexicons are
explained in the following section.

4 Extraction with Lexicons

It is often possible to group words that are likely
to be assigned similar labels, even if many of these
words do not appear in our training set. The ob-
tained lexicons then provide an elegant way to im-
prove the generalization ability of an extractor, es-
pecially when only little training data is available.
However, there is a danger of overfitting, which
we discuss in Section 4.2.4.

The next section explains how we mine the Web
to obtain a large corpus of quality lists. Then Sec-
tion 4.2 presents our semi-supervised algorithm
for learning semantic lexicons from these lists.



4.1 Harvesting Lists from the Web

Domain-independence requires access to an ex-
tremely large number of lists, but our tight in-
tegration of lexicon acquisition and CRF learn-
ing requires that relevant lists be accessed instan-
taneously. Approaches using search engines or
wrappers at query time (Etzioni et al., 2004; Wang
and Cohen, 2008) are too slow; we must extract
and index lists prior to learning.

We begin with a 5 billion page Web crawl.
LUCHS can be combined with any list harvesting
technique, but we choose a simple approach, ex-
tracting lists defined by HTML <ul> or <ol>
tags. The set of lists obtained in this way is ex-
tremely noisy — many lists comprise navigation
bars, tag sets, spam links, or a series of long text
paragraphs. This is consistent with the observation
that less than 2% of Web tables are relational (Ca-
farella et al., 2008).

We therefore apply a series of filtering steps.
We remove lists of only one or two items, lists
containing long phrases, and duplicate lists from
the same host. After filtering we obtain 49 million
lists, containing 56 million unique phrases.

4.2 Semi-Supervised Learning of Lexicons

While training a CRF extractor for a given rela-
tion, LUCHS uses its corpus of lists to automati-
cally generate a set of semantic lexicons — spe-
cific to that relation. The technique proceeds in
three steps, which have been engineered to run ex-
tremely quickly:

1. Seed phrases are extracted from the labeled
training set.

2. A learning algorithm expands the seed
phrases into a set of lexicons.

3. The semantic lexicons are added as features
to the CRF learning algorithm.

4.2.1 Extracting Seed Phrases
For each training sentence LUCHS first identifies
subsequences of labeled words, and for each such
labeled subsequence, LUCHS creates one or more
seed phrases p. Typically, a set of seeds con-
sists precisely of the labeled subsequences. How-
ever, if the labeled subsequences are long and have
substructure, e.g., ‘San Remo, Italy’, our system
splits at the separator token, and creates additional
seed sets from prefixes and postfixes.

4.2.2 From Seeds to Lexicons
To expand a set of seeds into a lexicon, LUCHS

must identify relevant lists in the corpus. Rele-
vancy can be computed by defining a similarity be-
tween lists using the vector-space model. Specifi-
cally, let L denote the corpus of lists, and P be the
set of unique phrases from L. Each list l0 ∈ L can
be represented as a vector of weighted phrases p ∈
P appearing on the list, l0 = (l0p1 l

0
p2 . . . l

0
p|P|

). Fol-
lowing the notion of inverse document frequency,
a phrase’s weight is inversely proportional to the
number of lists containing the phrase. Popular
phrases which appear on many lists thus receive
a small weight, whereas rare phrases are weighted
higher:

l0pi
=

1
|{l ∈ L|p ∈ l}|

Unlike the vector space model for documents, we
ignore term frequency, since the vast majority of
lists in our corpus don’t contain duplicates. This
vector representation supports the simple cosine
definition of list similarity, which for lists l0, l1 ∈
L is defined as

simcos :=
l0 · l1

‖l0‖‖l1‖
.

Intuitively, two lists are similar if they have many
overlapping phrases, the phrases are not too com-
mon, and the lists don’t contain many other
phrases. By representing the seed set as another
vector, we can find similar lists, hopefully contain-
ing related phrases. We then create a semantic lex-
icon by collecting phrases from a range of related
lists.

