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Abstract XML has become the lingua franca for data
exchange and integration across administrative and en-
terprise boundaries. Nearly all data providers are adding
XML import or export capabilities, and standard XML
Schemas and DTDs are being promoted for all types of
data sharing. The ubiquity of XML has removed one of
the major obstacles to integrating data from widely dis-
parate sources – namely, the heterogeneity of data for-
mats.

However, general-purpose integration of data across
the wide area also requires a query processor that can
query data sources on demand, receive streamed XML
data from them, and combine and restructure the data
into new XML output — while providing good perfor-
mance for both batch-oriented and ad-hoc, interactive
queries. This is the goal of the Tukwila data integration
system, the first system that focuses on network-bound,
dynamic XML data sources. In contrast to previous ap-
proaches, which must read, parse, and often store entire
XML objects before querying them, Tukwila can return
query results even as the data is streaming into the sys-
tem. Tukwila is built with a new system architecture that
extends adaptive query processing and relational-engine
techniques into the XML realm, as facilitated by a pair
of operators that incrementally evaluate a query’s input
path expressions as data is read. In this paper, we de-
scribe the Tukwila architecture and its novel aspects,
and we experimentally demonstrate that Tukwila pro-
vides better overall query performance and faster initial
answers than existing systems, and has excellent scala-
bility.
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1 Introduction

For many years, a wide variety of domains, ranging from
scientific research to electronic commerce to corporate
information systems, have had a great need to be able
to integrate data from many disparate data sources at
different locations, controlled by different groups. Un-
til recently, one of the biggest obstacles was the hetero-
geneity of the sources’ data models, query capabilities,
and data formats. Even for the most basic data sources,
custom wrappers would need to be developed for each
data source and each data integration mediator, simply
to translate mediator requests into data source queries,
and to translate source data into a format that the medi-
ator can handle.

The emergence of XML as a common data format,
as well as the support for simple web-based query ca-
pabilities provided by related XML standards, has sud-
denly made data integration practical in many more cases.
XML itself does not solve all of the problems of het-
erogeneity — for instance, sources may still use differ-
ent tags or terminologies — but often, data providers
come to agreement on standard schemas, and in other
cases, we can use established database techniques for
defining and resolving mappings between schemas. As
a result, XML has become the standard format for data
dissemination, exchange, and integration. Nearly every
data management-related application now supports the
import and export of XML, and standard XML Schemas
and DTDs are being developed within and among en-
terprises to facilitate data sharing (instances of these are
published at the BizTalk and OASIS web sites1). Language-

1 See www.biztalk.org and www.xml.org.
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and system-independent protocols such as the various
web services standards, Microsoft’s .NET [NET01] ini-
tiative, and Sun’s JXTA [JXT01] peer-to-peer protocols
use XML to represent transactions and data.

Processing and integrating XML data poses a num-
ber of challenges. In many data integration applications,
XML is merely a “wire format,” the result of some view
over a live, dynamic, non-XML source. In fact, the source
may only expose subsets of its data as XML, via a query
interface with access restrictions, e.g., the source may
only return data matching a selection value, as in a typ-
ical web form. Since the data is controlled and updated
externally and only available in part, this makes it diffi-
cult or impossible to cache the data. Moreover, the data
sources may be located across a wide-area network or
the Internet itself, so queries must be executed in a way
that is resilient to network delays. Finally, the sources
may be relatively large, in the 10s to 100s of MB or
more, and that may require an appreciable amount of
time to transfer across the network and parse. We refer
to these types of data sources as “network-bound”: they
are only available across a network, and the data can
only be obtained through reading and parsing a (typi-
cally finite) stream of XML data.

To this point, integration of network-bound, “live”
XML data has not been well studied. Most XML work
in the database community has focused on designing
XML repositories and warehouses [Aea01,XLN,Tam,
GMW99,FK99b,AKJK+02,KM00,BBM+01,SGT+99],
exporting XML from relational databases [FTS99,FMS01a,
CFI+00], adding information retrieval-style indexing tech-
niques to databases [NDM+01,FMK00], and on sup-
porting query subscriptions or continuous queries [Aea01,
CDTW00,AF00] that provide new results as documents
change or are added.

Clearly, both warehousing and indexing are useful
for storing, archiving, and retrieving file-based XML data
or documents, but for many integration applications, sup-
port for queries over dynamic, external data sources is
essential. This requires a query processor that can re-
quest data from each of the sources, combine this data,
and perhaps make additional requests of the data sources
as a result. To the best of our knowledge, no existing sys-
tem provides this combination of capabilities. The Web
community has developed a class of query tools that
are restricted to single-documents and not scalable to
large documents. The database community’s web-based
XML query engines, such as Niagara and Xyleme, come
closer to meeting the needs of data integration, but they
are still oriented towards smaller documents (which may
be indexable or warehoused), and they give little con-
sideration to processing data from slow sources or XML
that is larger than memory.

Query processing for data integration poses a num-
ber of challenges, because the data is not tightly con-
trolled or exclusively used by the data integration sys-
tem. For example, query optimization is difficult in the
absence of data source statistics. This subjects has been
the focus of adaptive query processing research discussed
elsewhere (e.g., [RS86,WA91,HS93,UF00,HH99,IFF+99,
UF01,UFA98,KD98,AH00]). However, adaptive query
processing research has generally focused on relational
query processing, not on XML. One of the major advan-
tages offered by relational query processing has been a
pipelined execution model in which new tuples can be
read directly off the network and fed into the query plan.
This presents a number of significant benefits for data
integration and for enabling adaptivity:

– A single execution pipeline does not require mate-
rialization operations, or pre-parsing or preprocess-
ing of an XML document, so initial answers will be
returned more quickly. This satisfies an important
desideratum for interactive data integration applica-
tions.

– A single pipeline provides the most opportunities
for exploiting parallelism and for flexibly schedul-
ing the processing of tuples. This enables the use of
techniques such as the pipelined hash join [RS86,
WA91,HS93,UF00,HH99,IFF+99] as well as ed-
dies [AH00].

Pipelining and adaptive query processing techniques
have largely been confined to the relational data model.
One of the contributions of this paper is a new XML
query processing architecture that emphasizes pipelin-
ing the XML data streaming into the system, and which
facilitates a number of adaptive query processing tech-
niques.

As described in Section 2, XML queries operate on
combinations of input bindings: patterns are matched
across the input document, and each pattern-match binds
an input tree to a variable. The query processor iter-
ates through all possible combinations of assignments of
bindings, and the query operators are evaluated against
each successive combination. At first glance, this seems
quite different from the tuple-oriented execution model
of the relational world, but a closer examination reveals
a useful correspondence: if we assign each attribute with-
in a tuple to a variable, we can view each legal combina-
tion of variable assignments as forming a tuple of bind-
ing values (where the values are XML trees or content).
In this paper, we describe an XML query processing ar-
chitecture, implemented in the Tukwila system, which
exploits the correspondence between the relational and
XML processing models in order to provide adaptive
XML query processing capabilities, and thus to support
efficient network-bound querying, even in the presence
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of delays, dynamic data, and source failures. This archi-
tecture includes the following novel features:

– Support for efficient processing of scalar and struc-
tured XML content. Our architecture maps scalar
(e.g., text node) values into a tuple-oriented execu-
tion model that retains the efficiencies of a standard
relational query engine. Structured XML content is
mapped into a Tree Manager that supports complex
traversals, paging to disk, and comparison by iden-
tity as well as value.

– A pair of streaming XML input operators, x-scan
and web-join, that are the enablers of our adaptive
query processing architecture. Each of these oper-
ators transforms an incoming stream of XML data
into an internal format that is processed by the query
operators. X-scan matches a query’s XPath expres-
sions against an input XML stream and outputs a
set of tuples, whose elements are bindings to sub-
trees of XML data. Web-join can be viewed as a
combination of an x-scan and a dependent join —
it takes values from one input source, uses them to
construct a series of dynamic HTTP requests over
Internet sources, and then joins the results.

– A set of physical-level algebraic operators for com-
bining and structuring XML content and for sup-
porting the core features of XQuery [BCF+02], the
World Wide Web Consortium XML query language
specification, which is nearing completion.

In this paper, we describe Tukwila’s architecture and
implementation, and we present a detailed set of exper-
iments that demonstrate that the Tukwila XML query
processing architecture provides superior performance
to existing XML query systems within our target domain
of network-bound data. Tukwila produces initial results
rapidly and completes queries in less time than previous
systems, and it also scales better to large XML docu-
ments. The result is the first scalable query processor for
network-bound, live XML data. We validate Tukwila’s
performance by comparing with leading XSLT and data
integration systems, under a number of different classes
of documents and queries (ranging from document re-
trieval to data integration); we show that Tukwila can
read and process XML data at a rate roughly equiva-
lent to the performance of SQL and the JDBC protocol
across a network; we show that Tukwila’s performance
scales well as the complexity of the path expressions is
increased; and we show that Tukwila’s x-scan operator
can scale well to large (100’s of MBs) graph-structured
data with IDREFs.

The remainder of this paper is structured as follows.
Section 2 describes the basics of querying for XML;
then Section 3 begins by describing standard techniques
for XML query processing, and finishes by presenting

the Tukwila architecture and emphasizing its differences.
We then describe the XML query operators and cost
model in Section 6, and how the operators can be ex-
tended to support a graph data model in Section 7. Sec-
tion 8 provides experimental validation of our work. Sec-
tion 9 discusses related work, and we conclude in Sec-
tion 10.

2 Querying XML

During the past few years, numerous alternative query
languages and data models for XML have been pro-
posed, including XML-QL [DFF+99] and XSLT [XSL99].
XSLT is a single-document-orientedquery language con-
sisting of rules: each rule matches a particular path in
an XML tree and applies a transformation to the under-
lying subtree. XML-QL was a data-oriented query lan-
guage, adapted from the semistructured database com-
munity, and could join data across documents, but had
few document-oriented features.

Recently the World Wide Web Consortium has com-
bine the features of these languages with its XQuery lan-
guage specification [BCF+02] and accompanying data
model [FMN02]. The XQuery data model defines an
XML document as a tree of ordered nodes of differ-
ent content types (e.g., element, processing instruction,
comment, text), where element nodes may also have un-
ordered attributes. For example, the XML document of
Figure 1 can be modeled as the tree of Figure 2. In
this diagram, we have represented elements as labeled
nodes, text content as leaf nodes, attributes as annota-
tions beside their element nodes, and special IDREF-
typed reference attributes as dashed edges from their el-
ements to their targets (where the target element is iden-
tified by an ID-typed attribute of the same name).

The XQuery language is designed to extract and com-
bine subtrees within this data model. It is generally based
on a FOR-LET-WHERE-RETURN structure (commonly
known as a “flower” expression): the FOR clause pro-
vides a series of XPath expressions for selecting input
nodes, the LET clause similarly defines collection-valued
expressions, the WHERE clause defines selection and join
predicates, and the RETURN clause creates the output
XML structure. XQuery expressions can be nested within
a RETURN clause to create hierarchical output, and, like
OQL, the language is designed to have modular and com-
posable expressions. Furthermore, XQuery supports sev-
eral features beyond SQL and OQL, such as arbitrary
recursive functions.