For example, one lexicon may be created as the
union of all phrases on lists that have non-zero
similarity to the seed list. Unfortunately, due to
the noisy nature of the Web lists such a lexicon
may be very large and may contain many irrele-
vant phrases. We expect that lists with higher sim-
ilarity are more likely to contain phrases which are
related to our seeds; hence, by varying the sim-
ilarity threshold one may produce lexicons rep-
resenting different compromises between lexicon
precision and recall. Not knowing which lexicon
will be most useful to the extractors, LUCHS gen-
erates several and lets the extractors learn appro-
priate weights.

However, since list similarities vary depending
on the seeds, fixed thresholds are not an option. If
#similarlists denotes the number of lists that have
non-zero similarity to the seed list and #lexicons



the total number of lexicons we want to generate,
LUCHS sets lexicon i ∈ {0, . . . ,#lexicons − 1}
to be the union of prases on the

#similarlistsi/#lexicons

most similar lists.2

4.2.3 Efficiently Creating Lexicons
We create lexicons from lists that are similar to
our seed vector, so we only consider lists that have
at least one phrase in common. Importantly, our
index structures allow LUCHS to select the rele-
vant lists efficiently. For each seed, LUCHS re-
trieves the set of containing lists as a sorted se-
quence of list identifiers. These sequences are
then merged yielding a sequence of list identifiers
with associated seed-hit counts. Precomputed list
lengths and inverse document frequencies are also
retrieved from indices, allowing efficient compu-
tation of similarity. The worst case complexity is
O(log(S)SK) where S is the number of seeds and
K the maximum number of lists to consider per
seed.

4.2.4 Preventing Lexicon Overfitting
Finally, we integrate the acquired semantic lexi-
cons as features into the CRF. Although Section 3
discussed how to use lexicons as CRF features,
there are some subtleties. Recall that the lexi-
cons were created from seeds extracted from the
training set. If we now train the CRF on the same
examples that generated the lexicon features, then
the CRF will likely overfit, and weight the lexicon
features too highly!

Before training, we therefore split the training
set into k partitions. For each example in a par-
tition we assign features based on lexicons gener-
ated from only the k−1 remaining partitions. This
avoids overfitting and ensures that we will not per-
form much worse than without lexicon features.
When we apply the CRF to our test set, we use the
lexicons based on all k partitions. We refer to this
technique as cross-training.

5 Experiments

We start by evaluating end-to-end performance of
LUCHS when applied to Wikipedia text, then an-
alyze the characteristics of its components. Our
experiments use the 10/2008 English Wikipedia
dump.

2For practical reasons, we exclude the case i = #lexicons
in our experiments.
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Figure 2: Precision / recall curve for end-to-end
system performance on 100 random articles.

5.1 Overall Extraction Performance

To evaluate the end-to-end performance of
LUCHS, we test the pipeline which first classifies
incoming pages, activating a small set of extrac-
tors on the text. To ensure adequate training and
test data, we limit ourselves to infobox classes
with at least ten instances; there exist 1,583 such
classes, together comprising 981,387 articles. We
only consider the first ten sentences for each ar-
ticle, and we only consider 5025 attributes.3 We
create a test set by sampling 100 articles ran-
domly; these articles are not used to train article
classifiers or extractors. Each test article is then
automatically classified, and a random attribute
of the predicted schema is selected for extraction.
Gold labels for the selected attribute and article are
created manually by a human judge and compared
to the token-level predictions from the extractors
which are trainined on the remaining articles with
heuristic matches.

Overall, LUCHS reaches a precision of .55 at a
recall of .68, giving an F1-score of .61 (Figure 2).
Analyzing the errors in more detail, we find that in
11 of 100 cases an article was incorrectly classi-
fied. We note that in at least two of these cases the
predicted class could also be considered correct.
For example, instead of Infobox Minor Planet the
extractor predicted Infobox Planet.

On five of the selected attributes the extrac-
tor failed because the attributes could be consid-
ered unlearnable: The flexibility of Wikipedia’s
infobox system allows contributors to introduce
attributes for formatting, for example defining el-

3Attributes were selected to have at least 10 heuristic
matches, to have 10% of values covered by matches, and 10%
of articles with attribute in infobox covered by matches.



ement order. In the future we wish to train LUCHS

to ignore this type of attribute.
We also compared the heuristic matches con-

tained in the selected 100 articles to the gold stan-
dard: The matches reach a precision of .90 at a
recall of .33, giving an F1-score of .48. So while
most heuristic matches hit mentions of attribute
values, many other mentions go unmatched. Man-
ual analysis shows that these values are often miss-
ing from an infobox, are formatted differently, or
are inconsistent to what is stated in the article.

So why did the low recall of the heuristic
matches not adversely affect recall of our extrac-
tors? For most articles, an attribute can be as-
signed a single unique value. When training an
attribute extractor, only articles that contained a
heuristic match for that attribute were considered,
thus avoiding many cases of unmatched mentions.

Subsequent experiments evaluate the perfor-
mance of LUCHS components in more detail.

5.2 Article Classification
The first step in LUCHS’s run-time pipeline is de-
termining which infobox schemata are most likely
to be found in a given article. To test this, we ran-
domly split our 981,387 articles into 4/5 for train-
ing and 1/5 for testing, and train a single multi-
class classifier. For this experiment, we use the
original infobox class of an article as its gold la-
bel. We compute the accuracy of the prediction at
.92. Since some classes can be considered inter-
changeable, this number represents a lower bound
on performance.

5.3 Factors Affecting Extraction Accuracy
We now evaluate attribute extraction assuming
perfect article classification. To keep training time
manageable, we sample 100 articles for training
and 100 articles for testing4 for each of 100 ran-
dom attributes. We again only consider the first
ten sentences of each article, and we only con-
sider articles that have heuristic matches with the
attribute. We measure F1-score at a token-level,
taking the heuristic matches as ground-truth.

We first test the performance of extractors
trained using our basic features (Section 3)5, not
including lexicons and Gaussians. We begin us-
ing word features and obtain a token-level F1-
score of .311 for text and .311 for numeric at-
tributes. Adding any of our additional features

4These numbers are smaller for attributes with less train-
ing data available, but the same split is maintained.

5For contextualization features we choose p, s = 5.

Features F1-Score
Text attributes

Baseline .491
Baseline + Lexicons w/o CT .367
Baseline + Lexicons .545

Numeric attributes
Baseline .586
Baseline + Gaussians w/o CT .623
Baseline + Gaussians .627

Table 1: Impact of Lexicon and Gaussian features.
Cross-Training (CT) is essential to improve per-
formance.

improves these scores, but the relative improve-
ments vary: For both text and numeric attributes,
contextualization and dependency features deliver
the largest improvement. We then iteratively add
the feature with largest improvement until no fur-
ther improvement is observed. We finally obtain
an F1-score of .491 for text and .586 for numeric
attributes. For text attributes the extractor uses
word, contextualization, first sentence, capitaliza-
tion, and digit features; for numeric attributes the
extractor uses word, contextualization, digit, first
sentence, and dependency features. We use these
extractors as a baseline to evaluate our lexicon and
Gaussian features.

Varying the size of the training sets affects re-
sults: Taking more articles raises the F1-score, but
taking more sentences per article reduces it. This
is because Wikipedia articles often summarize a
topic in the first few paragraphs and later discuss
related topics, necessitating reference resolution
which we plan to add in future work.

5.4 Lexicon and Gaussian Features

We next study how our distribution features6 im-
pact the quality of the baseline extractors (Table
1). Without cross-training we observe a reduction
in performance, due to overfitting. Cross-training
avoids this, and substantially improves results over
the baseline. While cross-training is particularly
critical for lexicon features, it is less needed for
Gaussians where only two parameters, mean and
deviation, are fitted to the training set.

The relative improvements depend on the num-
ber of available training examples (Table 2). Lex-
icon and Gaussian features especially benefit ex-
tractors for sparse attributes. Here we can also see
that the improvements are mainly due to increases
in recall.

6We set the number of lexicon and Gaussian features to 4.



# Train F1-B F1-LUCHS ∆F1 ∆Pr ∆Re
Text attributes

10 .379 .439 +16% +10% +20%
25 .447 .504 +13% +7% +20%
100 .491 .545 +11% +5% +17%

Numeric attributes
10 .484 .531 +10% +4% +13%
25 .552 .596 +8% +4% +10%
100 .586 .627 +7% +5% +8%

Table 2: Lexicon and Gaussian features greatly ex-
pand F1 score (F1-LUCHS) over the baseline (F1-
B), in particular for attributes with few training ex-
amples. Gains are mainly due to increased recall.