XQuery execution can be considered to begin with a
variable binding stage: the FOR and LET XPath expres-
sions are evaluated as traversals through the data model
tree, beginning at the root. The tree matching the end of
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<db>
<book publisher="mkp">
<title>Readings in Database Systems</title>
<editor>Stonebraker</editor>
<editor>Hellerstein</editor>
<isbn>123-456-X</isbn>

</book>
<book publisher="mkp">
<title>Transaction Processing</title>

<author>Bernstein</author>
<author>Newcomer</author>
<isbn>235-711-Y</isbn>

</book>
<company ID="mkp">

<name>Morgan Kaufmann</title>
<city>San Mateo</city>
<state>CA</state>

</company>
</db>

Fig. 1 Sample XML document representing book and publisher data

db

book

book
company

Readings
In Database
Systems

123-456-X

title

isbn

      publisher="mkp"

Principles
of Transaction
Processing

235-711-Y

title

isbn

publisher="mkp"

Morgan Kaufmann

San Mateo

name city state

editor

Stonebraker
Hellerstein

editor

CA

author author

Bernstein Newcomer

ID="mkp"

Fig. 2 Graph representation for Figure 1. Dashed edges illustrate relationships defined by IDREFs; dotted edges point to text
nodes.

an XPath is bound to the FOR or LET clause’s variable.
If an XPath has multiple matches, a FOR clause will it-
erate and bind its variable to each, executing the query’s
WHERE and RETURN clause for each assignment. The
LET clause will return the collection of all matches as
its variable binding. A query typically has numerous
FOR and LET assignments, and legal combinations of
these assignments are created by iterating over the vari-
ous query expressions.

An example XQuery appears in Figure 3. We can see
that the variable $b is assigned to each book subele-
ment under the db element in document books.xml;
$t is assigned the title within a given $b book, and
so forth. Our version of XPath includes extensions al-
lowing for disjunction along any edge (e.g., $n can be
either an editor or author), as well as a regular-
expression-like Kleene star operator (not shown).

In the example, multiple match combinations are pos-
sible, so the variable binding process is performed in
the following way. First, the $b variable is bound to the
first occurring book. Then the $t and $n variables are
bound in order to all matching title and editor or
author subelements, respectively. Every possible pair-
ing of $t and $n values for a given $b binding is eval-
uated in a separate iteration; then the process is repeated
for the next value of $b. We observe that this process is
virtually identical to a relational query in which we join
books with their titles and authors — we will have a

<result> {
FOR $b IN document("books.xml")/db/book,

$t IN $b/title/data(),
$n IN $b/(editor|author)/data()

RETURN <item>
<person>{$n}</person>
<pub>{$t}</pub>

</item>
} </result>

Fig. 3 XQuery query that finds the names of people who have
published and their publications. The FOR clause specifies
XPath expressions describing traversals over the XML tree,
and binds the subtrees to variables (prefixed with dollar signs).

tuple for each possible 〈title, editor|author〉 com-
bination per book. The most significant difference is in
the terminology; for XQuery, we have an “iteration” that
produces a binding for each variable, and in a relational
system we have a “tuple” with a value in each attribute.

The RETURN clause specifies a tree-structured XML
constructor that is output on each iteration, with the vari-
ables replaced by their bound values. Note that variables
in XQuery are often bound to XML subtrees (identified
by their root nodes) rather than to scalar values. The re-
sult of the example query appears in Figure 4. An item
element is output for each possible combination of bind-
ings.
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<result>
<item>
<person>Stonebraker</person>
<pub>Readings in Database Systems</pub>

</item>
<item>
<person>Hellerstein</person>
<pub>Readings in Database Systems</pub>

</item>
<item>
<person>Bernstein</person>
<pub>Transaction Processing</pub>

</item>
<item>
<person>Newcomer</person>
<pub>Transaction Processing</pub>

</item>
</result>

Fig. 4 The result of applying the query from Figure 3 to the
XML data in Figure 1.

Finally, we note that some XML data makes use of
IDREF attributes to represent links between elements
(the dashed lines in Figure 2). IDREFs allow XML to
encode graph-structured as well as tree-structured data.
The current XQuery proposal has limited support for
IDREF traversal, only offering traversal of a fixed num-
ber of edges, rather than transitive closure. However,
since there are many interesting applications of graph-
structured XML data, we investigate querying it in this
paper using an extended version of XQuery.

3 Previous Approaches to XML Processing

As discussed in the previous section, the XML data model
and XQuery language are considerably more complex
than simple relational query processing because of their
reliance on path expressions. In particular, the hierarchi-
cal nature of XML typically means that a document can
be normalized to a single relational table, but a set of
tables that have parent-child foreign-key relationships.

People have generally attempted to handle the XML
processing problem using one of four methods: (1) focus
on techniques for “shredding” XML into tables, com-
bining the tables, and re-joining the results to produce
XML output; (2) make a few modifications to object-
oriented or semi-structured databases, which also inher-
ently support hierarchy, so they support XML; (3) use
a top-down tree-traversal strategy for executing queries;
(4) use a custom wrapper at the source end for index-
like retrieval of only the necessary content. Before we
describe the Tukwila architecture, it is useful to briefly
examine these previous approaches, including their rel-
ative strengths and weaknesses.

Relational databases A variety of research projects at
INRIA [FK99a,MFK+00], AT&T Labs [DFS99,FTS99,
FMS01b], IBM Almaden [CFI+00,SKS+01,TVB+02],
and the University of Wisconsin [SGT+99] focused on
the problems of mapping XML data to and from rela-
tional databases. Today, all of the major relational DBMS
vendors build upon this work and provide support some
form of XML export (e.g., [Rys01,BKKM00]). In gen-
eral, results suggest that a relational database is gen-
erally not ideal for storing XML, but when the XML
data either originates from relational tables or is slow
to change, it may be an acceptable solution. Significant
benefits include scalability and support for value-based
indexes; drawbacks include expensive document load
times and expensive reconstruction of XML results. The
relational query optimizer can improve performance sig-
nificantly if the XML query maps to simple SQL, but
it frequently makes poor decisions for more complex
queries, since it does not optimize with knowledge of
XML semantics [ZND+01].

Object-oriented and semi-structured databases Several
major commercial OODBs, including Poet and Object-
Store, have been adapted to form new XML databases.
They provide some benefits over strictly relational en-
gines because their locking and indexing structures are
designed for hierarchical data; however, OO query opti-
mizers are still generally relatively weak. The Lore semi-
structured database [GMW99], which has a number of
special indexing structures, has also been adapted to XML
(though performance was shown to be poor relative to a
relational system storing XML [FK99a]). Several native
XML databases [KM00,BBM+01,AKJK+02,MAM01]
are also under development. Most of these systems focus
on issues relating to efficiently storing and traversing hi-
erarchical objects, as well as on indexing. For more de-
tails, please see the discussion of related work in Sec-
tion 9.

Web-oriented DOM processors The techniques men-
tioned above focus on storage and retrieval of XML con-
tent. Of course, XML is expected to also be a format for
content transmission across networks, and some of this
content will be of a transient nature — there is a need for
systems that format, query, combine, and present it with-
out storing it. For this domain, an entirely different class
of query processors has been developed. These proces-
sors, such as the XT, Xalan, and MSXML XSLT engines
and the Niagara system from the University of Wiscon-
sin [NDM+01] typically work by parsing an XML doc-
ument into an in-memory DOM tree; then they traverse
the tree using XPath expressions, extract the specified
content, and combine it to form a new document. For
transient data of small size, this performs much better
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than storing the data on disk and then querying it; how-
ever, it is limited by available memory, and it cannot
begin producing answers until after the input document
has been parsed. (For a large document over a slow In-
ternet connection, this may be a significant delay.)

Other web-oriented processors The MIX system from
the University of California-San Diego [BGL+99] is web-
based, but has a pull-based, lazy XML evaluation method
where the query processor can request specific regions
from the data from the mediator as required. This allows
for better scalability than the DOM approach, but suffers
from two potential problems. First, it requires a custom
wrapper at the source, which processes the pull-based
messages. Second, one of the major costs in wide-area
communication is round-trip time, and the pull-based
method requires considerable communication between
data source and consumer.

4 The Tukwila XML Architecture

Our intent in designing the Tukwila system is to provide
the scalability and query optimization of a full-fledged
database while maintaining the interactive performance
characteristics of the web-based systems. We want to
be able to support naive producers of XML content, but
also to take advantage of more complex systems that can
process queries (or portions of queries) directly.

Although the Tukwila project investigates both query
optimization and execution for integrating network-bound
XML data, in this paper we shall focus on the query ex-
ecution architecture and operators. A brief discussion of
the query optimizer and cost model appears in Section 6.

The Tukwila architecture is based on the following
observations:

1. The basic execution model of XQuery is very simi-
lar to that for relational databases: XQuery evaluates
the WHERE and RETURN clauses over every possible
combination of input bindings, and each combina-
tion of bindings can be viewed as a tuple.

2. The FOR and LET clauses bind input variables us-
ing XPath expressions, which typically are traversals
over XML parse tree structure, occasionally with se-
lection or join predicates. The majority of XPath ex-
pressions traverse in the downward (“forwards”) di-
rection, which matches the order in which a parser
encounters the XML elements as it reads an input
stream.

3. Most selection and join predicates in XQuery in-
volve scalar (text node) data, rather than complex
XML hierarchies. Bindings to hierarchical XML data
are most commonly used only in the RETURN clause.

4. The majority of XML processors use DOM-based
parsers, which must construct the entire XML parse
tree before query processing begins. Incremental pars-
ing, combined with pipeline-based execution 2 as in
relational databases, would produce significant ben-
efits. First, it can reduce the time to first answers, as
results percolate through the query plan more quickly.
Second, the increased parallelism of pipelined oper-
ators allows for adaptive scheduling, which allows
the query processor to overlap I/O with computa-
tion [IFF+99] and prioritize important work [UF01].

Based on these observations, we have designed an
architecture that is particularly efficient for common-
case query execution.

4.1 The Tukwila Execution Engine

The core operations performed by most queries are path
matching, selecting, projecting, joining, and grouping
based on scalar data items. Our engine can support these
operations with very low overhead, and in fact it can ap-
proach relational-engine performance on simple queries.
Our query execution engine also emphasizes a relational-
like pipelined execution model, where each “tuple” con-
sists of bindings to XML content rather than simple scalar
attributes. This gives us the time-to-first-tuple benefits
cited previously, and it has the benefit of leveraging the
best techniques from relational query processing.

A high level view of the Tukwila architecture is il-
lustrated in Figure 5. The query optimizer passes a plan
to the execution engine; at the leaf nodes of this plan
are x-scan operators. The x-scan operators (1) retrieve
XML data from the data sources, (2) parse and traverse
the XML data, matching regular path expressions, (3)
store the selected XML subtrees in the XML Tree Man-
ager, and (4) output tuples containing scalar values and
references to subtrees. The tuples are fed into the re-
maining operators in the query execution plan, where
they are combined and restructured. As it flows through
the operators near the top of the query plan, each tuple
is annotated with information describing what content
should be output as XML, and how that content should
be tagged and structured. Finally, the XML Generator
processes these tagged tuples and returns an XML re-
sult stream to the user.

In a sense, the “middle portion” of our architecture
(represented by the “Query Operators” box and the Page
Manager) resembles a specialized object-relational data-
base core. Tuples contain attribute values that have been

2 Note that while not all operators are pipelineable, a fairly
large class of queries can be answered with pipelined opera-
tors.
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Binding
Tuples

Query
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XML
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Tukwila XML Engine
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 <val>1</val>
 <val>2</val>
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Fig. 5 Architecture of the Tukwila query execution engine. After a query plan arrives from the optimizer, data is read from XML
sources and converted by x-scan operators into output tuples of subtree bindings. The subtrees are stored within the Tree Manager
(backed by a virtual page manager), and tuples contain references to these trees. Query operators combine binding tuples and add
tagging information; these are fed into an XML Generator that returns an XML stream.

bound to variables; these values can be scalar, and stored
directly within the tuple, or they can be XML struc-
tures, similar to CLOBs (character large objects) in an
OR database — XML structures are stored separately
from the tuple, in an XML Tree Manager, which is a
virtual memory manager for XML subtrees. (Note that
we do not attempt to support any other object-oriented
types, nor do we implement methods.) The tuples being
pipelined through the query plan contain references to
subtrees within this Tree Manager, so if multiple vari-
ables are bound to an XML tree, the data does not need
to be duplicated. Our query operators can manipulate
both references within the Tree Manager and values em-
bedded within the tuple, so both object-based and value-
based operations are possible — including grouping, nest-
ing, and aggregation. XML subtrees are reference-counted
and garbage-collected when all tuples referring to them
have been processed by the system.

The Tukwila architecture allows us to leverage a num-
ber of components from the relational world, such as
most of the basic memory management strategies and
operators; it is also straightforward to make use of adap-
tive query processing operators when these are appropri-
ate for the query semantics. We discuss Tukwila’s query
operators later in this paper.

4.2 Pipelining XML Data

One of the virtues of the flat relational model is its ex-
treme flexibility as a representation. For example, since
relations are order-independent, joins can be commuted
and non-order-preserving algorithms can be used. Tech-
niques for query decorrelation can be used. Predicates
can be evaluated early or late, depending on their selec-
tivity.

A hierarchical data model, such as XML, is often
more intuitive to the data consumer (since it centers on
a particular concept), but the natural model of execution

— breaking a query by levels in the hierarchy — is not
necessarily the most efficient. Even more restrictive than
hierarchy is ordering: by default, XQuery is very proce-
dural, specifying an order of iteration over bindings, an
implicit order of evaluating nested queries, and so forth.

One possible execution model for XQuery would
resemble that for nested relations, and in fact “recur-
sive” algebras for nested relations, in which all opera-
tors can operate at any level of nesting in the data, have
been proposed and implemented (e.g., [HSR91,Col89]).
However, we have a preference for mapping XML —
even hierarchical XML — into something more resem-
bling the “flat” relational model: an XML document gets
converted into a relation in which each attribute rep-
resents the value of a variable binding, and position is
encoded using counter or byte-offset information. Each
such binding may contain arbitrary XML content; but
unlike in a nested relational model, the query may only
manipulate the top level of the structure. Nested struc-
ture must be expanded before it can be manipulated.

This architecture allows us to directly leverage re-
lational query execution and optimization techniques,
which are well-understood and provide good performance.
Moreover, we believe that, particularly in the case of
data integration, we can get better performance from an
execution model that preserves structure but has “flat”
query operators, for three key reasons. First, many data
integration scenarios require significant restructuring of
XML content anyway — hence, it makes little sense to
spend overhead maintaining structure that will be lost
in the end. Second, we can make the unnesting and re-
nesting operations inexpensive: our x-scan algorithm pro-
vides a low-overhead way to unnest content, and we can
insert additional metadata into every tuple to make it
easy to re-nest or re-order values. Third, we believe that
there is an inherent overhead in building algorithms that
preserve multiple levels of hierarchy, and as a result we
feel a “RISC” philosophy is most appropriate.
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X-scan X-scan
$b = db/book
$pID = $b/@publisher
$t = $b/title

$pub = book/item
$t2 = $pub/@title
$p = $pub/source
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$pr = $p/price

books amazon
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$t = $t2
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Fig. 7 Query plan for Figure 6 includes a pair of x-scan operators to compute the input bindings, a join across these sources, and
a series of output and element operators that copy the desired variables to the output and construct XML elements around them.

FOR $b IN document("books.xml")/db/book,
$pID IN $b/@publisher,
$t IN $b/title/data(),

$pub IN
document("amazon.xml")/book/item,
$t2 IN $pub/title/data(),
$p IN $pub/source,
$pi IN $p/@ID,

$pr IN $pub/price/data()
WHERE $pr < 49.95

AND $pID2 = $pID
AND $t = $t2

RETURN <book>
<name>{ $t }</name>,
<publisher>{ $p }</publisher>
</book>

Fig. 6 Query returning titles and publishers for books priced
under $49.95 at Amazon. The plan for this query is shown in
Figure 7.

Example Figure 7 shows a physical query plan and the
tuple encoding for the simple XQuery of Figure 6. The
x-scan operators at the leaves convert XML to streams
of tuples by binding variables to the nodes matched by
regular path expressions. General query operators such
as selects and joins are performed over these tuples: first
we select Amazonpublications priced under $49.95,
and then we join the results with books on the pub-

lisher and title values. Once the appropriate bind-
ing values have been selected and joined, an output XML
tree must be generated with the variables’ content. The
output operator is responsible for replicating the sub-
tree value of a given binding to the query’s constructed
output. The element operator constructs an element tag
around a specified number of XML subtrees. In the fig-
ure, the output subtree is shown at different stages of
construction — first we output $t and insert a name el-
ement above it; then we output $p and a publisher
element tag around it; finally, we take both of these sub-
trees and place them within a book element. As a last
step, the stream of tuples is converted back into a stream
of actual XML.

In subsequent sections, we describe in detail how
Tukwila encodes XML structural information, including
tags, nested output structure, and order information.

4.2.1 Encoding XML Tags In XQuery, a single RE-
TURN clause builds a tree and inserts references to bind-
ings within this tree. The tree is in essence a template
that is output once for each binding tuple.

In Tukwila, we need to encode the tree structure and
attach it to each tuple. We do this by adding special at-
tributes to the tuple that describe the structure in a right-
to-left, preorder form. The benefit of this encoding is
that we do not need pointers from parent nodes to chil-
dren — instead, each non-leaf node specifies a count of
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book

lst fst adnm

publishername
lst fst adnm

name/2 publisher/2 book/2lstfst nmad

Bindings Constructed XML Result Tree

Fig. 8 Encoding of a tree within a tuple, for the query of Figure 7. The encoding is done in bottom-up fashion, so each parent
element needs only to specify its number of children. (The arrows are for visualization only.) The tree “leaves” are references to
attributes containing bindings.

how many subtrees lie underneath it, and the decoding
algorithm simply expands each subtree recursively.

Figure 8 shows this schematically: the tree in the
right half of the figure is encoded as the tuple in the left
half. The leftmost 4 entries in the tuple are the values
of the variable bindings, which contain data values but
are not directly part of the XML document under con-
struction. The XML fragment represented by this tuple
can be decoded as follows: we start at the rightmost item
in the tuple (book); this represents a book element with
two children (indicated by the “/2” in the figure), and we
output a <book> tag. We traverse to the leftmost child
of the element by moving left by 2 attributes; this yields
a <name> with 2 children. Again, we traverse the left
child – here, we are instructed to output the fst attribute.
Next we visit the sibling, lst, and output its value, and
so on.

Of course, the encoding mentioned above assumes
that there are no 1 : n parent-child relationships in the
returned output (every element occurs once for every
combination of input bindings). It is very common for
XQueries to contain correlated nested subqueries, which
embed many results within each iteration of the outer
query.

4.2.2 Encoding Nesting As mentioned previously, al-
though we want to capture hierarchical nesting of XML
results, we do not actually encode it using nested re-
lations. Instead, we flatten or denormalize the results:
a single parent tuple with n child tuples is represented
by n “wide” tuples with both parent and child informa-
tion. The XML hierarchy could be decoded by grouping
together all tuples with the same parent content. How-
ever, that approach does not support proper bag seman-
tics, since duplicate parents will be combined, and it is
fairly costly since all parent attributes must be matched.
Instead of adopting that approach, we insert an addi-
tional attribute that encodes the parent’s sequence ID,
and group tuples by this ID to find all of the children
with a common parent.

Note that this flattened encoding gives the query pro-
cessor the opportunity to arbitrarily re-order tuples at
any point, potentially distributing consecutive data items
anywhere in the tuple stream, as long as it performs a
sort at the end. It is worth noting that this tuple encod-
ing approach has some similarities to the “outer union”
encoding implemented in [CFI+00,SSB+00] and in Mi-
crosoft SQL Server’sFOR XML EXPLICITmode; how-
ever, we encode the branches of the subquery hierarchy
rather than the XML data hierarchy. As a result, we sel-
dom have null values in our tuple stream.

4.2.3 Encoding Order All of Tukwila’s path-matching
algorithms can insert attributes that record both the po-
sition of a binding, by encoding its byte offset within
the XML stream, and its ordering relative to any other
matches for the same variable. Note that these are two
distinct concepts, especially when references are used.
By adding an ordinal attribute, Tukwila may use non-
order-preserving join operators but still maintain XQuery
ordered semantics: it simply sorts the data before out-
putting it.

4.2.4 Generating XML Output Converting from a tu-
ple stream to an XML stream requires several steps: (1)
traverse the XQuery RETURN clause constructor em-
bedded within a tuple, outputting the appropriate struc-
ture, (2) retrieve and embed any referenced XML sub-
trees, and (3) correctly output hierarchical XML struc-
ture which may span multiple tuples. The first step, travers-
ing the tree structure embedded within a tuple consists
of starting at the rightmost output attribute and recur-
sively traversing the tuple-encoded tree, as described in
Section 4.2.1. Each time a leaf node is encountered, the
second step is performed: the referenced XML subtree
is retrieved from the Tree Manager and replicated to the
output.

The first two steps above are used when all values
encoded within a tuple are to be output; this is not nec-
essarily the case if grouping or nesting attributes are
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present. If nested structure is being represented, then
each tuple will actually consist of data for the parent
relation followed by data for the child relation. Clearly,
the parent data should only be output once for the en-
tire group. This is easily determined by testing whether
the parent ID attribute has changed between successive
tuples.

Groups can be grouped or nested, so this process
scales to arbitrary depth. Moreover, XQuery semantics
are outer-join-like, so it is possible to have a publisher
with no books. In this case, the book attributes in the tu-
ple are set to null values, and the XML decoder simply
outputs the publisher attributes with no book content.

In the next two sections, we describe the Tukwila
query operators, which make use of this tuple-based en-
coding. We begin with the operators that produce the
tuple stream: the x-scan and web-join operators.

5 Streaming XML Input Operators

It is Tukwila’s support for streaming XML input that
most differentiates it from other XML query processors.
This support is provided by two different operators that
take an input XML stream and a set of XPath expres-
sions, and they return “tuples of trees” representing the
combinations of variable bindings that match the XPaths.
The simpler operator, x-scan, performs XPath matching
over a specified input document. The web-join operator
adds further mechanisms for supporting data-dependent
queries: like the dependent join in a relational system,
it is provided with a stream of “independent tuples.” A
web-based (e.g., HTTP) query string is generated by in-
serting values from the current tuple into a query gener-
ating expression; this query request is performed, and
the resulting XML document is then pattern-matched
against XPath expressions. Finally, the matching bind-
ings are combined with the original independent tuple to
produce a cartesian product. X-scan is used for query-
ing static or predetermined web sources, and web-join
allows Tukwila to dynamically query and combine nu-
merous sources.