5.5 Scaling to All of Wikipedia
Finally, we take our best extractors and run them
on all 5025 attributes, again assuming perfect ar-
ticle classification and using heuristic matches as
gold-standard. Figure 3 shows the distribution of
obtained F1 scores. 810 text attributes and 328 nu-
meric attributes reach a score of 0.80 or higher.

The performance depends on the number of
available training examples, and that number is
governed by a long-tailed distribution. For ex-
ample, 61% of the attributes in our set have 50
or fewer examples, 36% have 20 or fewer. Inter-
estingly, the number of training examples had a
smaller effect on performance than expected. Fig-
ure 4 shows the correlation between these vari-
ables. Lexicon and Gaussian features enables ac-
ceptable performance even for sparse attributes.

Averaging across all attributes we obtain F1
scores of 0.56 and 0.60 for textual and numeric
values respectively. We note that these scores
assume that all attributes are equally important,
weighting rare attributes just like common ones.
If we weight scores by the number of attribute in-
stances, we obtain F1 scores of 0.64 (textual) and
0.78 (numeric). In each case, precision is slightly
higher than recall.

5.6 Towards an Attribute Ontology
The true promise of relation-specific extractors
comes when an ontology ties the system together.
By learning a probabilistic model of selectional
preferences, one can use joint inference to improve
extraction accuracy. One can also answer scien-
tific questions, such as “How many of the learned
Wikipedia attributes are distinct?” It is clear that
many duplicates exist due to collaborative sloppi-
ness, but semantic similarity is a matter of opinion
and an exact answer is impossible.
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Figure 3: F1 scores among attributes, ranked by
score. 810 text attributes (20%) and 328 numeric
attributes (31%) had an F1-score of .80 or higher.
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Figure 4: Average F1 score by number of training
examples. While more training data helps, even
sparse attributes reach acceptable performance.

Nevertheless, we clustered the textual attributes
in several ways. First, we cleaned the attribute
names heuristically and performed spell check.
The “distance” between two attributes was calcu-
lated with a combination of edit distance and IR
metrics with Wordnet synonyms; then hierarchical
agglomerative clustering was performed. We man-
ually assigned names to the clusters and cleaned
them, splitting and joining as needed. The result is
too crude to be called an ontology, but we continue
its elaboration. There are a total of 3962 attributes
grouped in about 1282 clusters (not yet counting
attributes with numerical values); the largest clus-
ter, location, has 115 similar attributes. Figure 5
shows the confusion matrix between attributes in
the biggest clusters; the shade of the i, jth pixel
indicates the F1 score achieved by training on in-
stances of attribute i and testing on attribute j.
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Figure 5: Confusion matrix for extractor accuracy
training on one attribute then testing on another.
Note the extraction similarity between title and
full-name, as well as between dates of birth and
death. Space constraints allow us to show only
1000 of LUCHS’s 5025 extracted attributes, those
in the largest clusters.

6 Related Work

Large-scale extraction A popular approach to IE
is supervised learning of relation-specific extrac-
tors (Freitag, 1998). Open IE, self-supervised
learning of unlexicalized, relation-independent ex-
tractors (Banko et al., 2007), is a more scalable
approach, but suffers from lower precision and
recall, and doesn’t canonicalize the relations. A
third approach, weak supervision, performs self-
supervised learning of relation-specific extractors
from noisy training data, heuristically generated
by matching database values to text. (Craven and
Kumlien, 1999; Hirschman et al., 2002) apply this
technique to the biological domain, and (Mintz
et al., 2009) apply it to 102 relations from Free-
base. LUCHS differs from these approaches in that
its “database” – the set of infobox values – itself
is noisy, contains many more relations, and has
few instances per relation. Whereas the existing
approaches focus on syntactic extraction patterns,
LUCHS focuses on lexical information enhanced
by dynamic lexicon learning.