The intuition behind the streaming XML input op-
erators is that an XPath expression greatly resembles a
regular expression (where the alphabet consists of el-
ement and attribute labels), and this can be simulated
by a finite state machine. Tukwila uses an event-driven
(SAX) XML parser to match input path expressions as
an XML stream is being parsed; a variable binding is
created each time a state machine reaches an accept state.
Bindings are combined to form tuples, which are pipelined
through the system, supporting output of XML results as
the data stream is still being read.

While using a finite state machine to match XPath
expressions seems natural, the algorithms for supporting
the details of XPath, combining the bindings, and sup-
porting efficient execution are quite complex. To the best
of our knowledge, Tukwila is unique in creating pipelin-
able XML query results directly from a data stream,
and in using finite state machines to do so — and as
a result it shows significant performance and scalabil-
ity benefits over other systems. Systems such as Nia-
gara fetch and parse an entire input XML document,
construct a complete DOM representation in memory,
and finally match path expressions across the tree and
pass the results through query operators. XSLT proces-
sors such as Xalan, MSXML, and XT are similar, but
use a recursive pattern-matching semantics rather than
a set of query operators. Most other XML query pro-
cessors are designed to operate on XML in a local ware-
house. One interesting system that is not a query proces-
sor but bears some resemblance to Tukwila is the DBIS
system and its XFilter [AF00] operator3. DBIS takes
XML documents and determines whether they meet spe-
cific XPath expressions, and it “pushes” those that do
to “subscribing” users. DBIS performs document filter-
ing rather than query processing, so XFilter, an opera-
tor with a binary (match/non-match) return value, dif-
fers substantially from x-scan in its functionality. The
XML Toolkit [GMOS02] builds upon the XFilter work,
but proposes a “lazy” approach to building deterministic
finite state machines from nondeterministic path expres-
sions.

We now present the details of the streaming XML
input operators, beginning with x-scan.

5.1 X-scan Operator

Given an XML text stream and a set of regular path
expressions as inputs, x-scan incrementally outputs a
stream of tuples assigning binding values to each vari-
able. A binding value is typically a tree — in which case
the tuple contains a reference to data within the Tukwila
XML Tree Manager — but if it is a scalar value, this
value may be “inlined” directly within the tuple. A de-
piction of x-scan’s data structures appears in Figure 9:
the XML stream is processed by an event-driven SAX
parser, which creates a series of event notifications. The
XML data is stored in the XML Tree Manager and is
also matched against a series of finite state machines (re-
sponsible for XPath pattern matching). These state ma-
chines produce output binding values, which are then
combined to produce binding tuples.

3 In fact, the XFilter and x-scan operators were developed
concurrently.
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Fig. 9 X-scan takes an XML document and maps it into the XML Tree Manager, while simultaneously running state machines
over the parse tree. Each state machine creates variable bindings, and these must be combined to produce binding tuples. Solid arcs
in (b) denote state transitions on the label; dashed arcs denote dependencies between machines.

Basic XPath expressions are a restricted form of reg-
ular path expressions4. Thus x-scan converts each XPath
expression into a regular expression and generates its
corresponding nondeterministic finite state machine; it
later converts this into a deterministic machine, for rea-
sons discussed later in this section. XPath expressions
originating at the document root are initialized to the
active mode, and the active machines’ states are updated
as x-scan encounters subelements and attributes during
document parsing. Figure 9(b) shows the state machines
created for the example query of Figure 3.

Initially, only the top-level machine (Mb in our ex-
ample) is active. When any machine reaches an accept-
ing state, it produces a binding for the variable associ-
ated with it. The machine then activates all of its depen-
dent state machines, and they remain active while x-scan
is scanning the value of the binding. In our example, the
machines Mn and Mt remain active while we scan chil-
dren of b.

Associated with each machine is a table for binding
values. As a machine reaches an accept state, it adds
an entry containing its bound subtree value, and also
an association with the entry’s parent binding (shown
in Figure 9(a) as a dashed arrow from parent to child) 5.

4 We shall discuss additional, non-path-oriented XPath fea-
tures later in this section

5 The implementation can store subtrees by value or ref-
erence. For expository simplicity, we write as though nodes
are stored by ID-based reference and attributes are stored by
value.

In our example, Mb’s table would just store values of
b, while Mn and Mt would store author/editor names
and titles, respectively, and these would be associated
with their corresponding b values. The final output of x-
scan is essentially a join of the entries maintained by the
machines, done for matching parent-child pairs (this is
done in a data-driven, rather than iterator, model, as with
a pipelined hash join [WA91]).

We illustrate the execution of x-scan on our example
data of Figure 2. Suppose Mb is initialized to machine
state 1, which takes the XML root as its start posi-
tion. The root node is a virtual node representing the
entire document, and its only child is the db node. X-
scan follows the edge to the db node, setting Mb to state
2. Next, x-scan can follow one of two outgoing edges
to book nodes. It chooses the leftmost one (Readings
in Database Systems), causing it to set Mb to state 3.
Mb is now in an accepting state, so x-scan writes the
reference to the current node into Mb’s table, suspends
Mb, and activates Mn and Mt. The editor element
takes Mn from state 4 to 5, which is an accepting state
for Mn. Hence, x-scan writes “Stonebraker” and a
pointer from the current book. In the meantime, M t fol-
lows the arc to the title element, putting its machine
into state 8, which is also an accepting state. Hence, the
tuple 〈title1, book1〉 will be written into Mt’s ta-
ble. From this node, no (non-text) children remain for
exploration, so x-scan pops the stack and backs up the
state machines. It sets Mb to state 2, where it can con-
tinue to explore the second book node, proceeding as
before. ✷
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To this point, we have described how x-scan per-
forms simple path expression matching. However, XPath
supports capabilities beyond mere path matching, and
these features are also provided by x-scan.

Querying order (node indexing): XPath expressions
may restrict bindings based on ordering information, such
as a constraint on a subelement’s index number (e.g.,
“2nd paragraph subelement”) or on the relative posi-
tions of bindings (e.g., $a BEFORE $b). X-scan sup-
ports both capabilities: the x-scan state machines are an-
notated with counters to keep track of element indices,
and the output of the x-scan can include both a binding
and its index or its absolute position. A select operator
can then filter out tuples based on order.

Selection predicates: Another useful capability in x-scan
is the ability to apply certain selection predicates over
the variable bindings and their subtrees. These can be
simple predicates over values (e.g., “bind $b to book ti-
tles with the value ‘Transaction Processing’ ”) — simi-
lar to “sargable predicates” [SAC+79]. Additionally, x-
scan supports existential path tests (e.g., return books
only if they have titles). Existential quantification of a
path is similar to any other path expression, except that
its binding is not returned. (Other forms of existential
quantification are possible, and they can be implemented
using correlated subqueries and traditional relational tech-
niques.)

Node test functions: XPath expressions often include
node tests, which restrict the type of XML node being
selected (e.g., text(), comment(), processing-
instruction()). Similarly, an XPath edge with an
at-sign prefix () represents an attribute node. All of these
conditions are expressed within the x-scan state machines
as restrictions on the XML nodes to be matched.

Traversing in reverse: Our current implementation of
x-scan does not evaluate the XPath “parent” axis, i.e.,
it does not traverse backwards through the tree. Instead,
the Tukwila query optimizer rewrites path expressions
with the parent operator by splitting them into a parent-
binding and a child-binding. Conditions are evaluated
on the child, and if they are met, the parent is used.
(While this process may at times be less efficient than
supporting a true “parent” traversal, we expect use of
the parent axis to be uncommon.)

Efficiency enhancements: In x-scan, we include a num-
ber of optimizations to boost XML parsing and process-
ing performance. First, we avoid processing XML con-
tent (i.e., handling SAX parser messages) when the state

machines are inactive — it is important to avoid unnec-
essary copying and handling of string data. Addition-
ally, the instant it becomes evident that a subtree cannot
satisfy an XPath expression (e.g., it does not meet a sar-
gable predicate or is missing an attribute), we deactivate
the state machines until the next subtree is reached.

Expected complexity of state machines: While x-scan
uses deterministic finite state machines — which can be
exponentially larger than the nondeterministic machines
from which they are derived — XPath expressions tend
to be short (queries to depth of more than 6-8 seem to
be rare). Furthermore, XPath only supports a restricted
version of regular path expressions: instead of Kleene
closure, XPaths are limited to simpler “wildcard” and
“descendent” operations.

Handling memory overflow Typically, x-scan needs very
little working space — it outputs a stream of binding tu-
ples (i.e., sets of subtrees) and little state needs to be
maintained between the production of any two tuples.
However, there are two cases where it may run out of
memory.

First, the XML data that is still being referenced
may be larger than memory. Since the XML Tree Man-
ager is a paged data structure, segments of this data are
swapped to and from disk as needed. Of course, as a re-
sult, a large XML file could produce “thrashing” in the
swap file during query processing. However, our experi-
ments in Section 8 suggest that this is typically avoided,
which we attribute to two factors. First, the system sup-
ports “inlining” of scalar values: string, integer, or other
“small” data items are embedded directly in the tuple,
avoiding the dereferencing operation. Typical query op-
erations in XQuery are done on scalar rather than com-
plex data (e.g., joining or sorting are frequently based
on string values); thus these operations often only need
data that has been inlined. Large, complex tree data is
typically only required at the XML generation stage,
when the final results are returned. A second mitigat-
ing factor is that many XML queries tend to access the
input document in sequential order, and the Tree Man-
ager therefore can avoid re-reading data that has been
paged out. For purposes of comparison, we point out
that a paged DOM-based approach would have similar
behavior to our scheme (except that in-memory repre-
sentation of XML is larger in a DOM tree, typically at
least 2-4 times larger, because of DOM’s heavyweight
nature); a mapping from XML to relations (“shredded
XML”) typically requires a significant amount of mate-
rialization in the first place, and often incurs heavy costs
whenever it needs to perform joins to recreate irregular
structure.
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The second memory overflow case, which may oc-
cur for trees with high fanout, is when sibling XPaths
each have many bindings, and x-scan must return all
combinations. To take the query of Figure 3 as an ex-
ample, we might somehow have many authors and al-
ternative titles per book, and x-scan would have to re-
turn every possible title-author pairing for each book.
To accomplish this, x-scan maintains the current value
of b, plus tables for n and t bindings. As values of n are
added, they are combined with b and all existing values
of t; and the process works similarly for new values of
t. Each time a new value of b is encountered, the tables
can be flushed and the process restarted. In an extreme
case, the tables may grow larger than memory — this
case can be handled in a manner similar to the pipelined
hash join overflow strategies of [UF00,IFF+99].

5.2 Web-Join Operator

The x-scan operator is analogous to the sequential ta-
ble scan in relational databases, and to the “wrapper
fetch” operation in relational data integration: it allows
the query processor to read through an XML document
and extract out the relevant content. If the source has
more sophisticated query capabilities, certain operations
may in fact be “pushed” into it via the x-scan HTTP
query request.

In distributed query processing, sometimes it is ben-
eficial to make use of a dependent join operator instead
of more traditional table scan and join operators. Instead
of requesting data independently from two sources and
then joining it, the dependent join reads data from one
source, sends this data to the other source and requests
matching values, and then combines the data from the
two sources. This operation is particularly useful in two
cases: one is if the join with the second source is highly
selective, so much less data is transferred using the de-
pendent join. The second is when the source requires
input values before it will return an answer (e.g., the
source may be an online bookseller with a web forms
interface that requires an author or title), this is equiva-
lent to the notion of “binding patterns” in relational data
integration [RSU95,KW96,LRO96].

In a web context, a query to a data source is gen-
erally provided using one of two means: via an HTTP
request (GET or POST) or via a SOAP call with some
form of query (perhaps an XQuery). For both of these
domains, we propose the web-join operator. Web-join
(Figure 10) is intuitively similar to the combination of an
x-scan operator with a relational-style dependent join:
it receives an input tuple stream and a query generat-
ing expression (shown schematically in the lower left
of the Figure as a string with two underlined parame-

XPath
expressions

Input tuple

Query
generating
expression $a   $b

Query request
to data source

http://site.org/
$a?val=$b

$c = root/"subpath"
$d = $c/...
...

XML
Query
Result

Binding
tuples

Joined output tuples

x-scan

Fig. 10 The web-join operator takes each input tuple and sub-
stitutes its values into a query generating expression. This ex-
pression becomes a web request that queries a data source; its
results are matched against a set of XPath expressions by an x-
scan operator. The resulting tuples are joined with the original
input tuple to produce a set of results for later query process-
ing.

ters, $a and $b, although in reality it can be any string
expression). The parameters in the query generating ex-
pression will be instantiated with values from the input
tuple stream, and the resulting query string will be eval-
uated as a URI string, HTTP POST sequence, or SOAP
envelope. The XML resulting from the request is now
evaluated against XPath expressions by an embedded x-
scan operator. Now, each of the resulting binding tuples
is joined with the original tuple and output. The process
repeats for each tuple of the original input stream.

Web-join is an important operator for querying dy-
namic sources, especially ones with embedded Xlinks
or URIs. It also allows our query processor to do “lazy”
evaluation: Tukwila can request some initial data, ex-
ecute filtering operations on it, and then request addi-
tional content for those elements that remain.

6 Tukwila XML Query Operators and Optimization

The previous section presented the query operators that
are responsible for mapping an XML data stream into a
stream of tuples. Now we describe the query operators
that process this data. A logical query algebra usually is
designed to be expressive and minimal. In contrast, the
set of physical query operators needs to have predictable
performance (to make the optimizer’s cost model easier
to build) and in efficient implementations for specific
contexts (where the optimizer should choose the most
appropriate implementation).

As we have constructed the physical algebra for Tuk-
wila, we have focused on providing efficient support for
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executing a relatively expressive “core” of XQuery: our
focus to this point has not been on supporting the full
language. Currently, we do not support recursion, type-
checking, or conditional assignments. We have also im-
plemented only a small subset of the proposed XQuery
function library. However, we feel that the current im-
plementation is sufficient to demonstrate how common-
case queries can be executed quickly, and that it can
eventually be extended to include the absent features.
The complete list of operators is summarized in Table 1,
and we provide more detail below.

6.1 Query Operator Classes

Streaming Input The x-scan and web-join streaming
input operators were already discussed in Section 5.

Path Evaluation The follow operator is a path traversal
operator. It takes as input a binding tuple, evaluates an
XPath (which may involve following an IDREF or even
an XLink) originating at one of the bindings, and returns
a sequence of 0 or more binding tuples. Since x-scan has
very little overhead, follow is primarily useful when fol-
lowing XLinks or references within a graph-structured
document6.

Combination/filter Most of these operators are almost
identical to the standard relational equivalents. One no-
table exception is the collector operator, which we first
proposed in [IFF+99]: it starts reading from one or more
data sources, but can switch to alternate sources depend-
ing on availability and performance. We have one addi-
tional operator, assign, which adds a new attribute (and
binding) to a tuple, assigning it the result of some scalar
expression. This expression may be posed in terms of
other bindings (e.g., a string concatenation).

Second-order The second-order operators all process
sets (or bags) of tuples. The only nonstandard operator
is aggregate, which takes a stream of tuples represent-
ing subquery content nested within parent query con-
tent and, for each parent, computes an aggregate value
across all of its children. This is very similar to the rela-
tional GROUP BY operator, with two exceptions: (1) the
grouping information is already present, as the result of
a group operator as discussed below, and (2) the nested
data within the group is preserved rather than discarded.

6 We expect that XLink reference traversal will be less fre-
quently used than the other operations, and hence we have de-
fined but not yet implemented this operator feature.

Nesting These operators are also second-order, but we
separate them because they have a special role in our
XML encoding. The group operator hierarchically re-
structures tuples: for each set of tuples that have an iden-
tical set of grouping attribute values, the operator con-
ceptually outputs a single tuple with these grouping at-
tributes, plus an embedded subtable with tuples of the
non-grouped attributes. In Section 4.2.1, we described
how this nested structure is encoded within “flat” tuples;
we provide each tuple-group with a unique ID, and this
becomes the identifier for the “parent tuple,” while all
non-grouped attributes are the “child tuple.” Group is
primarily useful for providing a relational-style group-
by, or for extracting common structure from “flat” XML.

Nested FLWR query expressions are a basic idiom in
XQuery, and we handle this case with our nestChild op-
erator, which has semantics very similar to a relational
left outer join. NestChild takes a parent and a child tu-
ple stream, plus a correlation predicate. For each parent
tuple, nestChild finds the set of child tuples meeting the
predicate and groups them with the parent tuple. At the
same time, it groups the parent’s XML subtree together
with all of the children’s XML subtrees. (We note that
many nested relational algebras and their derivatives in-
clude a unary operator called “nest” which is closer in
nature to our group operator than our nestChild. Systems
with that type of algebra must perform least two opera-
tions — join and “nest” — to achieve the same effect as
our nestChild, and end up doing redundant work.)

Whereas the join operator is typically allowed to out-
put results in any order, nestChild semantics require a
nested loops join-like ordering, where all child values
are returned with their parent. We encode the “hierarchi-
cal tuple” as described in Section 4.2.1, which preserves
enough information to determine whether any two “flat”
tuples contain the same parent tuple. Using this approach,
if we use order-preserving operators, we can pipeline the
encoded structure all the way to the output result; oth-
erwise, we must use a hashing or sorting algorithm to
cluster tuple groups together before we convert them to
XML.

Result These operators are responsible for creating the
output for the XQuery. They construct the output XML
tree and are applied using a postfix ordering. An out-
put operator always creates a leaf node in the output; it
simply outputs the result of a binding as a string value.
Attribute wraps the result of the last output node within
the specified XML attribute name (which may be a lit-
eral or the value of a binding). Element constructs an
XML element around the last k nodes (which may be
the result of previous output, attribute, or element oper-
ations), where k is a constant specified by the query and
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Table 1 Physical query operators and algorithms in Tukwila

Name Class Function
x-scan streaming input Match input path expression
web-join streaming input Query based on bound vars.
follow path evaluation Evaluate XPath over binding
select combination/filter Filter tuples by predicate
project combination/filter Discard bindings
hybrid hash join combination/filter Equijoin
pipelined hash join combination/filter Equijoin
merge join combination/filter Ordered equijoin
nested loops join combination/filter Order-preserving join
union combination/filter Relational-style union
collector combination/filter Union with fail-over
assign combination/filter Evaluate expression
distinct 2nd-order Remove duplicates
sort 2nd-order Reorder tuples
aggregate 2nd-order Compute aggregate over group
nestChild nesting Correlated nesting of elements
group nesting Group and restructure sets of elements
output result Output binding to XML
element result Create XML element
attribute result Create XML attribute

the attribute’s label may be either a literal or the value
of a binding.

6.2 Optimization and Cost Model

A complete description of Tukwila’s query optimizer is
beyond the scope of this paper, but to provide a better
perspective on the overall query execution process, we
briefly discuss the optimizer and cost model here.

Since Tukwila focuses on ad hoc queries over re-
mote data sources, where each source has XML data
of arbitrary complexity, our query optimization compo-
nent must be able work even given no initial statistics
about the underlying sources. We have developed a tech-
nique called convergent query processing [Ive02] to en-
able the query processor to incrementally execute a plan,
re-optimize as it gets improved statistics about the data
sources (e.g., expected number of tuples produced by
the x-scan operator over a particular source, apparent or
actual selectivity of a join), and adapt the query plan to
a more efficient one — without having to redo work,.
Convergent query processing essentially calibrates the
optimizer’s cost model and statistics to match real-world
conditions and performance, so the optimizer can pick a
better plan and improve running times.

Our query optimizer is a System-R [SAC+79]-style
dynamic programming optimizer, and it optimizes at the
physical level. Tukwila’s cost model looks very much
like that of a relational DBMS: it recursively builds cost
and cardinality estimates for increasingly larger subtrees

of the query plan, starting with the leaves. We estimate
(and periodically re-estimate) the number of tuples that
the x-scan operator will produce, including the fan-out
at each step of an x-scan path expression. This becomes
the “cardinality of the x-scan” from the perspective of
the tuple processor and optimizer. The rate of tuple pro-
duction can also be estimated; it will need to be re-est-
imated frequently, because it can quickly change due to
variations in XML structure or congestion in the net-
work.

Given cardinalities and expected rates of production,
we can leverage existing relational query optimizer cost
estimation techniques for the remaining operators in the
plan. Costs for relational operators like join can be es-
timated just as in their original context; the remaining
XML operators generally have a close equivalent in the
relational world (e.g., nestChild is implemented much
like a join) or an easily predictable cost (e.g., element
creates a new tag for each input tuple).

Initial query optimization in Tukwila is typically done
without statistics, and in this case we typically estimate
that each XML element has a fan-out of 1000 at the first
level and 10 for every successive level, and we use the
standard System-R heuristics for selectivity estimation.
Once execution begins, we can obtain more accurate
estimates of selectivity and cardinality values and use
those to get a better query plan.

A more detailed discussion of the Tukwila query op-
timizer appears in [Ive02], and we plan to publish an
extensive evaluation of the optimizer in the future. Note,
however, that many XML queries (and significantly, most



16 Zachary G. Ives et al.

of the queries in this paper) do not depend heavily on
query optimizer decisions: the query optimizer focuses
on ordering join, nesting, and grouping operators, and
queries that only have selection or a single join are min-
imally impacted by optimizer decisions. Instead, what
matters is the performance of the query operators, par-
ticularly the x-scan.

With the basic set of operations described in this sec-
tion, Tukwila can execute the core, database-like subset
of XQuery that avoids conditionals, recursive functions,
and type information. Additionally, whereas XQuery is
a heavily tree-oriented query language, we can also sup-
port graph-structured data in Tukwila, as we describe in
the next section.

7 Supporting Graph-Structured Data in Tukwila

To this point, we have presented the Tukwila query pro-
cessing system under the assumption that our data is
completely tree-structured and that this structure is mir-
rored in the XML element/attribute hierarchy. However,
the XQuery data model and language do support limited
forms of encoding graphs in XML, through the use of
IDREF attributes (within a document) and XLinks (out-
side a document). In this section, we briefly describe
some of the issues involved in supporting these opera-
tions.

7.1 Join-Based Traversal

The conventional way to evaluate an IDREF is to use
a join operation: for example, suppose we allow only
a single IDREF in each XPath. To evaluate these ex-
pressions, take all XPaths and separate them into “pre-
IDREF-traversal” and “post-IDREF-traversal” steps. Do
an x-scan of the input document with the pre-IDREF
XPaths. In parallel, do an x-scan over the same docu-
ment for all elements that have IDs, and evaluate the
post-IDREF XPaths. Now join the results when the last
IDREF of the first x-scan matches the originating ID
of the second x-scan. Similar techniques can be used to
support k IDREFs in each XPath. XQuery does not sup-
port Kleene closure over IDREFs, so a query must have
a fixed number of reference traversals and this technique
can always be made to work.