Extraction from Wikipedia Wikipedia has
become an interesting target for extraction.
(Suchanek et al., 2008) build a knowledgebase
from Wikipedia’s semi-structured data. (Wang et
al., 2007) propose a semisupervised positive-only
learning technique. Although that extracts from
text, its reliance on hyperlinks and other semi-
structured data limits extraction. (Wu and Weld,
2007; Wu et al., 2008)’s systems generate train-

ing data similar to LUCHS, but were only on a few
infobox classes. In contrast, LUCHS shows that
the idea scales to more than 5000 relations, but
that additional techniques, such as dynamic lexi-
con learning, are necessary to deal with sparsity.

Extraction with lexicons While lexicons have
been commonly used for IE (Cohen and Sarawagi,
2004; Agichtein and Ganti, 2004; Bellare and Mc-
Callum, 2007), many approaches assume that lex-
icons are clean and are supplied by a user before
training. Other approaches (Talukdar et al., 2006;
Miller et al., 2004; Riloff, 1993) learn lexicons
automatically from distributional patterns in text.
(Wang et al., 2009) learns lexicons from Web lists
for query tagging. LUCHS differs from these ap-
proaches in that it is not limited to a small set of
well-defined relations. Rather than creating large
lexicons of common entities, LUCHS attempts to
efficiently instantiate a series of lexicons from a
small set of seeds to bias extractors of sparse at-
tributes. Crucual to LUCHS’s different setting is
also the need to avoid overfitting.

Set expansion A large amount of work has
looked at automatically generating sets of related
items. Starting with a set of seed terms, (Etzioni
et al., 2004) extract lists by learning wrappers for
Web pages containing those terms. (Wang and Co-
hen, 2007; Wang and Cohen, 2008) extend the
idea, computing term relatedness through a ran-
dom walk algorithm that takes into account seeds,
documents, wrappers and mentions. Other ap-
proaches include Bayesian methods (Ghahramani
and Heller, 2005) and graph label propagation al-
gorithms (Talukdar et al., 2008; Bengio et al.,
2006). The goal of set expansion techniques is
to generate high precision sets of related items;
hence, these techniques are evaluated based on
lexicon precision and recall. For LUCHS, which is
evaluated based on the quality of an extractor us-
ing the lexicons, lexicon precision is not important
– as long as it does not confuse the extractor.

7 Future Work

We envision a Web-scale machine reading system
which simultaneously learns ontologies and ex-
tractors, and we believe that LUCHS’s approach
of leveraging noisy semi-structured information
(such as lists or formatting templates) is a key to-
wards this goal. For future work, we plan to en-
hance LUCHS in two major ways.

First, we note that a big weakness is that the
system currently only works for Wikipedia pages.



For example, LUCHS assumes that each page cor-
responds to exactly one schema and that the sub-
ject of relations on a page are the same. Also,
LUCHS makes predictions on a token basis, thus
sometimes failing to recognize larger segments.
To remove these limitations we plan to add a
deeper linguistic analysis, making better use of
parse and dependency information and including
coreference resolution. We also plan to employ
relation-independent Open extraction techniques,
e.g. as suggested in (Wu and Weld, 2008) (retrain-
ing).

Second, we note that LUCHS’s performance
may benefit substantially from an attribute ontol-
ogy. As we showed in Section 5.6, LUCHS’s cur-
rent extractors can also greatly facilitate learning
a full attribute ontology. We therefore plan to in-
terleave extractor learning and ontology inference,
hence jointly learning ontology and extractors.

8 Conclusion

Many researchers are trying to use IE to cre-
ate large-scale knowledge bases from natural lan-
guage text on the Web, but existing relation-
specific techniques do not scale to the thousands
of relations encoded in Web text – while relation-
independent techniques suffer from lower preci-
sion and recall, and do not canonicalize the rela-
tions. This paper shows that – with new techniques
– self-supervised learning of relation-specific ex-
tractors from Wikipedia infoboxes does scale.

In particular, we present LUCHS, a self-
supervised IE system capable of learning more
than an order of magnitude more relation-specific
extractors than previous systems. LUCHS uses
dynamic lexicon features that enable hyper-
lexicalized extractors which cope effectively with
sparse training data. We show an overall perfor-
mance of 61% F1 score, and present experiments
evaluating LUCHS’s individual components.

Datasets generated in this work are available to
the community7.
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