The join-based traversal method is effective for fol-
lowing links in many situations, but it has two poten-
tial drawbacks. First, standard join algorithms will not
“short-circuit” once an IDREF is matched to its target

ID, i.e., they do not “know” that there should be pre-
cisely one match to every IDREF. Alternative means of
traversing IDREFs, which we discuss next, can move to
the next reference as soon as the current reference has
been matched once — fully pipelining the results. Sec-
ond, the join-based traversal only works for IDREFs or
XLinks that all belong to the same target document.

7.2 Follow-Based Traversal

A second option, which supports both IDREFs and XLinks,
is to use the Tukwila follow operator. In following an
IDREF, follow does an XPath match against an in-memory
XML document that was output from a prior x-scan and
returns a set of bindings. For IDREF traversal, follow
makes use of an index of ID elements that was created
by the x-scan operation. This index is further described
below.

Follow is intuitively an x-scan that operates on “tu-
ples of trees” rather than on XML documents. Given a
set of path expressions and an input tuple stream (as well
as the XML trees it references), follow adds new vari-
able bindings to each of its input tuples by evaluating the
path expressions against the trees within the tuple. If a
pattern matches multiple subtrees within the tuple, a set
of tuples will be returned, one for each possible binding
combination. (This operator is essentially a special case
of the map operator in some object-oriented algebras.)

Follow is the only reasonable option for evaluating
XLinks. At each link, it opens the referenced document
and evaluates the XLink path expression to select out
the desired XML data, then matches the remainder of
the query’s XPath against this document fragment, in a
manner similar to x-scan or web-join.

7.3 Graph Traversal with X-scan

As we shall see in our experimental evaluation, x-scan’s
state machine infrastructure adds very little overhead
in performing XPath matching against an XML tree.
Hence, any XPath traversal across a document’s tree struc-
ture should generally be done at the x-scan level. Traver-
sals across IDREFs can also be done at the x-scan level,
and as we shall see later, this performs reasonably for
moderately sized documents that do not contain large
numbers of references. We now discuss the extensions
necessary for traversing IDREFs in x-scan.

The first difference is the addition of three new data
structures, shown in the upper left corner of Figure 11:

– ID index: records the IDs of all elements and their
matching locations in the XML data. It is used to
facilitate resolution of IDREFs in the graph.
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Fig. 11 Graph-based execution of x-scan uses 3 new data structures (upper left). The ID index records the positions of each ID
within the XML data graph; the unresolved index maintains a list of IDREFs that have not been resolved; the structural index
physically encodes element, attribute, and reference relationships.

– Unresolved-ID index: maintains a list of references
to not-yet-seen element IDs (to be resolved as they
are found later in the input).

– Structural index: provides an index of the XML graph,
corresponding to Figure 2, but without the data val-
ues at the leaves. This is not necessary, but speeds
x-scan’s traversal through the graph in memory.

When x-scan processes graph-structured XML, it gen-
erates a structural index, which is a trie-like index of the
XML graph structure (i.e. the subelement and IDREF
links). This index allows x-scan to quickly traverse back
through XML structure in evaluating references. In ad-
dition, as we explain below, the construction of the struc-
tural index continues even when we need to suspend the
state machines because of unresolved IDREFs. This in-
dex is intended only to last for the lifespan of the query,
so it is built in memory and paged out only as necessary.
(We expect that x-scan will generally only be used to
traverse moderately-sized graph data, and will be sup-
planted by follow or joins for larger documents, so pag-
ing of this index should seldom occur.)

Each node in the index contains information about
an element (its ID and an offset into the original XML
data file so that the node’s source can be accessed quickly)
as well as pointers to all subelements, attributes, and
IDREFs of the element. Essentially, the index structure
looks like the graph of Figure 2 except that data values
such as those in the leaf (PCDATA) nodes are not stored.

In addition, x-scan creates the ID index, which records
all the IDs that it has encountered so far, mapping from
ID to entry in the structural index, and the unresolved-
ID index which records all IDs that have not yet been
seen in the input, and lists all referrers to each such ID.

X-scan’s general execution proceeds similarly to the
tree-structured case, except when an element with ref-
erences is encountered, and the references are to be tra-
versed by the regular path expression. If the reference

is to an element that has already been parsed (a back-
ward reference), the state machines are run over the ref-
erence’s target in the structural index, and then parsing
continues.

Forward References On occasion x-scan will encounter
an IDREF edge which points “ahead” to a node which
has not yet been parsed. When x-scan hits a forward ref-
erence, it pauses all state machines 7 and adds an entry
to the list of unresolved IDREF symbols, specifying the
desired ID value and the referrer’s address. However,
x-scan continues reading the XML source and building
the structural index. Once the target element is parsed,
x-scan fills its address into each referring IDREF in the
structural index, removes the entry from the list of un-
resolved IDREFs, and awakens the state machines and
proceeds. Although this approach causes x-scan output
to stall as it waits for a reference to be resolved, our
empirical results have shown that with the help of the
structural index, x-scan “recovers” quickly. In the worst
case, x-scan should still do at least as well as a DOM-
based query processor — as with DOM, it builds a struc-
ture in memory that can be quickly traversed; however,
unlike the DOM implementations with which we are fa-
miliar, x-scan can still execute when this structure must
be paged to disk because it exceeds virtual memory.

Cycles In order to avoid cyclic traversals of references,
x-scan maintains a history of nodes visited by each au-
tomaton state in a given path traversal. X-scan uses de-
terministic automata, so if a machine re-visits a node
that it has encountered in the same state along the same
path, this is a cycle and can be aborted.

7 Conceptually, x-scan could continue state machine opera-
tion until the reference target is found, then insert the target,
return all of the matches found afterwards, and continue nor-
mal operation; but for simplicity of coding, our implementa-
tion does not do this.
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7.4 General Guidelines for Reference Traversal

There are a number of ways of supporting graph-structured
data within the Tukwila system. Each of these methods
has different capabilities and performance results; we
now present a set of guidelines by which an optimizer
can choose the best mechanism for evaluating XPaths in
the graph context.

We begin by noting that the x-scan operator is very
efficient on strictly tree-structured data, so we believe it
will seldom make sense to use either the join or follow
methods to traverse anything but IDREFs or XLinks.
Thus, the query processor should use x-scan to evaluate
the segment of an XPath before (or after) a reference
traversal.

The type of reference being evaluated now becomes
important: as was noted earlier, the join method does not
work for evaluating XLinks. Our x-scan implementation
does not follow XLinks, either, because such a traversal
is quite expensive and probably should not be done as a
leaf-level operation. Thus, for XLinks, the follow oper-
ator is the only option.

For documents with a low number of IDREFs, the x-
scan traversal approach works well. Once a large num-
ber of IDREFs must be evaluated, however, the join and
follow alternatives look more promising. The follow op-
erator is a unary operator, and only requires one scan
of a given document; however, it traverses through the
XML data (which may result in thrashing if the docu-
ment is larger than memory). The join operator is less
likely to cause thrashing, since it combines tables that
are each completed in a single pass — but it requires
two separate scans of the input document.

8 Experimental Results

Now that we have seen the details of the Tukwila query
engine for both tree-structured and graph-structured data,
we move to our experimental validation of the system.
Our implementation was written in C++. We originally
wrote the system for Windows 2000 using the Apache
Xerces-C XML parser at the core of our x-scan imple-
mentation. Later, we migrated to a slightly slower Linux
machine using James Clark’s expat 1.95.1, which per-
formed faster XML parsing. In the experiments below,
we used the expat-based implementation for comparing
XML pattern matching experiments (Section 8.1), and
we relied on the Windows machine for the compute-
bound and memory scalability experiments, since it was
faster and had more memory.

Our system architecture is based on a client-server
model, with a Java client that submits queries using SOAP

over HTTP, then reads and times the XML results. Most
experiments measured the performance of the Tukwila
engine on an 866MHz Pentium III machine with 1GB
RAM (of which we allocate only a subset to Tukwila)
under Windows 2000 server; but as mentioned above,
for the studies of XML pattern matching performance
in Section 8.1, we instead ran Tukwila on an 800MHz
Pentium III with 256MB RAM under Red Hat Linux
7.1. In all cases, XML documents were served via HTTP
from our web server, a dual Pentium II 450MHz sys-
tem with 512MB RAM, running Windows 2000 and IIS
5. The web server and query processing machine com-
municated via 100Mb fast Ethernet, with each machine
on a separate subnet within a larger-scale network. Ex-
periments were run once for “warm-up” and repeated
at least 7 times, and error bars are included for queries
where the confidence interval is less than 95%.

Experimental data sets were chosen to encompass a
range of different XML data classes, and are listed in
Table 2. They include real documents, real semistruc-
tured data, semistructured data generated with the re-
cent XMark XML query benchmark [SWK+02], syn-
thetic data with references, and relational tables saved in
XML format. The synthetic data with references was the
only data set that we created ourselves; it was designed
to have random variation in depth and distribution of
IDREFs. The data set was generated using the follow-
ing process: replicate a “core” XML subtree a specified
number of times, and then randomly attach it to differ-
ent points within the current document, with probability
15% that it attaches to the root. Afterwards, the desig-
nated number of IDREF edges were added between ran-
dom pairs of endpoints.

Since we are proposing a new model for query exe-
cution, we begin by comparing Tukwila’s performance
with that of systems using more traditional approaches.
Later, we look at scalability and the performance of Tuk-
wila on database-style operations including join; we ex-
amine how hierarchically nesting XML content limits
performance because it restricts order; and we look at
how Tukwila’s x-scan algorithm can be used to support
IDREF traversal for graph-structured data.

8.1 XML Extraction Queries

Clearly, the core operation at the heart of any XML pro-
cessor is the pattern-matching and XML content extrac-
tion step, and in fact this is where Tukwila’s approach
differs from other implementations. Our first set of ex-
periments focuses on comparing the relative performance
of Tukwila with other systems when extracting XML
content with XPath expressions. Our suite of queries
is described in Table 4, and consists of a mix of text-
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Table 2 Data sets used in experiments.

Name Size Description
religion 7MB Concatenation of Bosak’s collection of religious texts

(bible, quran, Book of Mormon)
xmark-50 59MB 0.5-scale-factor XMark auctions file
xmark-1000 118MB 1.0-scale-factor XMark auctions file
xmark-500 596MB 5.0-scale-factor XMark auctions file
dmoz 341MB Open directory (dmoz) RDF hierarchy
dblp-proc 155KB DBLP list of conference proceedings
dblp-pubs 8.9MB DBLP list of conference publications
dblp-conf 39MB DBLP complete conference information
dblp-cj 61MB DBLP complete conference and journal information
customer-10 0.5MB TPC-H 10MB (0.01-scale-factor) customer table in XML
orders-10 5.4MB TPC-H 10MB (0.01-scale-factor) orders table in XML
lineitem-10 32MB TPC-H 10MB (0.01-scale-factor) lineitem table in XML
customer-100 5.2MB TPC-H 100MB (0.1-scale-factor) customer table in XML
orders-100 53MB TPC-H 10MB (0.1-scale-factor) orders table in XML
lineitem-100 324MB TPC-H 100MB (0.1-scale-factor) lineitem table in XML
synth 100K-100MB Data from synthetic generator (see text)

oriented and path-oriented queries over different types
of hierarchical documents and semistructured data. (We
examine performance on more regular XML data from
relational systems in the next section.)

See Table 3 for details on the systems in our com-
parison; all except for Tukwila are main-memory-only
XML engines. We included three popular XSLT proces-
sors in our study: the Apache Xalan-C system, James
Clark’s XT engine (which was generally rated as one
of the faster XSLT engines), and the XSLT processor in
Microsoft’s MSXML 4.0 toolkit (which has been heav-
ily optimized and is considered to have the fastest parser
and XSLT engine available). We also wanted to com-
pare with data integration systems, so we included the
December 2000 version of the Niagara system (as of
this time, the latest version that is publicly available).
Early in the development of Tukwila, we also compared
our performance against the Lore System [GMW99], an
XML repository; at the time, Tukwila significantly out-
performed Lore. Unfortunately, Lore is no longer being
distributed, and therefore we omit it from our compari-
son, because it would be unfair to compare with an out-
dated version of Lore.

Figure 12 shows the results for the queries in two
graphs: part (a) shows the time to the initial 5 answers,
as a way of measuring quick feedback to the user; part
(b) shows the overall query completion time. Note that
queries Q3, Q5, and Q6 all had fewer than 5 answers, so
they have identical timings.

We make several observations about the results. First,
although Tukwila was run on a slower machine (800MHz
vs. 866MHz) with less memory (256MB vs. 1GB) than
all of the other systems, it nearly matched or signifi-

Table 4 List of queries used for comparing pattern-matching
performance.

Nbr. Input Query
Q1 religion Chapter 5’s (medium trees)
Q2 religion Chapters ≥ 8 (medium trees)
Q3 religion Sura titles with “Mormon” (single result)
Q4 religion Suras with “The” in title (large trees)
Q5 xmark-50 XMark query Q1 (person0’s data)
Q6 xmark-50 XMark query Q2 (bidder 1’s bid increases)
Q7 dmoz Return all topic IDs

cantly outperformed all of the other engines documents
across the entire suite of queries. Microsoft’s MSXML
processor lives up to its reputation as being a very fast
engine, and it is actually faster by a margin of half a sec-
ond for the queries over the relatively small religion
document — we attribute this to the additional overhead
Tukwila incurs to optimize its queries. For larger docu-
ments, however, such as the XMark document, Tukwila
is substantially faster overall, and is especially faster
for Query Q7. Q7 clearly demonstrates that Tukwila is
the only processor to scale to large XML data files: our
system comfortably processed the 324MB dmoz XML
document on a 256MB machine in less than a quarter the
time that MSXML (needing most of the 1GB of RAM
in its experimental configuration) did. No other systems
were able to accommodate the large document.

Surprisingly, although our suite of queries was rela-
tively simple, some of the queries could not be executed
on all systems. Niagara does not support the XML-QL
LIKE predicate or index variables, so we could not ex-
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Table 3 Systems compared in Section 8.1.

Name Implemented Domain Description
Xalan 1.1 C++ Doc Apache XSLT processor, built over Xerces-C parser
XT 19991105 Java Doc James Clark’s XSLT processor
MSXML 4.0 C++ Doc Microsoft parser and XSLT processor toolkit
Niagara 1.0 Java XML-DB University of Wisconsin XML integration system
Tukwila 1.0 C++/Java XML-DB XML engine described in this paper

press queries Q3, Q4, and Q5. MSXML executed query
Q2 with incorrect results (returning no answers). Sev-
eral query processors failed with the XMark document
(generating what appear to be spurious parse errors), and
nearly all failed on the large dmoz document (running
out of memory even on a 1GB system).

Overall, x-scan’s support for pipelined operation over
data streams results in much better time to initial tuple
(in general returning 5 answers in approximately 2 sec-
onds, except in the cases where there were fewer than
5 answers to be returned), and in fact the incremental
processing model improves overall execution time as
well. We also observe that the Niagara system, which
has largely focused on producing partial answers in or-
der to return early results, can only produce those results
after it has finished loading and parsing an XML doc-
ument — Niagara would benefit significantly from the
x-scan operator.

8.1.1 Slow links Our first experiment measured gen-
eral query processing performance across a local area
network; however, wide-area query processing is one of
the focal points of the Tukwila project. Thus our second
experiment repeats the previous queries in a bandwidth-
constrained environment. We simulated these conditions
by artificially adding a 50ms delay to the initial request
for a document (representing a slightly longer round-trip
time), plus a 15ms delay per 16KB of data sent (limit-
ing the throughput of the connection). This delay was
sufficient to inject 960 msec of delay per MB of data
transferred, giving us about 1MB per second or 8Mbits
per second as our approximate transfer rate. We repeated
all of the queries of the previous section except for the
dmoz query, which we judged to be too huge for anyone
to want to transfer in this situation.

Performance results are in Figure 13. As expected,
Tukwila’s incremental output greatly improves the time
to initial answers, but the overall query completion time
also shows a relative performance gain versus the other
query processors. Since Tukwila does filtering and con-
struction of content in parallel with reading, it manages
to use the network delay times to help compute answers;
in contrast, the other query engines are idle during de-
lays, since they cannot process results until after the
parse is complete.

8.1.2 Scale-up A point of emphasis in our design of
the Tukwila architecture has been scalability to large
XML documents. While most XML files on the Web
are currently only tens of KB in size, as XML matures,
querying and integration of data between groups or en-
terprises is expected to become commonplace — and
such data will be considerably larger. In many of these
situations, the query processor may be servicing many
outstanding requests simultaneously, so each query must
run with limited resources. Moreover, current query pro-
cessors’ in-memory representations of XML data are
substantially larger than the original XML data — e.g.,
the XT processor required over 260MB of memory to
load and scan the 39MB DBLP XML file in query Q4
of the previous subsection; even a server with 1GB of
memory cannot handle many such queries simultane-
ously.

Tukwila avoids this pitfall by supporting out-of-core
execution. Many aspects of the Tukwila architecture (e.g.,
external sorts, grouping operators, hash and pipelined
hash joins) will scale in predictable ways, as they are
well-understood components of relational query engines.
As observed in Section 6, most query operations take
place over scalar data values rather than subtrees, and
these values are likely to be inlined within the tuple —
hence page faults in the XML Tree Manager are not
likely to greatly affect performance.

The main concern for scalability, then, is the x-scan
operator and the data structures it uses. We investigated
the performance of x-scan for both simple path expres-
sions and more complex ones (i.e., those with more bind-
ings and a Kleene-star operator in them), across a variety
of document sizes.

We took all of the queries from the previous section,
plus two selection queries over relational data and plot-
ted the running times versus the data sizes in Figure 14.
We note that an interesting dichotomy emerges: the rela-
tional tables, which are quite “dense” with many tuples
and many XPath matches, seem to yield running times
that all fall on the approximately same line at the left of
the plot. Likewise, the other queries over sparser semi-
structured data seem to follow a different line with a
lower slope. As we would hope, Tukwila’s performance
appearance appears to scale approximately linearly, with
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Fig. 12 Experimental comparison of XML queries shows that Tukwila has equal or better total running time (and better time to
first tuples) for a variety of XML extraction queries.

the slope determined by the number of pattern matches
that occur.

Figure 15 shows performance over a range of syn-
thetic data, generated as described at the beginning of
this section. We observe that the time required to pro-
cess a simple query grows at a rate only slightly faster
than it takes to parse the XML and build a DOM tree
(the approach taken by previous systems); x-scan state-
machine operation and Tree Manager overhead within
Tukwila is fairly low. Kleene query execution times grow
at a significantly faster rate than the simple query, but
this query produces many more tuples because it con-

sists of two sibling Kleene-star path expressions — the
cartesian product of these two bindings must be returned
for each common subtree. The increase in execution times
is closely approximated by the growth rate in the num-
ber of tuples produced.

8.2 Database-Style Operations

One of the major sources of data is, of course, rela-
tional databases, and there is significant interest in shar-
ing relational data in the XML format. An important
concern is the amount of overhead incurred by “adding
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Fig. 13 In the wide-area context, Tukwila’s architecture provides even greater performance improvements when compared to the
other systems.

XML into the loop.” Do we lose a great deal by query-
ing over an XML view, rather than over traditional rela-
tional data? To answer this question, we compared three
different means of processing selection and join queries:

– XMLified SQL, where we sent a SQL selection or
join query to a database at the server (DB2 UDB 6.1
running on a 450MHz web server), read the data via
Java JDBC and sent it as tuples across the network
to our mediator, which added XML tags around the
tuples and returned the results to our client. The rela-
tional database was fully indexed. This approach is
similar to those adopted by the SilkRoute [FTS99]
and XPERANTO [CFI+00] mediator layers, which

wrap an XML view interface over relational systems,
except that we do not translate queries.

– Relational Mediator, in which all tuples from the
tables were simply read from JDBC and returned to
the original Tukwila system, which executed a rela-
tional query and then converted the data to tagged
XML.

– Tukwila, which took materialized XML views of
the relational tables, read them via HTTP, and did
XML query processing over the data using the tech-
niques described in this paper.

As Figure 16 illustrates, the Tukwila and Relational
Mediator approaches tended to have very comparable



An XML Query Engine for Network-Bound Data 23

0

90

180

270

360

0 100 200 300 400 500 600 700

Data Size (MB)
R

u
n

n
in

g
T

im
e

(s
ec

)

Religion/Q1
Religion/Q2
Religion/Q3
Religion/Q4
Xmark/Q5
Xmark/Q6
Dmoz/Q7
TPCH Orders, Qty > 32
TPCH Lineitem, Cust <= 1234

Relational data (dense)

Semistructured data (more sparse)

Fig. 14 An X-Y plot of running times versus data sizes shows that Tukwila yields relatively consistent and linear performance.
Note that queries over relational data, which is typically more “dense,” result in a higher slope than more sparse semi-structured
data.

0

80

160

240

320

0 7000 14000 21000 28000
Document Size (KB)

E
xe

cu
ti

o
n

 T
im

e 
(s

ec
)

Kleene, Completion
Simple, Completion
DOM Parse

Fig. 15 Scale-up results for query completion time on synthetic data for simple path query, Kleene-* query, and DOM parse. (Time
to first 5 tuples was under 2 seconds.)

running times, despite the fact that the XML-ified in-
put tables were considerably larger. Moreover, the over-
head inherent in JDBC and Java socket I/O (even given
the fast 100Mbps network) appear to be more substan-
tial than we had anticipated, so processing the query at
the server was not necessarily a win. As expected, se-
lection queries are significantly faster when done within
the database engine. However, both join queries execute
more slowly when done inside the relational engine. We
attribute this to the fact that JDBC was a bottleneck in
our experiments and the join results were larger than the
sum of the combined inputs — as a result, it was more
efficient to read the original tables separately and join
them within the mediator. Likewise, it was essentially as
efficient to read and process the XML version of the data

as it was to read the data through JDBC. We conclude
that the choice of whether to push an operation into a
data source depends greatly on the communication-link
costs, even when we are choosing between querying data
in its original relational form or converting it to XML
first.

While we do not claim that JDBC is the fastest means
of exchanging relational data (and we acknowledge that
many modern databases provide other mechanisms for
exporting XML), we observe that its performance is ac-
ceptable for many business and scientific applications.
Since Tukwila performs similarly on equivalent queries,
we believe that x-scan-based XML data exchange also
provides sufficient performance for real-world applica-
tions. Moreover, the Tukwila XML-based engine pro-
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Table 5 Queries with database-style selection (Q8-Q9) and join (Q10-Q11) operations using relational data mapped into XML.

Nbr. Class Input Query
Q8 Rel. Sel. 5MB TPC-H Orders for Customer “1234”
Q9 Rel. Sel 31MB TPC-H LineItems with Quantity > 32

Q10 Rel. Join 5MB x 0.5MB Join TPC-H Orders for Customer key < “1234”
with all Customers

Q11 Rel. Join 31MB x 7MB Join TPC-H LineItems with Orders
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Fig. 16 Experimental comparison of relational queries shows that Tukwila performs nearly as well over data mapped into XML as
the comparable relational-model integration system. In-SQL execution, included for comparison only, was better for the selection
query but not for the joins.
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vides greater interoperability because it can combine re-
lational and non-relational data.

8.2.1 Nesting Data As we observed in Section 4.2.2,
the operation of hierarchically nesting XML child ele-
ments within a parent element is very similar to a left
outer join in relational databases. However, a nesting

operation has an important constraint, which is that the
elements must appear contiguously, clustered by parent.
Clearly, maintaining this grouping incurs some overhead,
and we wanted to examine how significant this was.

A general practice in query optimization, especially
for network-based data, is to use the smaller join rela-
tion as the inner relation, and the larger as the outer re-
lation. Not only does this reduce memory overhead in
algorithms such as the hash join, but it also produces ini-
tial results earlier (assuming roughly equivalent transfer
rates between sources) because the hash join must block
until it has finished reading its inner relation. Unfortu-
nately, since a nest operation is used to create a 1 : n
hierarchical relationship, it must place the larger join
relation as the inner relation so it can iterate over it for
each parent tuple. We can see in Figure 17 that as a re-
sult, nest performs more slowly than a hash join that has
been commuted to the opposite configuration. In fact,
the hash join completes its execution in the same amount
of time as nest takes to output the first 5 tuples.

This suggests that performance in interactive appli-
cations, where first answers are most important, would
be considerably improved if it were possible to do the
nest the same manner as the join, i.e., if we did not have
to maintain the parent-based ordering constraints on its
output tuples. However, if we output results without pre-
serving order, we must ultimately sort the data to get it
into its proper form. We are experimenting with a user
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interface in which the final sort operation is performed at
the client-side on a periodic basis, which frees the query
processor to stream out results in any order and provide
faster feedback to the user.

8.3 Supporting Graph-Structured Data

Although most of today’s XML queries traverse the doc-
ument as a tree, there are many potentially interesting
uses of XML as a representation for semistructured graphs,
encoding edges as both elements and IDREFs. Thus, the
x-scan operator has a number of features designed for
querying graphs. Previous work on IDREF traversal has
typically been done using the join or follow approaches
described in Section 7, but we now examine the use of
x-scan as an alternative.

8.3.1 X-scan Traversal of IDREFs In our comparison
of strategies for evaluating graph-style references, we
suggested that x-scan could be used on moderately sized
documents that had low numbers of references. In Fig-
ure 18, we see execution times of x-scan across synthetic
documents of different sizes. The different lines repre-
sent execution times when the ratio of IDREFs to ele-
ments is 1:8, 1:4, 1:3, and for comparison we include the
execution time for a typical tree-traversing query, which
does not build the structural index, over the mid-sized
(1:4-ratio) documents. For proportionately low numbers
of references, we see that the overhead in supporting
graphs is relatively low; and even with fairly high num-
bers of traversed IDREFs, running times are reasonable,
especially since initial results are output quickly. With a
1:3 ratio of IDREFs to elements, Tukwila takes 90 sec-
onds to return 193,000 leaf nodes from a 7MB synthetic
graph. In contrast, the tree version of the same query
yields only 55,000 leaf nodes. As the ratio of IDREFs
gets even higher — not shown in the graph — the XML
graph begins to approach full connectivity, and x-scan
spends large amounts of time doing repeated evalua-
tions. Clearly, in these situations, the join- or follow-
based approach is more appropriate.

8.3.2 Graph Traversal with Limited Memory We also
examined in detail the performance characteristics of x-
scan, particularly those related to paging data to disk.
For simple tree-based queries, memory constraints are
typically not an issue — Tukwila needs only to maintain
state and subtrees for a limited amount of time, i.e. until
all tuples referencing the subtrees have passed through
the pipeline. Thus, for example, when we queried the
the 159MB Open Directory Project topic hierarchy for
all topic aliases, query processing times were approxi-
mately 7 minutes 43 seconds whether Tukwila was given
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Fig. 18 Scale-up results for Kleene-* graph query on syn-
thetic data, with tree query shown for reference.

20MB of memory or 250MB. Results were similar for
tree-style queries over other data sets such as DBLP. Ad-
ditional experiments demonstrated that the performance
bottleneck was clearly in the areas of network I/O and
parsing — saving a locally cached copy of the input
XML document to disk (from a separate thread) added
no perceptible time overhead to the query.

Our final experiment, in Figure 19 measures the per-
formance of x-scan graph traversal across large XML
data files when the amount of memory available to the
Tree Manager and the structural index are constrained.
Data sets on the graph include two synthetic data sets of
103MB and 51MB, each with a 1:8 element-to-IDREF
ratio, and the DBLP conference data set with cross-ref-
erences from papers to conferences as IDREFs8. Our
experiments do include a data set in which most of the
referenced items are relatively clustered (DBLP) and one
in which they are randomly distributed throughout the
document (the synthetic data). In all cases, the structural
index ranged in size from two to three times the data
set size. We separately adjusted the size of the index’s
memory allocation and the Tree Manager’s allocation,
to see how greatly each affected performance. In gen-
eral, the variations in memory had less of an impact than
one might expect — we attribute this to the fact that the
query processor is generally network-bound, and hence
can make use of free CPU and disk cycles. Moreover,
as expected, the size of the index buffer affects perfor-
mance more than the size of the Tree Manager. A fi-
nal observation is that, as expected, the DBLP data set,
with a fairly strong locality of references, is basically not
impacted by memory, whereas the synthetic data with
its randomized reference targets is somewhat more af-
fected.

8 We also attempted to use the Open Directory data file,
but were unable to successfully “clean” the document by re-
moving elements unacceptable to the Xerces parser, while still
maintaining IDREF link integrity.
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Fig. 19 Query processing times with restrictions on XML tree memory (x-axis) and index buffer memory (bar shades). Index
buffer size impacts performance more than tree memory.

9 Related Work

As described earlier, most previous XML query proces-
sors have fallen into one of two classes:

– web-oriented processors, including XSLT processors
such as XT and Xalan, the Niagara [CDTW00] and
MIX [BGL+99,LPV00] data integration systems)

– repository based systems that require all the data
to first be loaded into a local store, and then pro-
cessed, such as those of [FK99b,SGT+99,DFS99,
GMW99].

Most web-oriented query processors have shortcom-
ings in terms of scalability and ability to incrementally
parse and produce answers.

When we compare Tukwila to repository systems,
we note that a repository’s particular storage mapping
may simplify certain path expressions, e.g. if a set of
path expressions includes multiple data items that are
mapped to the same tuple in a table. Frequently, how-
ever, indexing techniques such as join indices [Val87],
access support relations [KM90], dataguides [GW97],
and t-indices [MS99] must be used to speed the process-
ing of path expressions. However, both of these tech-
niques are typically ill-suited for a network-based query
domain with autonomous data sources, unless queries
are frequently repeated over the same data; because they
invest a great deal of time into mapping, storing, and in-
dexing data before it can be queried, and this often can-
not be amortized across multiple queries.

Related to repository-based systems are XML query
interfaces over existing databases: SilkRoute [FTS99]
and XPERANTO [CFI+00] support creation of XML
queries and views over relational systems, and IBM, Or-

acle, and Microsoft all support some XML export fea-
tures in their products. These systems are very useful for
exporting data into XML to facilitate data integration,
but they are clearly not intended to be general-purpose
XML processors.

A goal of our architecture is to support fully pipelined
execution and leverage sophisticated techniques devel-
oped for relational query processing over the network,
such as those developed for data integration and dis-
tributed databases [KD98,UFA98,UF00]. Our internal
execution model bears similarities to object-relational
database engines, including the use of references for (po-
tentially out-of-core) large objects — in our case, XML
subtrees. This approach bears some similarities to the
ADT for structured text described in [BCD+98]. Our
physical algebra borrows some of its hierarchical as-
pects from the nested relational algebra [RKS88].

The key operator responsible for outputting pipelined
tuples from an input document in Tukwila is the x-scan
operator, which uses a hierarchical set of finite state ma-
chines to traverse the input as it is streaming into the sys-
tem. Unlike a repository system, x-scan does not break
the XML document into components requiring indexing
and later reassembly; unlike existing main-memory sys-
tems, it scales beyond memory and it supports efficient
traversal of IDREFs for graph-structured input.

The x-scan pattern matching approach bears some
similarity to the Knuth-Morris-Pratt substring-matching
algorithm, which also uses finite state machines to per-
form matches — however, our algorithm supports hier-
archies of bindings and path expressions, traverses graph
structure, and avoids cycles. X-scan also has similarities
to the XFilter operator [AF00], developed simultane-
ously but focusing on filtering XML documents accord-
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ing to an XPath expression. XFilter returns a boolean
value (match or non-match) rather than a tuple stream,
and as a result differs considerably in functionality and
implementation. Finally, x-scan has similar goals to the
scan logical operator proposed by Cluet and Moerkotte
for tree-structured data in [CM97], but our work includes
a specific algorithm, support for graph-structured data,
and an experimental evaluation.

10 Conclusions

Technology trends in networking and data exchange have
increased the need for an XML query processor for network-
bound data. Applications such as integration of intranet
or Internet-based data, query and transformation sys-
tems for XML documents, “live” data analysis tools, and
electronic commerce all require the following abilities:

– the ability to query, combine, and restructure the con-
tent of XML documents of arbitrary size,

– the ability to combine data from multiple sources,
including data that is the result of dynamically com-
puted queries

– support for a “streaming” or pipelined query pro-
cessing model that produces results as soon as pos-
sible.

This paper describes the architecture of the Tukwila
XML data integration system, the first XML processor
that satisfies the above requirements. Our key contribu-
tions include:

– an architecture which extends tuple-oriented, rela-
tional techniques such as pipelining, as well as re-
cently developed adaptive query processing techniques
for network-based relational data, to work efficiently
on XML;

– two key operators, x-scan and web-join, that map
XML data (from both static and dynamically queried
sources) into tuples in a streaming fashion;

– and a set of basic operators for combining and re-
structuring tuples of XML subtrees into new XML
content.

We described a set of experiments that demonstrate
that our system provides superior performance to exist-
ing XML query systems when applied to network-bound
data. In conclusion, our results suggest that it is indeed
possible to construct a native query processor for XML
data that rivals the efficiency of a relational query en-
gine.

The architecture of Tukwila suggests several direc-
tions for future research. Clearly, a next step is to de-
velop improved query optimization techniques for the

XML context, particularly in the context of data integra-
tion — where few statistics will be available. We are in
the process of building a new adaptive query processing
framework for the next version of Tukwila, which will
support multiple strategies for continuous re-optimization
of an executing query. Additional important avenues of
research include further investigation of processing graph-
structured data — in particular, support for features such
as Skolem functions to create graph-structured query re-
sults — and the performance implications of ordered
versus unordered execution.
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